JP2001145896A - Apparatus for treating nitrogen-containing waste water - Google Patents
Apparatus for treating nitrogen-containing waste waterInfo
- Publication number
- JP2001145896A JP2001145896A JP33008099A JP33008099A JP2001145896A JP 2001145896 A JP2001145896 A JP 2001145896A JP 33008099 A JP33008099 A JP 33008099A JP 33008099 A JP33008099 A JP 33008099A JP 2001145896 A JP2001145896 A JP 2001145896A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- anode
- current collector
- denitrification tank
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 23
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 title claims abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 28
- 230000001546 nitrifying effect Effects 0.000 claims abstract description 15
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 12
- 229910017464 nitrogen compound Inorganic materials 0.000 claims abstract description 11
- 150000002830 nitrogen compounds Chemical class 0.000 claims abstract description 11
- 238000005273 aeration Methods 0.000 claims abstract description 8
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 7
- 239000004744 fabric Substances 0.000 claims description 38
- 241000894006 Bacteria Species 0.000 claims description 37
- 244000005700 microbiome Species 0.000 claims description 33
- 239000008188 pellet Substances 0.000 claims description 23
- 239000000835 fiber Substances 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000002759 woven fabric Substances 0.000 claims description 13
- 239000004020 conductor Substances 0.000 claims description 12
- 238000007664 blowing Methods 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 9
- 238000004065 wastewater treatment Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 14
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 238000004062 sedimentation Methods 0.000 abstract description 4
- 239000007772 electrode material Substances 0.000 abstract description 2
- 230000002906 microbiologic effect Effects 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 26
- 229910052799 carbon Inorganic materials 0.000 description 26
- 239000012528 membrane Substances 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000011942 biocatalyst Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 3
- 238000011001 backwashing Methods 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 241000605159 Nitrobacter Species 0.000 description 2
- 241000605122 Nitrosomonas Species 0.000 description 2
- 241000589597 Paracoccus denitrificans Species 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 241000168053 Pseudomonas denitrificans (nomen rejiciendum) Species 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000001651 autotrophic effect Effects 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241001478240 Coccus Species 0.000 description 1
- 241000192147 Nitrosococcus Species 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241001509286 Thiobacillus denitrificans Species 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003295 industrial effluent Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば発電所排水
などの産業排水およびその他の排水中に含まれる窒素化
合物、特にアンモニアや亜硝酸などの亜硝酸態窒素や硝
酸態窒素を電気化学的反応を利用しつつ生物学的に処理
するため排水処理装置およびそれに用いる生物固定電極
に関する。The present invention relates to an electrochemical reaction of nitrogen compounds contained in industrial effluents such as power plant effluents and other effluents, particularly nitrite nitrogen and nitrate nitrogen such as ammonia and nitrite. TECHNICAL FIELD The present invention relates to a wastewater treatment apparatus for biologically treating while utilizing water, and a biological fixed electrode used in the wastewater treatment apparatus.
【0002】[0002]
【従来の技術】現在、アンモニアや亜硝酸として存在す
る排水中の窒素を処理するための技術としては、まず硝
化槽において、ばっ気しつつ、硝化菌(亜硝酸化菌や、
硝酸化菌)の働きにより前記窒素化合物を硝酸に変化さ
せ、この硝化槽で生じた硝酸態窒素を脱窒菌の働きによ
り、窒素ガスとして、大気中に放出して、被処理水中の
窒素を処理することが行われている。このとき脱窒槽に
おいては、メタノールが加えられるが、その利用されな
かった余剰分を酸化槽(再ばっ気槽)において処理する
必要がある。そして、さらには、被処理水から、硝化
菌、脱窒菌、酸化菌を含む活性汚泥を分離するための沈
殿槽が必要がある。2. Description of the Related Art At present, as a technique for treating nitrogen in wastewater present as ammonia or nitrite, nitrifying bacteria (nitrifying bacteria,
The nitrogen compound is converted to nitric acid by the action of nitrifying bacteria, and the nitrate nitrogen generated in the nitrification tank is released into the atmosphere as nitrogen gas by the action of the denitrifying bacteria to treat the nitrogen in the water to be treated. That is being done. At this time, methanol is added in the denitrification tank, but the surplus that has not been used needs to be treated in the oxidation tank (re-aeration tank). Further, a sedimentation tank for separating activated sludge containing nitrifying bacteria, denitrifying bacteria, and oxidizing bacteria from the water to be treated is required.
【0003】ここで、硝化菌とは好気条件下でアンモニ
アを酸化して亜硝酸を生成する亜硝酸菌と、同様に好気
条件下で亜硝酸を硝酸に酸化する反応を行ういわゆる硝
酸菌の総称である。硝化菌は、上述の反応から得られる
エネルギーを利用して、炭酸固定を行い増殖する独立栄
養細菌であり、一般的には、増殖に有機物を必要としな
い。硝化菌の公知例としては、ニトロソモナス属、ニト
ロバクター属などがある。また、脱窒菌とは、多くは嫌
気性条件下で、硝酸もしくな亜硝酸を還元する反応を行
う多種多様な種類の微生物の総称であり、この脱窒菌
は、増殖に有機物を必要とする従属栄養微生物、または
有機物を必要としない独立栄養微生物である。脱窒菌の
公知例としては、下水処理場由来の活性汚泥などがあ
る。[0003] Nitrifying bacteria are nitrites that oxidize ammonia under aerobic conditions to produce nitrite, and so-called nitrite bacteria that similarly oxidize nitrite to nitrate under aerobic conditions. Is a generic term for Nitrifying bacteria are autotrophic bacteria that grow by performing carbon fixation using the energy obtained from the above reaction, and generally do not require organic matter for growth. Known examples of nitrifying bacteria include the genus Nitrosomonas and the genus Nitrobacter. Also, denitrifying bacteria are a general term for a wide variety of microorganisms that perform reactions to reduce nitric acid or nitrous acid under anaerobic conditions, and these denitrifying bacteria require organic substances for growth. Heterotrophic microorganisms or autotrophic microorganisms that do not require organic matter. Known examples of denitrifying bacteria include activated sludge from a sewage treatment plant.
【0004】したがって、実際に被処理水中の窒素処理
を行うために必要な槽は、硝化槽と脱窒槽の2槽であ
る。しかし、脱窒槽において脱窒菌が働くためにはメタ
ノールの添加が必須であり、また、窒素負荷が変動して
も処理を安定して行うため、メタノールは常に過剰に添
加される必要がある。したがって、余剰のメタノールが
発生し、このメタノールがCOD源となり、処理が必要
となる。つまり、排水中の窒素の処理とは実質的に関係
のない槽(再ばっ気槽や沈殿槽)が付属していることと
なる。[0004] Therefore, two tanks necessary for actually performing the nitrogen treatment of the water to be treated are a nitrification tank and a denitrification tank. However, in order for denitrification bacteria to work in a denitrification tank, addition of methanol is essential, and even if the nitrogen load fluctuates, in order to stably perform the treatment, methanol must always be added in excess. Therefore, excess methanol is generated, and this methanol becomes a COD source, and requires treatment. That is, a tank (re-aeration tank or sedimentation tank) that is substantially unrelated to the treatment of nitrogen in the wastewater is attached.
【0005】一方、黒田らは、土木学会第48回年次学
術講演会要旨集、p1268,1993および特開平5
−329497号公報において、水の電気分解によって
発生する水素を還元力として微生物に供給して脱窒する
方法を提案している。この方法は脱窒菌を含む活性汚泥
懸濁液中に炭素電極を約1か月浸すことにより電極上に
微生物膜を作り、これに通電することで硝酸態窒素処理
を行うものである。これらの文献であげられている電極
は、棒状あるいは板状の炭素、金属等の導電性の固体表
面に生体触媒が固定されているものである。さらには、
特開平8−19788号公報には粒状生体触媒固定導電
物質を多孔性容器に収容して電極として利用することが
開示されている。On the other hand, Kuroda et al., Abstracts of the 48th Annual Meeting of the Japan Society of Civil Engineers, p. 1268, 1993, and
JP-A-329497 proposes a method of denitrifying by supplying hydrogen generated by electrolysis of water to a microorganism as a reducing power. In this method, a carbon electrode is immersed in an activated sludge suspension containing denitrifying bacteria for about one month to form a microbial membrane on the electrode, and a nitrate nitrogen treatment is carried out by applying an electric current to the microbial membrane. The electrodes described in these documents have a biocatalyst fixed to a rod-shaped or plate-shaped conductive solid surface such as carbon or metal. Moreover,
JP-A-8-19788 discloses that a granular biocatalyst-fixed conductive material is housed in a porous container and used as an electrode.
【0006】板状または棒状の電極には次のような問題
がある。すなわち、実際に処理を行うため流動する被処
理水に浸漬すると、流体のせん断力により生体触媒が剥
離することがある。また、固定化槽内の基質の拡散現象
による制約により生体触媒の固定化できる量が抑制され
る。さらに、水処理槽における排水の処理量を増大させ
るために槽内の電極を大きくすると、処理槽内の有効容
積が減少し、反応器の単位体積あたりの反応速度の減少
により、反応器の容積効率が低下する。[0006] The plate or rod-shaped electrode has the following problems. In other words, when the biocatalyst is immersed in flowing water to be treated for actual treatment, the biocatalyst may peel off due to the shearing force of the fluid. In addition, the amount of the biocatalyst that can be immobilized is suppressed due to the restriction due to the diffusion phenomenon of the substrate in the immobilization tank. Furthermore, if the electrode in the tank is enlarged to increase the amount of wastewater to be treated in the water treatment tank, the effective volume in the treatment tank decreases, and the reaction rate per unit volume of the reactor decreases. Efficiency decreases.
【0007】また、特開平8−224598号公報に
は、脱窒槽の陽極と陰極との間にイオン交換膜をおい
て、陰極にて水素を発生させて、その水素により水素資
化性脱窒素菌により脱窒素しようとする装置が開示され
ている。しかし、発生する水素ガスとともに脱窒素菌が
浮き上がって、処理が進まない傾向があり、これは処理
能力を上げようと電流を大きくすればするほど顕著な問
題となる。また、イオン交換膜のしきりを設けた結果、
陰極側におけるpHが高くなり、微生物による脱窒速度
が低下する問題がある(特開平9−75996号公報参
照)。Japanese Patent Application Laid-Open No. 8-224598 discloses an ion exchange membrane between an anode and a cathode of a denitrification tank, in which hydrogen is generated at the cathode, and the hydrogen is used for hydrogen-assisted denitrification. An apparatus that attempts to denitrify by bacteria is disclosed. However, there is a tendency that the denitrifying bacteria float up together with the generated hydrogen gas and the processing does not proceed, and this becomes a more serious problem as the current is increased to increase the processing capacity. Also, as a result of the provision of the ion exchange membrane,
There is a problem that the pH on the cathode side increases and the rate of denitrification by microorganisms decreases (see JP-A-9-75996).
【0008】また、現在、排水処理に用いられている固
定床法による脱窒槽においては、その被処理水の流れ
は、上向き流もしくは下向き流のどちらかであり、常に
一方向である。この方式によると、負荷の高い排水の入
口側では、生物濃度が高くなり、逆に負荷の低くなる出
口側では生物濃度が低くなる。このように槽内の生物濃
度に偏りが生じた場合、槽全体が有効に使用できず、効
率が低下していた。In the denitrification tank of the fixed bed method currently used for wastewater treatment, the flow of the water to be treated is either an upward flow or a downward flow, and is always in one direction. According to this method, the concentration of organisms increases on the inlet side of the wastewater with a high load, and decreases on the outlet side where the load decreases. In this way, when the concentration of organisms in the tank is uneven, the entire tank cannot be used effectively, and the efficiency is reduced.
【0009】[0009]
【発明が解決しようとする課題】上記のような従来技術
に鑑み、本発明は、硝化工程と脱窒工程を用いた窒素化
合物処理において、再ばっ気工程と沈殿工程を必要とし
ない方法と装置を提供することを目的とする。また、本
発明は、新規な導電性の電極材料からなる窒素化合物処
理用の生物固定電極を提供することを目的とする。さら
に、本発明は、反応槽内の生物濃度をより均一に保つこ
とができる微生物学的電気生化学的脱窒処理装置を提供
することを目的とする。SUMMARY OF THE INVENTION In view of the above-mentioned prior art, the present invention provides a method and an apparatus which do not require a re-aeration step and a precipitation step in a nitrogen compound treatment using a nitrification step and a denitrification step. The purpose is to provide. Another object of the present invention is to provide a biologically immobilized electrode for treating a nitrogen compound, comprising a novel conductive electrode material. Further, another object of the present invention is to provide a microbiological electrobiochemical denitrification treatment apparatus capable of keeping the concentration of organisms in a reaction tank more uniform.
【0010】[0010]
【課題を解決するための手段】本発明は、ばっ気しつ
つ、排水中の窒素化合物を硝化菌の働きにより硝酸に変
化させるための硝化槽と、硝化槽からの排水を受け入
れ、陰極と陽極を有し、少なくとも該陰極が脱窒菌を固
定した生物固定電極であり、陽極と陰極間に流される電
流と脱窒菌の働きにより硝酸を窒素ガスに変化させる脱
窒槽とを含んでなる窒素含有排水の処理装置を提供す
る。更に、本発明は、ばっ気しつつ硝化菌の働きにより
排水中に存在する窒素化合物を硝酸に変化させる硝化工
程と、脱窒菌を固定した生物固定電極を有する脱窒槽に
おいて電流を流しつつ脱窒菌の働きにより硝酸を窒素ガ
スに変化させる脱窒工程とを含んでなる排水中の窒素処
理方法を提供する。生物固定電極としては、その素材と
して、ペレット、粒子、布などの形状の導電体を使用す
ることができ、その導電体の表面に脱窒菌が付着してい
る。SUMMARY OF THE INVENTION The present invention provides a nitrification tank for converting nitrogen compounds in wastewater into nitric acid by the action of nitrifying bacteria while receiving a wastewater from the nitrification tank. A nitrogen-containing wastewater, wherein at least the cathode is a biological fixed electrode in which denitrifying bacteria are fixed, and a denitrification tank for converting nitric acid to nitrogen gas by the action of an electric current flowing between the anode and the cathode and the denitrifying bacteria. Of the present invention. Furthermore, the present invention provides a nitrification step in which nitrogen compounds present in wastewater are converted into nitric acid by the action of nitrifying bacteria while aerating, And a denitrification step of converting nitric acid to nitrogen gas by the action of nitrogen. As the biological fixed electrode, a conductor in the form of a pellet, a particle, a cloth, or the like can be used as a material, and denitrifying bacteria adhere to the surface of the conductor.
【0011】すなわち、本発明の窒素含有排水処理装置
の硝化槽は、ばっ気用の空気供給手段と、硝化菌を保持
する担体として働く樹脂ペレットとからなり、脱窒槽
は、陰極と、陽極と、必要に応じてメタノールなどを供
給する有機物供給手段と、陰極と陽極間に電力を供給す
る電源とを含んでなり、陰極と陽極のいずれかまたは両
方が脱窒菌を固定させた生物固定電極であるものであ
る。本発明は、従来からの脱窒工程のかわりに、生物固
定電極を用いて電流を流す電気化学的脱窒工程を採用す
ることにより、より少ない量のメタノールなどの有機物
だけで、あるいは有機物を添加せずに十分な脱窒を行
い、したがって、従来必要とされていた再ばっ気工程や
沈殿工程を不要にするものである。That is, the nitrification tank of the nitrogen-containing wastewater treatment apparatus of the present invention comprises air supply means for aeration and resin pellets acting as a carrier for holding nitrifying bacteria, and the denitrification tank comprises a cathode, an anode and An organic matter supply means for supplying methanol or the like as necessary, and a power supply for supplying power between the cathode and the anode, wherein one or both of the cathode and the anode are biologically fixed electrodes on which denitrifying bacteria are fixed. There is something. The present invention employs an electrochemical denitrification process in which an electric current is applied by using a biological fixed electrode instead of a conventional denitrification process, so that a smaller amount of an organic substance such as methanol alone or an organic substance is added. Thus, sufficient denitrification is performed without the need for re-aeration and sedimentation steps, which were conventionally required.
【0012】また、本発明は、集電体と、導電性織物
と、該集電体と導電性織物を一体化する固定用の導電性
繊維とを含んでなる脱窒槽用生物固定電極を提供する。
本発明は、また、集電体と、該集電体に接合している導
電性織物とを含んでなる脱窒槽用生物固定電極を提供す
る。本発明は、さらに、集電体と、導電性繊維からなる
三次元織物と、該集電体と該三次元織物を一体化する固
定用の導電性繊維とを含んでなる脱窒槽用生物固定電極
を提供する。本発明は、さらに、集電体と、該集電体に
固定された、導電性繊維からなる三次元織物とを含んで
なる脱窒槽用生物固定電極を提供する。The present invention also provides a biological fixed electrode for a denitrification tank, comprising a current collector, a conductive fabric, and a conductive fiber for fixing the current collector and the conductive fabric. I do.
The present invention also provides a biological fixed electrode for a denitrification tank, comprising a current collector and a conductive fabric bonded to the current collector. The present invention further provides a biological fixation for a denitrification tank, comprising a current collector, a three-dimensional fabric made of conductive fibers, and a conductive fiber for fixing the current collector and the three-dimensional fabric. Provide electrodes. The present invention further provides a biological fixed electrode for a denitrification tank, comprising a current collector and a three-dimensional woven fabric made of conductive fibers fixed to the current collector.
【0013】これらの窒素化合物含有排水処理のための
脱窒槽に用いる生物固定電極は、陽極または陰極のいず
れにも用いることができ、電極の体積をさほど増やさず
に電極としての有効表面積を大きく取ることができるも
のである。電極がコンパクトですむので、反応槽の有効
容積をあまり減らすことなく、処理速度を増大させるこ
とができる。導電性織物としては、カーボンクロスがあ
り、導電性繊維としては、カーボンファイバーがある。
固定用の導電性繊維共々、これらの織物や繊維には、カ
ーボン以外のものも使用できるが、微生物との親和性な
どを考慮すると、カーボン繊維や、カーボンクロスが望
ましい。The biological fixed electrode used in the denitrification tank for the treatment of wastewater containing nitrogen compounds can be used as either an anode or a cathode, and has a large effective surface area as an electrode without increasing the volume of the electrode so much. Is what you can do. Since the electrodes are compact, the processing speed can be increased without significantly reducing the effective volume of the reaction vessel. The conductive fabric includes carbon cloth, and the conductive fiber includes carbon fiber.
In addition to the conductive fibers for fixing, these woven fabrics and fibers may be other than carbon. However, carbon fibers and carbon cloths are preferable in consideration of the affinity with microorganisms.
【0014】このような電極の繊維表面上には、硝酸態
窒素を処理することができる脱窒菌が固定されている。
そして、上述のように、この電極を利用した脱窒槽は、
同じく上述の硝化槽と組み合わせて用いられるものであ
り、電圧を電極に印加しない場合に比べて、外から添加
する有機物の量を減少させることができる。この脱窒槽
は電源の無駄も極力減少させている。On the fiber surface of such an electrode, denitrifying bacteria capable of treating nitrate nitrogen are fixed.
And, as described above, the denitrification tank using this electrode
It is also used in combination with the above-mentioned nitrification tank, and can reduce the amount of organic substances added from the outside as compared with the case where no voltage is applied to the electrodes. This denitrification tank also minimizes power waste.
【0015】そして、陽極で発生した酸素が陰極におけ
る脱窒作用を阻害する問題に対応するため陽極と陰極と
の間に隔膜をおくことがなされているが(特開平8−2
24598号公報参照)、このように電極に織布を用い
ることにより、酸素やその他の電気化学反応生成物が反
対の電極に移動して所期の反応を阻害することを防止す
ることができるので、隔膜が必要なくなる場合がある。In order to cope with the problem that the oxygen generated at the anode inhibits the denitrification action at the cathode, a diaphragm is provided between the anode and the cathode (Japanese Patent Laid-Open No. 8-2).
By using a woven fabric for the electrode in this way, it is possible to prevent oxygen and other electrochemical reaction products from migrating to the opposite electrode and inhibiting the desired reaction. In some cases, a diaphragm is not required.
【0016】また、本発明は、陰極と、陽極と、隔膜と
を有し、少なくとも陰極には微生物が固定されており、
被処理水の流れを反転する手段を有する脱窒槽を提供す
る。被処理水の流れを時々反転することにより、陰極ま
たは陽極に固定されている脱窒菌の分布をより均一にし
て、脱窒槽の稼働効率を向上させることができる。Further, the present invention has a cathode, an anode and a diaphragm, and microorganisms are fixed on at least the cathode.
Provided is a denitrification tank having means for reversing the flow of water to be treated. By inverting the flow of the water to be treated from time to time, the distribution of the denitrifying bacteria fixed to the cathode or anode can be made more uniform, and the operation efficiency of the denitrification tank can be improved.
【0017】本発明は、さらに、陰極と、陽極と、隔膜
とを有し、少なくとも陰極には微生物が固定されてお
り、微生物が固定されている陰極または陽極あるいはそ
れら両方を逆洗するための空気吹き込み手段を有する脱
窒槽を提供する。空気吹き込み手段により空気を吹き込
むことにより、陰極または陽極あるいはその両方に固定
されている微生物をこれらの電極から一旦引き剥がし、
はがした微生物を電極上により均一に分布させることが
できる。The present invention further comprises a cathode, an anode, and a diaphragm, wherein at least the cathode has microorganisms fixed thereon, and the cathode and / or anode on which the microorganisms are fixed are used for back washing. Provided is a denitrification tank having an air blowing means. By blowing air with air blowing means, the microorganisms fixed on the cathode and / or the anode are once peeled off from these electrodes,
The peeled microorganisms can be more uniformly distributed on the electrode.
【0018】本発明はまた、陰極と、陽極と、隔膜とを
有し、少なくとも陰極には微生物が固定されており、有
機物供給口が複数設けられている脱窒槽を提供する。こ
こでいう有機物とは、例えば、脱窒菌が必要とするメタ
ノールであり、それを複数箇所から脱窒槽に供給するこ
とにより、電極における微生物の分布をより均一なもの
とすることができる。The present invention also provides a denitrification tank having a cathode, an anode, and a diaphragm, wherein microorganisms are fixed on at least the cathode, and a plurality of organic substance supply ports are provided. The organic matter here is, for example, methanol required by denitrifying bacteria, and by supplying it to the denitrification tank from a plurality of locations, the distribution of microorganisms on the electrode can be made more uniform.
【0019】これらの脱窒槽における電極の形態は、特
に限定されるものではなく、平板状、棒状でもよいが、
ペレット状、粒状、繊維状、織物状の導体からなる表面
積が大きなものが好ましい。The form of the electrodes in these denitrification tanks is not particularly limited, and may be a flat plate or a rod.
A pellet, granular, fibrous, or woven conductor having a large surface area is preferred.
【0020】[0020]
【実施例】図1に、本発明の排水中の窒素処理装置及び
窒素処理方法の一実施例を示す。この窒素処理装置は、
硝化槽1と脱窒槽2とからなっている。アンモニアや亜
硝酸などの亜硝酸態窒素化合物が排水に含まれている。
この硝化槽1においては、その底部にある空気ノズル3
からばっ気用の空気が吹き込まれている。そして、ポリ
エチレン、ポリプロピレンなどの合成高分子化合物、ま
たは、寒天、アルギン酸カルシウム、セルロースなどの
天然高分子から作られている多数のペレット4が処理中
の水の中で、気泡5の流れにのって循環している。この
ペレット4の表面には、Nitrosomonas(ニトロソモナ
ス)、Nitrosococcus(ニトロソコッカス)、亜硝酸を
酸化するNitrobacter(ニトロバクター)に代表される
硝化菌が付着しており、亜硝酸態の窒素を硝酸態窒素に
酸化する働きをしている。FIG. 1 shows an embodiment of an apparatus and a method for treating nitrogen in waste water according to the present invention. This nitrogen treatment device
It comprises a nitrification tank 1 and a denitrification tank 2. Nitrite nitrogen compounds such as ammonia and nitrite are contained in the wastewater.
In the nitrification tank 1, an air nozzle 3 at the bottom is provided.
The air for aeration is blown in from. Then, a large number of pellets 4 made of a synthetic polymer compound such as polyethylene or polypropylene, or a natural polymer such as agar, calcium alginate, or cellulose follow the flow of bubbles 5 in the water being treated. Circulating. Nitrifying bacteria, such as Nitrosomonas, Nitrosococcus, and Nitrobacter, which oxidize nitrite, adhere to the surface of the pellet 4, and convert nitrite nitrogen into nitrate. It works to oxidize to nitrogen.
【0021】そして、この硝化槽1からの排水がメタノ
ールと共に脱窒槽2に供給されれる。脱窒槽2は、陰極
6と陽極7、膜8と、この膜8と陰極6の間に充填され
たカーボンペレット9とを含んでなる。陰極と陽極は、
ここでは、カーボン素材を利用しているが、その他の白
金メッキを施した金属なども使用することができる。こ
の膜はどのような材質ものものでも良く、布、多くの穴
がある樹脂膜、樹脂の網などである。陰極6と陽極7の
下部には両電極をつなぐように絶縁体の網10があっ
て、ペレット9を保持している。カーボンペレット9
は、ここでは、直径5mm、長さ6mm程度の大きさ円
柱状のものが使用されるが、その大きさは特に限定され
るものでなく、形状も、角柱、球、不定形状の粒子な
ど、種々のものを利用することができる。ペレットの他
には、織布なども利用できる。ここでは、カーボンから
なるペレットを用いているが、その他の導電体も使用で
きるものである。このように単に棒状あるいは平板状の
電極だけを用いるのではなく、ペレットなどを用いるこ
とにより、微生物が付着する面積が大きくなり、その単
位面積当たりの電流をより小さくすることができるの
で、より大きな電流を脱窒槽に流すことができ、処理の
効率を向上させることができる。陰極6と陽極7には、
ガルバノスタット11が接続されており数ボルト程度の
電圧が印加されて、100mA程度の電流が流れるよう
に調節されている。The waste water from the nitrification tank 1 is supplied to a denitrification tank 2 together with methanol. The denitrification tank 2 includes a cathode 6, an anode 7, a membrane 8, and carbon pellets 9 filled between the membrane 8 and the cathode 6. The cathode and anode are
Here, a carbon material is used, but other metals plated with platinum or the like can also be used. This film may be made of any material, such as cloth, a resin film having many holes, or a resin net. Below the cathode 6 and the anode 7, there is an insulator net 10 connecting the two electrodes, and holds the pellet 9. Carbon pellets 9
Here, a cylindrical shape having a diameter of about 5 mm and a length of about 6 mm is used, but the size is not particularly limited, and the shape is also prismatic, spherical, irregular shaped particles, and the like. Various things can be used. In addition to the pellets, a woven cloth or the like can be used. Here, pellets made of carbon are used, but other conductors can also be used. In this way, instead of using only a rod-shaped or plate-shaped electrode, by using a pellet or the like, the area to which microorganisms adhere is increased, and the current per unit area can be reduced. An electric current can be passed through the denitrification tank, and the efficiency of the treatment can be improved. Cathode 6 and anode 7
The galvanostat 11 is connected, and is adjusted so that a voltage of about several volts is applied and a current of about 100 mA flows.
【0022】この脱窒槽2において、カーボンペレット
9の表面には、Pseudomonas denitrificans(シュード
モナス・デニトリフィカンス)に代表されるシュードモ
ナス属、Micrococcus denitrificans(ミクロコッカス
・デニトリフィカンス)に代表されるミクロコッカス
属、その他Thiobacillus denitrificans(チオバシラス
・デニトリフィカンス)、Bacillus subtilis(バチラ
ス・サブチリス)などの脱窒菌が付着して、排水に含ま
れる硝酸イオンを窒素ガスへと酸化する。In the denitrification tank 2, the surface of the carbon pellet 9 is provided on the surface of the carbon pellet 9 with a micro-genus represented by Pseudomonas denitrificans (genus Pseudomonas denitrificans) and Micrococcus denitrificans (micrococcus denitrificans). Denitrifying bacteria such as the genus Coccus and other Thiobacillus denitrificans and Bacillus subtilis attach to oxidize nitrate ions contained in wastewater to nitrogen gas.
【0023】また、図2に示すように、脱窒槽2’にお
いて、陰極6のみならず、陽極7にも膜14により保持
されたカーボンペレット15、あるいは織布などを使用
すると、電極が酸化されて消耗するのを減らすことがで
き、流される電流を一定に保持したままで印加電圧を低
減できるので、電力の消費を減らすことができる。As shown in FIG. 2, in the denitrification tank 2 ', if not only the cathode 6 but also the anode 7 is made of carbon pellets 15 or a woven cloth held by the membrane 14, the electrodes are oxidized. Consumption can be reduced, and the applied voltage can be reduced while keeping the flowing current constant, so that power consumption can be reduced.
【0024】図3を参照して、本発明の生物固定電極に
かかる実施例2を説明する。この実施例においては、電
極は、集電体30と、例えばカーボンクロスといった導
電性の織物31と、集電体30と導電性織物31を一体
化する固定用の導電性繊維32とからなる。集電体30
は、導体からできれおればよく、その素材は特に限定さ
れるものではないが、カーボン、ステンレス、貴金属メ
ッキされた鋼材などの素材が考えられる。その形状は、
枠また格子状が、導電性織物31を固定する上で有利で
あるが、平板状などのその他の形状も採用することがで
きる。固定用の導電性繊維32としては、貴金属線や、
カーボンファイバーなどを利用することができる。Referring to FIG. 3, a second embodiment of the biological fixed electrode according to the present invention will be described. In this embodiment, the electrode includes a current collector 30, a conductive fabric 31 such as carbon cloth, and a fixing conductive fiber 32 for integrating the current collector 30 and the conductive fabric 31. Current collector 30
May be made of a conductor, and its material is not particularly limited, but materials such as carbon, stainless steel, and steel material plated with a noble metal may be used. Its shape is
A frame or lattice shape is advantageous for fixing the conductive fabric 31, but other shapes such as a flat plate shape can be adopted. As the conductive fiber 32 for fixing, a noble metal wire,
Carbon fiber or the like can be used.
【0025】集電体30は、外部供給電源につながれて
おり、電流は集電体30から導電性繊維32、導電性織
物31へと流れる。このとき、集電体30と導電性織物
32の表面には、硝酸態窒素を処理できる脱窒菌が固定
されており、効率よく被処理水中の硝酸態窒素を処理す
ることができる。カーボンクロスといった導電性織物を
使用することにより、有効電極面積を増大させることが
でき、微生物の担持量を増加させ、脱窒槽全体をコンパ
クトにすることができる。The current collector 30 is connected to an external power supply, and a current flows from the current collector 30 to the conductive fibers 32 and the conductive fabric 31. At this time, denitrifying bacteria capable of treating nitrate nitrogen are fixed on the surfaces of the current collector 30 and the conductive fabric 32, and the nitrate nitrogen in the water to be treated can be treated efficiently. By using a conductive cloth such as carbon cloth, the effective electrode area can be increased, the amount of microorganisms supported can be increased, and the entire denitrification tank can be made compact.
【0026】図4を参照して、本発明の生物固定電極に
かかる実施例3を説明する。この実施例においては、電
極は、集電体33と、カーボンファイバーなどの導電性
繊維からなる三次元織物34と、該集電体33と該三次
元織物34を一体化する固定用の導電性繊維35とを含
んでなる。この三次元織物34の表面あるいは内部に微
生物を固定することができるので、有効電極面積と、固
定された微生物の量を増大させることができる。また、
導電性繊維による三次元織物は、その大きさ、厚さな
ど、装置の形状に合わせて、自由に作成が可能である。
実施例2の導電性織物に比べても、微生物の付着量をよ
り増大させることができる。Referring to FIG. 4, a third embodiment of the biological fixed electrode according to the present invention will be described. In this embodiment, the electrode is composed of a current collector 33, a three-dimensional woven fabric 34 made of conductive fibers such as carbon fiber, and a fixing conductive material for integrating the current collector 33 and the three-dimensional woven fabric 34. And fibers 35. Since microorganisms can be fixed on the surface or inside of the three-dimensional fabric 34, the effective electrode area and the amount of fixed microorganisms can be increased. Also,
A three-dimensional woven fabric made of conductive fibers can be freely prepared according to the size and thickness of the device, such as its shape.
Compared with the conductive woven fabric of Example 2, the amount of adhered microorganisms can be further increased.
【0027】導体からなる集電体33は、外部供給電源
につながれており、電流は集電体33から固定用の導電
性繊維35を通って三次元織物34に流れる。それぞれ
の部材の素材等は、実施例2の場合と同様である。The current collector 33 made of a conductor is connected to an external power supply, and current flows from the current collector 33 to the three-dimensional fabric 34 through conductive fibers 35 for fixing. The material and the like of each member are the same as in the case of the second embodiment.
【0028】次に、図5を参照して、本発明の生物固定
電極にかかる実施例4を説明する。この実施例において
は、電極は、集電体36と、例えばカーボンファイバー
といった導電性繊維からなる三次元織物37とからな
る。図示の例においては、集電体36の両面に三次元織
物37が接合されているが、片面のみに三次元織物37
を接合することができる。集電体36と三次元織物37
との接合は導電性の接着剤などを用いてすることができ
る。ここで、集電体の形状は、特に限定されないが、平
板状、格子状、枠状などが考えられる。さらに、集電体
36をかごの形態にして、その中に三次元織物37を納
めることも可能である。Next, a fourth embodiment of the biological fixed electrode according to the present invention will be described with reference to FIG. In this embodiment, the electrode comprises a current collector 36 and a three-dimensional fabric 37 made of a conductive fiber such as carbon fiber. In the illustrated example, the three-dimensional fabric 37 is joined to both sides of the current collector 36, but the three-dimensional fabric 37 is attached to only one side.
Can be joined. Current collector 36 and three-dimensional fabric 37
Can be joined using a conductive adhesive or the like. Here, the shape of the current collector is not particularly limited, but may be a plate shape, a grid shape, a frame shape, or the like. Further, the current collector 36 may be in the form of a basket, and the three-dimensional fabric 37 may be placed therein.
【0029】次に、図6を参照して、本発明の生物固定
電極にかかる実施例5を説明する。この実施例におい
て、電極は、集電体38とカーボンクロスのような導電
性織物39とからなる。集電体38は、図4では、平板
状の形状を有しているが、その他の形状を取ることも可
能である。導電性織物は織布に限定されるものではな
く、不織布でも代替することができるが、一般に繊維の
密度などの点で織布のほうが優れており、各電極で発生
する酸素やイオンなどが混じり合わないようにするため
にも、織布を用いることが好ましい。実施例4と同様
に、この集電体38をかごの形状にして、その中に導電
性織物を納める構成にしてもよい。集電体38と織物3
9との接合は導電性の接着剤などを用いてすることがで
きる。Next, a fifth embodiment of the biological fixed electrode according to the present invention will be described with reference to FIG. In this embodiment, the electrode comprises a current collector 38 and a conductive fabric 39 such as carbon cloth. The current collector 38 has a flat plate shape in FIG. 4, but may have another shape. Conductive fabrics are not limited to woven fabrics, and nonwoven fabrics can be substituted.However, woven fabrics are generally superior in terms of fiber density, etc., and oxygen and ions generated at each electrode are mixed. It is preferable to use a woven fabric so that they do not match. As in the fourth embodiment, the current collector 38 may be formed in a cage shape and a conductive fabric may be placed in the cage. Current collector 38 and fabric 3
9 can be joined using a conductive adhesive or the like.
【0030】次には、本願かかる脱窒槽の実施例を、図
6を参照しつつ説明する。脱窒槽50は、陽極部51,
隔膜部52,陰極部53と、ハウジング54とからなっ
ている。Next, an embodiment of the denitrification tank according to the present invention will be described with reference to FIG. The denitrification tank 50 includes an anode section 51,
It comprises a diaphragm part 52, a cathode part 53, and a housing 54.
【0031】そして、陽極部51は、透明な塩化ビニル
などから作ることができるケーシング55と、例えば炭
素鋼からなり白金メッキが施されている集電体56と、
この集電体の枠の中に納められる、適当な大きさのカー
ボンペレットなどからなる導体微生物担体26とからな
る。本実施例においては、集電体56に、逆洗用の空気
を吹き込むための空気吹き込み管28が設けられてい
る。微生物担体56としては、1ミリから数ミリ程度の
粒径または直径を有するカーボン粒子やカーボンペレッ
トを利用することができる。この担体26は、その他の
導体性でもよいが、生物との親和性、コストなどを考え
ると、カーボンが最も望ましい。The anode part 51 includes a casing 55 made of transparent vinyl chloride or the like, a current collector 56 made of, for example, carbon steel and plated with platinum,
And a conductive microorganism carrier 26 made of carbon pellets or the like having an appropriate size, which is accommodated in the frame of the current collector. In this embodiment, the current collector 56 is provided with an air blowing pipe 28 for blowing air for backwashing. As the microorganism carrier 56, carbon particles or carbon pellets having a particle size or diameter of about 1 mm to several mm can be used. The carrier 26 may be made of another conductive material, but carbon is most preferable in consideration of affinity with living things and cost.
【0032】隔膜部52は、プラスチックなどからで来
た格子状の隔膜保持材61,62と、その間に挟まれた
隔膜60とからなる。この隔膜60は、陽極で発生した
酸素が陰極に達するのを防止するためのものである。し
たがって、イオン交換膜がこの隔膜としては好適である
が、セラミック膜、精密濾過膜などでもよい。本実施例
ではポリプロピレン膜である。さらに、硝酸イオンが陽
極へ移動して脱窒効果が低下することを防ぐためには、
陽イオン交換膜が好ましい。しかし、上記のように、こ
の隔離膜60は必須ではなく、条件によっては不要であ
る。The diaphragm part 52 is composed of lattice-like diaphragm holding members 61 and 62 made of plastic or the like, and a diaphragm 60 interposed therebetween. The diaphragm 60 is for preventing oxygen generated at the anode from reaching the cathode. Therefore, an ion exchange membrane is suitable as the diaphragm, but a ceramic membrane, a microfiltration membrane, or the like may be used. In this embodiment, it is a polypropylene film. Furthermore, in order to prevent nitrate ions from moving to the anode and reducing the denitrification effect,
Cation exchange membranes are preferred. However, as described above, the isolation film 60 is not essential, and may not be necessary depending on the conditions.
【0033】陰極部53は、陽極部51と同様、透明な
塩化ビニルなどから作ることができるケーシング67
と、例えば炭素鋼からなり白金メッキが施されている集
電体34と、この集電体64の枠の中に納められる、適
当な大きさのカーボンペレットなどからなる導体微生物
担体65とからなる。本実施例においては、集電体34
に、逆洗用の空気を吹き込むための空気吹き込み管66
が設けられている。微生物担体35としては、1ミリか
ら数ミリ程度の粒径または直径を有するカーボン粒子や
カーボンペレットを利用することができる。この担体6
5は、その他の導体性でもよいが、生物との親和性、コ
ストなどを考えると、カーボンが最も望ましいのは、陽
極部51の場合と同じである。The cathode portion 53 is made of a casing 67 made of transparent vinyl chloride or the like, similarly to the anode portion 51.
And a current collector 34 made of, for example, carbon steel and plated with platinum, and a conductive microorganism carrier 65 made of carbon pellets or the like having an appropriate size and housed in a frame of the current collector 64. . In this embodiment, the current collector 34
And an air blowing pipe 66 for blowing air for back washing.
Is provided. As the microorganism carrier 35, carbon particles or carbon pellets having a particle diameter or diameter of about 1 mm to several mm can be used. This carrier 6
5 may be another conductive material, but carbon is most desirable in the same manner as in the case of the anode part 51 in consideration of affinity with living things and cost.
【0034】これらの陽極部51,隔膜部52,陰極部
53がハウジング54に納められて脱窒槽50が構成さ
れる。図示を省略したが、この脱窒槽50には、さら
に、メタノール供給手段が設けられており、微生物が必
要とする有機物を供給することができるようになってい
る。脱窒槽50には、図示のように被処理水の供給と排
出のための配管が取り付けられている。この配管システ
ムには、V1,V2,V3,V4の4個の電磁弁があり、そ
のうち、図示の状態で、V1とV4が開いており、V2と
V3が閉じられている。したがって、供給された原水
(被処理水)は、上から脱窒槽50に入り、下向きに流
れて、脱窒槽50の下部から排出される。このような運
転をしばらく続けると、陽極と陰極の担体のうち上方に
あるものにより多くの微生物がつき、実際の脱窒反応
は、その部分でのみ起こるようになり、脱窒槽全体の有
効利用が図られず、脱窒の効率が低下する。そこで、あ
る時間後に、電磁弁V1とV4とを閉じて、V2とV3を開
く。すると、原水は脱窒槽50の下部から流れ込み、上
の方へと流れ、脱窒槽50の上部から排出される。この
ような切り替えを繰り返すと、微生物が、陽極および陰
極のそれぞれにおいてより均一に分布して、脱窒処理の
効率が向上する。The anode part 51, the diaphragm part 52, and the cathode part 53 are housed in a housing 54 to form a denitrification tank 50. Although not shown, the denitrification tank 50 is further provided with a methanol supply means so that microorganisms can supply necessary organic substances. The denitrification tank 50 is provided with piping for supplying and discharging the water to be treated as shown in the figure. The piping system, there are four solenoid valves V 1, V 2, V 3 , V 4, of which, in the illustrated state, V 1 and V4 are open, V 2 and V 3 are closed ing. Therefore, the supplied raw water (water to be treated) enters the denitrification tank 50 from above, flows downward, and is discharged from the lower part of the denitrification tank 50. If this operation is continued for a while, more microorganisms will be attached to the upper ones of the anode and cathode carriers, and the actual denitrification reaction will occur only in that part, and the effective use of the entire denitrification tank will be improved. Unexpectedly, the efficiency of denitrification decreases. Therefore, after a certain time, it closes the electromagnetic valve V 1 and V 4, opening the V 2 and V 3. Then, the raw water flows in from the lower part of the denitrification tank 50, flows upward, and is discharged from the upper part of the denitrification tank 50. When such switching is repeated, the microorganisms are more uniformly distributed in each of the anode and the cathode, and the efficiency of the denitrification treatment is improved.
【0035】また、空気吹き込み管58,66から空気
を吹き込むと、下から上に昇る空気により担体に付着し
ていた微生物が剥離して、脱窒槽50内を循環して、陽
極部51および陰極部53内の担体に再付着する。これ
により、微生物がより均一に分布するようになって、脱
窒装置の運転効率が向上する。When air is blown from the air blowing pipes 58 and 66, the microorganisms adhering to the carrier are separated by the air rising from the bottom to the top and circulated in the denitrification tank 50, and the anode part 51 and the cathode are separated. Reattach to the carrier in the part 53. Thereby, the microorganisms are more uniformly distributed, and the operation efficiency of the denitrification device is improved.
【0036】[0036]
【発明の効果】上記のように、本発明によれば、より少
ない量のメタノールなどの有機物だけで、あるいは有機
物を添加せずに十分な脱窒を行うことができる。また、
電極の材料として導電性織物、特に好ましくは三次元織
物を用いることにより、微生物の付着量を増大すること
ができる。さらに、空気の吹き込みを行うことにより、
あるいは、排水の流路を反転することにより、電極およ
び担体に付着している微生物をいったん剥離させた後、
より均一に再付着させることができる。As described above, according to the present invention, sufficient denitrification can be performed using only a small amount of an organic substance such as methanol or without adding an organic substance. Also,
By using a conductive fabric, particularly preferably a three-dimensional fabric, as the material of the electrode, the amount of microorganisms attached can be increased. Furthermore, by blowing air,
Alternatively, by inverting the flow path of the wastewater, once the microorganisms adhering to the electrode and the carrier are peeled off,
It can be re-deposited more uniformly.
【図1】本発明の窒素含有廃水処理装置の一例を示す模
式図である。FIG. 1 is a schematic view showing an example of a nitrogen-containing wastewater treatment device of the present invention.
【図2】本発明の窒素含有廃水処理装置において用いる
ことができる脱窒槽の別の例を示す模式図である。FIG. 2 is a schematic diagram showing another example of a denitrification tank that can be used in the nitrogen-containing wastewater treatment device of the present invention.
【図3】本発明の生物固定電極の実施例2を示す模式的
な斜視図である。FIG. 3 is a schematic perspective view showing Example 2 of the biological fixed electrode according to the present invention.
【図4】本発明の生物固定電極の実施例3を示す模式的
な斜視図である。FIG. 4 is a schematic perspective view showing Embodiment 3 of the biological fixed electrode according to the present invention.
【図5】本発明の生物固定電極の実施例4を示す模式的
な斜視図である。FIG. 5 is a schematic perspective view showing Example 4 of the biological fixed electrode according to the present invention.
【図6】本発明の生物固定電極の実施例5を示す模式的
な斜視図である。FIG. 6 is a schematic perspective view showing Example 5 of the biological fixed electrode according to the present invention.
【図7】本発明の脱窒槽にかかる実施例を示す分解・組
み立て図である。FIG. 7 is an exploded and assembled view showing an embodiment according to the denitrification tank of the present invention.
1 硝化槽 2 脱窒槽 3 空気ノズル 4 ペレット 5 気泡 6 陰極 7 陽極 8 膜 9 カーボンペレット 10 網 11 ガルバノスタット 14 膜 15 カーボンペレット 30、33,35,38 集電体 31、39 導電性織物 32、35 導電性繊維 34,37 三次元織物 50 脱窒槽 51 陽極部 52 隔膜部 53 陰極部 54 ハウジング 55、67 ケーシング 56,64 集電体 57,65 担体 58、66 空気吹き込み管 60 隔膜 61,62 隔膜保持材 DESCRIPTION OF SYMBOLS 1 Nitrification tank 2 Denitrification tank 3 Air nozzle 4 Pellets 5 Bubbles 6 Cathode 7 Anode 8 Membrane 9 Carbon pellet 10 Net 11 Galvanostat 14 Film 15 Carbon pellet 30, 33, 35, 38 Current collector 31, 39 Conductive textile 32, 35 conductive fiber 34,37 three-dimensional fabric 50 denitrification tank 51 anode part 52 diaphragm part 53 cathode part 54 housing 55,67 casing 56,64 current collector 57,65 carrier 58,66 air blowing tube 60 diaphragm 61,62 diaphragm Holding material
───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱崎 彰弘 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 小城 育昌 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 栗村 隆之 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 Fターム(参考) 4D003 AA14 AB02 CA07 EA14 EA21 EA30 FA06 4D040 AA34 AA61 DD03 DD14 DD31 4D061 DA08 DB19 DC14 EA02 EB04 EB12 EB13 EB17 EB19 EB28 EB29 EB30 EB33 EB35 EB39 ED20 FA15 GC12 GC14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihiro Hamasaki 2-1-1 Shinama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Ikumasa Ogi 2-1-1, Araimachi, Takarai City, Hyogo Prefecture No. 1 Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Takayuki Kurimura 2-1-1, Shinhama, Araimachi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. F-term (reference) 4D003 AA14 AB02 CA07 EA14 EA21 EA30 FA06 4D040 AA34 AA61 DD03 DD14 DD31 4D061 DA08 DB19 DC14 EA02 EB04 EB12 EB13 EB17 EB19 EB28 EB29 EB30 EB33 EB35 EB39 ED20 FA15 GC12 GC14
Claims (12)
酸に変化させるための硝化槽と、硝化槽からの排水を受
け入れ、陰極と陽極を有し、少なくとも該陰極が脱窒菌
を固定した生物固定電極であり、該陰極と陽極間に流さ
れる電流と脱窒菌の働きにより硝酸を窒素ガスに変化さ
せる脱窒槽とを含んでなる窒素含有排水処理装置。1. A nitrification tank for converting nitrogen compounds in wastewater into nitric acid while aeration is performed, and a wastewater from the nitrification tank is received, and a cathode and an anode are provided. At least the cathode fixes denitrifying bacteria. A nitrogen-containing wastewater treatment device, comprising: a biological fixed electrode; and a denitrification tank for converting nitric acid to nitrogen gas by the action of a current flowing between the cathode and the anode and a denitrifying bacterium.
方が、ペレット、粒子、布から選ばれる形状の導電体を
互いに隣接して配置してなる電極であることを特徴とす
る請求項1記載の窒素含有排水処理装置。2. The nitrogen according to claim 1, wherein the cathode and / or the anode are electrodes formed by arranging conductors each having a shape selected from pellets, particles, and cloth adjacent to each other. Contained wastewater treatment equipment.
に存在する窒素化合物を硝酸に変化させる硝化工程と、
脱窒菌を固定した生物固定電極を有する脱窒槽において
電流を流しつつ脱窒菌の働きにより硝酸を窒素ガスに変
化させる脱窒工程とを含んでなる窒素含有排水処理方
法。3. A nitrification step of converting nitrogen compounds present in wastewater into nitric acid by the action of nitrifying bacteria while aerating,
A denitrification step of changing nitric acid to nitrogen gas by the action of a denitrifying bacterium while passing an electric current in a denitrification tank having a biologically fixed electrode on which the denitrifying bacterium is fixed.
電性織物を一体化する固定用の導電性繊維とを含んでな
る脱窒槽用生物固定電極。4. A biological fixed electrode for a denitrification tank, comprising: a current collector; a conductive fabric; and a conductive fiber for fixing that integrates the current collector and the conductive fabric.
性織物とを含んでなる脱窒槽用生物固定電極。5. A biological fixed electrode for a denitrification tank, comprising: a current collector; and a conductive fabric bonded to the current collector.
物と、該集電体と該三次元織物を一体化する固定用の導
電性繊維とを含んでなる脱窒槽用生物固定電極。6. A biological fixed electrode for a denitrification tank, comprising a current collector, a three-dimensional woven fabric made of conductive fibers, and a conductive fiber for fixing the current collector and the three-dimensional woven fabric. .
性繊維からなる三次元織物とを含んでなる脱窒槽用生物
固定電極。7. A biological fixed electrode for a denitrification tank, comprising a current collector and a three-dimensional woven fabric made of conductive fibers fixed to the current collector.
物固定電極を含んでなる排水中の窒素処理装置。8. An apparatus for treating nitrogen in wastewater, comprising the biological fixed electrode according to claim 4. Description:
と該陽極のうち少なくとも該陰極には微生物が固定され
ており、被処理水の流れを反転する手段を有する脱窒
槽。9. A denitrification tank having a cathode, an anode, and a diaphragm, wherein microorganisms are fixed to at least the cathode among the cathode and the anode, and a means for reversing the flow of the water to be treated.
と該陽極のうち少なくとも該陰極には微生物が固定され
ており、微生物が固定されている陰極または陽極あるい
はそれら両方を逆洗するための空気吹き込み手段を有す
る脱窒槽。10. A cathode, an anode, and a diaphragm, wherein microorganisms are fixed to at least the cathode of the cathode and the anode, and the cathode and / or the anode on which the microorganisms are fixed are reversed. A denitrification tank having an air blowing means for washing.
と該陽極のうち少なくとも該陰極には微生物が固定され
ており、有機物供給口が複数設けられている脱窒槽。11. A denitrification tank having a cathode, an anode, and a diaphragm, wherein microorganisms are fixed to at least the cathode among the cathode and the anode, and a plurality of organic substance supply ports are provided.
が、ペレット状、粒状、繊維状、または織物状の導体か
らなる請求項9から11のいずれか一に記載の脱窒槽。12. The denitrification tank according to claim 9, wherein the anode and / or the cathode are formed of a pellet, granular, fibrous or woven conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33008099A JP2001145896A (en) | 1999-11-19 | 1999-11-19 | Apparatus for treating nitrogen-containing waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33008099A JP2001145896A (en) | 1999-11-19 | 1999-11-19 | Apparatus for treating nitrogen-containing waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001145896A true JP2001145896A (en) | 2001-05-29 |
Family
ID=18228569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33008099A Pending JP2001145896A (en) | 1999-11-19 | 1999-11-19 | Apparatus for treating nitrogen-containing waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001145896A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006159112A (en) * | 2004-12-08 | 2006-06-22 | National Institute Of Advanced Industrial & Technology | Microorganism-carrying battery / electrolyzer and electrolysis method using the same |
KR100974928B1 (en) | 2008-03-31 | 2010-08-09 | 명지대학교 산학협력단 | Hybrid type sewage and wastewater treatment system |
DE102009026179A1 (en) * | 2009-07-15 | 2011-01-27 | Haas, Rüdiger, Dipl.-Geol. | Bioelectrolytic denitrification |
US20110229742A1 (en) * | 2008-10-30 | 2011-09-22 | Emefcy Limited | Electrodes for use in bacterial fuel cells and bacterial electrolysis cells and bacterial fuel cells and bacterial electrolysis cells employing such electrodes |
US8940171B2 (en) | 2009-12-14 | 2015-01-27 | Emefcy Limited | Diffusion aeration for water and wastewater treatment |
JP2015033693A (en) * | 2009-06-16 | 2015-02-19 | カンブリアン イノベーションズ インコーポレイデッド | Systems and devices for treating and monitoring water, wastewater and other biodegradable matter |
CN105130124A (en) * | 2015-09-08 | 2015-12-09 | 中国科学院烟台海岸带研究所 | Method for cooperative remove of nitrate, ammonia nitrogen and COD in polluted water body |
KR101601209B1 (en) * | 2014-09-18 | 2016-03-09 | 한국원자력연구원 | System for treating organic matter and nutrient fused bio-electrochemical reaction and intermittent aeration method |
WO2016038866A1 (en) * | 2014-09-11 | 2016-03-17 | パナソニック株式会社 | Electrode, and fuel cell and water processing apparatus each using same |
CN105692907A (en) * | 2016-03-02 | 2016-06-22 | 大连理工大学 | Treatment device for oil extraction wastewater |
US9551685B2 (en) | 2009-12-08 | 2017-01-24 | Cambrian Innovation Inc. | Microbially-based sensors for environmental monitoring |
JP2017121609A (en) * | 2016-01-07 | 2017-07-13 | 国立研究開発法人農業・食品産業技術総合研究機構 | Microbial electrolysis cell |
US9963790B2 (en) | 2010-10-19 | 2018-05-08 | Matthew Silver | Bio-electrochemical systems |
US10099950B2 (en) | 2010-07-21 | 2018-10-16 | Cambrian Innovation Llc | Bio-electrochemical system for treating wastewater |
CN109502768A (en) * | 2019-01-14 | 2019-03-22 | 浙江海拓环境技术有限公司 | One kind being used for electroplating wastewater denitrification denitrogenation reactor |
CN111253003A (en) * | 2020-01-20 | 2020-06-09 | 华东师范大学 | A three-dimensional electrochemically coupled three-dimensional electrobiological coking wastewater treatment system |
US10851003B2 (en) | 2010-07-21 | 2020-12-01 | Matthew Silver | Denitrification and pH control using bio-electrochemical systems |
CN112028223A (en) * | 2020-08-12 | 2020-12-04 | 武汉理工大学 | Microbial electrochemical aniline wastewater treatment system and method by coupling activated sludge and biofilm method |
US11150213B2 (en) | 2011-06-14 | 2021-10-19 | Cambrian Innovation Inc. | Biological oxygen demand sensors |
CN113562925A (en) * | 2021-07-02 | 2021-10-29 | 广东工业大学 | Nitrate sewage treatment method |
CN113683189A (en) * | 2021-09-23 | 2021-11-23 | 沈阳师范大学 | Method for reducing carbon, nitrogen and phosphorus in wastewater based on endogenous short-range denitrification-photoelectric-ternary coupling system |
US11299412B2 (en) | 2014-09-08 | 2022-04-12 | Fluence Water Products And Innovation Ltd. | Module, reactor, system and method for treating water |
-
1999
- 1999-11-19 JP JP33008099A patent/JP2001145896A/en active Pending
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006159112A (en) * | 2004-12-08 | 2006-06-22 | National Institute Of Advanced Industrial & Technology | Microorganism-carrying battery / electrolyzer and electrolysis method using the same |
KR100974928B1 (en) | 2008-03-31 | 2010-08-09 | 명지대학교 산학협력단 | Hybrid type sewage and wastewater treatment system |
US20110229742A1 (en) * | 2008-10-30 | 2011-09-22 | Emefcy Limited | Electrodes for use in bacterial fuel cells and bacterial electrolysis cells and bacterial fuel cells and bacterial electrolysis cells employing such electrodes |
JP2012507828A (en) * | 2008-10-30 | 2012-03-29 | エメフシー リミテッド | Electrodes for use in bacterial fuel cells and bacterial electrolysis cells, and bacterial fuel cells and bacterial electrolysis cells using such electrodes |
US8932770B2 (en) | 2008-10-30 | 2015-01-13 | Emefcy Limited | Electrodes for use in bacterial fuel cells and bacterial electrolysis cells and bacterial fuel cells and bacterial electrolysis cells employing such electrodes |
US10458029B2 (en) | 2008-10-30 | 2019-10-29 | Emefcy Limited | Electrodes for use in bacterial fuel cells and bacterial electrolysis cells and bacterial fuel cells and bacterial electrolysis cells employing such electrodes |
JP2015033693A (en) * | 2009-06-16 | 2015-02-19 | カンブリアン イノベーションズ インコーポレイデッド | Systems and devices for treating and monitoring water, wastewater and other biodegradable matter |
US11708284B2 (en) | 2009-06-16 | 2023-07-25 | Cambrian Innovation, Inc. | Systems and devices for treating and monitoring water, wastewater and other biodegradable matter |
US9776897B2 (en) | 2009-06-16 | 2017-10-03 | Matthew Silver | Systems and devices for treating water, wastewater and other biodegradable matter |
JP2016168594A (en) * | 2009-06-16 | 2016-09-23 | カンブリアン イノベーションズ インコーポレイデッド | Systems and devices for treating and monitoring water, wastewater and other biodegradable matter |
DE102009026179A1 (en) * | 2009-07-15 | 2011-01-27 | Haas, Rüdiger, Dipl.-Geol. | Bioelectrolytic denitrification |
US9551685B2 (en) | 2009-12-08 | 2017-01-24 | Cambrian Innovation Inc. | Microbially-based sensors for environmental monitoring |
US8940171B2 (en) | 2009-12-14 | 2015-01-27 | Emefcy Limited | Diffusion aeration for water and wastewater treatment |
US10851003B2 (en) | 2010-07-21 | 2020-12-01 | Matthew Silver | Denitrification and pH control using bio-electrochemical systems |
US10099950B2 (en) | 2010-07-21 | 2018-10-16 | Cambrian Innovation Llc | Bio-electrochemical system for treating wastewater |
US9963790B2 (en) | 2010-10-19 | 2018-05-08 | Matthew Silver | Bio-electrochemical systems |
US11150213B2 (en) | 2011-06-14 | 2021-10-19 | Cambrian Innovation Inc. | Biological oxygen demand sensors |
US11299412B2 (en) | 2014-09-08 | 2022-04-12 | Fluence Water Products And Innovation Ltd. | Module, reactor, system and method for treating water |
WO2016038866A1 (en) * | 2014-09-11 | 2016-03-17 | パナソニック株式会社 | Electrode, and fuel cell and water processing apparatus each using same |
US10153509B2 (en) | 2014-09-11 | 2018-12-11 | Panasonic Corporation | Electrode, and fuel cell and water treatment equipment each using same |
JPWO2016038866A1 (en) * | 2014-09-11 | 2017-06-22 | パナソニック株式会社 | Electrode and fuel cell and water treatment apparatus using the same |
KR101601209B1 (en) * | 2014-09-18 | 2016-03-09 | 한국원자력연구원 | System for treating organic matter and nutrient fused bio-electrochemical reaction and intermittent aeration method |
CN105130124A (en) * | 2015-09-08 | 2015-12-09 | 中国科学院烟台海岸带研究所 | Method for cooperative remove of nitrate, ammonia nitrogen and COD in polluted water body |
JP2017121609A (en) * | 2016-01-07 | 2017-07-13 | 国立研究開発法人農業・食品産業技術総合研究機構 | Microbial electrolysis cell |
CN105692907B (en) * | 2016-03-02 | 2018-06-08 | 大连理工大学 | A kind of processing unit of oil extraction-generated waste water |
CN105692907A (en) * | 2016-03-02 | 2016-06-22 | 大连理工大学 | Treatment device for oil extraction wastewater |
CN109502768A (en) * | 2019-01-14 | 2019-03-22 | 浙江海拓环境技术有限公司 | One kind being used for electroplating wastewater denitrification denitrogenation reactor |
CN111253003A (en) * | 2020-01-20 | 2020-06-09 | 华东师范大学 | A three-dimensional electrochemically coupled three-dimensional electrobiological coking wastewater treatment system |
CN112028223A (en) * | 2020-08-12 | 2020-12-04 | 武汉理工大学 | Microbial electrochemical aniline wastewater treatment system and method by coupling activated sludge and biofilm method |
CN112028223B (en) * | 2020-08-12 | 2023-01-24 | 武汉理工大学 | Microbial electrochemical aniline wastewater treatment system and method coupled with activated sludge and biofilm method |
CN113562925A (en) * | 2021-07-02 | 2021-10-29 | 广东工业大学 | Nitrate sewage treatment method |
CN113683189A (en) * | 2021-09-23 | 2021-11-23 | 沈阳师范大学 | Method for reducing carbon, nitrogen and phosphorus in wastewater based on endogenous short-range denitrification-photoelectric-ternary coupling system |
CN113683189B (en) * | 2021-09-23 | 2022-12-02 | 沈阳师范大学 | Method for reducing carbon, nitrogen and phosphorus in wastewater based on endogenous short-range denitrification-photoelectric-ternary coupling system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001145896A (en) | Apparatus for treating nitrogen-containing waste water | |
Semmens et al. | COD and nitrogen removal by biofilms growing on gas permeable membranes | |
CN1938233B (en) | Method for treating ammonia-containing wastewater | |
WO2008109962A1 (en) | Microbial fuel cell | |
Zayed et al. | Removal of organic pollutants and of nitrate from wastewater from the dairy industry by denitrification | |
Nurmiyanto et al. | Downflow hanging sponge (DHS) reactor for wastewater treatment-a short review | |
JP4835536B2 (en) | Removal of organic substances and nitrogen from liquid to be treated | |
Premarathna et al. | Enhancement of organic matter and total nitrogen removal in a membrane aerated biofilm reactor using PVA-Gel bio-carriers | |
CN102372393A (en) | Bioelectrochemistry coupling denitrogenation apparatus and method thereof | |
CN109896614B (en) | Baffling type three-dimensional electrode-biological membrane denitrification reactor | |
JP2609192B2 (en) | Biological dephosphorization nitrification denitrification treatment method of organic wastewater | |
JP4817057B2 (en) | Batch treatment of nitrogen-containing water | |
JP3338338B2 (en) | Bioreactor | |
JP2014065013A (en) | Effluent treatment apparatus | |
Li et al. | Comparative study of the nitrification characteristics of two different nitrifier immobilization methods | |
Mansell et al. | Biological denitrification in a continuous flow membrane reactor | |
JP2003071453A (en) | Water treatment apparatus and biological/ electrochemical hybrid water treatment method | |
JP2003033787A (en) | Wastewater nitrification method | |
Kargi et al. | Performance of fluidized bed bioreactor containing wire-mesh sponge particles in wastewater treatment | |
Semmens et al. | Studies of a membrane aerated bioreactor for wastewater treatment | |
Hayashi et al. | Three-dimensional immobilization of bacterial cells with a fibrous network and its application in a high-rate fixed-bed nitrifying bioreactor | |
JP3340356B2 (en) | Bioreactor and wastewater treatment equipment | |
JPH0819788A (en) | Bacteria fixed electrode | |
JP3658802B2 (en) | Method for treating selenium-containing water | |
JPH06218391A (en) | Method and device for purifying water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050805 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051206 |