JP2001140635A - Exhaust emission control device - Google Patents
Exhaust emission control deviceInfo
- Publication number
- JP2001140635A JP2001140635A JP32833999A JP32833999A JP2001140635A JP 2001140635 A JP2001140635 A JP 2001140635A JP 32833999 A JP32833999 A JP 32833999A JP 32833999 A JP32833999 A JP 32833999A JP 2001140635 A JP2001140635 A JP 2001140635A
- Authority
- JP
- Japan
- Prior art keywords
- nox
- exhaust gas
- reduction catalyst
- nox storage
- storage reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 claims abstract description 177
- 239000007789 gas Substances 0.000 claims abstract description 126
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 90
- 239000001301 oxygen Substances 0.000 claims abstract description 90
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 90
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 76
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 24
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000011358 absorbing material Substances 0.000 claims description 38
- 230000008929 regeneration Effects 0.000 claims description 24
- 238000011069 regeneration method Methods 0.000 claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 238000000746 purification Methods 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 239000002250 absorbent Substances 0.000 claims description 4
- 230000002745 absorbent Effects 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 663
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 101100325793 Arabidopsis thaliana BCA2 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ディーゼルエンジ
ンなどの内燃機関に用いる排気浄化装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust emission control device used for an internal combustion engine such as a diesel engine.
【0002】[0002]
【従来の技術】従来より、ディーゼルエンジンにおいて
は、排気ガスが流通する排気管の途中にNOx還元触媒
を装備し、該NOx還元触媒の上流側に必要量の還元剤
を添加して該還元剤をNOx還元触媒上で排気ガス中の
NOx(窒素酸化物)と還元反応させることによりNOx
の排出濃度を低減し得るようにしたものがある。2. Description of the Related Art Conventionally, in a diesel engine, a NOx reduction catalyst is provided in an exhaust pipe through which exhaust gas flows, and a required amount of a reducing agent is added upstream of the NOx reducing catalyst to reduce the amount of the reducing agent. Is reduced on the NOx reduction catalyst with NOx (nitrogen oxide) in the exhaust gas to produce NOx.
Some of them are capable of reducing the emission concentration of methane.
【0003】他方、理論空燃比より薄い空燃比で希薄燃
焼(リーンバーン)を行わせることにより大幅な燃費の
向上を図り得ることが広く知られているが、このような
希薄燃焼運転を行うことを想定したディーゼルエンジン
に関してもNOxの排出濃度を低減することは重要な課
題となっている。[0003] On the other hand, it is widely known that lean burn can be performed at a leaner air-fuel ratio than the stoichiometric air-fuel ratio to greatly improve fuel efficiency. It is also an important issue to reduce the NOx emission concentration for a diesel engine that assumes the following.
【0004】しかしながら、一般的に、希薄燃焼運転時
における酸素過剰存在下では、NOx還元触媒上におい
て、還元剤がNOxと反応するよりも先に酸素と反応し
てしまうので、希薄燃焼運転時における実用化レベルの
高いNOx低減効果を得ることが難しかった。[0004] However, in general, in the presence of excess oxygen during the lean burn operation, the reducing agent reacts with oxygen on the NOx reduction catalyst before reacting with NOx. It was difficult to obtain a high NOx reduction effect at a practical level.
【0005】そこで、希薄燃焼運転時においてもNOx
を低減し得る触媒として、排気ガス中の酸素濃度が高い
希薄燃焼運転時にNOxを酸化して硝酸塩の状態で一時
的に吸蔵し且つ排気ガス中の酸素濃度が低い理論空燃比
運転時に還元剤の介在によりNOxを分解放出して還元
浄化する性質を備えたNOx吸蔵還元触媒の実用化が現
在検討されている。Therefore, even during lean burn operation, NOx
As a catalyst that can reduce NOx, NOx is oxidized during lean burn operation in which the oxygen concentration in the exhaust gas is high to temporarily store NOx in the state of nitrate, and the reducing agent is used during stoichiometric air-fuel ratio operation in which the oxygen concentration in the exhaust gas is low. At present, practical use of a NOx storage reduction catalyst having a property of decomposing and releasing NOx to reduce and purify is being studied.
【0006】尚、この種のNOx吸蔵還元触媒として
は、白金・バリウム・アルミナ触媒や、イリジウム・白
金・バリウム・アルミナ触媒などが前述した如き性質を
有するものとして既に知られている。As this type of NOx storage reduction catalyst, a platinum-barium-alumina catalyst, an iridium-platinum-barium-alumina catalyst, etc. are already known as having the above-mentioned properties.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、NOx
吸蔵還元触媒に吸蔵されたNOxを放出させて該NOx吸
蔵還元触媒の再生を図るのに際し、いちいち運転状態を
希薄燃焼運転から理論空燃比運転に切り替えていたので
は、せっかくの希薄燃焼運転による燃費向上のメリット
が損なわれてしまうという不具合がある。SUMMARY OF THE INVENTION However, NOx
When releasing the NOx stored in the storage reduction catalyst to regenerate the NOx storage reduction catalyst, if the operation state is switched from lean combustion operation to stoichiometric air-fuel ratio operation each time, the fuel consumption due to the precious lean combustion operation There is a problem that the merit of improvement is impaired.
【0008】このため、希薄燃焼運転としたままでNO
x吸蔵還元触媒の良好な再生を図り得るようにすること
が望まれているが、希薄燃焼運転時における酸素過剰存
在下では、排気ガス中の酸素濃度が高いために、前述し
たNOx還元触媒の場合と同様に、HCなどの還元剤が
NOxと反応するよりも先に酸素と反応して消費されて
しまい、これによって、還元剤とNOxの反応選択性が
低下してNOx吸蔵還元触媒の良好な再生を図ることが
できないという問題があった。For this reason, the NO.
It is desired to be able to achieve good regeneration of the x-storage reduction catalyst, but in the presence of excess oxygen during the lean burn operation, the oxygen concentration in the exhaust gas is high, so As in the case described above, the reducing agent such as HC reacts with oxygen before reacting with NOx and is consumed, whereby the reaction selectivity between the reducing agent and NOx is reduced and the NOx storage reduction catalyst is improved. There is a problem that a proper reproduction cannot be achieved.
【0009】本発明は、上述の実情に鑑みてなされたも
のであり、希薄燃焼運転時におけるNOx低減効果の高
いNOx吸蔵還元触媒を使用し、該NOx吸蔵還元触媒を
希薄燃焼運転状態でも良好に再生し得るようにした実用
性の高い排気浄化装置を提供することを目的としてい
る。The present invention has been made in view of the above-described circumstances, and uses a NOx storage reduction catalyst having a high NOx reduction effect during lean combustion operation, and makes the NOx storage reduction catalyst excellent even in lean combustion operation. It is an object of the present invention to provide a highly practical exhaust gas purification device that can be regenerated.
【0010】[0010]
【課題を解決するための手段】本発明は、排気ガスが流
通する排気管の途中に、排気ガス中の酸素濃度が高い時
にNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ
排気ガス中の酸素濃度が低い時に還元剤の介在によりN
Oxを分解放出して還元浄化するNOx吸蔵還元触媒を装
備し、該NOx吸蔵還元触媒に対し還元剤を適宜に添加
し且つ前記NOx吸蔵還元触媒を適宜に迂回させて排気
ガスを流すことにより前記NOx吸蔵還元触媒を通過す
る排気ガスの流量を制限し得るように構成したことを特
徴とする排気浄化装置、に係るものである。SUMMARY OF THE INVENTION According to the present invention, there is provided an exhaust pipe through which exhaust gas flows, when NOx is oxidized when the oxygen concentration in the exhaust gas is high, the NOx is temporarily stored in a nitrate state and the exhaust gas is temporarily stored. When the oxygen concentration in the medium is low, N
A NOx storage reduction catalyst that decomposes and releases Ox to reduce and purify is provided, a reducing agent is appropriately added to the NOx storage reduction catalyst, and exhaust gas is caused to flow by appropriately bypassing the NOx storage reduction catalyst. The present invention relates to an exhaust gas purification apparatus characterized in that the flow rate of exhaust gas passing through a NOx storage reduction catalyst can be restricted.
【0011】従って、このような排気浄化装置によれ
ば、排気ガス中の酸素濃度が高い希薄燃焼運転時に、排
気ガスをNOx吸蔵還元触媒に流して排気ガス中のNOx
を硝酸塩の状態で吸蔵させることによりNOxの低減化
を図り、然る後に、十分な量のNOxを硝酸塩の状態で
吸蔵してNOx吸蔵還元触媒の吸蔵能力が低下してきた
際には、該NOx吸蔵還元触媒を迂回させて排気ガスを
流すことによりNOx吸蔵還元触媒を通過する排気ガス
の流量を制限した上で還元剤の添加を行い、該還元剤の
添加量に対する相対的な空気過剰率を下げて還元剤とN
Oxの反応選択性を向上し、これによりNOx吸蔵還元触
媒からNOxを積極的に分解放出させて該NOx吸蔵還元
触媒の良好な再生を図り、その放出したNOxをNOx吸
蔵還元触媒上で前記還元剤と反応させて還元浄化させる
ことが可能となる。Therefore, according to such an exhaust gas purifying apparatus, during the lean burn operation in which the oxygen concentration in the exhaust gas is high, the exhaust gas is caused to flow through the NOx storage reduction catalyst so that the NOx in the exhaust gas is reduced.
NOx is reduced by storing NOx in the state of nitrate, and thereafter, when a sufficient amount of NOx is stored in the state of nitrate and the storage capacity of the NOx storage reduction catalyst decreases, the NOx is reduced. By restricting the flow rate of the exhaust gas passing through the NOx storage reduction catalyst by flowing the exhaust gas by bypassing the storage reduction catalyst, the reducing agent is added, and the relative excess air ratio with respect to the amount of the reducing agent added is determined. Lower the reducing agent and N
The reaction selectivity of Ox is improved, whereby NOx is actively decomposed and released from the NOx storage-reduction catalyst to achieve good regeneration of the NOx storage-reduction catalyst, and the released NOx is reduced on the NOx storage-reduction catalyst. It can be reduced and purified by reacting with an agent.
【0012】また、本発明は、排気ガスが流通する排気
管の途中に、排気ガス中の酸素濃度が高い時にNOxを
酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス中
の酸素濃度が低い時に還元剤の介在によりNOxを分解
放出して還元浄化するNOx吸蔵還元触媒を装備すると
共に、該NOx吸蔵還元触媒より上流側の排気管に酸素
吸収材を装備し、前記NOx吸蔵還元触媒に対し還元剤
を適宜に添加し且つ前記酸素吸収材を適宜に迂回させて
前記NOx吸蔵還元触媒に排気ガスを導き得るように構
成したことを特徴とする排気浄化装置、にも係るもので
ある。Also, the present invention provides a method for oxidizing NOx in the middle of an exhaust pipe through which exhaust gas flows, when the oxygen concentration in the exhaust gas is high, temporarily occluding NOx in a state of nitrate, and further reducing the oxygen concentration in the exhaust gas. A NOx storage-reduction catalyst that decomposes and releases NOx through the presence of a reducing agent when the pressure is low, and an oxygen-absorbing material is provided in an exhaust pipe upstream of the NOx storage-reduction catalyst. An exhaust gas purifying apparatus, wherein an exhaust gas is guided to the NOx storage reduction catalyst by appropriately adding a reducing agent to the NOx storage and reduction catalyst by appropriately bypassing the oxygen absorbent. .
【0013】従って、このような排気浄化装置によれ
ば、排気ガス中の酸素濃度が高い希薄燃焼運転時に、酸
素吸収材を迂回させて排気ガスをNOx吸蔵還元触媒に
流して排気ガス中のNOxを硝酸塩の状態で吸蔵させる
ことによりNOxの低減化を図り、然る後に、十分な量
のNOxを硝酸塩の状態で吸蔵してNOx吸蔵還元触媒の
吸蔵能力が低下してきた際には、該NOx吸蔵還元触媒
の上流側で排気ガスを酸素吸収材に通して酸素分を吸収
させることにより排気ガスの酸素濃度を下げ、その下流
側のNOx吸蔵還元触媒における還元性雰囲気を高めた
上で還元剤の添加を行って該還元剤とNOxの反応選択
性を向上し、これによりNOx吸蔵還元触媒からNOxを
積極的に分解放出させて該NOx吸蔵還元触媒の良好な
再生を図り、その放出したNOxをNOx吸蔵還元触媒上
で前記還元剤と反応させて還元浄化させることが可能と
なる。Therefore, according to such an exhaust gas purifying apparatus, during the lean burn operation in which the oxygen concentration in the exhaust gas is high, the exhaust gas flows to the NOx storage reduction catalyst by bypassing the oxygen absorbing material, and the NOx in the exhaust gas is reduced. NOx is reduced by storing NOx in the state of nitrate, and thereafter, when a sufficient amount of NOx is stored in the state of nitrate and the storage capacity of the NOx storage reduction catalyst decreases, the NOx is reduced. The oxygen concentration of the exhaust gas is lowered by passing the exhaust gas through the oxygen absorbing material on the upstream side of the storage reduction catalyst to absorb oxygen, and the reducing agent in the NOx storage reduction catalyst on the downstream side is raised after the reducing atmosphere is increased. To enhance the reaction selectivity between the reducing agent and NOx, thereby actively decomposing and releasing NOx from the NOx storage-reduction catalyst, thereby achieving good regeneration of the NOx storage-reduction catalyst, and releasing the released NOx. On the NOx storing and reducing catalyst is reacted with the reducing agent it is possible to reduce and purify by.
【0014】尚、酸素吸収材は、排気ガスを迂回させて
NOx吸蔵還元触媒によるNOxの吸蔵を行わせている間
に、酸素分を放出させて再生させるようにすれば良い。The oxygen absorbing material may be configured to release and regenerate an oxygen component while the NOx storage / reduction catalyst is storing NOx by bypassing the exhaust gas.
【0015】更に、本発明は、排気ガスが流通する排気
管の途中に、排気ガス中の酸素濃度が高い時にNOxを
酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス中
の酸素濃度が低い時に還元剤の介在によりNOxを分解
放出して還元浄化するNOx吸蔵還元触媒を装備すると
共に、該NOx吸蔵還元触媒に対し大気から空気を別途
導き得るように再生用ガス流路を設けて該再生用ガス流
路の途中に酸素吸収材を装備し、前記NOx吸蔵還元触
媒に対し還元剤を適宜に添加し且つ前記酸素吸収材によ
り空気から酸素分を吸収して生成した窒素リッチガスを
前記NOx吸蔵還元触媒に対し適宜に導入し得るように
構成したことを特徴とする排気浄化装置、にも係るもの
である。Furthermore, the present invention provides a method for oxidizing NOx in the middle of an exhaust pipe through which exhaust gas flows, when the oxygen concentration in the exhaust gas is high, temporarily occluding NOx in a state of nitrate, and further reducing the oxygen concentration in the exhaust gas. A NOx storage-reduction catalyst that decomposes and releases NOx through the presence of a reducing agent to reduce and purify when the pressure is low, and a regeneration gas flow path is provided for the NOx storage-reduction catalyst so that air can be separately introduced from the atmosphere to the NOx storage-reduction catalyst. An oxygen absorbing material is provided in the middle of the regeneration gas flow path, a reducing agent is appropriately added to the NOx storage reduction catalyst, and a nitrogen-rich gas generated by absorbing oxygen from air by the oxygen absorbing material is removed. The present invention also relates to an exhaust gas purification device characterized in that it can be appropriately introduced into a NOx storage reduction catalyst.
【0016】従って、このような排気浄化装置によれ
ば、排気ガス中の酸素濃度が高い希薄燃焼運転時に、排
気ガスをNOx吸蔵還元触媒に流して排気ガス中のNOx
を硝酸塩の状態で吸蔵させることによりNOxの低減化
を図り、然る後に、十分な量のNOxを硝酸塩の状態で
吸蔵してNOx吸蔵還元触媒の吸蔵能力が低下してきた
際には、再生用ガス流路を通し大気から空気を別途導き
且つその空気から酸素吸収材により酸素分を吸収して生
成した窒素リッチガスをNOx吸蔵還元触媒に導入する
ことにより該NOx吸蔵還元触媒における還元性雰囲気
を高め、ここに還元剤を添加することで該還元剤とNO
xの反応選択性を向上し、これによりNOx吸蔵還元触媒
からNOxを積極的に分解放出させて該NOx吸蔵還元触
媒の良好な再生を図り、その放出したNOxをNOx吸蔵
還元触媒上で前記還元剤と反応させて還元浄化させるこ
とが可能となる。Therefore, according to such an exhaust gas purifying apparatus, during the lean burn operation in which the oxygen concentration in the exhaust gas is high, the exhaust gas is caused to flow through the NOx storage reduction catalyst so that the NOx in the exhaust gas is reduced.
NOx is reduced by storing NOx in the state of nitrate, and thereafter, when a sufficient amount of NOx is stored in the state of nitrate and the storage capacity of the NOx storage-reduction catalyst decreases, the NOx The reducing atmosphere in the NOx storage reduction catalyst is enhanced by separately introducing air from the atmosphere through the gas flow path and introducing a nitrogen-rich gas generated by absorbing oxygen from the air with an oxygen absorbing material to the NOx storage reduction catalyst. , By adding a reducing agent thereto, the reducing agent and NO
The reaction selectivity of x is improved, whereby NOx is actively decomposed and released from the NOx storage-reduction catalyst to achieve good regeneration of the NOx storage-reduction catalyst, and the released NOx is reduced on the NOx storage-reduction catalyst. It can be reduced and purified by reacting with an agent.
【0017】尚、酸素吸収材は、NOx吸蔵還元触媒に
よるNOxの吸蔵を行わせている間や、十分な量の窒素
リッチガスを何らかの貯蔵手段に貯え終えて非使用状態
となっている間に、酸素分を放出させて再生させるよう
にすれば良い。The oxygen absorbing material may be used while the NOx is being stored by the NOx storage reduction catalyst or while the storage of a sufficient amount of nitrogen-rich gas in some storage means is in an unused state. What is necessary is just to make it reproduce | regenerate by releasing oxygen content.
【0018】また、本発明においては、酸素吸収材を並
列に対で設け、両酸素吸収材を交互に再生し得るように
構成しても良く、このようにすれば、一方の酸素吸収材
に酸素分の吸収を行わせている間に、他方の酸素吸収材
の再生を行うことが可能となるので、常に酸素吸収材の
何れかを使用可能な状態に待機させておくことが可能と
なる。Further, in the present invention, the oxygen absorbing material may be provided in a pair in parallel so that the two oxygen absorbing materials can be regenerated alternately. Since it is possible to regenerate the other oxygen absorbing material while the oxygen content is being absorbed, it is possible to always keep one of the oxygen absorbing materials in a usable state. .
【0019】更に、本発明においては、NOx吸蔵還元
触媒を並列に対で設け、両NOx吸蔵還元触媒を交互に
再生し得るように構成しても良く、このようにすれば、
一方のNOx吸蔵還元触媒にNOxの吸蔵を行わせている
間に、他方のNOx吸蔵還元触媒の再生を行うことが可
能となるので、常にNOx吸蔵還元触媒の何れかを使用
可能な状態として連続的にNOxの低減化を図ることが
可能となる。Further, in the present invention, the NOx storage-reduction catalysts may be provided in parallel as a pair so that both the NOx storage-reduction catalysts can be regenerated alternately.
While one NOx storage reduction catalyst is storing NOx, it is possible to regenerate the other NOx storage reduction catalyst. It is possible to achieve a reduction in NOx.
【0020】また、本発明においては、NOx吸蔵還元
触媒より上流側の排気管に、還元剤をNOxと選択的に
反応させる選択還元触媒を装備し、該選択還元触媒に対
し還元剤を適宜に添加し得るように構成することが好ま
しく、このようにすれば、排気ガス中のNOxの一部が
選択還元触媒により先行して還元浄化されることになる
ので、その下流側のNOx吸蔵還元触媒におけるNOx吸
蔵の負担が大幅に軽減され、該NOx吸蔵還元触媒が吸
蔵限界に到達するまでの時間を長くして再生サイクルの
長期化を図ることが可能となる。In the present invention, the exhaust pipe upstream of the NOx storage reduction catalyst is provided with a selective reduction catalyst for selectively reacting the reducing agent with NOx, and the reducing agent is appropriately supplied to the selective reduction catalyst. It is preferable that the catalyst can be added. In this case, a part of the NOx in the exhaust gas is reduced and purified in advance by the selective reduction catalyst. The load on NOx storage at the time is greatly reduced, and the time required for the NOx storage reduction catalyst to reach the storage limit can be lengthened to lengthen the regeneration cycle.
【0021】[0021]
【発明の実施の形態】以下本発明の実施の形態を図面を
参照しつつ説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0022】図1は本発明の第一の形態例を示すもの
で、図中1はディーゼル機関であるエンジンを示し、こ
こに図示しているエンジン1では、ターボチャージャ2
が備えられており、エアクリーナ3から導いた空気4が
吸気管5を介し前記ターボチャージャ2のコンプレッサ
2aへと送られ、該コンプレッサ2aで加圧された空気
4が更にインタクーラ6へと送られて冷却され、該イン
タクーラ6から図示しないインテークマニホールドへと
空気4が導かれてエンジン1の各シリンダに導入される
ようにしてある。FIG. 1 shows a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an engine which is a diesel engine. In the engine 1 shown here, a turbocharger 2 is used.
The air 4 guided from the air cleaner 3 is sent to the compressor 2a of the turbocharger 2 through the intake pipe 5, and the air 4 pressurized by the compressor 2a is further sent to the intercooler 6. After being cooled, the air 4 is guided from the intercooler 6 to an intake manifold (not shown) and introduced into each cylinder of the engine 1.
【0023】また、このエンジン1の各シリンダには、
図示しない燃料タンクからの液体燃料(軽油)がエンジ
ン1の各シリンダ内に噴射されて燃焼されるようにして
あり、エンジン1の各シリンダから排出された排気ガス
7がエキゾーストマニホールド8を介し前記ターボチャ
ージャ2のタービン2bへと送られ、該タービン2bを
駆動した排気ガス7が排気管9を介し車外へ排出される
ようにしてある。Each cylinder of the engine 1 has
Liquid fuel (light oil) from a fuel tank (not shown) is injected into each cylinder of the engine 1 and burned, and exhaust gas 7 discharged from each cylinder of the engine 1 is exhausted through an exhaust manifold 8 to the turbo. The exhaust gas 7 sent to the turbine 2b of the charger 2 and driving the turbine 2b is discharged to the outside of the vehicle via the exhaust pipe 9.
【0024】そして、排気ガス7が流通する排気管9の
途中には、排気ガス7中の酸素濃度が高い時にNOxを
酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス7
中の酸素濃度が低い時に後述する還元剤10(軽油)の
介在によりNOxを分解放出して還元浄化するNOx吸蔵
還元触媒11が装備されており、該NOx吸蔵還元触媒
11を迂回するように排気管9にバイパス流路12が付
設されている。In the middle of the exhaust pipe 9 through which the exhaust gas 7 flows, when the oxygen concentration in the exhaust gas 7 is high, NOx is oxidized and temporarily stored in the form of nitrate, and the exhaust gas 7 is oxidized.
A NOx storage-reduction catalyst 11 that decomposes and releases NOx by the interposition of a reducing agent 10 (light oil) to be described below when the oxygen concentration is low is provided, and the exhaust gas is bypassed so as to bypass the NOx storage-reduction catalyst 11. The pipe 9 is provided with a bypass channel 12.
【0025】ここで、排気管9に対するバイパス流路1
2の分岐箇所及び合流箇所には、排気管9を流れる排気
ガス7を適宜にバイパス流路12に振り分けてNOx吸
蔵還元触媒11を通過する排気ガス7の流量を制限し得
るよう開度可変弁13,14,15,16が夫々設けら
れている。Here, the bypass passage 1 for the exhaust pipe 9
The exhaust valve 7 flowing through the exhaust pipe 9 is appropriately distributed to the bypass passage 12 at the branch point and the junction point 2 so that the flow rate of the exhaust gas 7 passing through the NOx storage reduction catalyst 11 can be limited. 13, 14, 15, and 16 are provided respectively.
【0026】また、排気管9におけるNOx吸蔵還元触
媒11の入側と、所要場所に設けた還元剤タンク17
(燃料タンクと兼用することも可)との間が還元剤供給
管18により接続されており、該還元剤供給管18の途
中に装備した送給ポンプ19の駆動により還元剤タンク
17内の還元剤10を噴射ノズル20を介しNOx吸蔵
還元触媒11の入側に添加し得るようにしてある。Further, the exhaust pipe 9 has an inlet side of the NOx storage reduction catalyst 11 and a reducing agent tank 17 provided at a required place.
(It can also be used as a fuel tank) is connected by a reducing agent supply pipe 18, and a reduction pump in the reducing agent tank 17 is driven by driving a feed pump 19 provided in the middle of the reducing agent supply pipe 18. The agent 10 can be added to the inlet side of the NOx storage reduction catalyst 11 through the injection nozzle 20.
【0027】尚、図中21は排気管9の下流側に備えた
マフラを示す。In the drawing, reference numeral 21 denotes a muffler provided on the downstream side of the exhaust pipe 9.
【0028】而して、排気ガス7中の酸素濃度が高い希
薄燃焼運転時に、開度可変弁13,14を開け且つ開度
可変弁15,16を閉じて排気ガス7をNOx吸蔵還元
触媒11に流し、これにより排気ガス7中のNOxを硝
酸塩の状態で吸蔵させることによりNOxの低減化を図
る。During the lean burn operation in which the oxygen concentration in the exhaust gas 7 is high, the variable opening valves 13 and 14 are opened and the variable opening valves 15 and 16 are closed to reduce the exhaust gas 7 to the NOx storage reduction catalyst 11. To thereby reduce NOx by storing NOx in the exhaust gas 7 in the form of nitrate.
【0029】然る後に、十分な量のNOxを硝酸塩の状
態で吸蔵してNOx吸蔵還元触媒11の吸蔵能力が低下
してきた際には、開度可変弁15,16を開け且つ開度
可変弁13,14を閉じて排気ガス7をバイパス流路1
2側へ迂回させ、これによりNOx吸蔵還元触媒11を
通過する排気ガス7の流量を制限した上で、送給ポンプ
19の駆動により還元剤タンク17から還元剤10を導
いてNOx吸蔵還元触媒11の入側に添加する。Thereafter, when a sufficient amount of NOx is stored in a nitrate state and the storage capacity of the NOx storage-reduction catalyst 11 is reduced, the opening variable valves 15 and 16 are opened and the opening variable valves are opened. 13 and 14 are closed to allow the exhaust gas 7 to pass through the bypass passage 1
2, the flow rate of the exhaust gas 7 passing through the NOx storage reduction catalyst 11 is restricted, and then the feed pump 19 is driven to guide the reducing agent 10 from the reducing agent tank 17 so that the NOx storage reduction catalyst 11 To the inlet side of.
【0030】このようにすれば、還元剤10の添加量に
対する相対的な空気過剰率が低下して還元剤10とNO
xの反応選択性が向上し、これによりNOx吸蔵還元触媒
11からNOxが積極的に分解放出されて該NOx吸蔵還
元触媒11の良好な再生が図られ、その放出したNOx
がNOx吸蔵還元触媒11上で前記還元剤10と反応し
て還元浄化される。In this way, the relative excess air ratio with respect to the amount of the reducing agent 10 added decreases, and the reducing agent 10 and NO
The reaction selectivity of x is improved, so that NOx is actively decomposed and released from the NOx storage-reduction catalyst 11, whereby good regeneration of the NOx storage-reduction catalyst 11 is achieved, and the released NOx
Reacts with the reducing agent 10 on the NOx storage reduction catalyst 11 to be reduced and purified.
【0031】ここで、排気ガス7をバイパス流路12側
へ迂回させてNOx吸蔵還元触媒11を通過する排気ガ
ス7の流量を制限することは、該排気ガス7の流速を低
下させることにもなるので、これにより還元剤10とN
Ox吸蔵還元触媒11との接触時間が長くなってNOx吸
蔵還元触媒11が効率良く再生されることになる。Here, limiting the flow rate of the exhaust gas 7 passing through the NOx storage reduction catalyst 11 by diverting the exhaust gas 7 to the bypass flow path 12 side also reduces the flow rate of the exhaust gas 7. Therefore, the reducing agent 10 and N
The contact time with the Ox storage reduction catalyst 11 becomes longer, and the NOx storage reduction catalyst 11 is efficiently regenerated.
【0032】従って、本形態例によれば、NOx吸蔵還
元触媒11を希薄燃焼運転状態でも良好に再生すること
ができるので、希薄燃焼運転時におけるNOx低減効果
の高いNOx吸蔵還元触媒11を使用した排気浄化装置
の実用化を図ることができる。Therefore, according to the present embodiment, the NOx storage reduction catalyst 11 can be satisfactorily regenerated even in the lean combustion operation state. Therefore, the NOx storage reduction catalyst 11 having a high NOx reduction effect during the lean combustion operation is used. Practical use of the exhaust gas purification device can be achieved.
【0033】図2は本発明の第二の形態例を示すもの
で、本形態例においては、前述した図1におけるバイパ
ス流路12の途中にもNOx吸蔵還元触媒22を設け、
該NOx吸蔵還元触媒22の入側と還元剤タンク17と
の間を還元剤供給管23により接続し、該還元剤供給管
23の途中に装備した送給ポンプ24の駆動により還元
剤タンク17内の還元剤10を噴射ノズル25を介し前
記NOx吸蔵還元触媒22の入側に添加し得るようにし
てある。FIG. 2 shows a second embodiment of the present invention. In this embodiment, a NOx storage reduction catalyst 22 is provided also in the bypass passage 12 in FIG.
The inlet side of the NOx storage reduction catalyst 22 and the reducing agent tank 17 are connected by a reducing agent supply pipe 23, and the feed pump 24 provided in the middle of the reducing agent supply pipe 23 is driven to drive the inside of the reducing agent tank 17. Can be added to the inlet side of the NOx storage reduction catalyst 22 through the injection nozzle 25.
【0034】而して、このようにNOx吸蔵還元触媒1
1,22を並列に対で設けた場合には、開度可変弁1
3,14を開け且つ開度可変弁15,16を閉じて排気
ガス7を排気管9のNOx吸蔵還元触媒11に流し、該
NOx吸蔵還元触媒11により排気ガス7中のNOxを硝
酸塩の状態で吸蔵させている間に、排気ガス7の流量が
制限されているバイパス流路12側のNOx吸蔵還元触
媒22の入側に還元剤供給管23を通し還元剤10を添
加して該NOx吸蔵還元触媒22の再生を行うことが可
能となる。Thus, the NOx storage reduction catalyst 1
In the case where the pair 1 and 22 are provided in parallel, the opening variable valve 1
The exhaust gas 7 is allowed to flow to the NOx storage reduction catalyst 11 in the exhaust pipe 9 by opening the opening degree variable valves 15 and 16 and the NOx in the exhaust gas 7 is converted to nitrate by the NOx storage reduction catalyst 11. During the occlusion, the reducing agent 10 is added through the reducing agent supply pipe 23 to the inlet side of the NOx occlusion / reduction catalyst 22 on the side of the bypass flow passage 12 where the flow rate of the exhaust gas 7 is restricted, and the NOx occlusion / reduction is performed. The regeneration of the catalyst 22 can be performed.
【0035】即ち、バイパス流路12側では還元剤10
の添加量に対する相対的な空気過剰率が低下して還元剤
10とNOxの反応選択性が向上しているので、NOx吸
蔵還元触媒22からNOxが積極的に分解放出されて該
NOx吸蔵還元触媒22の良好な再生が図られ、その放
出したNOxがNOx吸蔵還元触媒22上で前記還元剤1
0と反応して還元浄化されることになる。That is, the reducing agent 10
Since the relative excess ratio of air with respect to the amount of addition is reduced and the selectivity of the reaction between the reducing agent 10 and NOx is improved, NOx is actively decomposed and released from the NOx storage reduction catalyst 22 and the NOx storage reduction catalyst Good regeneration of the reducing agent 22 is achieved, and the released NOx is reduced on the NOx storage reduction catalyst 22 by the reducing agent
It reacts with 0 to be reduced and purified.
【0036】そして、十分な量のNOxを硝酸塩の状態
で吸蔵してNOx吸蔵還元触媒11の吸蔵能力が低下し
てきた際には、開度可変弁15,16を開け且つ開度可
変弁13,14を閉じて排気ガス7をバイパス流路12
側へ迂回させ、これによりNOx吸蔵還元触媒11を通
過する排気ガス7の流量を制限した上で、NOx吸蔵還
元触媒11の入側に還元剤供給管18を通し還元剤10
を添加して該NOx吸蔵還元触媒11の再生を図り、こ
の再生の間にバイパス流路12側のNOx吸蔵還元触媒
22により排気ガス7中のNOxを吸蔵させれば良い。When the storage capacity of the NOx storage reduction catalyst 11 is reduced by storing a sufficient amount of NOx in the state of nitrate, the variable opening valves 15 and 16 are opened and the variable opening valves 13 and 14 to close the exhaust gas 7 to the bypass passage 12
Side, thereby restricting the flow rate of the exhaust gas 7 passing through the NOx storage-reduction catalyst 11, and passing the reducing agent supply pipe 18 to the entrance side of the NOx storage-reduction catalyst 11 through the reducing agent supply pipe 18.
Is added to regenerate the NOx storage and reduction catalyst 11, and during this regeneration, the NOx in the exhaust gas 7 may be stored by the NOx storage and reduction catalyst 22 on the side of the bypass passage 12.
【0037】従って、本形態例によれば、NOx吸蔵還
元触媒11,22のうちの一方にNOxの吸蔵を行わせ
ている間に、NOx吸蔵還元触媒11,22のうちの他
方の再生を行うことができるので、常にNOx吸蔵還元
触媒11,22の何れかを使用可能な状態として連続的
にNOxの低減化を図ることができる。Therefore, according to this embodiment, while one of the NOx storage reduction catalysts 11 and 22 is storing NOx, the other of the NOx storage reduction catalysts 11 and 22 is regenerated. Therefore, one of the NOx storage reduction catalysts 11 and 22 can always be used, and NOx can be continuously reduced.
【0038】図3は本発明の第三の形態例を示すもの
で、本形態例においては、前述した図1におけるバイパ
ス流路12の分岐箇所より上流側の排気管9に、還元剤
10をNOxと選択的に反応させる選択還元触媒26、
即ち、還元剤10が軽油の場合なら銅・ゼオライト触媒
や白金・アルミナ触媒などを装備し、この選択還元触媒
26の入側と還元剤タンク17との間を還元剤供給管2
7により接続し、該還元剤供給管27の途中に装備した
送給ポンプ28の駆動により還元剤タンク17内の還元
剤10を噴射ノズル29を介し前記選択還元触媒26の
入側に添加し得るようにしてある。FIG. 3 shows a third embodiment of the present invention. In this embodiment, the reducing agent 10 is supplied to the exhaust pipe 9 upstream of the branch point of the bypass passage 12 in FIG. A selective reduction catalyst 26 for selectively reacting with NOx,
That is, if the reducing agent 10 is light oil, a copper-zeolite catalyst or a platinum-alumina catalyst is provided, and a reducing agent supply pipe 2 is provided between the inlet of the selective reduction catalyst 26 and the reducing agent tank 17.
7, the reducing agent 10 in the reducing agent tank 17 can be added to the inlet side of the selective reduction catalyst 26 through the injection nozzle 29 by driving a feed pump 28 provided in the middle of the reducing agent supply pipe 27. It is like that.
【0039】このようにすれば、選択還元触媒26の入
側に還元剤供給管27を通し還元剤10を添加して該還
元剤10をNOxと選択的に反応させることができ、こ
れによって、希薄燃焼運転時における酸素過剰存在下で
も排気ガス7中のNOxの20〜30%程度を選択還元
触媒26により先行して還元浄化することができるの
で、その下流側のNOx吸蔵還元触媒11におけるNOx
吸蔵の負担を大幅に軽減することができ、該NOx吸蔵
還元触媒11が吸蔵限界に到達するまでの時間を長くし
て再生サイクルの長期化を図ることができる。In this way, the reducing agent 10 can be added to the selective reducing catalyst 26 through the reducing agent supply pipe 27 through the inlet side thereof, and the reducing agent 10 can be selectively reacted with NOx. Even in the presence of excess oxygen during the lean burn operation, about 20 to 30% of the NOx in the exhaust gas 7 can be reduced and purified in advance by the selective reduction catalyst 26, so that the NOx in the NOx storage reduction catalyst 11 downstream thereof
The load of occlusion can be greatly reduced, and the time until the NOx occlusion / reduction catalyst 11 reaches the occlusion limit can be lengthened to prolong the regeneration cycle.
【0040】図4は本発明の第四の形態例を示すもの
で、本形態例においては、排気管9の途中に装備したN
Ox吸蔵還元触媒11の上流側に、例えばゼオライトな
どの酸素吸収材30を装備し、該酸素吸収材30を迂回
するように排気管9にバイパス流路31を付設してあ
る。FIG. 4 shows a fourth embodiment of the present invention. In this embodiment, the N
On the upstream side of the Ox storage reduction catalyst 11, an oxygen absorbing material 30 such as zeolite is provided, and a bypass passage 31 is provided in the exhaust pipe 9 so as to bypass the oxygen absorbing material 30.
【0041】ここで、排気管9に対するバイパス流路3
1の分岐箇所及び合流箇所には、排気管9を流れる排気
ガス7を適宜にバイパス流路31に振り分けることによ
り酸素吸収材30を迂回させてNOx吸蔵還元触媒11
に排気ガス7を導き得るよう開度可変弁32,33,3
4,35が夫々設けられている。Here, the bypass passage 3 for the exhaust pipe 9
In the first branch point and the junction point, the exhaust gas 7 flowing through the exhaust pipe 9 is appropriately distributed to the bypass flow path 31 so as to bypass the oxygen absorbing material 30 so as to bypass the NOx storage reduction catalyst 11.
Valves 32, 33, 3 so that the exhaust gas 7 can be guided to
4, 35 are provided respectively.
【0042】尚、酸素吸収材30の入側と還元剤タンク
17との間は還元剤供給管36により接続され、該還元
剤供給管36の途中に装備した送給ポンプ37の駆動に
より還元剤タンク17内の還元剤10が噴射ノズル38
を介し前記酸素吸収材30の入側に添加し得るようにし
てある。The inlet of the oxygen absorbing material 30 and the reducing agent tank 17 are connected by a reducing agent supply pipe 36, and the reducing agent is supplied by driving a feed pump 37 provided in the middle of the reducing agent supply pipe 36. The reducing agent 10 in the tank 17 is injected into the injection nozzle 38
Can be added to the inlet side of the oxygen absorbing material 30 through the hole.
【0043】而して、排気ガス7中の酸素濃度が高い希
薄燃焼運転時に、開度可変弁34,35を開け且つ開度
可変弁32,33を閉じて排気ガス7をバイパス流路3
1に流し、これにより酸素吸収材30を迂回させて排気
ガス7をNOx吸蔵還元触媒11に導くようにすると、
該NOx吸蔵還元触媒11にて排気ガス7中のNOxが硝
酸塩の状態で吸蔵されてNOxの低減化が図られる。During the lean burn operation in which the oxygen concentration in the exhaust gas 7 is high, the variable opening valves 34, 35 are opened and the variable opening valves 32, 33 are closed to pass the exhaust gas 7 into the bypass passage 3.
When the exhaust gas 7 is led to the NOx storage reduction catalyst 11 by bypassing the oxygen absorbing material 30,
The NOx in the exhaust gas 7 is stored in the state of nitrate by the NOx storage reduction catalyst 11, so that the NOx can be reduced.
【0044】然る後に、十分な量のNOxを硝酸塩の状
態で吸蔵してNOx吸蔵還元触媒11の吸蔵能力が低下
してきた際には、開度可変弁32,33を開け且つ開度
可変弁34,35を閉じて排気ガス7を酸素吸収材30
に通し、該酸素吸収材30により酸素分を吸収させて排
気ガス7の酸素濃度を下げ、その下流側のNOx吸蔵還
元触媒11における還元性雰囲気を高めた上で還元剤1
0の添加を行って該還元剤10とNOxの反応選択性を
向上し、これによりNOx吸蔵還元触媒11からNOxを
積極的に分解放出させて該NOx吸蔵還元触媒11の良
好な再生を図り、その放出したNOxをNOx吸蔵還元触
媒11上で前記還元剤10と反応させて還元浄化させ
る。Thereafter, when a sufficient amount of NOx is stored in the state of nitrate and the storage capacity of the NOx storage reduction catalyst 11 is reduced, the opening variable valves 32 and 33 are opened and the opening variable valves are opened. 34 and 35 are closed, and the exhaust gas 7 is
To reduce the oxygen concentration of the exhaust gas 7 by reducing the oxygen concentration of the exhaust gas 7 and increase the reducing atmosphere in the NOx storage reduction catalyst 11 on the downstream side thereof.
0 is added to improve the reaction selectivity between the reducing agent 10 and NOx, thereby actively decomposing and releasing NOx from the NOx storage reduction catalyst 11 to achieve good regeneration of the NOx storage reduction catalyst 11, The released NOx is made to react with the reducing agent 10 on the NOx storage reduction catalyst 11 to be reduced and purified.
【0045】尚、酸素吸収材30は、排気ガス7をバイ
パス流路31を通し迂回させてNOx吸蔵還元触媒11
によるNOxの吸蔵を行わせている間に、送給ポンプ3
7の駆動により還元剤タンク17から還元剤10を導い
て酸素吸収材30の入側に添加し、これにより酸素分を
放出させて再生させるようにすれば良い。Incidentally, the oxygen absorbing material 30 circulates the exhaust gas 7 through the bypass flow path 31 to make the NOx storage reduction catalyst 11
Pump 3 during the storage of NOx by
By driving 7, the reducing agent 10 is guided from the reducing agent tank 17, added to the inlet side of the oxygen absorbing material 30, and the oxygen content is released for regeneration.
【0046】図5は本発明の第五の形態例を示すもの
で、前述した図2の第二の形態例と略同様の装置構成に
おいて、排気管9の途中に装備したNOx吸蔵還元触媒
11と、バイパス流路12の途中に装備したNOx吸蔵
還元触媒22との夫々の入側に対し、ターボチャージャ
2のコンプレッサ2aとインタクーラ6との間の吸気管
5から開度可変弁39を介し空気4を別途導き得るよう
にした再生用ガス流路40を接続してある。FIG. 5 shows a fifth embodiment of the present invention. In the device configuration substantially the same as that of the second embodiment of FIG. 2 described above, the NOx storage reduction catalyst 11 provided in the exhaust pipe 9 is provided. To the respective inlet sides of the NOx storage reduction catalyst 22 provided in the middle of the bypass flow path 12, from the intake pipe 5 between the compressor 2 a of the turbocharger 2 and the intercooler 6, 4 is connected to a regeneration gas flow path 40 that can be separately led.
【0047】ここで、前記再生用ガス流路40の上流側
には、エアコンプレッサ41とリザーバタンク42とが
装備されており、吸気管5の途中から開度可変弁39を
介して導いた空気4をエアコンプレッサ41により加圧
し、その加圧した空気4をリザーバタンク42に貯蔵し
得るようにしてある。An air compressor 41 and a reservoir tank 42 are provided on the upstream side of the regeneration gas flow path 40. The air introduced from the middle of the intake pipe 5 through the variable opening valve 39 is provided. 4 is pressurized by an air compressor 41, and the pressurized air 4 can be stored in a reservoir tank 42.
【0048】そして、前記再生用ガス流路40における
リザーバタンク42の下流側は、三方弁43を介し二つ
の分岐流路40A,40Bに分岐されてから再び合流す
るように構成されており、これら分岐流路40A,40
Bの夫々には、多孔質カーボンなどの酸素吸収材44,
45が並列に装備され、該各酸素吸収材44,45を抱
持しているケーシングには、その内部を大気に開放する
リリーフ流路46,47が接続されている。The downstream side of the reservoir tank 42 in the regeneration gas passage 40 is branched into two branch passages 40A and 40B via a three-way valve 43 and then merges again. Branch flow paths 40A, 40
Each of B has an oxygen absorbing material 44 such as porous carbon,
45 are provided in parallel, and relief casings 46 and 47 that open the inside of the casing to the atmosphere are connected to the casing holding the oxygen absorbing members 44 and 45.
【0049】ここで、前記各リリーフ流路46,47及
び前記各分岐流路40A,40Bにおける酸素吸収材4
4,45の出側には、流路を適宜に閉塞し得るストップ
弁48,49及び50,51が夫々装備されており、更
には、各分岐流路40A,40Bの合流箇所にも同様の
ストップ弁52が装備されている。Here, the oxygen absorbing material 4 in each of the relief passages 46 and 47 and each of the branch passages 40A and 40B is used.
The outlet sides of the flow passages 4 and 45 are provided with stop valves 48 and 49 and 50 and 51, respectively, which can appropriately close the flow passages. A stop valve 52 is provided.
【0050】このストップ弁52の下流側には、減圧弁
53と三方弁54とが装備されており、該三方弁54か
らは二つの分岐流路40C,40Dに分岐されて、排気
管9のNOx吸蔵還元触媒11とバイパス流路12のN
Ox吸蔵還元触媒22との夫々の入側に対し接続されて
いる。Downstream of the stop valve 52, a pressure reducing valve 53 and a three-way valve 54 are provided. The three-way valve 54 is branched into two branch passages 40C and 40D, and is connected to the exhaust pipe 9. N of the NOx storage reduction catalyst 11 and the bypass passage 12
The Ox storage reduction catalysts 22 are connected to their respective inlet sides.
【0051】而して、排気ガス7中の酸素濃度が高い希
薄燃焼運転時に、開度可変弁13,14を開け且つ開度
可変弁15,16を閉じて排気ガス7をNOx吸蔵還元
触媒11に流し、これにより排気ガス7中のNOxを硝
酸塩の状態で吸蔵させることによりNOxの低減化を図
る。During the lean burn operation in which the oxygen concentration in the exhaust gas 7 is high, the variable opening valves 13 and 14 are opened and the variable opening valves 15 and 16 are closed to reduce the exhaust gas 7 to the NOx storage reduction catalyst 11. To thereby reduce NOx by storing NOx in the exhaust gas 7 in the form of nitrate.
【0052】然る後に、十分な量のNOxを硝酸塩の状
態で吸蔵してNOx吸蔵還元触媒11の吸蔵能力が低下
してきた際には、開度可変弁15,16を開け且つ開度
可変弁13,14を閉じて排気ガス7をバイパス流路1
2側へ迂回させ、これによりバイパス流路12側のNO
x吸蔵還元触媒22にNOxの吸蔵を引き継がせる一方、
吸蔵能力の低下した前記NOx吸蔵還元触媒11を以下
のようにして再生する。Thereafter, when a sufficient amount of NOx is stored in a nitrate state and the storage capacity of the NOx storage-reduction catalyst 11 is reduced, the opening variable valves 15 and 16 are opened and the opening variable valves are opened. 13 and 14 are closed to allow the exhaust gas 7 to pass through the bypass passage 1
2 so that the NO in the bypass flow path 12
While allowing the x storage reduction catalyst 22 to take over the storage of NOx,
The NOx storage reduction catalyst 11 whose storage capacity has been reduced is regenerated as follows.
【0053】即ち、ターボチャージャ2のコンプレッサ
2aとインタクーラ6との間の吸気管5から開度可変弁
39を介し空気4を再生用ガス流路40に導き、その空
気4をエアコンプレッサ41で加圧してリザーバタンク
42に貯蔵し、ストップ弁48,49,50,51,5
2を全て閉じた上で前記リザーバタンク42から圧縮空
気4’の使用分を取り出し、これを三方弁43を介し分
岐流路40Aの酸素吸収材44に導くようにすると、圧
縮空気4’中の酸素分が酸素吸収材44に吸収されて窒
素リッチガス4”が生成されるので、この窒素リッチガ
ス4”をストップ弁50,52を開けて減圧弁53によ
り減圧した後、三方弁43を介し分岐流路40Cに導い
て前記NOx吸蔵還元触媒11の入側に導入し、これに
よりNOx吸蔵還元触媒11における還元性雰囲気を高
め、ここに還元剤供給管18を通し還元剤10を添加す
ることで該還元剤10とNOxの反応選択性を向上し、
NOx吸蔵還元触媒11からNOxを積極的に分解放出さ
せて該NOx吸蔵還元触媒11の良好な再生を図り、そ
の放出したNOxをNOx吸蔵還元触媒11上で前記還元
剤10と反応させて還元浄化させる。That is, the air 4 is guided from the intake pipe 5 between the compressor 2 a of the turbocharger 2 and the intercooler 6 to the regeneration gas flow path 40 via the opening degree variable valve 39, and the air 4 is added by the air compressor 41. And stored in the reservoir tank 42, and the stop valves 48, 49, 50, 51, 5
2 is closed, and the used amount of the compressed air 4 'is taken out from the reservoir tank 42 and guided to the oxygen absorbing material 44 of the branch flow path 40A via the three-way valve 43. Since the oxygen content is absorbed by the oxygen absorbing material 44 to generate the nitrogen-rich gas 4 ″, the nitrogen-rich gas 4 ″ is depressurized by the pressure reducing valve 53 by opening the stop valves 50 and 52, and then branched through the three-way valve 43. It is led to the passage 40C and introduced into the inlet side of the NOx storage reduction catalyst 11, whereby the reducing atmosphere in the NOx storage reduction catalyst 11 is increased, and the reducing agent 10 is added through a reducing agent supply pipe 18 to add the reducing agent. The reaction selectivity between the reducing agent 10 and NOx is improved,
The NOx storage reduction catalyst 11 is actively decomposed and released to promote good regeneration of the NOx storage reduction catalyst 11, and the released NOx is reacted with the reducing agent 10 on the NOx storage reduction catalyst 11 to reduce and purify. Let it.
【0054】尚、吸蔵能力の低下したNOx吸蔵還元触
媒11に窒素リッチガス4”を導入して前記NOx吸蔵
還元触媒11を再生するに際し、該NOx吸蔵還元触媒
11の温度が触媒活性温度域から逸脱しないように、開
度可変弁13,14を適宜な開度で僅かに開けて排気ガ
ス7の一部を混合するようにしても良い。When the nitrogen-rich gas 4 ″ is introduced into the NOx storage-reduction catalyst 11 having a reduced storage capacity to regenerate the NOx storage-reduction catalyst 11, the temperature of the NOx storage-reduction catalyst 11 deviates from the catalyst activation temperature range. In order to prevent this, a part of the exhaust gas 7 may be mixed by slightly opening the variable opening valves 13 and 14 at an appropriate opening.
【0055】そして、三方弁43を切り替えてリザーバ
タンク42から圧縮空気4’を分岐流路40Bの酸素吸
収材45に導けば、前述と同様にして窒素リッチガス
4”が生成されるが、この間にストップ弁50を閉じた
状態でリリーフ流路46のストップ弁48を開け、酸素
吸収材44を大気に開放して減圧することにより該酸素
吸収材44に吸収されていた酸素分を放出させて前記酸
素吸収材44の再生を図る。Then, by switching the three-way valve 43 to guide the compressed air 4 'from the reservoir tank 42 to the oxygen absorbing material 45 of the branch passage 40B, the nitrogen-rich gas 4 "is generated in the same manner as described above. With the stop valve 50 closed, the stop valve 48 of the relief flow path 46 is opened, and the oxygen absorbing material 44 is opened to the atmosphere to reduce the pressure, thereby releasing the oxygen content absorbed by the oxygen absorbing material 44, The oxygen absorber 44 is regenerated.
【0056】このように、酸素吸収材44,45のうち
の一方に酸素分の吸収を行わせている間に、酸素吸収材
44,45の他方の再生を行うようにすれば、常に酸素
吸収材44,45の何れかを使用可能な状態に待機させ
ておくことが可能となる。As described above, if one of the oxygen absorbers 44, 45 is regenerated while the other is absorbing oxygen, the oxygen absorber 44, 45 is always regenerated. Either of the members 44 and 45 can be kept in a usable state.
【0057】また、十分な量のNOxを硝酸塩の状態で
吸蔵してNOx吸蔵還元触媒22の吸蔵能力が低下して
きた際には、開度可変弁13,14を開け且つ開度可変
弁15,16を閉じて排気ガス7がバイパス流路12側
へ迂回しないようにし、これにより再生済みの排気管9
側のNOx吸蔵還元触媒11にNOxの吸蔵を引き継がせ
る一方、吸蔵能力の低下した前記NOx吸蔵還元触媒2
2を前述と同様にして再生すれば良い。When a sufficient amount of NOx is stored in the state of nitrate and the storage capacity of the NOx storage reduction catalyst 22 is reduced, the variable opening valves 13 and 14 are opened and the variable opening valves 15 and 16 to prevent the exhaust gas 7 from diverting to the bypass flow path 12 side.
The NOx occlusion / reduction catalyst 2 having a reduced occlusion capacity while allowing the NOx occlusion / reduction catalyst 11 on the side to take over the NOx occlusion.
2 may be reproduced in the same manner as described above.
【0058】このように、NOx吸蔵還元触媒11,2
2のうちの一方にNOxの吸蔵を行わせている間に、N
Ox吸蔵還元触媒11,22のうちの他方の再生を行う
ようにすれば、常にNOx吸蔵還元触媒11,22の何
れかを使用可能な状態として連続的にNOxの低減化を
図ることが可能となる。As described above, the NOx storage reduction catalysts 11 and 12
2 while one of the two is storing NOx.
If the other one of the Ox storage reduction catalysts 11 and 22 is regenerated, it is possible to continuously reduce NOx by setting any one of the NOx storage reduction catalysts 11 and 22 to a usable state. Become.
【0059】ここで、本形態例においては、空気4をタ
ーボチャージャ2のコンプレッサ2aとインタクーラ6
との間の吸気管5から導くようにしているが、吸気系統
とは全く別の系統として再生用ガス流路を構成し、該再
生用ガス流路に大気から空気4を取り込む専用のブロワ
を装備するようにしても良く、そのようにする場合に
は、前記のブロワをエンジン動力を利用して駆動させる
ようにすると良い。Here, in this embodiment, the air 4 is supplied to the compressor 2 a of the turbocharger 2 and the intercooler 6.
However, the regeneration gas flow path is configured as a completely separate system from the intake system, and a dedicated blower for taking in air 4 from the atmosphere into the regeneration gas flow path is provided. The blower may be provided, and in such a case, the blower may be driven using engine power.
【0060】尚、本発明の排気浄化装置は、上述の形態
例にのみ限定されるものではなく、例えば、第四の形態
例における酸素吸収材やNOx吸蔵還元触媒を夫々並列
に対で設けた構成を採用したり、第五の形態例における
対の酸素吸収材やNOx吸蔵還元触媒を夫々単体で設け
た構成を採用したり、第三の形態例を除く他の第一、第
二、第四、第五の形態例についてNOx吸蔵還元触媒の
上流側に選択還元触媒を設けた構成を採用したりしても
良いこと、その他、本発明の要旨を逸脱しない範囲内に
おいて種々変更を加え得ることは勿論である。The exhaust gas purifying apparatus of the present invention is not limited to the above-described embodiment. For example, the oxygen absorbing material and the NOx storage reduction catalyst in the fourth embodiment are provided in pairs. Or a configuration in which the paired oxygen absorbing material and the NOx storage reduction catalyst in the fifth embodiment are individually provided, and other first, second, and second except for the third embodiment. Fourth and fifth embodiments may employ a configuration in which a selective reduction catalyst is provided on the upstream side of the NOx storage reduction catalyst. In addition, various changes may be made without departing from the gist of the present invention. Of course.
【0061】[0061]
【発明の効果】上記した本発明の排気浄化装置によれ
ば、下記の如き種々の優れた効果を奏し得る。According to the exhaust gas purifying apparatus of the present invention described above, the following various excellent effects can be obtained.
【0062】(I)本発明の請求項1、2、3に記載の
発明によれば、NOx吸蔵還元触媒を希薄燃焼運転状態
でも良好に再生することができるので、希薄燃焼運転時
におけるNOx低減効果の高いNOx吸蔵還元触媒を使用
した排気浄化装置の実用化を図ることができる。(I) According to the first, second and third aspects of the present invention, the NOx storage reduction catalyst can be satisfactorily regenerated even in the lean burn operation state, so that the NOx reduction during the lean burn operation can be achieved. An exhaust purification device using a highly effective NOx storage reduction catalyst can be put to practical use.
【0063】(II)本発明の請求項4に記載の発明に
よれば、一方の酸素吸収材に酸素分の吸収を行わせてい
る間に、他方の酸素吸収材の再生を行うことができるの
で、常に酸素吸収材の何れかを使用可能な状態に待機さ
せておくことができる。(II) According to the fourth aspect of the present invention, while one oxygen absorbing material is absorbing oxygen, the other oxygen absorbing material can be regenerated. Therefore, any one of the oxygen absorbing materials can always be kept in a standby state.
【0064】(III)本発明の請求項5に記載の発明
によれば、一方のNOx吸蔵還元触媒にNOxの吸蔵を行
わせている間に、他方のNOx吸蔵還元触媒の再生を行
うことができるので、常にNOx吸蔵還元触媒の何れか
を使用可能な状態として連続的にNOxの低減化を図る
ことができる。(III) According to the fifth aspect of the present invention, while one NOx storage reduction catalyst is storing NOx, the other NOx storage reduction catalyst is regenerated. Therefore, it is possible to continuously reduce NOx by keeping one of the NOx storage reduction catalysts in a usable state.
【0065】(IV)本発明の請求項6に記載の発明に
よれば、排気ガス中のNOxの一部を選択還元触媒によ
り先行して還元浄化させることができ、その下流側のN
Ox吸蔵還元触媒におけるNOx吸蔵の負担を大幅に軽減
することができるので、該NOx吸蔵還元触媒が吸蔵限
界に到達するまでの時間を長くして再生サイクルの長期
化を図ることができる。(IV) According to the invention of claim 6 of the present invention, a part of NOx in the exhaust gas can be reduced and purified in advance by the selective reduction catalyst, and N
Since the load of NOx storage on the Ox storage reduction catalyst can be greatly reduced, the time until the NOx storage reduction catalyst reaches the storage limit can be lengthened, and the regeneration cycle can be lengthened.
【図1】本発明の第一の形態例を示す概略図である。FIG. 1 is a schematic view showing a first embodiment of the present invention.
【図2】本発明の第二の形態例を示す概略図である。FIG. 2 is a schematic view showing a second embodiment of the present invention.
【図3】本発明の第三の形態例を示す概略図である。FIG. 3 is a schematic view showing a third embodiment of the present invention.
【図4】本発明の第四の形態例を示す概略図である。FIG. 4 is a schematic view showing a fourth embodiment of the present invention.
【図5】本発明の第五の形態例を示す概略図である。FIG. 5 is a schematic view showing a fifth embodiment of the present invention.
4 空気 4” 窒素リッチガス 7 排気ガス 9 排気管 10 還元剤 11 NOx吸蔵還元触媒 22 NOx吸蔵還元触媒 26 選択還元触媒 30 酸素吸収材 40 再生用ガス流路 44 酸素吸収材 45 酸素吸収材 Reference Signs List 4 air 4 "nitrogen rich gas 7 exhaust gas 9 exhaust pipe 10 reducing agent 11 NOx storage reduction catalyst 22 NOx storage reduction catalyst 26 selective reduction catalyst 30 oxygen absorbing material 40 regeneration gas flow path 44 oxygen absorbing material 45 oxygen absorbing material
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平林 浩 東京都日野市日野台3丁目1番地1 日野 自動車株式会社内 (72)発明者 下田 正敏 東京都日野市日野台3丁目1番地1 日野 自動車株式会社内 (72)発明者 細谷 満 東京都日野市日野台3丁目1番地1 日野 自動車株式会社内 Fターム(参考) 3G091 AA10 AA18 AA28 AB06 BA01 BA14 CA13 CA16 CA18 EA30 GB01W GB06W GB09W HA08 HA11 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Hirabayashi 3-1-1, Hinodai, Hino-shi, Tokyo Inside Hino Motor Co., Ltd. (72) Inventor Masatoshi Shimoda 3-1-1, Hinodai, Hino-shi, Tokyo Hino Motors Co., Ltd. (72) Inventor Mitsuru Hosoya 3-1-1, Hinodai, Hino-shi, Tokyo F-term in Hino Motors Co., Ltd. (reference) 3G091 AA10 AA18 AA28 AB06 BA01 BA14 CA13 CA16 CA18 EA30 GB01W GB06W GB09W HA08 HA11
Claims (6)
気ガス中の酸素濃度が高い時にNOxを酸化して硝酸塩
の状態で一時的に吸蔵し且つ排気ガス中の酸素濃度が低
い時に還元剤の介在によりNOxを分解放出して還元浄
化するNOx吸蔵還元触媒を装備し、該NOx吸蔵還元触
媒に対し還元剤を適宜に添加し且つ前記NOx吸蔵還元
触媒を適宜に迂回させて排気ガスを流すことにより前記
NOx吸蔵還元触媒を通過する排気ガスの流量を制限し
得るように構成したことを特徴とする排気浄化装置。1. An exhaust pipe through which exhaust gas flows, oxidizes NOx when the oxygen concentration in the exhaust gas is high, temporarily stores it in the form of nitrate, and reduces it when the oxygen concentration in the exhaust gas is low. A NOx storage reduction catalyst that decomposes and releases NOx through the intervening agent to reduce and purify the exhaust gas, appropriately adding a reducing agent to the NOx storage reduction catalyst and appropriately bypassing the NOx storage reduction catalyst to reduce exhaust gas. An exhaust gas purification apparatus characterized in that the flow rate of exhaust gas passing through the NOx storage reduction catalyst can be restricted by flowing the exhaust gas.
気ガス中の酸素濃度が高い時にNOxを酸化して硝酸塩
の状態で一時的に吸蔵し且つ排気ガス中の酸素濃度が低
い時に還元剤の介在によりNOxを分解放出して還元浄
化するNOx吸蔵還元触媒を装備すると共に、該NOx吸
蔵還元触媒より上流側の排気管に酸素吸収材を装備し、
前記NOx吸蔵還元触媒に対し還元剤を適宜に添加し且
つ前記酸素吸収材を適宜に迂回させて前記NOx吸蔵還
元触媒に排気ガスを導き得るように構成したことを特徴
とする排気浄化装置。2. In the middle of an exhaust pipe through which exhaust gas flows, NOx is oxidized when the oxygen concentration in the exhaust gas is high, temporarily stored in the form of nitrate, and reduced when the oxygen concentration in the exhaust gas is low. Equipped with a NOx storage reduction catalyst that decomposes and releases NOx through the intervening agent, and an oxygen absorbing material in the exhaust pipe upstream of the NOx storage reduction catalyst,
An exhaust gas purification apparatus characterized in that a reducing agent is appropriately added to the NOx storage reduction catalyst, and the oxygen absorbent is appropriately bypassed so that exhaust gas can be led to the NOx storage reduction catalyst.
気ガス中の酸素濃度が高い時にNOxを酸化して硝酸塩
の状態で一時的に吸蔵し且つ排気ガス中の酸素濃度が低
い時に還元剤の介在によりNOxを分解放出して還元浄
化するNOx吸蔵還元触媒を装備すると共に、該NOx吸
蔵還元触媒に対し大気から空気を別途導き得るように再
生用ガス流路を設けて該再生用ガス流路の途中に酸素吸
収材を装備し、前記NOx吸蔵還元触媒に対し還元剤を
適宜に添加し且つ前記酸素吸収材により空気から酸素分
を吸収して生成した窒素リッチガスを前記NOx吸蔵還
元触媒に対し適宜に導入し得るように構成したことを特
徴とする排気浄化装置。3. In the middle of an exhaust pipe through which exhaust gas flows, NOx is oxidized when the oxygen concentration in the exhaust gas is high, temporarily stored in the form of nitrate, and reduced when the oxygen concentration in the exhaust gas is low. A NOx storage-reduction catalyst that decomposes and releases NOx through the intervening agent, and provides a regeneration gas flow path so that air can be separately guided from the atmosphere to the NOx storage-reduction catalyst. An oxygen absorbing material is provided in the middle of the flow path, and a nitrogen-rich gas generated by appropriately adding a reducing agent to the NOx storing and reducing catalyst and absorbing oxygen from air by the oxygen absorbing material is used as the NOx storing and reducing catalyst. An exhaust gas purification apparatus characterized in that it can be appropriately introduced into the exhaust gas purification apparatus.
収材を交互に再生し得るように構成したことを特徴とす
る請求項2又は3に記載の排気浄化装置。4. The exhaust gas purification apparatus according to claim 2, wherein the oxygen absorbents are provided in pairs in parallel, and the two oxygen absorbents can be regenerated alternately.
両NOx吸蔵還元触媒を交互に再生し得るように構成し
たことを特徴とする請求項1、2、3又は4に記載の排
気浄化装置。5. A NOx storage reduction catalyst is provided in a pair in parallel,
5. The exhaust gas purification apparatus according to claim 1, wherein the two NOx storage reduction catalysts can be regenerated alternately.
に、還元剤をNOxと選択的に反応させる選択還元触媒
を装備し、該選択還元触媒に対し還元剤を適宜に添加し
得るように構成したことを特徴とする請求項1、2、
3、4又は5に記載の排気浄化装置。6. An exhaust pipe upstream of a NOx storage reduction catalyst is provided with a selective reduction catalyst for selectively reacting a reducing agent with NOx so that the reducing agent can be appropriately added to the selective reduction catalyst. 3. The device according to claim 1, wherein
The exhaust purification device according to 3, 4, or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32833999A JP3919407B2 (en) | 1999-11-18 | 1999-11-18 | Exhaust purification device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32833999A JP3919407B2 (en) | 1999-11-18 | 1999-11-18 | Exhaust purification device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001140635A true JP2001140635A (en) | 2001-05-22 |
JP3919407B2 JP3919407B2 (en) | 2007-05-23 |
Family
ID=18209141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32833999A Expired - Fee Related JP3919407B2 (en) | 1999-11-18 | 1999-11-18 | Exhaust purification device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3919407B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006095918A1 (en) * | 2005-03-09 | 2006-09-14 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification system for internal combustion engine |
JP2006527647A (en) * | 2003-06-16 | 2006-12-07 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Catalyst system for producing carbon monoxide for use with automotive NOx adsorbent catalysts |
JP2008025524A (en) * | 2006-07-25 | 2008-02-07 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
KR100951440B1 (en) * | 2009-09-18 | 2010-04-07 | 광성(주) | Scr system of ship with bypass system |
JP2010281284A (en) * | 2009-06-05 | 2010-12-16 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
US7963102B2 (en) | 2005-03-09 | 2011-06-21 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system for internal combustion engine |
US8800271B2 (en) | 2009-09-18 | 2014-08-12 | Kwang Sung Co., Ltd. | Selective catalyst reduction system with bypass system |
JPWO2019216090A1 (en) * | 2018-05-11 | 2021-01-07 | 株式会社村田製作所 | Honeycomb structure catalyst for organic matter decomposition and organic matter decomposition equipment |
-
1999
- 1999-11-18 JP JP32833999A patent/JP3919407B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006527647A (en) * | 2003-06-16 | 2006-12-07 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Catalyst system for producing carbon monoxide for use with automotive NOx adsorbent catalysts |
JP4768608B2 (en) * | 2003-06-16 | 2011-09-07 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Catalyst system for producing carbon monoxide for use with automotive NOx adsorbent catalysts |
US7963102B2 (en) | 2005-03-09 | 2011-06-21 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system for internal combustion engine |
WO2006095918A1 (en) * | 2005-03-09 | 2006-09-14 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification system for internal combustion engine |
JP2008025524A (en) * | 2006-07-25 | 2008-02-07 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
JP2010281284A (en) * | 2009-06-05 | 2010-12-16 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
KR100951440B1 (en) * | 2009-09-18 | 2010-04-07 | 광성(주) | Scr system of ship with bypass system |
WO2011034240A1 (en) * | 2009-09-18 | 2011-03-24 | 광성(주) | Scr system having bypass system |
EP2320044A4 (en) * | 2009-09-18 | 2011-09-28 | Kwang Sung Co Ltd | Scr system having bypass system |
US8800271B2 (en) | 2009-09-18 | 2014-08-12 | Kwang Sung Co., Ltd. | Selective catalyst reduction system with bypass system |
JPWO2019216090A1 (en) * | 2018-05-11 | 2021-01-07 | 株式会社村田製作所 | Honeycomb structure catalyst for organic matter decomposition and organic matter decomposition equipment |
JPWO2019216240A1 (en) * | 2018-05-11 | 2021-01-07 | 株式会社村田製作所 | Organic matter decomposition catalyst and organic matter decomposition equipment |
JP7021699B2 (en) | 2018-05-11 | 2022-02-17 | 株式会社村田製作所 | Honeycomb structure catalyst for organic matter decomposition and organic matter decomposition equipment |
JP7021700B2 (en) | 2018-05-11 | 2022-02-17 | 株式会社村田製作所 | Organic matter decomposition catalyst and organic matter decomposition equipment |
Also Published As
Publication number | Publication date |
---|---|
JP3919407B2 (en) | 2007-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3237611B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4710866B2 (en) | Exhaust gas purification device for internal combustion engine | |
KR101921885B1 (en) | METHOD FOR REGENERATING NOx STORAGE CATALYTIC CONVERTERS OF DIESEL ENGINES WITH LOW-PRESSURE EGR | |
JP3252793B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3617450B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3945335B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2007291980A (en) | Exhaust purification device | |
JP2005214159A (en) | Exhaust emission control device | |
CN107100702B (en) | Method and device for aftertreatment of exhaust gases of internal combustion engines | |
WO2003069137A1 (en) | Exhaust gas decontamination system and method of exhaust gas decontamination | |
JP2007505248A (en) | Piston type internal combustion engine | |
JP3545691B2 (en) | Operating method of exhaust gas purification device | |
JP3919407B2 (en) | Exhaust purification device | |
JP3462445B2 (en) | Exhaust gas purification device | |
JP2845080B2 (en) | Exhaust gas purification device for internal combustion engine | |
US10508578B2 (en) | Engine system | |
JP3576504B2 (en) | Exhaust gas purification device | |
JP4259275B2 (en) | Method for poisoning regeneration of reforming catalyst and poisoning regeneration device | |
JP4001019B2 (en) | Diesel engine exhaust purification device and exhaust purification method | |
JP4934082B2 (en) | Exhaust purification device | |
JP2002081311A (en) | Exhaust gas purification device for internal combustion engine | |
JP3374780B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3905998B2 (en) | Exhaust gas purification method for diesel engine | |
JP4396159B2 (en) | NOx purification system | |
JP2004019624A (en) | Exhaust gas purification device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061017 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140223 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |