JP2001130919A - Method for cooling glass molding - Google Patents
Method for cooling glass moldingInfo
- Publication number
- JP2001130919A JP2001130919A JP31321599A JP31321599A JP2001130919A JP 2001130919 A JP2001130919 A JP 2001130919A JP 31321599 A JP31321599 A JP 31321599A JP 31321599 A JP31321599 A JP 31321599A JP 2001130919 A JP2001130919 A JP 2001130919A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- pressure
- glass
- cooling air
- molded product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 102
- 239000011521 glass Substances 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000000465 moulding Methods 0.000 title abstract description 29
- 238000007664 blowing Methods 0.000 claims abstract description 8
- 238000003825 pressing Methods 0.000 description 5
- 230000001788 irregular Effects 0.000 description 4
- 239000006060 molten glass Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005401 pressed glass Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/12—Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
- C03B11/125—Cooling
- C03B11/127—Cooling of hollow or semi-hollow articles or their moulds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プレス成形された
ガラス成形品の冷却方法に係わり、特にプレス成形直後
の陰極線管用ガラスパネルを効率的に冷却することので
きる冷却方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a press-formed glass molded product, and more particularly to a method for efficiently cooling a glass panel for a cathode ray tube immediately after press-forming.
【0002】[0002]
【従来の技術】高温の溶融ガラス塊をプレス成形してガ
ラス成形品を製造する場合、プレス後の高温のガラス成
形品をできるだけ短時間で冷却してプレス成形装置より
取り出せるようにするため、成形型内にあるガラス成形
品に対して上方より冷却空気を吹き付けることによりガ
ラス成形品の冷却がなされる。2. Description of the Related Art When manufacturing a glass molded product by press-molding a high-temperature molten glass lump, the hot-pressed glass molded product after being pressed is cooled in as short a time as possible and can be taken out from a press-forming apparatus. The glass molded article is cooled by blowing cooling air from above onto the glass molded article in the mold.
【0003】陰極線管用ガラスパネルなどのほぼ矩形で
箱型形状のガラス成形品は、まずプレス成形装置の間歇
回転するテーブル上に所定の間隔で配設されている成形
型に高温の溶融ガラス塊を供給し、次いで押型を下降さ
せて溶融ガラス塊を押延し、その後に押型を上昇させて
成形する。An almost rectangular box-shaped glass molded product such as a glass panel for a cathode ray tube is formed by first molding a high-temperature molten glass lump into a molding die provided at a predetermined interval on a table that rotates intermittently in a press molding device. The molten glass lump is pushed by lowering the pressing die to supply the molten glass ingot, and then the pressing die is raised to form.
【0004】プレス成形後、成形型内にある高温のガラ
ス成形品はテーブルの間歇回転により、順次、複数の冷
却位置に送られて冷却される。前記冷却位置において
は、図3に示すように、プレス成形装置の冷却送風管2
0が成形型11内に下降し、冷却送風管20に設けられ
たダンパー21が開いて、送風機22などにより供給さ
れた冷却空気23が上方より所定圧で吹き付けられるこ
とにより、成形型内にあるガラス成形品1が冷却され
る。所定の冷却時間後にダンパー21が閉じて、冷却送
風管20が成形型11外に上昇し、テーブルが間歇回転
することにより成形型内のガラス成形品は次の位置に送
られる。After press molding, the high-temperature glass molded product in the molding die is sequentially sent to a plurality of cooling positions and cooled by intermittent rotation of the table. In the cooling position, as shown in FIG.
0 falls into the molding die 11, the damper 21 provided in the cooling air blower tube 20 is opened, and the cooling air 23 supplied by the blower 22 or the like is blown at a predetermined pressure from above, so that the cooling air 23 is present in the molding die. The glass molded article 1 is cooled. After a predetermined cooling time, the damper 21 is closed, the cooling air blower tube 20 rises outside the molding die 11, and the glass molding in the molding die is sent to the next position by the intermittent rotation of the table.
【0005】[0005]
【発明が解決しようとする課題】ガラス成形品を上記し
た冷却方法で冷却する場合、生産量を上げるために、プ
レス成形装置のテーブルを間歇回転させる時間間隔であ
るサイクル時間を短縮しようとすると、単位時間当たり
の冷却空気量を増加させる必要がある。即ち、通常は冷
却空気の圧力を上げて冷却空気量を増加させることにな
るが、従来、前記したダンパーは空圧機器などにより実
質的に瞬時に開閉されるため、冷却サイクルの開始段階
から高い圧力の冷却空気がガラス成形品に吹き付けら
れ、まだ内部まで固化していないガラス成形品にこの高
い圧力がかかるので内表面に凹凸状の変形を生じる。When the glass molded article is cooled by the cooling method described above, in order to increase the production amount, it is necessary to shorten the cycle time, which is the time interval for intermittently rotating the table of the press forming apparatus. It is necessary to increase the amount of cooling air per unit time. That is, normally, the pressure of the cooling air is increased to increase the amount of the cooling air, but conventionally, since the above-described damper is opened and closed substantially instantaneously by a pneumatic device or the like, the damper is high from the start stage of the cooling cycle. Cooling air at a pressure is blown onto the glass molded product, and the high pressure is applied to the glass molded product that has not yet been solidified to the inside, so that the inner surface is deformed unevenly.
【0006】特に、ガラス成形品が陰極線管用ガラスパ
ネルの場合には、図4に示すように、その形状がほぼ矩
形の箱型形状であるため、上方から吹き付けられる高圧
の冷却空気は、ガラスパネル1の画像表示面となるフェ
ース部の四隅部方向に集中して流れる傾向にあり、前記
凹凸状の変形はフェース部の四隅部において凸状変形と
して顕著に現れる。また、フェース部の外表面がほぼ平
面に近い平坦な陰極線管用ガラスパネルの場合には、真
空容器として使用される陰極線管の強度を維持するため
に、フェース部の周辺部においては特に肉厚が厚く成形
されることから、先記した冷却空気量をさらに増加させ
る必要があるが、上記のように高圧の冷却空気を吹き付
けることにより凹凸状の変形が一層顕著に現れることと
なる。In particular, when the glass molded product is a glass panel for a cathode ray tube, as shown in FIG. 4, since the shape is a substantially rectangular box shape, the high-pressure cooling air blown from above cannot be applied to the glass panel. There is a tendency to flow in a concentrated manner in the direction of the four corners of the face portion serving as the image display surface of No. 1, and the irregular deformation is remarkably exhibited as a convex deformation at the four corners of the face portion. In addition, in the case of a flat CRT glass panel whose outer surface is almost flat, the thickness of the face part is particularly large in the peripheral part of the face part in order to maintain the strength of the cathode ray tube used as a vacuum vessel. Since it is formed thick, it is necessary to further increase the amount of the cooling air described above. However, by blowing the high-pressure cooling air as described above, the irregular deformation becomes more conspicuous.
【0007】陰極線管用ガラスパネルは、陰極線管の画
像表示部となることから、成形精度、成形面品位には特
に厳しい品質が求められるため、上記した凹凸状の変形
は陰極線管用ガラスパネルとしての品質を著しく低下さ
せることになり、実際に凹凸の最大変形量Dが0.2m
m以上になると陰極線管用ガラスパネルとして実用に供
さなくなる。なお、図4には陰極線管用ガラスパネルの
画像表示部の内表面における上述した凹凸状の変形を誇
張して示しているが、最大変形量Dは対角軸の周辺部に
おける設計目標からの最大寸法差である。Since the glass panel for a cathode ray tube is used as an image display portion of the cathode ray tube, particularly strict quality is required for molding accuracy and molding surface quality. Is significantly reduced, and the maximum deformation amount D of the unevenness is actually 0.2 m.
If it is more than m, it will not be practically used as a glass panel for a cathode ray tube. In FIG. 4, the above-mentioned uneven deformation on the inner surface of the image display unit of the glass panel for a cathode ray tube is exaggerated, but the maximum deformation amount D is the maximum from the design target in the periphery of the diagonal axis. It is a dimensional difference.
【0008】そこで、本発明の目的は、ガラス成形品を
プレス成形した後、冷却空気をガラス成形品に上方より
吹きつけて冷却する際に、ガラス成形品に生じる変形を
改善して、ガラス成形品の製造工程中の不良を抑制し、
ガラス成形品の生産性向上を図ることのできる冷却方法
を提供することである。Accordingly, an object of the present invention is to improve the deformation of a glass molded product when the glass molded product is press-molded and then cooled by blowing cooling air onto the glass molded product from above. Reduce defects during product manufacturing process,
An object of the present invention is to provide a cooling method capable of improving the productivity of a glass molded product.
【0009】[0009]
【課題を解決するための手段】本発明は、前述の課題を
解決すべくなされたものであり、成形型内にあるプレス
成形されたガラス成形品を上方より冷却空気を吹き付け
て冷却する際、冷却サイクルの開始段階において冷却空
気の圧力を実質的に零圧力から所定の圧力まで漸増さ
せ、ガラス成形品に変形を生ぜずに冷却することを特徴
とするガラス成形品の冷却方法である。DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is intended for cooling a press-formed glass molded product in a mold by blowing cooling air from above. A method for cooling a glass molded article, characterized by gradually increasing a pressure of cooling air from substantially zero pressure to a predetermined pressure at a start stage of a cooling cycle without causing deformation of the glass molded article.
【0010】また、ガラス成形品が陰極線管用ガラスパ
ネルの場合、その形状に起因して前述したように画像が
表示されるフェース部の特に四隅部において内表面に変
形を生じやすく、成形精度が非常に厳しいので、本発明
を適用すれば変形が抑制され、特に好適である。Further, when the glass molded product is a glass panel for a cathode ray tube, the inner surface is easily deformed due to its shape, especially at the four corners of the face portion on which an image is displayed, as described above, and the molding accuracy is extremely high. Therefore, when the present invention is applied, deformation is suppressed, which is particularly preferable.
【0011】さらに本発明では、陰極線管用ガラスパネ
ルに適用する場合、冷却空気の圧力を実質的に零圧力か
ら所定の圧力まで漸増させる圧力増加速度は毎秒100
〜300Paであり、また冷却サイクル時間が10秒以
上で、かつ前記の圧力増加速度での圧力増加時間が冷却
サイクル時間の11%以上であることが好ましい。圧力
増加速度が毎秒100Paより低いと冷却サイクルの時
間内でガラスパネルを十分に冷却することができず、毎
秒300Paより高いとガラスパネルの前記変形を抑制
できない。Further, in the present invention, when applied to a glass panel for a cathode ray tube, the pressure increasing rate at which the pressure of the cooling air is gradually increased from substantially zero pressure to a predetermined pressure is 100 per second.
It is preferable that the cooling cycle time is 10 seconds or more, and the pressure increasing time at the above-mentioned pressure increasing rate is 11% or more of the cooling cycle time. If the pressure increasing rate is lower than 100 Pa / sec, the glass panel cannot be sufficiently cooled within the time of the cooling cycle, and if it is higher than 300 Pa / sec, the deformation of the glass panel cannot be suppressed.
【0012】なお、高温のガラス塊が成形型内で押型に
よりガラスパネルにプレス成形される際には、押型が上
昇してガラスパネルから離れた後でガラスパネルの側壁
部が倒れ込んで全体の形状が崩れることがないようにガ
ラスパネルの表面がある程度固化するまで押型により冷
却されるので、押型がガラスパネルから離れた時のガラ
スパネルの表面温度状態はガラスパネルの大きさによら
ずほぼ一定である。従って、その後の冷却サイクルでの
圧力増加速度が与えるガラスパネル内表面の凹凸状の変
形への影響もガラスパネルの大きさによらずほぼ同一で
ある。When a high-temperature glass block is pressed into a glass panel by a pressing tool in a forming tool, the side wall of the glass panel falls down after the pressing tool rises and separates from the glass panel. Since the glass panel is cooled by the press until the surface of the glass panel solidifies to some extent so that it does not collapse, the surface temperature state of the glass panel when the press is separated from the glass panel is almost constant regardless of the size of the glass panel is there. Therefore, the influence of the pressure increase rate in the subsequent cooling cycle on the irregular deformation of the inner surface of the glass panel is almost the same regardless of the size of the glass panel.
【0013】また、通常、陰極線管用ガラスパネルの冷
却に適した所定の圧力は1〜2kPaであるので、冷却
空気の圧力を実質的に零圧力からその圧力まで漸増させ
る圧力増加時間は、毎秒300Paの圧力増加速度で漸
増させる場合でも、少なくとも約3.3秒必要である。
一方、冷却サイクル時間は陰極線管用ガラスパネルの大
きさにより異なるが、上述した凹凸状の変形が問題とな
るような大きさのガラスパネルでは、冷却に少なくとも
必要な時間や生産性の制約などから、通常約10〜25
秒であるので、前記の圧力増加速度での圧力増加時間は
冷却サイクル時間に対して約11%以上の時間がないと
上述した所定の圧力まで冷却空気圧力を上げることがで
きない。所定の圧力まで増加させた後は、一定の圧力で
保持してもよく、送風能力の範囲内で圧力を上げて冷却
を強化してもよい。Usually, the predetermined pressure suitable for cooling the glass panel for a cathode ray tube is 1 to 2 kPa. Therefore, the pressure increasing time for gradually increasing the pressure of the cooling air from substantially zero pressure to that pressure is 300 Pa / sec. Even if the pressure is gradually increased at the pressure increasing speed, at least about 3.3 seconds is required.
On the other hand, the cooling cycle time varies depending on the size of the glass panel for a cathode ray tube.However, in a glass panel having such a size that the above-mentioned uneven deformation becomes a problem, at least the time required for cooling and the restrictions on productivity, etc. Usually about 10-25
Since the pressure is increased in seconds, the cooling air pressure cannot be increased to the above-mentioned predetermined pressure unless the pressure increasing time at the pressure increasing speed is about 11% or more of the cooling cycle time. After the pressure is increased to the predetermined pressure, the pressure may be maintained at a constant value, or the pressure may be increased within the range of the blowing capacity to enhance the cooling.
【0014】プレス成形装置には前記のとおり複数の冷
却位置があり、プレス直後の冷却位置に本発明の冷却方
法を用いるのが最も効果的であるが、プレス成形装置の
他の冷却位置に関しては必要に応じて実施すればよい。As described above, the press forming apparatus has a plurality of cooling positions, and it is most effective to use the cooling method of the present invention at the cooling position immediately after pressing. It may be performed as needed.
【0015】[0015]
【作用】本発明は、ガラス成形品をプレス成形した後、
成形型内にあるガラス成形品に冷却空気を上方より吹き
付けて冷却する際、冷却サイクルの開始段階にあってガ
ラス成形品の内部が十分に固化していない状態では低い
圧力の冷却空気で冷却を行うので変形を生じない。また
内部が固化するに伴って高い圧力の冷却空気で冷却を行
うのでガラス成形品の冷却を所定の時間内で効率的に行
える。According to the present invention, after a glass molded product is press-molded,
When cooling the glass molded product in the mold by blowing cooling air from above, if the inside of the glass molded product is not sufficiently solidified at the beginning of the cooling cycle, cool with low pressure cooling air. No deformation occurs. Further, as the inside is solidified, cooling is performed with high-pressure cooling air, so that the glass molded product can be efficiently cooled within a predetermined time.
【0016】[0016]
【実施例】以下、実施例に基づいて本発明にかかる冷却
方法について説明する。先記した説明と重複する箇所、
部材については同一図面を用い、説明を省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The cooling method according to the present invention will be described below based on embodiments. Where it overlaps with the previous description,
For the members, the same drawings are used, and the description is omitted.
【0017】本実施例では図3に示すように、プレス成
形直後の冷却位置において、プレス成形装置の冷却送風
管20に設けられたダンパー21の駆動部24をダンパ
ー21の開度が自由に制御できるようにサーボモーター
で構成してある。本実施例では、80cm(34インチ
相当)陰極線管用ガラスパネルにプレス成形直後の冷却
位置で上記の冷却装置構成により冷却空気を吹き付け
た。In this embodiment, as shown in FIG. 3, at the cooling position immediately after press molding, the opening of the damper 21 can be freely controlled by the drive unit 24 of the damper 21 provided in the cooling air duct 20 of the press molding apparatus. It is composed of a servo motor so that it can be used. In the present example, cooling air was blown onto the glass panel for an 80 cm (corresponding to 34 inches) cathode ray tube at the cooling position immediately after press molding by the above-described cooling device configuration.
【0018】図1は、本実施例の冷却方法における冷却
サイクル時間に対する冷却空気圧力の関係を示すグラフ
であり、プレス成形直後の成形型内の上記ガラスパネル
に対して、冷却空気を10秒間で実質的に零圧力から所
定の圧力である1.5kPaまで漸増させて冷却した。
この時の冷却サイクル時間は25秒であり、圧力増加速
度は毎秒150Pa、圧力増加時間は冷却サイクル時間
の40%である。FIG. 1 is a graph showing the relationship between the cooling air pressure and the cooling cycle time in the cooling method of the present embodiment. The cooling air is applied to the glass panel in the mold immediately after press molding for 10 seconds. The cooling was performed by gradually increasing the pressure from substantially zero to a predetermined pressure of 1.5 kPa.
At this time, the cooling cycle time is 25 seconds, the pressure increasing rate is 150 Pa / sec, and the pressure increasing time is 40% of the cooling cycle time.
【0019】一方、図2は同一サイズの陰極線管用ガラ
スパネルを冷却する際の従来の冷却方法における冷却サ
イクル時間に対する冷却空気圧力の関係を示すグラフで
あり、前記冷却装置のダンパーの駆動部がエアーシリン
ダーなどの空圧機器で瞬時に開かれる構成になってお
り、かかる冷却装置構成により、プレス成形直後の成形
型内の上記ガラスパネルに対して、冷却空気を1秒以内
で実質的に零圧力から所定の圧力である1.5kPaま
で急増させて冷却した。この時の冷却サイクル時間は2
5秒であり、圧力増加速度は毎秒1.5kPa以上、圧
力増加時間は冷却サイクル時間の4%以下である。FIG. 2 is a graph showing the relationship between the cooling air pressure and the cooling cycle time in the conventional cooling method for cooling a glass panel for a cathode ray tube having the same size. It is configured to be opened instantaneously by pneumatic equipment such as a cylinder. With this cooling device configuration, the cooling air is applied to the glass panel in the molding die immediately after press molding at substantially zero pressure within one second. And then cooled to a predetermined pressure of 1.5 kPa. The cooling cycle time at this time is 2
5 seconds, the pressure increase rate is 1.5 kPa or more per second, and the pressure increase time is 4% or less of the cooling cycle time.
【0020】このようにして冷却された陰極線管用ガラ
スパネルのフェース部の内表面において、凹凸状の変形
度合いを調べたところ、本発明の冷却方法により冷却さ
れた陰極線管用ガラスパネルの凹凸の最大変形量Dは
0.1mm以下であり、陰極線管用ガラスパネルとして
は、十分に良品として実用に供するものであった。一
方、従来例の冷却方法により冷却された陰極線管用ガラ
スパネルの凹凸の最大変形量Dは約0.5mmであり、
陰極線管用ガラスパネルに要求される成形精度を全く満
たさなかった。When the degree of irregularity deformation was examined on the inner surface of the face portion of the glass panel for a cathode ray tube cooled in this way, the maximum deformation of the irregularities of the glass panel for a cathode ray tube cooled by the cooling method of the present invention was examined. The amount D was 0.1 mm or less, and was practically used as a sufficiently good product as a glass panel for a cathode ray tube. On the other hand, the maximum deformation D of the irregularities of the glass panel for a cathode ray tube cooled by the conventional cooling method is about 0.5 mm,
The molding accuracy required for the glass panel for a cathode ray tube was not satisfied at all.
【0021】また、本実施例と同じサイズの陰極線管用
ガラスパネルを用いて、前記の1.5kPaまでの圧力
増加速度を毎秒500Pa、375Pa、300Pa、
200Pa、100Pa、75Paと変化させて陰極線
管用ガラスパネルに生じる凹凸の最大変形量Dを調べ
た。この場合、圧力増加時間は冷却サイクル時間25秒
に対してそれぞれ、12%、16%、20%、30%、
60%、80%であり、最大変形量Dはそれぞれ、約
0.5mm、約0.4mm、約0.1mm、約0.1m
m、約0.1mm、約0.1mmとなり、毎秒500P
aと400Paの圧力増加速度では変形量を実質的に抑
えることができなかった。一方、毎秒75Paの圧力増
加速度では上述した変形は抑制できたが、所定の冷却サ
イクル時間内にガラスパネルの温度を十分に下げること
ができず冷却不足となった。以上のことから、毎秒10
0〜300Paの圧力増加速度が適切であることがわか
る。また、毎秒100〜300Paの圧力増加速度で所
定の冷却空気圧力まで増加させるには冷却サイクル時間
に対して20%以上の圧力増加時間を要することがわか
る。Further, using a glass panel for a cathode ray tube having the same size as that of this embodiment, the pressure increasing rate up to 1.5 kPa is set to 500 Pa, 375 Pa, 300 Pa,
The maximum deformation amount D of irregularities generated on the glass panel for a cathode ray tube was examined by changing to 200 Pa, 100 Pa, and 75 Pa. In this case, the pressure increase time is 12%, 16%, 20%, 30%, and 25% for the cooling cycle time of 25 seconds, respectively.
60% and 80%, and the maximum deformation amounts D are about 0.5 mm, about 0.4 mm, about 0.1 mm, and about 0.1 m, respectively.
m, about 0.1mm, about 0.1mm, 500P per second
At a and a pressure increasing rate of 400 Pa, the deformation amount could not be substantially suppressed. On the other hand, at the pressure increasing rate of 75 Pa per second, the above-mentioned deformation could be suppressed, but the temperature of the glass panel could not be sufficiently lowered within a predetermined cooling cycle time, resulting in insufficient cooling. From the above, 10 per second
It turns out that a pressure increase rate of 0 to 300 Pa is appropriate. Further, it can be seen that increasing the pressure to a predetermined cooling air pressure at a pressure increasing rate of 100 to 300 Pa per second requires a pressure increasing time of 20% or more with respect to the cooling cycle time.
【0022】上記実施例では80cm陰極線管用ガラス
パネルの例を述べたが、先記したように、圧力増加速度
が与えるガラスパネル内表面の凹凸状の変形への影響は
他の大きさのガラスパネルでもほぼ同一であった。In the above embodiment, an example of a glass panel for an 80 cm cathode ray tube was described. However, as described above, the influence of the pressure increasing rate on the irregular deformation of the inner surface of the glass panel is different from that of a glass panel of another size. But they were almost identical.
【0023】本発明は、上記実施例に示した陰極線管用
ガラスパネル以外にも、ガラス成形品の形状や肉厚分布
により前記従来の冷却方法ではガラス成形品の内表面に
冷却空気の圧力で凹凸状の変形の問題が生じるようなも
のであれば利用できる。According to the present invention, in addition to the glass panel for a cathode ray tube described in the above embodiment, the shape and thickness distribution of the glass molded product may cause irregularities on the inner surface of the glass molded product by the pressure of cooling air. Anything that causes a problem of shape deformation can be used.
【0024】また、本発明の実施例では冷却送風管の吹
出部の形状が板状の例を示したが、単なる円形状のもの
或いは箱状、台形状とした吹出部構造のものにも利用で
きる。In the embodiment of the present invention, the example of the shape of the blow-out portion of the cooling blower tube is shown as a plate, but the present invention can be applied to a simple circular shape, a box-shaped or trapezoidal blow-out portion structure. it can.
【0025】[0025]
【発明の効果】以上説明したように、本発明のガラス成
形品の冷却方法によれば、ガラス成形品をプレス成形し
た後、冷却空気をガラス成形品に上方より吹き付けて冷
却する際にガラス成形品に生じる内表面の凹凸状の変形
を改善して、ガラス成形品の生産性向上を図れる優れた
効果を有する。As described above, according to the method for cooling a glass molded article of the present invention, after the glass molded article is press-molded, cooling air is blown from above onto the glass molded article to cool the glass molded article. It has an excellent effect of improving unevenness of the inner surface of a product to improve productivity of a glass molded product.
【図1】本発明の実施例の冷却サイクル時間に対する冷
却空気圧力を示すグラフである。FIG. 1 is a graph showing a cooling air pressure with respect to a cooling cycle time according to an embodiment of the present invention.
【図2】従来の比較例の冷却サイクル時間に対する冷却
空気圧力を示すグラフである。FIG. 2 is a graph showing a cooling air pressure with respect to a cooling cycle time of a conventional comparative example.
【図3】陰極線管用ガラスパネルの冷却状態を示す説明
図である。FIG. 3 is an explanatory view showing a cooling state of a glass panel for a cathode ray tube.
【図4】陰極線管用ガラスパネルの凹凸状の最大変形量
を示す説明図である。FIG. 4 is an explanatory view showing a maximum deformation amount of a concave and convex shape of a glass panel for a cathode ray tube.
1 ガラス成形品(陰極線管用ガラスパネル) 11 成形型 20 冷却送風管 21 ダンパー 22 送風機 23 冷却空気 24 駆動部 D 最大変形量 DESCRIPTION OF SYMBOLS 1 Glass molded product (glass panel for cathode ray tubes) 11 Mold 20 Cooling blower tube 21 Damper 22 Blower 23 Cooling air 24 Drive part D Maximum deformation
Claims (3)
成形品を上方より冷却空気を吹き付けて冷却する際、冷
却サイクルの開始段階において冷却空気の圧力を実質的
に零圧力から所定の圧力まで漸増させ、ガラス成形品に
変形を生ぜずに冷却することを特徴とするガラス成形品
の冷却方法。When cooling a press-formed glass molded product in a mold by blowing cooling air from above, the pressure of the cooling air is reduced from substantially zero pressure to a predetermined pressure at a start stage of a cooling cycle. A method for cooling a glass molded product, wherein the temperature is gradually increased and the glass molded product is cooled without causing deformation.
ネルであることを特徴とする請求項1に記載のガラス成
形品の冷却方法。2. The method for cooling a glass molded product according to claim 1, wherein the glass molded product is a glass panel for a cathode ray tube.
ら所定の圧力まで漸増させる圧力増加速度が毎秒100
〜300Paであり、また冷却サイクル時間が10秒以
上で、かつ前記の圧力増加速度での圧力増加時間が冷却
サイクル時間の11%以上であることを特徴とする請求
項2に記載のガラス成形品の冷却方法。3. A pressure increasing rate for gradually increasing the pressure of the cooling air from substantially zero pressure to a predetermined pressure is 100 / sec.
The molded glass article according to claim 2, wherein the cooling cycle time is 10 seconds or more, and the pressure increasing time at the pressure increasing rate is 11% or more of the cooling cycle time. Cooling method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31321599A JP2001130919A (en) | 1999-11-04 | 1999-11-04 | Method for cooling glass molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31321599A JP2001130919A (en) | 1999-11-04 | 1999-11-04 | Method for cooling glass molding |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001130919A true JP2001130919A (en) | 2001-05-15 |
Family
ID=18038506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31321599A Pending JP2001130919A (en) | 1999-11-04 | 1999-11-04 | Method for cooling glass molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001130919A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9938178B2 (en) | 2013-08-15 | 2018-04-10 | Corning Incorporated | Methods of manufacturing glass articles using anisothermal temperature profiles |
-
1999
- 1999-11-04 JP JP31321599A patent/JP2001130919A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9938178B2 (en) | 2013-08-15 | 2018-04-10 | Corning Incorporated | Methods of manufacturing glass articles using anisothermal temperature profiles |
US10611661B2 (en) | 2013-08-15 | 2020-04-07 | Corning Incorporated | Methods of manufacturing glass articles using anisothermal temperature profiles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010016308A1 (en) | Glass container one‑press manufacturing method | |
JP2001130919A (en) | Method for cooling glass molding | |
JP3809630B2 (en) | Bottle making method and bottle making apparatus | |
JP5107422B2 (en) | One press manufacturing method for glass containers | |
JP3640032B2 (en) | Manufacturing method of carrier tape | |
JP4558603B2 (en) | Glass container manufacturing apparatus and glass container manufacturing method | |
JPH0328137A (en) | Method for forming glass vessel having flat face | |
CN111633202A (en) | Conveying device for thermal forming die | |
JPH1045417A (en) | Method for cooling hollow glass formed body | |
JPH09301721A (en) | Method for cooling glass formed body and device therefor | |
CN214936993U (en) | Large-size curved glass forming device | |
JP2002068759A (en) | Method of and apparatus for cooling glass panel for cathode-ray tube | |
JP2000302464A (en) | Molding of glass panel for cathode-ray tube | |
JPH04265729A (en) | Thermoforming method of polycarbonate resin sheet | |
JPH0649581B2 (en) | Method for forming glass product having smooth surface | |
JP2002361725A (en) | Method for producing plastic foam sheet | |
JP2001270722A (en) | Method for taking out hollow glass molded product | |
JP2001026431A (en) | Cooler for glass formed article | |
JPH07314538A (en) | Method for producing blow-molded product with excellent surface smoothness | |
JP2732861B2 (en) | Optical element molding apparatus and molding method | |
CN1244180A (en) | Manufacture of hollow TV product of glass | |
JPS6315899B2 (en) | ||
JPH07257934A (en) | Formed glass article cooler | |
JP2868117B2 (en) | Optical element molding method | |
CN2727169Y (en) | Bed die for producing glass screen of picture tube |