[go: up one dir, main page]

JP2001129989A - Drive circuit for liquid droplet atomizing device - Google Patents

Drive circuit for liquid droplet atomizing device

Info

Publication number
JP2001129989A
JP2001129989A JP2000229485A JP2000229485A JP2001129989A JP 2001129989 A JP2001129989 A JP 2001129989A JP 2000229485 A JP2000229485 A JP 2000229485A JP 2000229485 A JP2000229485 A JP 2000229485A JP 2001129989 A JP2001129989 A JP 2001129989A
Authority
JP
Japan
Prior art keywords
liquid
discharge
nozzle
charging
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000229485A
Other languages
Japanese (ja)
Other versions
JP3539365B2 (en
Inventor
Kosei Onishi
孝生 大西
Iwao Owada
大和田  巌
Juichi Hirota
寿一 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2000229485A priority Critical patent/JP3539365B2/en
Priority to EP00307095A priority patent/EP1078748A3/en
Publication of JP2001129989A publication Critical patent/JP2001129989A/en
Priority to US10/290,034 priority patent/US6702196B2/en
Application granted granted Critical
Publication of JP3539365B2 publication Critical patent/JP3539365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0452Control methods or devices therefor, e.g. driver circuits, control circuits reducing demand in current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04543Block driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14274Structure of print heads with piezoelectric elements of stacked structure type, deformed by compression/extension and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drive circuit for a liquid droplet atomizing device capable of smoothly supplying liquid to a pressurizing chamber, even when a large volume of the liquid is atomized. SOLUTION: A coil L1 is provided in series with a resistor R1 which decides the charge characteristics of a charging circuit 12 of a piezoelectric/ electrostriction element 1 and thereby the start characteristics of charging voltage during its rise shows a slow start. Further, a discharging circuit is provided in two stages and time required for electric discharge of a unit voltage in a second discharging circuit 13b is made shorter than time required for electric discharge of a unit voltage in a first discharging circuit 13a. In addition, coils L2, L3 are installed in series with resistors R2, R3 for deciding discharging characteristics of the circuits 13a, 13b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体を微少液滴と
して噴霧することにより、上記液体を処理する、又は作
動する各種機械に使用される液滴噴霧装置の駆動回路に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving circuit for a liquid droplet spraying device used in various machines for processing or operating the liquid by spraying the liquid as fine liquid droplets.

【0002】[0002]

【従来の技術】液滴噴霧装置は、通常図7の縦断面図に
示すように構成され、液体を噴霧させるための加圧手段
として圧電又は電歪素子1(圧電/電歪素子)が使用さ
れている。圧電/電歪素子1は、噴霧する液体を加圧さ
せるための加圧室2の壁面に設けられ、加圧室2の先端
部には液滴噴霧用ノズル3が設けられ、また基端部には
加圧室2に液体を供給する導入孔5が形成され、全体で
液滴噴霧ユニット6を構成している。そして、この液滴
供給ユニット6は複数個連続して形成され、隣接する複
数の液滴噴霧ユニット6,6・・の導入孔5は共通の液
体供給路7に連結されている。
2. Description of the Related Art A droplet spraying apparatus is usually constructed as shown in a vertical sectional view of FIG. 7, and uses a piezoelectric or electrostrictive element 1 (piezoelectric / electrostrictive element) as a pressurizing means for spraying a liquid. Have been. The piezoelectric / electrostrictive element 1 is provided on a wall surface of a pressurizing chamber 2 for pressurizing a liquid to be sprayed, a nozzle 3 for spraying a droplet is provided at a distal end of the pressurizing chamber 2, and a base end portion. Is formed with an introduction hole 5 for supplying a liquid to the pressurizing chamber 2, and constitutes a droplet spraying unit 6 as a whole. The plurality of droplet supply units 6 are formed continuously, and the introduction holes 5 of the plurality of adjacent droplet spray units 6, 6,... Are connected to a common liquid supply path 7.

【0003】そして、液滴噴霧装置を駆動する駆動回路
は、前記圧電/電歪素子1に所定の電圧信号を印加して
充電することにより、加圧室2の壁部を変形させ、もっ
て加圧室2に圧力を生じさせ、加圧室に供給される液体
を液滴噴霧用ノズル3から噴霧させる。また、放電させ
て変形を解除することで加圧室2の変形を元に戻し、そ
の際導入孔5から液体を加圧室に供給させている。とこ
ろで、液滴噴霧装置には、用途に応じて液体を大量に供
給する必要のあるものがあり、このような用途に対して
はノズル及び導入孔の口径を大きくすることで対応して
いた。
A driving circuit for driving the droplet spraying device applies a predetermined voltage signal to the piezoelectric / electrostrictive element 1 to charge the piezoelectric / electrostrictive element 1, thereby deforming the wall of the pressurizing chamber 2 and thereby applying a voltage. A pressure is generated in the pressure chamber 2, and the liquid supplied to the pressure chamber is sprayed from the droplet spray nozzle 3. Further, the deformation of the pressurized chamber 2 is returned to the original state by releasing the deformation by discharging, and at this time, the liquid is supplied to the pressurized chamber from the introduction hole 5. By the way, some droplet spraying apparatuses need to supply a large amount of liquid depending on the application, and such an application has been dealt with by increasing the diameter of the nozzle and the introduction hole.

【0004】[0004]

【発明が解決しようとする課題】しかし、液滴噴霧用ノ
ズル3の口径を大きくし過ぎると噴霧する液体が微少液
滴とならなくなってしまうし、導入孔5は加圧室2に液
体が供給される単なる経路ではなく、液滴噴霧用ノズル
3から微少液滴を噴霧するように加圧されても逆流を防
止する作用も有するため、無制限に口径を広げることは
できない。そこで、圧電/電歪素子1に所定の電圧信号
を印加する時間間隔を短くして単位時間あたりの印加回
数を増やし、液滴噴霧装置への供給回数を増やすことで
対応することが考えられるが、その場合印加電圧の時間
間隔を短くしてゆくと、導入孔5から加圧室2への液体
の供給遅れが発生し、液体をより大量に安定して供給す
ることができなくなる新たな問題が発生していた。ま
た、圧電/電歪素子はコンデンサとしての作用を奏し、
噴霧操作を繰り返す度に充放電を繰り返すため、動作周
期が短くなると更に消費電力が大きくなり発熱量も大き
なものとなっていた。
However, if the diameter of the droplet spraying nozzle 3 is too large, the liquid to be sprayed will not be fine droplets, and the supply hole 5 will supply the liquid to the pressurizing chamber 2. It is not a simple path, but also has a function of preventing backflow even if it is pressurized so as to spray fine droplets from the droplet spray nozzle 3, so that the diameter cannot be increased without limit. To cope with this, it is conceivable that the time interval for applying a predetermined voltage signal to the piezoelectric / electrostrictive element 1 is shortened to increase the number of times of application per unit time, thereby increasing the number of times of supply to the droplet spraying device. In this case, if the time interval of the applied voltage is shortened, the supply of the liquid from the introduction hole 5 to the pressurizing chamber 2 is delayed, and a new problem that the liquid cannot be stably supplied in a larger amount. Had occurred. Also, the piezoelectric / electrostrictive element acts as a capacitor,
Since charging and discharging are repeated each time the spraying operation is repeated, the power consumption is further increased and the heat generation is increased when the operation cycle is shortened.

【0005】上記消費電力増大の対策としては、特開平
10−107335号公報や、特許第2909150号
公報に記載された技術があり、単位時間あたりの電圧信
号の印加周期を短くする技術としては、特開平8−30
0646号公報に開示された技術がある。特開平10−
107335号公報では電力回収用に外付けコンデンサ
を設けると共に充放電回路にインダクタンスであるコイ
ルを介在させて、圧電/電歪素子の放電電荷の一部を効
果的に外付けコンデンサに蓄え、次の充電に利用するこ
とで電力の節約を図る構成が示され、特許第29091
50号公報では、異なるタイミングで駆動される圧電素
子相互を電力回収手段として利用し、別途外付けコンデ
ンサを設けず消費電力の削減を計る構成が示されてい
る。しかし、何れも消費電力の節約に対しては効果を有
するものの、液体を大量に而も安定して噴霧させる技術
に関しては記載がなく、導入孔から加圧室への液体の供
給遅れを解決してはいない。また、特開平8−3006
46号公報では、駆動電圧波形の立ち下がりを2段階/
3段階にし、メニスカスの安定性を向上させることでサ
テライトの発生を抑制させる構成が示され、3段階時の
放電時定数を小さくすることで、結果として印刷速度を
アップさせてインク吐出量を増大を可能としているが、
夫々の段階での放電開始特性が滑らかでは無いため、印
刷速度の大幅アップができず、吐出量を大きく増加させ
ることができない。
As a countermeasure against the above-mentioned increase in power consumption, there is a technique described in Japanese Patent Application Laid-Open No. 10-107335 and Japanese Patent No. 2909150. As a technique for shortening the voltage signal application cycle per unit time, JP-A-8-30
There is a technology disclosed in Japanese Patent No. 0646. JP-A-10-
In JP-A-107335, an external capacitor is provided for power recovery, and a coil, which is an inductance, is interposed in a charge / discharge circuit to effectively store a part of the discharge charge of the piezoelectric / electrostrictive element in the external capacitor. A configuration for saving power by using the battery for charging is disclosed in Japanese Patent No. 299091.
No. 50 discloses a configuration in which piezoelectric elements driven at different timings are used as power recovery means, and power consumption is reduced without providing an external capacitor separately. However, although all of them have an effect on saving power consumption, there is no description about a technique for spraying a large amount of liquid stably, and a delay in supply of liquid from the introduction hole to the pressurizing chamber is solved. Not. Also, JP-A-8-3006
No. 46 discloses that the falling of the drive voltage waveform is two steps /
A configuration is shown in which the generation of satellites is suppressed by improving the stability of the meniscus in three stages. By reducing the discharge time constant in the three stages, the printing speed is increased and the ink ejection amount is increased as a result. Is possible,
Since the discharge start characteristics at each stage are not smooth, the printing speed cannot be significantly increased, and the discharge amount cannot be increased significantly.

【0006】そこで、本発明は上記問題点に鑑み、液体
を大量に噴霧させる場合でも、加圧室への液体の供給を
スムーズに行うことができる液滴噴霧装置駆動回路を提
供することを課題とする。
In view of the above problems, it is an object of the present invention to provide a driving circuit for a liquid droplet spraying device capable of smoothly supplying a liquid to a pressurizing chamber even when a large amount of liquid is sprayed. And

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、請求項1の発明は、液滴噴霧用ノズルと、該ノズル
から噴霧させる液体を加圧するための加圧室と、該加圧
室に液体を供給する導入孔と、該加圧室を加圧動作させ
る圧電/電歪素子とを備えた微少液滴噴霧ユニットを複
数個備え、隣接する複数液滴噴霧ユニットの液体導入孔
が共通の液体供給路に連結された液滴噴霧装置におい
て、前記圧電/電歪素子に所定の電圧信号を印加するこ
とにより、前記加圧室の壁部を変形させ、もって加圧室
に生じる圧力により該加圧室に供給される液体を前記ノ
ズルから噴出する液滴噴霧装置駆動回路であって、導入
孔径とノズル孔径の比率(導入孔径/ノズル孔径)が
0.6以上1.6以下で且つノズル孔径とノズルの厚み
の比率(ノズル孔径/ノズル厚み)が0.2以上4以下
で、印加電圧信号が、電流を前記圧電/電歪素子に供給
して充電した後、一定時間充電最終電圧を保持し、その
後2種類以上の放電時定数を持った放電を順次行い、且
つ始めの第1放電時定数が、2番目の第2放電時定数よ
りも大きく、且つ充電開始電圧を基準として、前記充電
開始電圧と前記充電最終電圧の電圧差の35%から70
%の電圧で2番目の放電を開始し、少なくとも1つの放
電回路に前記圧電/電歪素子と直列にインダクタンスと
抵抗を介在させたことを特徴とする。
Means for Solving the Problems To solve the above problems, the invention of claim 1 comprises a nozzle for spraying a droplet, a pressurizing chamber for pressurizing a liquid sprayed from the nozzle, and a pressurizing chamber. And a plurality of fine droplet spraying units each having a piezoelectric / electrostrictive element for pressurizing the pressurizing chamber, and a plurality of adjacent droplet spraying units having a common liquid introducing hole. In the droplet spraying device connected to the liquid supply path, a predetermined voltage signal is applied to the piezoelectric / electrostrictive element, thereby deforming the wall of the pressurizing chamber, and A droplet spraying device driving circuit for ejecting a liquid supplied to the pressurizing chamber from the nozzle, wherein a ratio of an introduction hole diameter to a nozzle hole diameter (introduction hole diameter / nozzle hole diameter) is 0.6 or more and 1.6 or less, and Ratio of nozzle hole diameter to nozzle thickness (nozzle hole diameter / Is between 0.2 and 4, the applied voltage signal supplies current to the piezoelectric / electrostrictive element and charges it, holds the final charging voltage for a certain period of time, and then discharges two or more types of discharge time constants Are sequentially performed, and the first first discharge time constant is larger than the second second discharge time constant, and a voltage difference between the charge start voltage and the final charge voltage with reference to the charge start voltage. 35% to 70% of
% Of the piezoelectric / electrostrictive element in series with the piezoelectric / electrostrictive element in at least one discharge circuit.

【0008】この構成により、圧電/電歪素子充電時に
液滴を噴霧する構成の場合、充電電荷を放電する際、最
初の放電回路の放電時定数が大きいので圧電素子即ち圧
電/電歪素子は緩やかに変形を開始することができ、複
数の液滴噴霧ユニットから同時に液滴を噴出する場合、
複数の加圧室への液体導入操作が確実に行われる。その
後、単位電圧値を放電するのに要する時間が短い早い吸
引動作に移るので、加圧室への液体供給をスムーズに且
つ短時間に行うことができ、液体供給量を増加させるこ
とができる。
According to this configuration, in the case of a configuration in which liquid droplets are sprayed at the time of charging the piezoelectric / electrostrictive element, the discharging time constant of the first discharge circuit is large when discharging the charged electric charge. When deformation can be started gently and droplets are ejected simultaneously from multiple droplet spray units,
The operation of introducing the liquid into the plurality of pressurized chambers is reliably performed. Thereafter, the operation shifts to a quick suction operation in which the time required to discharge the unit voltage value is short, so that the liquid supply to the pressurizing chamber can be performed smoothly and in a short time, and the liquid supply amount can be increased.

【0009】また、放電開始電圧の35%以下の時は、
放電時定数が大きな放電、即ち緩やかな吸引が吸引全体
の工程のうち大半を占めることになり、吸引自体は確実
に行われることになるが、単位時間あたりの吸引量が多
くとれず、結果として噴霧周期を短くできず、大量の噴
霧量確保ができない。また、単位時間あたりの吸引量を
多くとるように始めの放電の時定数を2番目の放電の時
定数より大きい範囲で比較的小さくとると、吸引開始が
不安定になり、噴霧不良を招く。また、70%以上の時
は、放電時定数が大きな放電即ち緩やかな吸引の割合が
小さすぎて液の吸引開始を速やかに行うことができず吐
出後の液体加圧室への液体導入孔からの液体の吸引量が
減少し、液体吐出用ノズルからの気泡の巻き込みが発生
して噴霧が不安定になる。
When the discharge starting voltage is 35% or less,
Discharge with a large discharge time constant, that is, gentle suction occupies most of the entire suction process, and the suction itself is surely performed, but the suction amount per unit time can not be large, and as a result, The spray cycle cannot be shortened and a large amount of spray cannot be secured. Further, if the time constant of the first discharge is set to be relatively small within a range larger than the time constant of the second discharge so as to increase the suction amount per unit time, the start of suction becomes unstable, and poor spraying is caused. On the other hand, when it is 70% or more, the discharge time constant is large, that is, the rate of gentle suction is too small, so that the suction of the liquid cannot be started quickly, and the discharge from the liquid introduction hole to the liquid pressurizing chamber after the discharge is performed. The suction amount of the liquid decreases, and bubbles are entangled from the liquid discharge nozzle, and the spray becomes unstable.

【0010】更に、上記駆動波形で噴霧するとき、ノズ
ルと導入孔の比率(導入孔径/ノズル孔径)は、大きく
なると吸引を考えると良い方向だが、噴霧時の圧力が導
入孔側に逃げる割合が大きく噴霧力不足になるし、また
小さくなると噴霧量に対する供給量不足を招いてしまう
ため、導入孔径とノズル孔径の比率(導入孔径/ノズル
孔径)は0.6から1.6が好ましい。さらに、ノズル
孔径とノズル厚みの比率(ノズル孔径/ノズル厚み)は
0.2以上4以下が好ましく、4以下であるとノズル壁
面での流体との接触抵抗により噴霧直後の液面の残留振
動が速やかに収束でき、更には放電時の加圧室内圧力変
動により加圧室内への気泡の侵入を防ぎ噴霧安定性が向
上でき、結果として短い周期で噴霧でき、噴霧量を増す
ことができる。また、0.2以上であると、ノズル壁面
での液体の接触抵抗大による噴霧力不足から発生する噴
霧不良を防げる。更に、上記導入孔とノズル孔との比率
と、ノズル孔とノズル厚の比率と、放電電圧比率の3つ
が同時に満たされたとき、気泡の侵入による噴霧不良を
防ぎ、大量の噴霧を確保できる。
Further, when spraying with the above-mentioned driving waveform, the ratio of the nozzle to the introduction hole (introduction hole diameter / nozzle hole diameter) is a good direction in consideration of suction as the ratio increases, but the rate at which the pressure during spraying escapes to the introduction hole side is high. If the spraying power becomes large and the spraying power becomes small, and if it becomes small, the supply amount becomes insufficient, the ratio of the inlet hole diameter to the nozzle hole diameter (inlet hole diameter / nozzle hole diameter) is preferably 0.6 to 1.6. Further, the ratio of the nozzle hole diameter to the nozzle thickness (nozzle hole diameter / nozzle thickness) is preferably 0.2 or more and 4 or less, and if it is 4 or less, the residual vibration of the liquid surface immediately after spraying due to the contact resistance with the fluid on the nozzle wall surface. It is possible to quickly converge, and furthermore, it is possible to prevent air bubbles from entering the pressurized chamber due to pressure fluctuations in the pressurized chamber at the time of electric discharge, thereby improving the spraying stability. As a result, the spraying can be performed in a short cycle, and the spray amount can be increased. Further, when it is 0.2 or more, poor spraying caused by insufficient spraying force due to large contact resistance of the liquid on the nozzle wall surface can be prevented. Further, when three of the ratio of the introduction hole to the nozzle hole, the ratio of the nozzle hole to the nozzle thickness, and the discharge voltage ratio are simultaneously satisfied, it is possible to prevent poor spraying due to the intrusion of bubbles and to secure a large amount of spraying.

【0011】請求項2の発明は、請求項1において、2
番目の放電時定数で放電を開始した時から、圧電/電歪
素子に次の所定の電圧信号を印加するまでの時間(t
4)が液体噴出用ノズルと、該ノズルから噴出させる液
体を加圧するための加圧室と、該加圧室に液体を供給す
る導入孔と、該加圧室を加圧動作させる圧電/電歪素子
とで構成される構造体中の流路パスに液体を供給したと
きの固有振動周期(To)の4分の1以上20倍以下
で、且つ1番目の放電時定数で放電する時間(t3)と
2番目の放電時定数で放電を開始したときから前記圧電
/電歪素子に次の所定の電圧信号を印加するまでの時間
(t4)の比率(t3/t4)が0.1以上20以下で
あることを特徴とする。
[0011] The invention of claim 2 is the invention according to claim 1,
The time (t) from when the discharge is started with the first discharge time constant to when the next predetermined voltage signal is applied to the piezoelectric / electrostrictive element
4) a nozzle for ejecting liquid, a pressurizing chamber for pressurizing the liquid to be ejected from the nozzle, an introduction hole for supplying the liquid to the pressurizing chamber, and a piezoelectric / electrode for pressurizing the pressurizing chamber. A discharge time at a first discharge time constant that is equal to or more than 4 and not more than 20 times the natural oscillation period (To) when the liquid is supplied to the flow path in the structure constituted by the strain element; t3) and the ratio (t3 / t4) of the time (t4) from the start of the discharge with the second discharge time constant to the application of the next predetermined voltage signal to the piezoelectric / electrostrictive element is 0.1 or more. 20 or less.

【0012】この構成により、圧電/電歪素子が2番目
の放電時定数で放電を開始したときから次の所定の電圧
信号を印加するまでの時間(t4)が、固有振動数(T
o)の4分の1以下の時は、噴霧後の液体加圧室への液
体導入孔からの液体の吸引スピードが速すぎるため、折
角始めの放電で吸引を不具合無く開始しても、2番目の
放電時の吸引で導入孔から液の供給が間に合わず、液滴
噴霧用ノズルから気泡が加圧室へ侵入して噴霧不良とな
る。また、Toの20倍以上の時は、単位時間あたりの
吸引量が多くとれず、結果として噴霧周期を短くでき
ず、大量の噴霧量確保ができない。更に、始めの放電時
定数で放電する時間(t3)と2番目の放電時定数で放
電を開始したときから次の圧電/電歪素子に所定の電圧
信号を印加するまでの時間(t4)の比率が0.1以下
の時は、時定数の大きな始めの放電の割合が少なく、吸
引量全体に対する始めの放電時の液吸引量の比率が減少
し、2番目の放電の吸引時に吸引が追いつかなくなり、
液滴噴霧用ノズルから気泡が加圧室へ侵入して噴霧不良
となることがある。また、上記比率が20以上の時は、
単位時間あたりの吸引量が多くとれず、結果として噴霧
周期を短くできず、大量の噴霧量確保ができなくなる。
With this configuration, the time (t4) from the time when the piezoelectric / electrostrictive element starts discharging at the second discharging time constant to the time when the next predetermined voltage signal is applied becomes equal to the natural frequency (T).
In the case of o) or less, the suction speed of the liquid from the liquid inlet into the liquid pressurizing chamber after spraying is too high. Due to the suction at the time of the second discharge, the supply of the liquid from the introduction hole cannot be made in time, and bubbles enter the pressurizing chamber from the droplet spray nozzle, resulting in poor spraying. On the other hand, when it is 20 times or more of To, the suction amount per unit time cannot be increased, and as a result, the spray cycle cannot be shortened and a large spray amount cannot be secured. Further, the time (t3) of the discharge with the first discharge time constant and the time (t4) between the time when the discharge is started with the second discharge time constant and the time when the predetermined voltage signal is applied to the next piezoelectric / electrostrictive element. When the ratio is 0.1 or less, the ratio of the first discharge having a large time constant is small, the ratio of the liquid suction amount at the first discharge to the total suction amount is reduced, and the suction catches up at the time of the second discharge suction. Gone
Bubbles may enter the pressurizing chamber from the droplet spray nozzle, resulting in poor spraying. When the above ratio is 20 or more,
A large amount of suction per unit time cannot be obtained, and as a result, the spray cycle cannot be shortened, and a large amount of spray cannot be secured.

【0013】請求項3の発明は、請求項1又は2の発明
において、放電回路に加えて、充電回路に直列にインダ
クタンスと抵抗を介在させたことを特徴とする。この構
成により、噴霧時の電圧/時間傾きが直線状となり、液
滴噴霧の安定性が向上する。
According to a third aspect of the present invention, in the first or second aspect, an inductance and a resistance are interposed in series with the charging circuit in addition to the discharging circuit. With this configuration, the voltage / time gradient at the time of spraying becomes linear, and the stability of spraying droplets is improved.

【0014】請求項4の発明は、液滴噴霧用ノズルと、
該ノズルから噴出させる液体を加圧するための加圧室
と、該加圧室に液体を供給する導入孔と、該加圧室を加
圧動作させる圧電/電歪素子とを備えた微少液滴噴霧ユ
ニットを複数個備え、隣接する複数液滴噴霧ユニットの
液体導入孔が共通の液体供給路に連結された液滴噴霧装
置において、所定の電圧信号を印加した前記圧電/電歪
素子に繰り返し異なる電圧信号を印加することにより、
前記加圧室の壁部を変化させ、もって加圧室に生じさせ
る圧力により該加圧室に供給される液体を前記ノズルか
ら噴出する液滴噴霧装置駆動回路であって、導入孔とノ
ズル孔径の比率(導入孔径/ノズル孔径)が0.6以上
1.6以下で、且つノズル孔径とノズル厚みの比率(ノ
ズル孔径/ノズル厚み)が0.2以上4以下で、前記異
なる印加電圧信号が、放電開始電圧が印加された前記圧
電/電歪素子から電流を放電した後、一定時間放電最終
電圧を保持し、その後2種類以上の充電時定数をもった
充電を順次行い、且つ始めの充電時定数が、2番目の充
電時定数よりも大きく、且つ前記放電最終電圧を基準と
して、前記放電最終電圧と前記放電開始電圧の電圧差の
30%から65%の電圧で2番目の充電を開始し、少な
くとも1つの充電回路に前記圧電/電歪素子と直列にイ
ンダクタンスと抵抗を介在させたことを特徴とする。
According to a fourth aspect of the present invention, there is provided a droplet spray nozzle,
Microdroplets provided with a pressurizing chamber for pressurizing liquid ejected from the nozzle, an introduction hole for supplying liquid to the pressurizing chamber, and a piezoelectric / electrostrictive element for pressurizing the pressurizing chamber. In a droplet spraying device having a plurality of spraying units, in which liquid introduction holes of a plurality of adjacent droplet spraying units are connected to a common liquid supply path, the piezoelectric / electrostrictive element to which a predetermined voltage signal is applied is repeatedly different. By applying a voltage signal,
A droplet spraying device driving circuit that changes a wall of the pressurizing chamber and ejects a liquid supplied to the pressurizing chamber from the nozzle by a pressure generated in the pressurizing chamber. The ratio (nozzle hole diameter / nozzle hole diameter) is 0.6 or more and 1.6 or less, and the ratio of the nozzle hole diameter to the nozzle thickness (nozzle hole diameter / nozzle thickness) is 0.2 or more and 4 or less. After the current is discharged from the piezoelectric / electrostrictive element to which the discharge starting voltage is applied, the final discharge voltage is held for a certain period of time, and then the charge is sequentially performed with two or more types of charge time constants, and the first charge is performed. The second charge is started at a voltage having a time constant larger than the second charge time constant and 30% to 65% of a voltage difference between the final discharge voltage and the discharge start voltage with respect to the final discharge voltage. And at least one charge Characterized in that said piezoelectric / electrostrictive element in series inductance and resistance to the road is interposed.

【0015】この構成により、圧電/電歪素子放電時に
液滴を噴霧する構成の場合、充電する際、最初の充電回
路の充電開始時は時定数が大きいので、圧電素子即ち圧
電/電歪素子は緩やかに変形を開始することができ、複
数の液滴噴霧ユニットから同時に液滴を噴霧する場合、
複数の加圧室への液体導入操作が確実に行われる。その
後、単位電圧値を充電するのに要する時間が短い早い吸
引動作に移るので、加圧室への液体供給をスムーズ且つ
短時間に行うことができ、液体供給量を増加できる。
According to this configuration, in the case of a configuration in which droplets are sprayed at the time of discharging the piezoelectric / electrostrictive element, the time constant is large at the start of charging of the first charging circuit when charging. Can start deforming slowly, and when spraying droplets simultaneously from multiple droplet spray units,
The operation of introducing the liquid into the plurality of pressurized chambers is reliably performed. Thereafter, the operation shifts to a quick suction operation in which the time required to charge the unit voltage value is short, so that the liquid supply to the pressurizing chamber can be performed smoothly and in a short time, and the liquid supply amount can be increased.

【0016】そして、放電最終電圧の65%以上の時
は、充電時定数が大きな充電即ち緩やかな吸引が吸引全
体の工程のうちの大半を占めることになり、吸引は確実
に行われるが、単位時間あたりの吸引量が多くとれず、
結果として噴霧周期を短くできない。そのため、大量の
噴霧量確保ができないし、単位時間あたりの吸引量を多
くとるように始めの充電時定数を2番目の時定数より大
きい範囲で比較的小さくとると、吸引開始が不安定にな
り、噴霧不良を招く。また、30%以下の時は、充電時
定数が大きな充電、即ち緩やかな吸引の割合が小さすぎ
て、液の吸引開始を速やかに行うことができず、噴霧が
不安定になる。更に、上記駆動波形で噴霧するとき、導
入孔径とノズル孔径の比率(導入孔径/ノズル孔径)
は、大きくなると吸引を考えると良い方向だが、噴霧時
の圧力が導入孔側に逃げる割合が大きく、噴霧力不足に
なる。また、小さくなると、噴霧量に対する供給量不足
を招いてしまうため、導入孔径とノズル孔径の比率(導
入孔径/ノズル孔径)は0.6から1.6が好ましい。
When the final discharge voltage is 65% or more, charging with a large charging time constant, that is, gentle suction occupies most of the entire suction process, and the suction is reliably performed. Not enough suction per hour
As a result, the spray cycle cannot be shortened. For this reason, it is not possible to secure a large amount of spraying, and if the initial charging time constant is set to be relatively small in a range larger than the second time constant so as to increase the suction amount per unit time, the suction start becomes unstable. Causes poor spraying. On the other hand, when the charging time is 30% or less, the charging time constant is large, that is, the rate of gentle suction is too small, so that the suction of the liquid cannot be started quickly, and the spray becomes unstable. Furthermore, when spraying with the above drive waveform, the ratio of the diameter of the introduction hole to the diameter of the nozzle (introduction hole diameter / nozzle hole diameter)
Although it is a good direction to consider suction when it becomes large, the rate at which the pressure during spraying escapes to the introduction hole side is large, and the spraying power becomes insufficient. In addition, if the diameter becomes smaller, the supply amount becomes insufficient with respect to the spray amount. Therefore, the ratio of the introduction hole diameter to the nozzle hole diameter (introduction hole diameter / nozzle hole diameter) is preferably from 0.6 to 1.6.

【0017】また、ノズル孔径とノズル厚みの比率(ノ
ズル孔径/ノズル厚み)は0.2以上4以下が好まし
く、4以下であると噴霧ノズル壁面での流体との接触抵
抗により噴霧直後の液面の残留振動が速やかに収束で
き、更には放電時の加圧室内圧力変動により加圧室内へ
の気泡の侵入を防ぎ噴霧安定性が向上でき、結果として
短い周期で噴霧でき、噴霧量を増すことができる。ま
た、0.2以上であると、ノズル壁面での液体の接触抵
抗大による噴霧力不足から発生する噴霧不良を防げる。
更に、上記導入孔とノズル孔との比率と、ノズル孔とノ
ズル厚の比率と、充電電圧比率の3つが同時に満たされ
たとき、気泡の侵入による噴霧不良を防ぎ、大量の噴霧
を確保できる。
Further, the ratio of the nozzle hole diameter to the nozzle thickness (nozzle hole diameter / nozzle thickness) is preferably 0.2 or more and 4 or less, and if it is 4 or less, the liquid level immediately after spraying due to the contact resistance with the fluid on the spray nozzle wall surface. Residual vibration can quickly converge, and the pressure fluctuation in the pressurizing chamber during discharge can prevent bubbles from entering the pressurizing chamber and improve the spraying stability. As a result, it is possible to spray in a short cycle and increase the spraying amount. Can be. Further, when it is 0.2 or more, poor spraying caused by insufficient spraying force due to large contact resistance of the liquid on the nozzle wall surface can be prevented.
Furthermore, when three of the ratio of the introduction hole and the nozzle hole, the ratio of the nozzle hole and the nozzle thickness, and the charging voltage ratio are simultaneously satisfied, it is possible to prevent poor spraying due to intrusion of bubbles and to secure a large amount of spraying.

【0018】請求項5の発明は、請求項4において、2
番目の充電時定数で充電を開始したときから、圧電/電
歪素子に次の所定の電圧信号を印加するまでの時間(t
40)が、液体噴出用ノズルと、該ノズルから噴出させ
る液体を加圧するための加圧室と、該加圧室に液体を供
給する導入孔と、該加圧室を加圧動作させる圧電/電歪
素子とで構成される構造体中の流路パスに液体を供給し
たときの固有振動周期(To)の4分の1以上20倍以
下で且つ、1番目の充電時定数で充電する時間(t3
0)と2番目の充電時定数で充電を開始したときから圧
電/電歪素子に次の所定の電圧信号を印加するまでの時
間(t40)の比率(t30/t40)が0.1以上2
0以下であることを特徴とする。
According to a fifth aspect of the present invention, in the fourth aspect, 2
The time (t) from when charging is started with the first charging time constant to when the next predetermined voltage signal is applied to the piezoelectric / electrostrictive element
40) a liquid ejecting nozzle, a pressurizing chamber for pressurizing the liquid ejected from the nozzle, an introduction hole for supplying liquid to the pressurizing chamber, and a piezoelectric / A time for charging at a first charging time constant that is not less than 4 and not more than 20 times the natural oscillation period (To) when a liquid is supplied to the flow path in the structure composed of the electrostrictive element. (T3
0) and the time (t40) from the start of charging with the second charging time constant to the application of the next predetermined voltage signal to the piezoelectric / electrostrictive element (t30 / t40) is 0.1 or more and 2
0 or less.

【0019】この構成により、t40がToの4分の1
以下のときは、吸引スピードが速すぎるため折角始めの
充電で吸引を不具合無く開始しても、2番目の充電時の
吸引で導入孔からの液の供給が間に合わず、ノズル孔か
ら気泡が加圧室へ侵入して噴霧できなくなる。また、t
40がToの20倍以上の時は、単位時間あたりの吸引
量が多くとれず、結果として噴霧周期を短くできず、大
量の噴霧量確保ができない。
With this configuration, t40 is one-fourth of To.
In the following cases, the suction speed is too fast, so even if suction starts at the beginning of the bend without any problems, the supply of the liquid from the introduction hole cannot be made in time due to the suction at the second charge, and air bubbles are added from the nozzle holes. Intrusion into the pressure chamber prevents spraying. Also, t
When 40 is equal to or more than 20 times To, the suction amount per unit time cannot be increased, and as a result, the spray cycle cannot be shortened, and a large spray amount cannot be secured.

【0020】請求項6の発明は、請求項4又は5の発明
において、充電回路に加えて、放電回路に直列にインダ
クタンスと抵抗を介在させたことを特徴とする。こうす
ることで、噴霧時の電圧/時間傾きが直線状となり、液
滴噴霧の安定性が向上する。
According to a sixth aspect of the present invention, in the fourth or fifth aspect, an inductance and a resistance are interposed in series with the discharging circuit in addition to the charging circuit. By doing so, the voltage / time gradient during spraying becomes linear, and the stability of droplet spraying is improved.

【0021】請求項7の発明は、液滴噴霧用ノズルと、
該ノズルから噴霧させる液体を加圧するための加圧室
と、該加圧室に液体を供給する導入孔と、該加圧室を加
圧動作させる圧電/電歪素子とを備えた微少液滴噴霧ユ
ニットを複数個備え、隣接する複数液滴噴霧ユニットの
液体導入孔が共通の液体供給路に連結された液滴噴霧装
置において、前記圧電/電歪素子に所定の電圧信号を印
加することにより、前記加圧室の壁部を変形させ、もっ
て加圧室に生じる圧力により該加圧室に供給される液体
を前記ノズルから噴出する液滴噴霧装置駆動回路であっ
て、印加電圧信号が、電流を前記圧電/電歪素子に供給
して充電した後、一定時間充電最終電圧を保持し、その
後2種類以上の放電時定数を持った放電を順次行い、且
つ始めの放電時定数が、2番目の放電時定数よりも大き
く、少なくとも1つの放電回路に前記圧電/電歪素子と
直列にインダクタンスと抵抗を介在させ、前記圧電/電
歪素子を少なくとも2つ以上のグループに分け、夫々の
グループに電流を充電、放電せしめる回路を有し、一方
のグループの放電電流の少なくとも一部を他方のグルー
プの充電電流の一部に使用することを特徴とする。
According to a seventh aspect of the present invention, there is provided a droplet spray nozzle,
Microdroplets provided with a pressurizing chamber for pressurizing the liquid to be sprayed from the nozzle, an introduction hole for supplying the liquid to the pressurizing chamber, and a piezoelectric / electrostrictive element for pressurizing the pressurizing chamber. In a droplet spraying device having a plurality of spraying units and the liquid introduction holes of adjacent multiple droplet spraying units connected to a common liquid supply path, a predetermined voltage signal is applied to the piezoelectric / electrostrictive element. A liquid droplet spraying device driving circuit for deforming a wall of the pressurized chamber and ejecting a liquid supplied to the pressurized chamber from the nozzle by pressure generated in the pressurized chamber, wherein an applied voltage signal is: After the current is supplied to the piezoelectric / electrostrictive element for charging, the final charging voltage is held for a certain period of time, and then discharge having two or more types of discharge time constants is sequentially performed. At least one greater than the th discharge time constant A circuit for interposing an inductance and a resistor in series with the piezoelectric / electrostrictive element in the discharge circuit, dividing the piezoelectric / electrostrictive element into at least two or more groups, and charging and discharging current to each group; At least part of the discharge current of one group is used as part of the charge current of the other group.

【0022】この構成により、圧電/電歪素子充電時に
液滴を噴霧する構成の場合、充電電荷を放電する際、最
初の放電回路の放電時定数が大きいので圧電素子即ち圧
電/電歪素子は緩やかに変形を開始することができ、複
数の液滴噴霧ユニットから同時に液滴を噴出する場合、
複数の加圧室への液体導入操作が確実に行われる。その
後、単位電圧値を放電するのに要する時間が短い早い吸
引動作に移るので、加圧室への液体供給をスムーズに且
つ短時間に行うことができ、液体供給量を増加させるこ
とができる。また、圧電/電歪素子の放電電力を直接他
の圧電/電歪素子の充電電流とするので、新たに蓄電手
段を設ける必要がないし、更に消費電力を節約できる。
According to this configuration, when the piezoelectric / electrostrictive element is configured to spray liquid droplets at the time of charging, when discharging the charged electric charge, the discharge time constant of the first discharge circuit is large. When deformation can be started gently and droplets are ejected simultaneously from multiple droplet spray units,
The operation of introducing the liquid into the plurality of pressurized chambers is reliably performed. Thereafter, the operation shifts to a quick suction operation in which the time required to discharge the unit voltage value is short, so that the liquid supply to the pressurizing chamber can be performed smoothly and in a short time, and the liquid supply amount can be increased. Further, since the discharge power of the piezoelectric / electrostrictive element is directly used as the charging current of another piezoelectric / electrostrictive element, it is not necessary to newly provide a power storage means, and power consumption can be further reduced.

【0023】請求項8の発明は、液滴噴霧用ノズルと、
該ノズルから噴出させる液体を加圧するための加圧室
と、該加圧室に液体を供給する導入孔と、該加圧室を加
圧動作させる圧電/電歪素子とを備えた微少液滴噴霧ユ
ニットを複数個備え、隣接する複数液滴噴霧ユニットの
液体導入孔が共通の液体供給路に連結された液滴噴霧装
置において、所定の電圧信号を印加した前記圧電/電歪
素子に繰り返し異なる電圧信号を印加することにより、
前記加圧室の壁部を変化させ、もって加圧室に生じさせ
る圧力により該加圧室に供給される液体を前記ノズルか
ら噴出する液滴噴霧装置駆動回路であって、前記異なる
印加電圧信号が、放電開始電圧が印加された前記圧電/
電歪素子から電流を放電した後、一定時間放電最終電圧
を保持し、その後2種類以上の充電時定数を持った充電
を順次行い、少なくとも1つの充電回路に前記圧電/電
歪素子と直列にインダクタンスと抵抗を介在させ、前記
圧電/電歪素子を少なくとも2つ以上のグループに分
け、夫々のグループに電流を充電、放電せしめる回路を
有し、一方のグループの放電電流の少なくとも一部を他
方のグループの充電電流の一部に使用することを特徴と
する。
[0023] The invention according to claim 8 is characterized in that a nozzle for spraying a droplet is provided,
Microdroplets provided with a pressurizing chamber for pressurizing liquid ejected from the nozzle, an introduction hole for supplying liquid to the pressurizing chamber, and a piezoelectric / electrostrictive element for pressurizing the pressurizing chamber. In a droplet spraying device having a plurality of spraying units, in which liquid introduction holes of a plurality of adjacent droplet spraying units are connected to a common liquid supply path, the piezoelectric / electrostrictive element to which a predetermined voltage signal is applied is repeatedly different. By applying a voltage signal,
A droplet spraying device driving circuit for changing a wall of the pressurizing chamber and ejecting a liquid supplied to the pressurizing chamber from the nozzle by a pressure generated in the pressurizing chamber, wherein the different applied voltage signal Is the piezoelectric / electrode to which the discharge starting voltage is applied.
After discharging the current from the electrostrictive element, the final discharge voltage is held for a certain period of time, and then charging with two or more types of charging time constants is sequentially performed. At least one charging circuit is connected in series with the piezoelectric / electrostrictive element. The piezoelectric / electrostrictive element is divided into at least two or more groups by interposing an inductance and a resistance, and each of the groups has a circuit for charging and discharging a current. Is used for a part of the charging current of the group.

【0024】この構成により、圧電/電歪素子放電時に
液滴を噴霧する構成の場合、充電する際、最初の充電回
路の充電開始時は時定数が大きいので、圧電素子即ち圧
電/電歪素子は緩やかに変形を開始することができ、複
数の液滴噴霧ユニットから同時に液滴を噴霧する場合、
複数の加圧室への液体導入操作が確実に行われる。その
後、単位電圧値を充電するのに要する時間が短い早い吸
引動作に移るので、加圧室への液体供給をスムーズ且つ
短時間に行うことができ、液体供給量を増加できる。ま
た、圧電/電歪素子の放電電力を直接他の圧電/電歪素
子の充電電流とするので、新たに蓄電手段を設ける必要
がないし、更に消費電力を節約できる。
According to this configuration, in the case of a configuration in which droplets are sprayed at the time of discharging the piezoelectric / electrostrictive element, the time constant at the start of charging of the first charging circuit during charging is large. Can start deforming slowly, and when spraying droplets simultaneously from multiple droplet spray units,
The operation of introducing the liquid into the plurality of pressurized chambers is reliably performed. Thereafter, the operation shifts to a quick suction operation in which the time required to charge the unit voltage value is short, so that the liquid supply to the pressurizing chamber can be performed smoothly and in a short time, and the liquid supply amount can be increased. Further, since the discharge power of the piezoelectric / electrostrictive element is directly used as the charging current of another piezoelectric / electrostrictive element, it is not necessary to newly provide a power storage means, and power consumption can be further reduced.

【0025】請求項9の発明は、請求項7の発明におい
て、放電回路に加えて、充電回路に直列にインダクタン
スと抵抗を介在させたことを特徴とする。こうすること
で、噴霧時の電圧/時間傾きが直線状となり、液滴噴霧
の安定性が向上する。
A ninth aspect of the present invention is characterized in that, in the seventh aspect of the present invention, an inductance and a resistance are interposed in series with the charging circuit in addition to the discharging circuit. By doing so, the voltage / time gradient during spraying becomes linear, and the stability of droplet spraying is improved.

【0026】請求項10の発明は、請求項8の発明にお
いて、充電回路に加えて、放電回路に直列にインダクタ
ンスと抵抗を介在させたことを特徴とする。こうするこ
とで、噴霧時の電圧/時間傾きが直線状となり、液滴噴
霧の安定性が向上する。
According to a tenth aspect, in the eighth aspect, an inductance and a resistance are interposed in series with the discharge circuit in addition to the charging circuit. By doing so, the voltage / time gradient during spraying becomes linear, and the stability of droplet spraying is improved.

【0027】[0027]

【発明の実施の形態】以下、本発明を具体化した実施の
形態を、図面を基に詳細に説明する。図1は本発明に係
る液滴噴霧装置駆動回路の1例であり、圧電/電歪素子
充電時に噴霧動作する場合の回路を示している。10
(10a〜10c)はマイクロコンピュータ等の制御部
(図示せず)からの信号を駆動回路動作信号に変換する
シュミットトリガIC、R6,R7,R8はシュミット
トリガIC10の出力電流を制限する抵抗、M2は圧電
/電歪素子1(以下加圧素子とする)に充電電流を流す
P−MOSFETからなる充電スイッチ、M3,M4は
それぞれ加圧素子1を放電させるN−MOSFETから
成る第1及び第2放電スイッチである。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an example of a droplet spraying device driving circuit according to the present invention, and shows a circuit in a case where a spraying operation is performed when a piezoelectric / electrostrictive element is charged. 10
(10a to 10c) are Schmitt trigger ICs for converting a signal from a control unit (not shown) such as a microcomputer into drive circuit operation signals, R6, R7, and R8 are resistors for limiting the output current of the Schmitt trigger IC 10, M2 Is a charge switch composed of a P-MOSFET for passing a charging current to a piezoelectric / electrostrictive element 1 (hereinafter referred to as a pressure element), and M3 and M4 are first and second N-MOSFETs for discharging the pressure element 1 respectively. It is a discharge switch.

【0028】充電スイッチM2は、その出力に直列に設
けられたコイルL1と抵抗R1と共に充電回路12を形
成し、スイッチM5を介してシュミットトリガIC10
aにより制御されている。また、第1放電スイッチM3
はシュミットトリガIC10bにより制御され、第1放
電スイッチM3及びその放電回路に直列に設けられたコ
イルL2と抵抗R2とで第1放電回路13aが形成され
る。また、第2放電スイッチM4はシュミットトリガI
C10cにより制御され、第2放電スイッチM4及びそ
の放電回路に直列に設けたコイルL3と抵抗R3とで第
2放電回路13bが形成される。ここで、第2放電回路
13bにおいて、放電開始時に単位電圧値を放電するの
に要する時間T4(これはコイルL3と抵抗R3、コン
デンサC1により決定される。)は、第1放電回路にお
ける放電開始時に単位電圧値を放電するのに要する時間
T3(これはコイルL2と抵抗R2,コンデンサC1に
より決定される。)より短く設定されている。尚、Vp
は電源電圧、Vdは加圧素子への印加電圧である。
The charging switch M2 forms a charging circuit 12 together with a coil L1 and a resistor R1 provided in series at its output, and a Schmitt trigger IC 10 via a switch M5.
a. Also, the first discharge switch M3
Is controlled by the Schmitt trigger IC 10b, and the first discharge circuit 13a is formed by the first discharge switch M3 and the coil L2 and the resistor R2 provided in series with the discharge circuit. The second discharge switch M4 is connected to the Schmitt trigger I
Controlled by C10c, a second discharge circuit 13b is formed by the second discharge switch M4 and the coil L3 and the resistor R3 provided in series with the discharge circuit. Here, in the second discharge circuit 13b, the time T4 required for discharging the unit voltage value at the start of discharge (which is determined by the coil L3, the resistor R3, and the capacitor C1) is the discharge start in the first discharge circuit. Sometimes, it is set shorter than the time T3 required to discharge the unit voltage value (this is determined by the coil L2, the resistor R2, and the capacitor C1). In addition, Vp
Is a power supply voltage, and Vd is a voltage applied to the pressure element.

【0029】図2(a)は図1の駆動回路の加圧素子へ
の印加電圧特性を示し、t1は充電回路が加圧素子1を
充電する立ち上がり時間で、コイルL1の作用により緩
やかに立ち上がり、立ち上がり時間t1は印加電圧Vd
を所望の電圧値に到達させる時間としてコイルL1,抵
抗R1により調整される。そして、この充電操作により
加圧素子1が変形し、加圧室2を加圧して液滴噴霧用ノ
ズル3から液滴が噴霧する。また、t2は加圧室2や加
圧室内の液体を安定させるために液体を噴霧し終えた状
態を一定時間維持する保持時間である。
FIG. 2 (a) shows the characteristics of the voltage applied to the pressure element of the drive circuit of FIG. 1, and t1 is the rise time when the charging circuit charges the pressure element 1, and rises slowly by the action of the coil L1. , The rise time t1 is the applied voltage Vd
Is adjusted by the coil L1 and the resistor R1 as a time for causing the voltage to reach a desired voltage value. Then, the pressurizing element 1 is deformed by this charging operation, and pressurizes the pressurizing chamber 2 to spray droplets from the droplet spray nozzle 3. Further, t2 is a holding time for maintaining the pressurized chamber 2 or a state in which the liquid is completely sprayed in order to stabilize the liquid in the pressurized chamber for a certain time.

【0030】t3,t4は第1放電回路13a及び第2
放電回路13bを順次作動させた立ち下がり時間であ
り、第2放電回路13bの放電開始時に単位電圧値を放
電するのに要する時間T4は、第1放電回路13aの放
電開始時に単位電圧を放電するのに要する時間T3より
小さいため、時間t4における放電特性は、時間t3に
おける放電特性より下に凸となる。但し、コイルL2,
L3の作用により、いずれも放電開始時の変化が緩やか
なものとなっている。また、コイルL2を設けてコイル
L3がない回路も噴霧量と供給量のバランスを考慮し、
好適に使用できる。
T3 and t4 are the first discharge circuit 13a and the second
The time T4 required to discharge the unit voltage at the start of the discharge of the second discharge circuit 13b is the fall time when the discharge circuit 13b is sequentially activated, and the unit voltage is discharged at the start of the discharge of the first discharge circuit 13a. , The discharge characteristic at time t4 becomes lower than the discharge characteristic at time t3. However, the coil L2
Due to the action of L3, the change at the start of discharge is gradual. In addition, the circuit provided with the coil L2 and without the coil L3 also considers the balance between the spray amount and the supply amount,
It can be suitably used.

【0031】このように放電回路を2段に設け、立ち下
がり時の印加電圧Vdの変化を最初は緩やかに途中から
急傾斜とすることで、加圧素子1の変形により導入孔5
から加圧室2に液体が流れ込むが、最初は供給速度がゆ
っくりとなり、複数の導入孔5から均等に吸引を開始さ
せることができ、途中から急傾斜として加圧室へ流れ込
みを開始した液体の吸引速度が加速されて大量に吸引で
き、最初の吸引速度で最後まで吸引する場合に較べ、駆
動周期時間Tを短時間とすることができ、それに比例し
てノズルからの噴霧量も増加させることができる。従っ
て、単位時間あたりの液滴噴霧を増加させることが可能
となる。
As described above, the discharge circuit is provided in two stages, and the change of the applied voltage Vd at the time of the fall is set to be gentle at first and then to a steep slope from the middle.
The liquid flows into the pressurizing chamber 2 from the beginning, but the supply speed becomes slow at first, and the suction can be started uniformly from the plurality of introduction holes 5. The suction speed is accelerated so that a large amount can be sucked, and the drive cycle time T can be shortened as compared with the case where the suction is performed at the first suction speed to the end, and the spray amount from the nozzle is increased in proportion thereto. Can be. Therefore, it is possible to increase the droplet spray per unit time.

【0032】また、充電回路12にコイルL1を介在さ
せることで、充電開始時に印加電圧Vdが急峻に立ち上
がることが無くなるので、加圧素子1の変形に伴う噴霧
後の残留振動を無くすことができ、電圧/時間の傾きが
一定化でき、液滴の噴霧が安定化し、吸引動作の際にノ
ズルから気泡を巻き込んで噴霧不良が発生するのを防止
できる。そのため、保持時間t2を短縮することが可能
で、液体の噴霧量を更に増加させることができ、加圧室
への液体の供給もスムーズに行うことができる。また、
コイルL2,L3により放電開始時も印加電圧の変化が
緩やかになるので液体を更に効率良く吸引でき、液体の
供給量を更に増加させて噴霧量を増加させることができ
る。
Further, by interposing the coil L1 in the charging circuit 12, the applied voltage Vd does not rise sharply at the start of charging, so that residual vibration after spraying due to deformation of the pressurizing element 1 can be eliminated. In addition, the voltage / time gradient can be made constant, the spraying of the liquid droplets can be stabilized, and the occurrence of poor spraying due to entrainment of air bubbles from the nozzle during the suction operation can be prevented. Therefore, the holding time t2 can be shortened, the spray amount of the liquid can be further increased, and the liquid can be smoothly supplied to the pressurizing chamber. Also,
Since the coils L2 and L3 gradually change the applied voltage even at the start of discharge, the liquid can be sucked more efficiently, and the supply amount of the liquid can be further increased to increase the spray amount.

【0033】図2(b)は駆動回路の制御信号を示して
いる。図において、(1)はシュミットトリガIC10
aの出力信号、(2)はシュミットトリガIC10bの
出力信号、(3)はシュミットトリガIC10cの出力
信号であり、図示するように充電回路12はシュミット
トリガIC10aからLoの信号が出力されることで充
電スイッチM2がオンして液滴噴霧動作をし、2つの放
電回路13a,13bはそれぞれシュミットトリガIC
10b,10cから順にHiの信号が出力されてスイッ
チM3,M4がオンして液体吸引動作をする。
FIG. 2B shows a control signal of the drive circuit. In the figure, (1) shows a Schmitt trigger IC 10
a, the output signal of the Schmitt trigger IC 10b, the output signal of the Schmitt trigger IC 10c, and the charging circuit 12 outputs the Lo signal from the Schmitt trigger IC 10a as shown in FIG. The charging switch M2 is turned on to perform a droplet spraying operation, and the two discharge circuits 13a and 13b are respectively connected to the Schmitt trigger IC.
Hi signals are sequentially output from 10b and 10c, and the switches M3 and M4 are turned on to perform the liquid suction operation.

【0034】尚、液体供給のための放電時定数は2段階
に切り替えているが、時定数を2段階以上に、且つ徐々
に短くなるように設定しても良い。また、充放電特性の
変更は抵抗R1〜R3を変更すれば良く、安価に所望す
る波形を設定できる。また、液滴噴霧のために加圧素子
1を充電して加圧室2に変形を生じさせるのに対し、加
圧素子1から放電することにより加圧室2に変形を生じ
させて液滴を噴霧させる場合は、上記とは逆に充電特性
の異なる充電回路を2段設け、放電回路を1段として形
成すれば良い。
Although the discharge time constant for supplying the liquid is switched between two stages, the discharge time constant may be set to two or more stages and gradually shortened. The charge / discharge characteristics can be changed by changing the resistors R1 to R3, and a desired waveform can be set at low cost. In addition, while the pressure element 1 is charged for spraying the liquid droplets and the pressure chamber 2 is deformed, the discharge of the pressure element 1 causes the pressure chamber 2 to be deformed and the droplets are deformed. Is sprayed, it is only necessary to provide two stages of charging circuits having different charging characteristics and form a single stage discharging circuit.

【0035】図5は上記駆動回路で動作する液滴噴霧装
置の1例を示し、液滴吐出ユニット中央部の縦断面説明
図である。液滴噴霧装置は、液体を吐出させるための加
圧手段と、吐出する液体を加圧するための加圧室2と、
加圧室2の下方に連結されて液滴噴霧装置の処理部に液
体を吐出する液体吐出用ノズル3と、加圧室2に液体を
供給する導入孔5とを備えた液滴吐出ユニット6を1単
位として、使用態様に応じて数個から数百単位までの複
数個を備えている。液滴吐出ユニット6は、隣接する複
数の加圧室2,2・・同士が、導入孔5を介して共通の
液体供給路7により連結され、加圧室2の上方壁部の一
部に加圧手段として圧電/電歪素子1を備えている。圧
電/電歪素子1は上部電極16、圧電/電歪層18及び
下部電極17を積層して成り、所定の電圧信号を印加す
ることにより、上部電極16と下部電極17との間に生
じた電解により圧電/電歪層18が変形し、固着された
加圧室2の壁部を変形させて加圧室2に生じる加圧力に
より、加圧室2に供給された液体をノズル3から吐出す
る。
FIG. 5 shows an example of a droplet spraying device operated by the above-mentioned drive circuit, and is an explanatory longitudinal sectional view of a central portion of a droplet discharging unit. The droplet spraying device includes a pressurizing unit for discharging the liquid, a pressurizing chamber 2 for pressurizing the discharged liquid,
A droplet discharge unit 6 having a liquid discharge nozzle 3 connected below the pressurizing chamber 2 for discharging liquid to a processing unit of the liquid droplet spraying apparatus, and an introduction hole 5 for supplying liquid to the pressurizing chamber 2. Is used as one unit, and a plurality of units from several to several hundred units are provided according to the usage mode. The droplet discharge unit 6 includes a plurality of adjacent pressure chambers 2, 2... Connected by a common liquid supply path 7 through an introduction hole 5, and a part of an upper wall of the pressure chamber 2. The piezoelectric / electrostrictive element 1 is provided as a pressing means. The piezoelectric / electrostrictive element 1 is formed by laminating an upper electrode 16, a piezoelectric / electrostrictive layer 18, and a lower electrode 17, and is generated between the upper electrode 16 and the lower electrode 17 by applying a predetermined voltage signal. The piezoelectric / electrostrictive layer 18 is deformed by the electrolysis, and the wall of the pressurized chamber 2 is deformed and the liquid supplied to the pressurized chamber 2 is discharged from the nozzle 3 by the pressure generated in the pressurized chamber 2. I do.

【0036】そして、導入孔5とノズル3の径の比率
(導入孔径/ノズル孔径)を0.6から1.6の間、例
えば1.0とし、且つノズル孔径とノズルの厚みの比率
(ノズル孔径/ノズル厚み)を0.2から4の間、例え
ば2としている。導入孔5とノズル3の径の比率を0.
6から1.6とすることで、噴霧力と吸引力のバランス
がとれ、噴霧力不足になったり、吸入力不足になること
がない。尚、導入孔径/ノズル孔径が1.6を越えると
吸引に対しては良好に作用するが、噴霧時の圧力が、導
入孔側に逃げる割合が大きくなり噴霧力不足になる。ま
た、0.6より小さくなると、噴霧量に対する供給量不
足を招いてしまう。更に、ノズル孔径/ノズル厚が4以
下であるとノズル壁面での流体との接触抵抗により噴霧
直後の液面の残留振動を速やかに収束でき、更には放電
時の加圧室2内圧変動による加圧室2内への気泡の侵入
を防ぎ、噴霧安定性を向上でき、結果として短い周期で
噴霧でき、噴霧量を増やすことができるし、0.2以上
であると、ノズル壁面での流体との接触抵抗大による噴
霧力不足が発生して噴霧不良となることを防ぐことがで
きる。尚、上記実施の形態においてノズル孔径は25μ
mから100μmである。
The ratio of the diameter of the introduction hole 5 to the diameter of the nozzle 3 (introduction hole diameter / nozzle hole diameter) is set to a value between 0.6 and 1.6, for example, 1.0, and the ratio of the nozzle hole diameter to the thickness of the nozzle (nozzle diameter) The hole diameter / nozzle thickness) is between 0.2 and 4, for example, 2. The ratio between the diameter of the introduction hole 5 and the diameter of the nozzle 3 is set to 0.
By setting the ratio from 6 to 1.6, the spraying force and the suction force are balanced, and there is no shortage of the spraying force and no shortage of the suction force. If the ratio of the introduction hole diameter / nozzle hole diameter exceeds 1.6, suction works well, but the rate at which the pressure during spraying escapes to the introduction hole side becomes large, resulting in insufficient spraying power. On the other hand, if it is smaller than 0.6, the supply amount is insufficient for the spray amount. Further, if the nozzle hole diameter / nozzle thickness is 4 or less, the residual vibration of the liquid surface immediately after spraying can be quickly converged due to the contact resistance with the fluid on the nozzle wall, and the pressure due to the fluctuation of the pressure inside the pressurizing chamber 2 at the time of discharge is further increased. It is possible to prevent air bubbles from entering the pressure chamber 2 and improve the spraying stability. As a result, the spraying can be performed in a short cycle, and the spraying amount can be increased. It is possible to prevent the occurrence of insufficient spraying due to the large contact resistance of the above, resulting in poor spraying. In the above embodiment, the nozzle hole diameter is 25 μm.
m to 100 μm.

【0037】また、図6は図2の印加電圧波形におい
て、圧電/電歪素子の駆動電圧を40V一定、t1=2
0μS、t2=5μS、t3=20μS、t4=10μ
Sで一定として、始めの放電時定数による放電から2番
目の放電時定数による放電に移行する電圧を変化させ
て、液滴噴霧装置の噴霧動作の安定性を示す測定データ
である。図示するように、2番目の放電時定数による放
電への移行電圧が充電最終電圧の38%から63%の間
では良好に噴霧動作するが、25%及び75%では良好
な動作を示さない。このように、2番目の放電を開始す
る電圧には範囲があり、印加電圧即ち充電最終電圧の3
5%から70%の電圧で2番目の放電を開始すると好ま
しく、上記導入孔径とノズル孔径の比率と、ノズル孔径
とノズル厚みの比率と、2番目の放電開始電圧の3つが
同時に満たされることで、液滴噴霧用ノズルからの気泡
の巻き込みによる噴霧不良を防ぎ、大量の噴霧を確保で
きる。
FIG. 6 shows that the driving voltage of the piezoelectric / electrostrictive element is constant at 40 V and t1 = 2 in the applied voltage waveform of FIG.
0 μS, t2 = 5 μS, t3 = 20 μS, t4 = 10 μS
It is measurement data showing the stability of the spraying operation of the droplet spraying device by changing the voltage at which the discharge is changed from the discharge with the first discharge time constant to the discharge with the second discharge time constant, assuming that it is constant at S. As shown in the figure, the spraying operation is good when the transition voltage to the discharge by the second discharge time constant is between 38% and 63% of the final charging voltage, but no good operation is shown at 25% and 75%. As described above, the voltage at which the second discharge is started has a range, and the applied voltage, that is, the final charge voltage, is 3 times.
It is preferable to start the second discharge at a voltage of 5% to 70%, and the above-mentioned three ratios of the introduction hole diameter and the nozzle hole diameter, the ratio of the nozzle hole diameter and the nozzle thickness, and the second discharge start voltage are simultaneously satisfied. In addition, it is possible to prevent poor spraying due to entrainment of air bubbles from the nozzle for spraying droplets, and to secure a large amount of spray.

【0038】尚、2番目の放電開始電圧の35%以下の
時は、放電時定数が大きな放電、即ち緩やかな吸引が吸
引全体の工程のうちの大半を占めることになり、吸引自
体は確実に行われることになるが、単位時間あたりの吸
引量が多くとれず、結果として噴霧周期を短くできず、
大量の噴霧量確保ができなく、また単位時間あたりの吸
引量を多くとるように始めの放電時定数を2番目の放電
時定数より大きい範囲で、比較的吸引時間を小さくとる
と、吸引開始が不安定になり噴霧量不足を招く、また、
70%以上の時は、放電時定数が大きな放電、即ち緩や
かな吸引の割合が小さすぎて液の吸引開始を速やかに行
うことができず、吐出後の液体加圧室への液体導入孔5
からの液体吸引量が減少し、ノズル3内の気泡の巻き込
みが発生して噴霧不安定となる。
When the second discharge starting voltage is 35% or less, discharge having a large discharge time constant, that is, gentle suction occupies most of the entire suction process, and the suction itself is surely performed. It will be performed, but the suction amount per unit time can not be large, as a result, the spray cycle can not be shortened,
If it is not possible to secure a large amount of spray, and if the first discharge time constant is set to be larger than the second discharge time constant and the suction time is set relatively small so as to increase the suction amount per unit time, suction starts. Unstable, leading to insufficient spray volume,
When the discharge time is 70% or more, the discharge time constant is large, that is, the rate of the gentle suction is too small to start the liquid suction promptly, and the liquid introduction hole 5 to the liquid pressurized chamber after the discharge is discharged.
The amount of liquid sucked from the nozzle 3 is reduced, and bubbles are trapped in the nozzle 3 and the spray becomes unstable.

【0039】更に、2番目の放電時定数で放電する時間
t4は、液滴噴霧用ノズル3と、このノズルから噴霧さ
れる液体を加圧するための加圧室2と、該加圧室2に液
体を供給する導入孔5と、加圧室2を加圧動作させる圧
電/電歪素子1とで構成される構造体中の流路パスに液
体を供給した時の固有振動周期Toの4分の1以上20
倍以下で且つ最初の放電時間t3と、2番目の放電時間
t4との比率t3/t4が0.1〜20とするのが良
く、この範囲とすることで、吸引スピードに対して導入
孔からの液の供給をスムーズに行うことができるし、ノ
ズルから気泡が加圧室へ侵入することもなく良好に噴霧
動作させることができる。
Further, the discharge time t4 at the second discharge time constant is determined by the nozzle 3 for spraying the droplet, the pressurizing chamber 2 for pressurizing the liquid sprayed from this nozzle, and the pressurizing chamber 2 Four minutes of the natural oscillation period To when the liquid is supplied to the flow path in the structure constituted by the introduction hole 5 for supplying the liquid and the piezoelectric / electrostrictive element 1 for pressurizing the pressure chamber 2. 1 or more of 20
It is preferable that the ratio t3 / t4 of the first discharge time t3 and the second discharge time t4 is 0.1 to 20 or less, and by setting the ratio to this range, the suction speed is reduced from the introduction hole. The liquid can be smoothly supplied, and the spraying operation can be favorably performed without air bubbles entering the pressurized chamber from the nozzle.

【0040】時間t4がTo/4以下であれば、吸引ス
ピードが速すぎるため、最初の放電を良好に行っても、
2番目の放電時の吸引操作で導入孔から液の供給が間に
合わず、ノズル3から気泡が加圧室2へ侵入して噴霧不
良が発生してしまう。また、20T以上であると、単位
時間あたりの吸引量が多くとれず、結果として噴霧周期
を短くできず、大量の吐出量確保ができない。また、t
3/t4が0.1以下の場合は、時定数の大きな最初の
放電の割合が少なく、吸引量全体に対する最初の放電時
の液の吸引比率が減少し、2番目の放電の際の吸引時に
吸引が追いつかなくなり、噴霧不良になりやすいし、2
0以上とすると、2番目の放電時定数設定による効果が
無くなり、大量噴霧の点では駆動周波数を上げることに
よる効果の方が有効な手段となってくる。尚、液体供給
のための放電時定数は2段階に切り換えているが、2段
階以上に且つ徐々に大きくなるように設定することも好
適である。また、液滴噴霧のために圧電/電歪素子を充
電して加圧室を変形させるのに対し、圧電/電歪素子か
ら放電することにより加圧室に変形を生じさせて液滴を
噴霧させる場合、2番目の充電時定数による充電は、放
電開始電圧の30%から65%の電圧で開始させること
になる。
If the time t4 is equal to or less than To / 4, the suction speed is too high.
In the second suction operation at the time of discharge, the supply of the liquid from the introduction hole cannot be made in time, and bubbles enter the pressurizing chamber 2 from the nozzle 3 to cause poor spraying. On the other hand, if it is 20 T or more, a large suction amount per unit time cannot be obtained, and as a result, the spray cycle cannot be shortened, and a large discharge amount cannot be secured. Also, t
When 3 / t4 is 0.1 or less, the ratio of the first discharge having a large time constant is small, the suction ratio of the liquid at the first discharge to the entire suction amount is reduced, and the ratio at the time of suction during the second discharge is reduced. Suction cannot catch up and it is easy to have poor spraying.
If the value is set to 0 or more, the effect of setting the second discharge time constant is lost, and the effect of increasing the drive frequency is more effective in terms of mass spraying. Note that the discharge time constant for supplying the liquid is switched between two stages, but it is also preferable to set the discharge time constant to two or more stages and gradually increase. In addition, while the piezoelectric / electrostrictive element is charged to spray the droplet and deforms the pressurized chamber, the piezoelectric / electrostrictive element is discharged to deform the pressurized chamber to spray the droplet. In this case, the charging by the second charging time constant is started at a voltage of 30% to 65% of the discharge starting voltage.

【0041】図8は圧電/電歪素子にMLP(積層アク
チュエータ)を用いて、上記図5の液滴噴霧装置とは逆
の作動をし、放電する際に加圧室を変形させて液滴を噴
霧させる液滴噴霧ユニットの説明図であり、(a)は縦
断面図、(b)はそのA−A矢視断面図を示している。
図において、23は圧電/電歪素子を固定する固定部材
であり、20は+電極、21は−電極を示し、22は圧
電/電歪層である。尚、上記図5と同一の構成部材は同
一の符号を付してある。この形態の場合、導入孔径とノ
ズル孔径との比、またノズル孔径とノズルの厚みの比は
上記実施の形態と同様とすれば良く、2番目の充電開始
電圧は放電最終電圧を基準として、放電最終電圧と放電
開始電圧の電圧差の30〜65%とすると良い。また、
2番目の充電時定数で充電する時間t40は上記の実施
の形態と同様に上記固有振動周期Toの4分の1以上2
0倍以下で、且つ最初の充電時定数による充電時間t3
0と2番目の充電時間の比率t30/t40を0.1〜
20とすれば良い。
FIG. 8 shows an MLP (stacked actuator) used as a piezoelectric / electrostrictive element, which operates in the opposite manner to the droplet spraying device shown in FIG. 3A and 3B are explanatory views of a droplet spraying unit for spraying a liquid crystal, wherein FIG. 3A is a longitudinal sectional view, and FIG.
In the figure, 23 is a fixing member for fixing the piezoelectric / electrostrictive element, 20 is a positive electrode, 21 is a negative electrode, and 22 is a piezoelectric / electrostrictive layer. The same components as those in FIG. 5 are denoted by the same reference numerals. In this case, the ratio between the inlet hole diameter and the nozzle hole diameter, and the ratio between the nozzle hole diameter and the nozzle thickness may be the same as in the above embodiment, and the second charge start voltage is based on the discharge final voltage. It is preferable that the difference between the final voltage and the discharge starting voltage is 30 to 65%. Also,
The charging time t40 at the second charging time constant is equal to or more than one-fourth of the natural oscillation period To as in the above-described embodiment.
A charging time t3 that is equal to or less than 0 times and based on the first charging time constant
The ratio t30 / t40 of 0 to the second charging time is set to 0.1 to
It should be 20.

【0042】図3は本発明の第2の実施の形態を示す要
部回路図であり、電力節約のための蓄電手段として第2
の加圧素子11が設けられている。そして、充電回路は
第1充電スイッチM12と第2充電スイッチM15と第
3充電スイッチのM16との3個のFETから成り、放
電回路は第1放電スイッチM13と第2放電スイッチM
14と第3放電スイッチM17との3個のFETから形
成されている。また、各抵抗R11〜R16は双方の加
圧素子1,11の容量成分と合わせて各回路の充放電特
性を決定している。そして、第1充電スイッチM12と
第1放電スイッチM13にはコイルL11及びコイルL
12が抵抗R11及び抵抗R12に直列に挿入されてい
る。尚、D1〜D4はダイオードである。
FIG. 3 is a main part circuit diagram showing a second embodiment of the present invention.
Are provided. The charging circuit includes three FETs, a first charging switch M12, a second charging switch M15, and a third charging switch M16. The discharging circuit includes a first discharging switch M13 and a second discharging switch M16.
14 and a third discharge switch M17. The resistors R11 to R16 determine the charge / discharge characteristics of each circuit in combination with the capacitance components of both the pressure elements 1 and 11. The first charge switch M12 and the first discharge switch M13 have the coil L11 and the coil L
12 is inserted in series with the resistors R11 and R12. D1 to D4 are diodes.

【0043】この回路の作用を図4の印加電圧特性図を
基に説明する。図4(a)は第1の加圧素子1の印加電
圧波形を示し、図4(b)は第2の加圧素子11の印加
電圧波形を示している。先ず第1充電時間t21では第
1充電スイッチM12がオンして第2の加圧素子11を
放電すると共に、その放電電荷により第1の加圧素子1
を充電する。次に第2充電時間t22で第2充電スイッ
チM15がオンして電荷不足分を充電すると共に、第3
放電スイッチM17がオンして加圧素子11を完全放電
させる。
The operation of this circuit will be described with reference to the applied voltage characteristic diagram of FIG. FIG. 4A shows an applied voltage waveform of the first pressing element 1, and FIG. 4B shows an applied voltage waveform of the second pressing element 11. First, at the first charging time t21, the first charging switch M12 is turned on to discharge the second pressing element 11, and the first pressing element 1 is discharged by the discharged charge.
Charge. Next, at the second charging time t22, the second charging switch M15 is turned on to charge the insufficient charge,
The discharge switch M17 is turned on to completely discharge the pressure element 11.

【0044】その後、期間t23で一定時間その状態を
保持した後、第1放電時間t24で第1放電スイッチM
13をオンして放電すると共に、その放電電荷を第2の
加圧素子11に充電する。そして、第2放電時間t25
で第2放電スイッチM14をオンし残容量を放電すると
共に、第3充電スイッチM16をオンして第2の加圧素
子11の電荷不足分を充電し、時間t26でその状態を
保持する。尚、この場合時間t21をスタートとすると
t21〜t26が充放電の1周期となり、第1の加圧素
子1と第2の加圧素子11とは同期して動作し、この電
圧波形が繰り返して印加される。
Thereafter, after maintaining that state for a certain period of time in a period t23, the first discharge switch M is turned on for a first discharge time t24.
13 is turned on to discharge, and the discharged charge is charged to the second pressure element 11. Then, the second discharge time t25
Then, the second discharging switch M14 is turned on to discharge the remaining capacity, and the third charging switch M16 is turned on to charge the insufficient charge of the second pressurizing element 11, and the state is maintained at time t26. In this case, when time t21 is started, t21 to t26 constitute one cycle of charging and discharging, and the first pressing element 1 and the second pressing element 11 operate in synchronization with each other, and this voltage waveform is repeated. Applied.

【0045】このように、半周期ずらして動作する加圧
素子を設ければ、互いの素子を蓄電手段とすることがで
き、別途コンデンサ等の蓄電手段を設けることなく放電
電荷を効率よく利用することができる。そのため、加圧
素子を複数有する場合は、加圧素子を2つ或いはそれ以
上のグループに分けて、約半周期ずらして動作させれ
ば、一方のグループの放電電流の少なくとも一部を他方
のグループの充電電流の少なくとも一部に使用すること
ができ、消費電力を更に節約することができる。
As described above, by providing the pressurizing elements that are shifted by a half cycle, the mutual elements can be used as power storage means, and the discharged charge can be efficiently used without providing a separate power storage means such as a capacitor. be able to. Therefore, when a plurality of pressurizing elements are provided, the pressurizing elements are divided into two or more groups and operated by being shifted by about a half cycle, so that at least a part of the discharge current of one group is reduced to the other group. Can be used for at least a part of the charging current, and the power consumption can be further reduced.

【0046】尚、上記実施の形態はアナログ回路で構成
しているが、デジタル信号にて駆動波形を生成し、アナ
ログ信号に変換することもでき、駆動波形は好適に設定
できる。また、充電スイッチ或いは放電スイッチを全て
MOS形FETとしたが、それに限定するものではなく
トランジスタにより駆動回路を構成しても良い。
Although the above embodiment is configured by an analog circuit, a drive waveform can be generated by a digital signal and converted into an analog signal, and the drive waveform can be set appropriately. Further, although all the charge switches or discharge switches are MOS type FETs, the present invention is not limited thereto, and a drive circuit may be constituted by transistors.

【0047】[0047]

【発明の効果】以上詳述したように、本発明によれば、
複数の加圧室への液体供給をスムーズに且つ短時間に行
うことができ、液体供給量を増加させることができる。
また、液体吸引開始を緩やかに開始することができ、液
体を効率良く吸引でき、液体の供給量を更に増加させる
ことができる。そのため、印加周期を更に短縮すること
が可能で、液体の噴出量を更に増加させることができ、
加圧室への液体の供給もスムーズに行うことができる。
As described in detail above, according to the present invention,
The liquid supply to the plurality of pressurizing chambers can be performed smoothly and in a short time, and the liquid supply amount can be increased.
In addition, the start of liquid suction can be started gently, the liquid can be sucked efficiently, and the supply amount of the liquid can be further increased. Therefore, the application cycle can be further shortened, and the ejection amount of the liquid can be further increased,
The supply of the liquid to the pressurizing chamber can also be performed smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る液滴噴霧装置駆動回路の1例を示
す回路図である。
FIG. 1 is a circuit diagram showing one example of a droplet spray device driving circuit according to the present invention.

【図2】図1の駆動回路の動作特性を示し、(a)は圧
電/電歪素子印加電圧波形、(b)は制御信号である。
2A and 2B show operating characteristics of the drive circuit of FIG. 1, wherein FIG. 2A shows a voltage waveform applied to a piezoelectric / electrostrictive element, and FIG. 2B shows a control signal.

【図3】本発明の第2の実施の形態を示す液滴噴霧装置
駆動回路の回路図である。
FIG. 3 is a circuit diagram of a droplet spray device driving circuit according to a second embodiment of the present invention.

【図4】図3の印加電圧波形である。FIG. 4 is an applied voltage waveform of FIG.

【図5】図1の液滴噴霧装置駆動回路により駆動される
液滴噴霧ユニットの中央部縦断面説明図である。
FIG. 5 is an explanatory vertical sectional view of a central portion of a droplet spraying unit driven by the droplet spraying device drive circuit of FIG. 1;

【図6】図2の電圧波形の放電時定数を変化させた場合
の液滴噴霧装置の安定性を調べた図である。
6 is a diagram illustrating the stability of the droplet spraying device when the discharge time constant of the voltage waveform in FIG. 2 is changed.

【図7】液滴噴霧装置の液滴噴霧ユニットの中央断面説
明図である。
FIG. 7 is a central sectional explanatory view of a droplet spraying unit of the droplet spraying device.

【図8】図1の液滴噴霧装置駆動回路により駆動される
液滴噴霧ユニットの他の例を示す中央部縦断面説明図で
ある。
FIG. 8 is a central vertical sectional view showing another example of the droplet spray unit driven by the droplet spray device drive circuit of FIG. 1;

【符号の説明】[Explanation of symbols]

1・・加圧素子(圧電/電歪素子)、2・・加圧室、3
・・液滴噴霧用ノズル、5・・導入孔、6・・液滴噴霧
ユニット、7・・液体供給路、11・・加圧素子(圧電
/電歪素子)、12・・充電回路、13a・・第1放電
回路、13b・・第2放電回路、M2・・充電スイッ
チ、M3・・第1放電スイッチ、M4・・第2放電スイ
ッチ、M12・・第1充電スイッチ、M13・・第1放
電スイッチ、M14・・第2放電スイッチ、M15・・
第2充電スイッチ、M16・・第3充電スイッチ、M1
7・・第3放電スイッチ、L1,L2,L3,L11,
L12・・コイル、R1〜R3,R6〜R16・・抵
抗。
1. Pressurizing element (piezoelectric / electrostrictive element), 2. Pressurizing chamber, 3
..Droplet spray nozzles, 5..introduction holes, 6..droplet spray units, 7..liquid supply paths, 11..pressurizing elements (piezoelectric / electrostrictive elements), 12..charging circuits, 13a .. First discharge circuit, 13b second discharge circuit, M2 charge switch, M3 first discharge switch, M4 second discharge switch, M12 first charge switch, M13 first Discharge switch, M14... Second discharge switch, M15.
Second charge switch, M16... Third charge switch, M1
7. Third discharge switch, L1, L2, L3, L11,
L12 ... coil, R1 to R3, R6 to R16 ... resistance.

フロントページの続き (72)発明者 廣田 寿一 名古屋市瑞穂区須田町2番56号 日本碍子 株式会社内 Fターム(参考) 2C057 AF04 AF54 AG33 AG44 AG75 AR16 BA04 BA14 Continued on the front page (72) Inventor Juichi Hirota 2-56, Suda-cho, Mizuho-ku, Nagoya Japan Insulator Co., Ltd. F-term (reference) 2C057 AF04 AF54 AG33 AG44 AG75 AR16 BA04 BA14

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 液滴噴霧用ノズルと、該ノズルから噴霧
させる液体を加圧するための加圧室と、該加圧室に液体
を供給する導入孔と、該加圧室を加圧動作させる圧電/
電歪素子とを備えた微少液滴噴霧ユニットを複数個備
え、隣接する複数液滴噴霧ユニットの液体導入孔が共通
の液体供給路に連結された液滴噴霧装置において、前記
圧電/電歪素子に所定の電圧信号を印加することによ
り、前記加圧室の壁部を変形させ、もって加圧室に生じ
る圧力により該加圧室に供給される液体を前記ノズルか
ら噴出する液滴噴霧装置駆動回路であって、導入孔径と
ノズル孔径の比率(導入孔径/ノズル孔径)が0.6以
上1.6以下で且つノズル孔径とノズル厚みの比率(ノ
ズル孔径/ノズル厚み)が0.2以上4以下で、印加電
圧信号が、電流を前記圧電/電歪素子に供給して充電し
た後、一定時間充電最終電圧を保持し、その後2種類以
上の放電時定数を持った放電を順次行い、且つ始めの第
1放電時定数が、2番目の第2放電時定数よりも大き
く、且つ充電開始電圧を基準として、前記充電開始電圧
と前記最終電圧の電圧差の35%から70%の電圧で2
番目の放電を開始し、少なくとも1つの放電回路に前記
圧電/電歪素子と直列にインダクタンスと抵抗を介在さ
せたことを特徴とする液滴噴霧装置駆動回路。
1. A droplet spray nozzle, a pressurizing chamber for pressurizing a liquid to be sprayed from the nozzle, an introduction hole for supplying a liquid to the pressurizing chamber, and a pressurizing operation of the pressurizing chamber. Piezo /
A droplet spraying device comprising a plurality of micro droplet spraying units each having an electrostrictive element, wherein liquid introduction holes of adjacent plural droplet spraying units are connected to a common liquid supply path; By applying a predetermined voltage signal to the liquid droplet spraying device, the wall of the pressurized chamber is deformed, and the liquid supplied to the pressurized chamber is ejected from the nozzle by the pressure generated in the pressurized chamber. A circuit, wherein the ratio of the inlet hole diameter to the nozzle hole diameter (inlet hole diameter / nozzle hole diameter) is 0.6 or more and 1.6 or less, and the ratio of the nozzle hole diameter to the nozzle thickness (nozzle hole diameter / nozzle thickness) is 0.2 or more 4 In the following, the applied voltage signal supplies a current to the piezoelectric / electrostrictive element, charges the piezoelectric / electrostrictive element, holds the final charging voltage for a certain period of time, then sequentially performs discharge having two or more types of discharge time constants, and The first first discharge time constant is 2 Greater than the second discharge time constant of, and reference to the charging start voltage, 2 in 70% of the voltage from 35% of the voltage difference between the charging start voltage and the final voltage
A driving circuit for a droplet spraying device, wherein a first discharge is started, and an inductance and a resistance are interposed in at least one discharge circuit in series with the piezoelectric / electrostrictive element.
【請求項2】 請求項1において、2番目の放電時定数
で放電を開始した時から、圧電/電歪素子に次の所定の
電圧信号を印加するまでの時間(t4)が液滴噴霧用ノ
ズルと、該ノズルから噴霧させる液体を加圧するための
加圧室と、該加圧室に液体を供給する導入孔と、該加圧
室を加圧動作させる圧電/電歪素子とで構成される構造
体中の流路パスに液体を供給したときの固有振動周期
(To)の4分の1以上20倍以下で、且つ1番目の放
電時定数で放電する時間(t3)と2番目の放電時定数
で放電を開始したときから前記圧電/電歪素子に次の所
定の電圧信号を印加するまでの時間(t4)の比率(t
3/t4)が0.1以上20以下であることを特徴とす
る液滴噴霧装置駆動回路。
2. A liquid droplet spraying apparatus according to claim 1, wherein a time (t4) from when the discharge is started at the second discharge time constant to when the next predetermined voltage signal is applied to the piezoelectric / electrostrictive element is equal to the time required for spraying the droplet. It comprises a nozzle, a pressurizing chamber for pressurizing a liquid to be sprayed from the nozzle, an introduction hole for supplying liquid to the pressurizing chamber, and a piezoelectric / electrostrictive element for pressurizing the pressurizing chamber. The time (t3) for discharging at a first discharge time constant that is at least 1/4 to 20 times the natural oscillation period (To) when the liquid is supplied to the flow path in the structure, and the second time The ratio (t4) of the time (t4) from the start of discharge with the discharge time constant to the application of the next predetermined voltage signal to the piezoelectric / electrostrictive element.
3 / t4) is 0.1 or more and 20 or less.
【請求項3】 放電回路に加えて、充電回路に直列にイ
ンダクタンスと抵抗を介在させた請求項1又は2記載の
液滴噴霧装置駆動回路。
3. The drive circuit according to claim 1, wherein an inductance and a resistance are interposed in series with the charging circuit in addition to the discharging circuit.
【請求項4】 液滴噴霧用ノズルと、該ノズルから噴霧
させる液体を加圧するための加圧室と、該加圧室に液体
を供給する導入孔と、該加圧室を加圧動作させる圧電/
電歪素子とを備えた微少液滴噴霧ユニットを複数個備
え、隣接する複数液滴噴霧ユニットの液体導入孔が共通
の液体供給路に連結された液滴噴霧装置において、所定
の電圧信号を印加した前記圧電/電歪素子に繰り返し異
なる電圧信号を印加することにより、前記加圧室の壁部
を変化させ、もって加圧室に生じさせる圧力により該加
圧室に供給される液体を前記ノズルから噴霧する液滴噴
霧装置駆動回路であって、導入孔とノズル孔径の比率
(導入孔径/ノズル孔径)が0.6以上1.6以下で且
つノズル孔径とノズル厚みの比率(ノズル孔径/ノズル
厚み)が0.2以上4以下で、前記異なる印加電圧信号
が、放電開始電圧が印加された前記圧電/電歪素子から
電流を放電した後、一定時間放電最終電圧を保持し、そ
の後2種類以上の充電時定数をもった充電を順次行い、
且つ始めの充電時定数が、2番目の充電時定数よりも大
きく、且つ前記放電最終電圧を基準として、前記放電最
終電圧と前記放電開始電圧の電圧差の30%以上65%
以下の電圧で2番目の充電を開始し、少なくとも1つの
充電回路に前記圧電/電歪素子と直列にインダクタンス
と抵抗を介在させたことを特徴とする液滴噴霧装置駆動
回路。
4. A droplet spray nozzle, a pressurizing chamber for pressurizing a liquid to be sprayed from the nozzle, an introduction hole for supplying liquid to the pressurizing chamber, and pressurizing the pressurizing chamber. Piezo /
A predetermined voltage signal is applied to a droplet spraying device in which a plurality of micro droplet spraying units each including an electrostrictive element are provided, and the liquid introduction holes of adjacent multiple droplet spraying units are connected to a common liquid supply path. By repeatedly applying different voltage signals to the piezoelectric / electrostrictive element, the wall of the pressurizing chamber is changed, and the liquid supplied to the pressurizing chamber by the pressure generated in the pressurizing chamber is supplied to the nozzle. A nozzle sprayer driving circuit, wherein the ratio of the inlet hole and the nozzle hole diameter (inlet hole diameter / nozzle hole diameter) is 0.6 or more and 1.6 or less and the ratio of the nozzle hole diameter and the nozzle thickness (nozzle hole diameter / nozzle) Thickness) is not less than 0.2 and not more than 4 and the different applied voltage signals maintain the discharge final voltage for a certain period of time after discharging current from the piezoelectric / electrostrictive element to which the discharge starting voltage is applied. More charging Sequentially was charged with a constant,
In addition, the first charging time constant is larger than the second charging time constant, and 30% or more and 65% of the voltage difference between the final discharge voltage and the discharge start voltage with respect to the final discharge voltage.
A droplet spraying device driving circuit, wherein a second charging is started at the following voltage, and an inductance and a resistance are interposed in at least one charging circuit in series with the piezoelectric / electrostrictive element.
【請求項5】 請求項4において、2番目の充電時定数
で充電を開始したときから、圧電/電歪素子に次の所定
の電圧信号を印加するまでの時間(t40)が、液滴噴
霧用ノズルと、該ノズルから噴霧させる液体を加圧する
ための加圧室と、該加圧室に液体を供給する導入孔と、
該加圧室を加圧動作させる圧電/電歪素子とで構成され
る構造体中の流路パスに液体を供給したときの固有振動
周期(To)の4分の1以上20倍以下で且つ、1番目
の充電時定数で充電する時間(t30)と2番目の充電
時定数で充電を開始したときから圧電/電歪素子に次の
所定の電圧信号を印加するまでの時間(t40)の比率
(t30/t40)が0.1以上20以下であることを
特徴とする液滴噴霧装置駆動回路。
5. The method according to claim 4, wherein the time (t40) from when charging is started with the second charging time constant to when the next predetermined voltage signal is applied to the piezoelectric / electrostrictive element is equal to the droplet spraying time. Nozzle, a pressurized chamber for pressurizing the liquid to be sprayed from the nozzle, and an introduction hole for supplying the liquid to the pressurized chamber,
When the liquid is supplied to the flow path in the structure composed of the piezoelectric / electrostrictive element for performing the pressurizing operation of the pressurizing chamber, the natural vibration period (To) is not less than 4 and not more than 20 times and The time (t30) for charging with the first charging time constant and the time (t40) from when charging is started with the second charging time constant to when the next predetermined voltage signal is applied to the piezoelectric / electrostrictive element. A liquid droplet spraying device driving circuit, wherein a ratio (t30 / t40) is 0.1 or more and 20 or less.
【請求項6】 充電回路に加えて、放電回路に直列にイ
ンダクタンスと抵抗を介在させた請求項4又は5に記載
の液滴噴霧装置駆動回路。
6. The droplet spraying device driving circuit according to claim 4, wherein an inductance and a resistance are interposed in series with the discharging circuit in addition to the charging circuit.
【請求項7】 液滴噴霧用ノズルと、該ノズルから噴霧
させる液体を加圧するための加圧室と、該加圧室に液体
を供給する導入孔と、該加圧室を加圧動作させる圧電/
電歪素子とを備えた微少液滴噴霧ユニットを複数個備
え、隣接する複数液滴噴霧ユニットの液体導入孔が共通
の液体供給路に連結された液滴噴霧装置において、前記
圧電/電歪素子に所定の電圧信号を印加することによ
り、前記加圧室の壁部を変形させ、もって加圧室に生じ
る圧力により該加圧室に供給される液体を前記ノズルか
ら噴出する液滴噴霧装置駆動回路であって、印加電圧信
号が、電流を前記圧電/電歪素子に供給して充電した
後、一定時間充電最終電圧を保持し、その後2種類以上
の放電時定数を持った放電を順次行い、且つ始めの放電
時定数が、2番目の放電時定数よりも大きく、少なくと
も1つの放電回路に前記圧電/電歪素子と直列にインダ
クタンスと抵抗を介在させ、前記圧電/電歪素子を少な
くとも2つ以上のグループに分け、夫々のグループに電
流を充電、放電せしめる回路を有し、一方のグループの
放電電流の少なくとも一部を他方のグループの充電電流
の一部に使用することを特徴とする液滴噴霧装置駆動回
路。
7. A droplet spray nozzle, a pressurizing chamber for pressurizing a liquid to be sprayed from the nozzle, an introduction hole for supplying a liquid to the pressurizing chamber, and pressurizing the pressurizing chamber. Piezo /
A droplet spraying device comprising a plurality of micro droplet spraying units each having an electrostrictive element, wherein liquid introduction holes of adjacent plural droplet spraying units are connected to a common liquid supply path; By applying a predetermined voltage signal to the liquid droplet spraying device, the wall of the pressurized chamber is deformed, and the liquid supplied to the pressurized chamber is ejected from the nozzle by the pressure generated in the pressurized chamber. A circuit in which an applied voltage signal supplies a current to the piezoelectric / electrostrictive element, charges the same, holds a final charging voltage for a certain period of time, and then sequentially performs discharges having two or more discharge time constants. And the first discharge time constant is larger than the second discharge time constant, and an inductance and a resistance are interposed in series with the piezoelectric / electrostrictive element in at least one discharge circuit, and the piezoelectric / electrostrictive element is connected to at least two discharge circuits. One or more glues And a circuit for charging and discharging current to each group, and using at least a part of the discharge current of one group as a part of the charge current of the other group. Drive circuit.
【請求項8】 液滴噴霧用ノズルと、該ノズルから噴霧
させる液体を加圧するための加圧室と、該加圧室に液体
を供給する導入孔と、該加圧室を加圧動作させる圧電/
電歪素子とを備えた微少液滴噴霧ユニットを複数個備
え、隣接する複数液滴噴霧ユニットの液体導入孔が共通
の液体供給路に連結された液滴噴霧装置において、所定
の電圧信号を印加した前記圧電/電歪素子に繰り返し異
なる電圧信号を印加することにより、前記加圧室の壁部
を変化させ、もって加圧室に生じさせる圧力により該加
圧室に供給される液体を前記ノズルから噴霧する液滴噴
霧装置駆動回路であって、前記異なる印加電圧信号が、
放電開始電圧が印加された前記圧電/電歪素子から電流
を放電した後、一定時間放電最終電圧を保持し、その後
2種類以上の充電時定数を持った充電を順次行い、少な
くとも1つの充電回路に前記圧電/電歪素子と直列にイ
ンダクタンスと抵抗を介在させ、前記圧電/電歪素子を
少なくとも2つ以上のグループに分け、夫々のグループ
に電流を充電、放電せしめる回路を有し、一方のグルー
プの放電電流の少なくとも一部を他方のグループの充電
電流の一部に使用することを特徴とする液滴噴霧装置駆
動回路。
8. A droplet spray nozzle, a pressurizing chamber for pressurizing a liquid to be sprayed from the nozzle, an introduction hole for supplying liquid to the pressurizing chamber, and pressurizing the pressurizing chamber. Piezo /
A predetermined voltage signal is applied to a droplet spraying device in which a plurality of micro droplet spraying units each including an electrostrictive element are provided, and the liquid introduction holes of adjacent multiple droplet spraying units are connected to a common liquid supply path. By repeatedly applying different voltage signals to the piezoelectric / electrostrictive element, the wall of the pressurizing chamber is changed, and the liquid supplied to the pressurizing chamber by the pressure generated in the pressurizing chamber is supplied to the nozzle. A droplet spraying device driving circuit for spraying from, wherein the different applied voltage signals are:
After discharging the current from the piezoelectric / electrostrictive element to which the discharge starting voltage is applied, the discharge final voltage is held for a certain period of time, and thereafter, charging is sequentially performed with two or more types of charging time constants, and at least one charging circuit is provided. A circuit in which an inductance and a resistance are interposed in series with the piezoelectric / electrostrictive element, the piezoelectric / electrostrictive element is divided into at least two or more groups, and a current is charged and discharged in each group. A driving circuit for a droplet spraying device, wherein at least a part of a discharge current of a group is used as a part of a charge current of another group.
【請求項9】 放電回路に加えて、充電回路に直列にイ
ンダクタンスと抵抗を介在させた請求項7記載の液滴噴
霧装置駆動回路。
9. The driving circuit according to claim 7, wherein an inductance and a resistance are interposed in series with the charging circuit in addition to the discharging circuit.
【請求項10】 充電回路に加えて、放電回路に直列に
インダクタンスと抵抗を介在させた請求項8記載の液滴
噴霧装置駆動回路。
10. The driving circuit according to claim 8, wherein an inductance and a resistance are interposed in series with the discharging circuit in addition to the charging circuit.
JP2000229485A 1999-03-31 2000-07-28 Droplet sprayer drive circuit Expired - Fee Related JP3539365B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000229485A JP3539365B2 (en) 1999-08-20 2000-07-28 Droplet sprayer drive circuit
EP00307095A EP1078748A3 (en) 1999-08-20 2000-08-18 Circuit for driving liquid drop spraying apparatus
US10/290,034 US6702196B2 (en) 1999-03-31 2002-11-07 Circuit for driving liquid drop spraying apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23444599 1999-08-20
JP11-234445 1999-08-20
JP2000229485A JP3539365B2 (en) 1999-08-20 2000-07-28 Droplet sprayer drive circuit

Publications (2)

Publication Number Publication Date
JP2001129989A true JP2001129989A (en) 2001-05-15
JP3539365B2 JP3539365B2 (en) 2004-07-07

Family

ID=26531577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229485A Expired - Fee Related JP3539365B2 (en) 1999-03-31 2000-07-28 Droplet sprayer drive circuit

Country Status (2)

Country Link
EP (1) EP1078748A3 (en)
JP (1) JP3539365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326884A (en) * 2005-05-23 2006-12-07 Fuji Xerox Co Ltd Liquid drop ejector
JP2008207354A (en) * 2007-02-23 2008-09-11 Sii Printek Inc Inkjet head and inkjet recorder
JP2015501740A (en) * 2011-11-23 2015-01-19 インカ・デジタル・プリンターズ・リミテッド Inkjet printhead driver circuit and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68928503T2 (en) * 1988-10-28 1998-05-20 Brother Ind Ltd Dot matrix printer with piezoelectric or other actuator and discharge control device
DE69017936T2 (en) * 1989-04-17 1995-08-31 Seiko Epson Corp Driver for an inkjet printer.
JP3250596B2 (en) 1994-07-01 2002-01-28 セイコーエプソン株式会社 Ink jet recording device
US6161912A (en) * 1996-04-10 2000-12-19 Seiko Epson Corporation Method of maintaining and controlling the helmholtz resonant frequency in an ink jet print head
JP3349891B2 (en) * 1996-06-11 2002-11-25 富士通株式会社 Driving method of piezoelectric ink jet head
JPH10107335A (en) 1996-10-03 1998-04-24 Denso Corp Piezoelectric actuator drive circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326884A (en) * 2005-05-23 2006-12-07 Fuji Xerox Co Ltd Liquid drop ejector
JP2008207354A (en) * 2007-02-23 2008-09-11 Sii Printek Inc Inkjet head and inkjet recorder
JP2015501740A (en) * 2011-11-23 2015-01-19 インカ・デジタル・プリンターズ・リミテッド Inkjet printhead driver circuit and method

Also Published As

Publication number Publication date
JP3539365B2 (en) 2004-07-07
EP1078748A3 (en) 2001-05-16
EP1078748A2 (en) 2001-02-28

Similar Documents

Publication Publication Date Title
JP4636103B2 (en) Liquid ejecting apparatus and control apparatus for liquid ejecting apparatus
WO1995016568A1 (en) Method of and apparatus for driving ink jet head
JP2000318153A (en) Driver and driving method for inkjet recording head
US6478395B2 (en) Liquid jetting apparatus
EP0700783B1 (en) Ink jet recording apparatus
JP2002067304A (en) Driving circuit and its driving method for ink jet recording head
JP2001129989A (en) Drive circuit for liquid droplet atomizing device
US6702196B2 (en) Circuit for driving liquid drop spraying apparatus
JP4123736B2 (en) Inkjet printer and drive circuit
US6508411B1 (en) Method of driving liquid-drop spraying device
JP2004142448A (en) Liquid ejecting apparatus and control apparatus for liquid ejecting apparatus
JP2002254632A (en) Driving method for ink jet recording head
JP4492131B2 (en) Droplet discharge head driving method and droplet discharge apparatus
JP2011194641A (en) Driving circuit for capacitive load
JP2009061732A (en) Droplet discharge device
JP7562245B2 (en) Energy-recovery piezoelectric printhead
JPH0671876A (en) Inkjet head driving method
JP2005231174A (en) Driving method of ink ejector
JPH11216879A (en) Method for recovering ink-jet head and ink-jet head-driving circuit
JP4541856B2 (en) Driving method of piezoelectric ink jet head
JPH05318731A (en) Driving method of ink jet type recording head and its device
JP4419494B2 (en) Droplet ejection device, driving method of droplet ejection device, and manufacturing method of display device
JP2003103779A (en) Method and apparatus for driving ink jetting unit
JP2002240281A (en) Method and apparatus for driving ink jet head
JP3329354B2 (en) Driving circuit and driving method for inkjet recording head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040302

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040315

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees