JP2001101930A - Oxide superconducting laminated substrate, method for producing the same, and method for producing superconducting integrated circuit - Google Patents
Oxide superconducting laminated substrate, method for producing the same, and method for producing superconducting integrated circuitInfo
- Publication number
- JP2001101930A JP2001101930A JP27761699A JP27761699A JP2001101930A JP 2001101930 A JP2001101930 A JP 2001101930A JP 27761699 A JP27761699 A JP 27761699A JP 27761699 A JP27761699 A JP 27761699A JP 2001101930 A JP2001101930 A JP 2001101930A
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconducting
- substrate
- oxide
- crystal substrate
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Non-Insulated Conductors (AREA)
Abstract
(57)【要約】
【課題】 絶縁膜や、回路用の導電膜が形成される電子
デバイス用基板として用いられる高平坦性と高結晶性を
有する酸化物超電導結晶基板あるいは誘電体基板を備え
ており、絶縁膜や導電膜を成膜する際の熱処理に起因し
て上記酸化物超電導結晶基板にクラックが発生するのを
防止することと、上下の基板に形成された電極や配線同
士を容易に接続できることのうち、少なくとも一方の課
題を解決することを目的とする。
【解決手段】 高い平坦性と高結晶性を有する酸化物超
電導結晶基板3と、高強度の補強用結晶基板5とが熱圧
着されてなる酸化物超電導積層基板1。
PROBLEM TO BE SOLVED: To provide an oxide superconducting crystal substrate or a dielectric substrate having high flatness and high crystallinity used as an electronic device substrate on which an insulating film or a conductive film for a circuit is formed. It is possible to prevent cracks from being generated in the oxide superconducting crystal substrate due to heat treatment when forming an insulating film or a conductive film, and to easily form electrodes and wirings formed on upper and lower substrates. An object is to solve at least one of the problems that can be connected. SOLUTION: An oxide superconducting laminated substrate 1 in which an oxide superconducting crystal substrate 3 having high flatness and high crystallinity and a high-strength reinforcing crystal substrate 5 are thermocompression-bonded.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超電導デバイス等
の電子デバイス用基板材料に利用できる酸化物超電導積
層基板とその製造方法及び超電導集積回路の製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting laminated substrate which can be used as a substrate material for electronic devices such as superconducting devices, a method for producing the same, and a method for producing a superconducting integrated circuit.
【0002】[0002]
【従来の技術】一般に、超電導体を用いると、高周波表
面抵抗が低くでき、また、超電導のトンネル効果素子を
使うと低消費電力で高速の機能動作ができることから、
このような特性を有する超電導体を高周波の回路を備え
た電子デバイスへの適用が試みられている。超電導体を
用いた超電導デバイスの例としては、超電導集積回路が
ある。この超電導集積回路は、概略、Y−Ba−Cu−
O系の酸化物超電導単結晶または酸化物超電導多結晶か
らなる超電導結晶基板上に絶縁層を介して超電導体薄膜
からなる配線が形成されてなるものである。2. Description of the Related Art Generally, when a superconductor is used, high-frequency surface resistance can be reduced, and when a superconducting tunnel effect element is used, high-speed functional operation can be performed with low power consumption.
Attempts have been made to apply a superconductor having such characteristics to an electronic device having a high-frequency circuit. An example of a superconducting device using a superconductor is a superconducting integrated circuit. This superconducting integrated circuit is roughly represented by Y-Ba-Cu-
A wiring made of a superconducting thin film is formed on a superconducting crystal substrate made of an O-based oxide superconducting single crystal or an oxide superconducting polycrystal via an insulating layer.
【0003】ところでこのような構成の超電導集積回路
の従来の製造方法は、引き上げ法によりY−Ba−Cu
−O系の酸化物超電導単結晶あるいは酸化物超電導多結
晶からなるロッドを形成し、ついでこのロッドを切断
し、板状酸化物超電導結晶基板を作製し、ついでこの酸
化物超電導結晶基板上に気相堆積法等の成膜技術を用い
る薄膜多層化技術により絶縁膜と超電導体薄膜を成膜
し、フォトリソグラフィーにより超電導回路パターンを
形成することにより、目的とする超電導集積回路を得て
いた。また、必要に応じて超電導回路を構成する超電導
薄膜の臨界電流密度等の超電導特性を向上するために基
板を加熱していた。A conventional method of manufacturing a superconducting integrated circuit having such a structure is as follows: a Y-Ba-Cu
A rod made of a -O-based oxide superconducting single crystal or an oxide superconducting polycrystal is formed, and then this rod is cut to produce a plate-shaped oxide superconducting crystal substrate. A target superconducting integrated circuit has been obtained by forming an insulating film and a superconducting thin film by a thin film multilayering technique using a film forming technique such as a phase deposition method, and forming a superconducting circuit pattern by photolithography. Further, the substrate is heated as needed to improve superconducting characteristics such as critical current density of a superconducting thin film constituting a superconducting circuit.
【0004】[0004]
【発明が解決しようとする課題】しかしながら従来の超
電導集積回路の製造方法においては、酸化物超電導結晶
基板上に絶縁膜や回路用の超電導薄膜を成膜する際に基
板を加熱する熱処理や、あるいは、超電導特性を向上さ
せるために基板を加熱する熱処理を施しているため、こ
れら熱処理による熱応力により超電導基板にクラック等
が発生し、歩留まりが悪くなるという問題があった。ま
た、大型の超電導集積回路を作製する場合には、上記の
問題はより顕著であった。また、超電導体薄膜からなる
電極や、絶縁膜などの薄膜を薄膜多層化技術に形成した
二枚の酸化物超電導結晶基板を対向させ、これら上下の
酸化物超電導結晶基板の電極同士を接続する場合、酸化
物超電導結晶基板の表面に凹凸があると、上下の酸化物
超電導基板に設けられた超電導体薄膜からなる電極や配
線を張り合わせで接続するのは困難であった。それは、
薄膜の結晶性あるいは成膜条件から酸化物超電導結晶基
板上に堆積される薄膜の厚みは、数mm以下に制限され
ているため、上記基板の表面平坦度が低いと、電極や配
線にも凹凸が生じてしまうからである。However, in the conventional method for manufacturing a superconducting integrated circuit, a heat treatment for heating a substrate when forming an insulating film or a superconducting thin film for a circuit on an oxide superconducting crystal substrate, or In addition, since heat treatment for heating the substrate is performed in order to improve the superconducting characteristics, cracks and the like are generated in the superconducting substrate due to thermal stress due to the heat treatment, and there is a problem that the yield is deteriorated. In the case of manufacturing a large superconducting integrated circuit, the above-mentioned problem was more remarkable. In addition, when two oxide superconducting crystal substrates, each of which is made of a thin film such as an electrode made of a superconducting thin film or an insulating film formed by a thin film multilayer technology, are opposed to each other, and the electrodes of the upper and lower oxide superconducting crystal substrates are connected to each other. On the other hand, if the surface of the oxide superconducting crystal substrate has irregularities, it has been difficult to bond and connect electrodes and wiring made of superconducting thin films provided on the upper and lower oxide superconducting substrates. that is,
The thickness of the thin film deposited on the oxide superconducting crystal substrate is limited to a few mm or less due to the crystallinity of the thin film or the film forming conditions. Is caused.
【0005】本発明は、上記事情に鑑みてなされたもの
で、絶縁膜や、回路用の導電膜が形成される電子デバイ
ス用基板として用いられる高平坦性と高結晶性を有する
酸化物超電導結晶基板あるいは誘電体基板を備えてお
り、絶縁膜や導電膜を成膜する際の熱処理に起因して上
記酸化物超電導結晶基板にクラックが発生するのを防止
することと、上下の基板に形成された電極や配線同士を
容易に接続できることのうち、少なくとも一方の課題を
解決することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made of an oxide superconducting crystal having high flatness and high crystallinity which is used as an insulating film or a substrate for an electronic device on which a conductive film for a circuit is formed. A substrate or a dielectric substrate, which prevents cracks from being generated in the oxide superconducting crystal substrate due to heat treatment when forming an insulating film or a conductive film, and is formed on upper and lower substrates. It is an object of the present invention to solve at least one of the problems of easily connecting electrodes and wirings.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、酸化物超電導単結晶または酸化物超電導多結晶から
なる酸化物超電導結晶基板と補強用結晶基板とが熱圧着
されてなることを特徴とする酸化物超電導積層基板が採
用される。上記の構成の酸化物超電導積層基板の製造手
段としては、引き上げ法により作製した酸化物超電導単
結晶または酸化物超電導多結晶からなる酸化物超電導結
晶基板と、補強用結晶基板とを接触させて熱処理を施
し、上記酸化物超電導結晶基板と上記補強用結晶基板と
の接触界面を固着することを特徴とする酸化物超電導積
層基板の製造方法が採用される。また、上記の構成の酸
化物超電導積層基板の製造方法としては、引き上げ法に
より作製した酸化物超電導単結晶または酸化物超電導多
結晶からなる酸化物超電導結晶基板の両面を補強用結晶
基板で挟んだ後、熱処理を施し、上記酸化物超電導結晶
基板の両面に上記補強用結晶基板を固着し、酸化物超電
導結晶基板を表面方向と平行に切断することを特徴とす
る酸化物超電導積層基板の製造方法が採用される。In order to achieve the above object, an oxide superconducting crystal substrate made of an oxide superconducting single crystal or an oxide superconducting crystal and a reinforcing crystal substrate are thermocompression-bonded. The oxide superconducting laminated substrate is adopted. As a means for producing the oxide superconducting laminated substrate having the above-mentioned structure, an oxide superconducting crystal substrate made of an oxide superconducting single crystal or an oxide superconducting polycrystal produced by a pulling method and a reinforcing crystal substrate are brought into contact with each other to perform heat treatment. To fix the contact interface between the oxide superconducting crystal substrate and the reinforcing crystal substrate, thereby adopting a method for manufacturing an oxide superconducting laminated substrate. In addition, as a method for manufacturing the oxide superconducting laminated substrate having the above structure, both surfaces of an oxide superconducting crystal substrate made of an oxide superconducting single crystal or an oxide superconducting polycrystal prepared by a pulling method are sandwiched between reinforcing crystal substrates. Thereafter, a heat treatment is performed, the reinforcing crystal substrate is fixed to both surfaces of the oxide superconducting crystal substrate, and the oxide superconducting crystal substrate is cut in parallel with the surface direction. Is adopted.
【0007】また、上記目的を解決するために酸化物超
電導単結晶または酸化物超電導多結晶からなる酸化物超
電導結晶基板と、表面に酸化物超電導体薄膜が形成され
た補強用結晶基板とからなり、上記酸化物超電導体薄膜
と上記酸化物超電導結晶基板とが熱圧着されてなること
を特徴とする酸化物超電導積層基板を採用してもよい。
上記の構成の酸化物超電導積層基板の製造方法として
は、引き上げ法により作製した酸化物超電導単結晶また
は酸化物超電導多結晶からなる酸化物超電導結晶基板
と、酸化物超電導体薄膜が表面に形成された補強用結晶
基板の酸化物超電導体薄膜とを接触させて熱処理を施
し、上記酸化物超電導結晶基板と上記酸化物超電導体薄
膜との接触界面を固着することを特徴とする酸化物超電
導積層基板の製造方法が採用される。Further, in order to solve the above-mentioned object, an oxide superconducting crystal substrate made of an oxide superconducting single crystal or an oxide superconducting polycrystal, and a reinforcing crystal substrate having an oxide superconducting thin film formed on the surface are provided. An oxide superconducting laminated substrate characterized in that the oxide superconducting thin film and the oxide superconducting crystal substrate are thermocompression-bonded.
As a method of manufacturing the oxide superconducting laminated substrate having the above configuration, an oxide superconducting crystal substrate made of an oxide superconducting single crystal or an oxide superconducting polycrystal prepared by a pulling method, and an oxide superconducting thin film are formed on the surface. An oxide superconducting laminated substrate characterized by fixing the contact interface between the oxide superconducting crystal substrate and the oxide superconducting thin film by subjecting the oxide superconducting thin film of the reinforcing crystal substrate to heat treatment by contacting the same. Is adopted.
【0008】また、上記のいずれかの構成の酸化物超電
導積層基板の製造方法において、上記熱処理は荷重下で
行われることが好ましい。また、上記熱処理を施す際に
かける荷重は、5乃至1000g/cm2であることが
好ましい。また、上記のいずれかの構成の酸化物超電導
積層基板の製造方法において、上記酸化物超電導結晶基
板と上記補強用結晶基板との接触面のうち少なくとも一
方の接触面の表面粗さを0.01乃至50μmとするこ
とが好ましい。さらにまた、上記のいずれかの構成の酸
化物超電導積層基板の製造方法において、上記熱処理を
施す際の熱処理温度は、上記酸化物超電導結晶基板を構
成する酸化物超電導単結晶または酸化物超電導多結晶の
融点(Mp)より低く、Mp−100(K)より高い温度
が採用されることが好ましい。また、上記熱処理を施す
際の熱処理温度としては、上記酸化物超電導結晶基板を
構成する酸化物超電導単結晶または酸化物超電導多結晶
の分解温度より低く、上記分解温度−100(K)より
高い温度が採用されてもよい。In the method for manufacturing an oxide superconducting laminated substrate having any one of the above structures, the heat treatment is preferably performed under a load. Further, the load applied during the heat treatment is preferably 5 to 1000 g / cm 2 . Further, in the method for manufacturing an oxide superconducting laminated substrate having any one of the above structures, the surface roughness of at least one contact surface among the contact surfaces between the oxide superconducting crystal substrate and the reinforcing crystal substrate is set to 0.01. It is preferable to set the thickness to 50 μm. Still further, in the method for manufacturing an oxide superconducting multilayer substrate having any one of the above structures, the heat treatment temperature at the time of performing the heat treatment may be an oxide superconducting single crystal or an oxide superconducting polycrystal constituting the oxide superconducting crystal substrate. Preferably, a temperature lower than the melting point (M p ) and higher than M p -100 (K) is employed. The heat treatment temperature at the time of performing the heat treatment is a temperature lower than the decomposition temperature of the oxide superconducting single crystal or the oxide superconducting polycrystal constituting the oxide superconducting crystal substrate and higher than the decomposition temperature −100 (K). May be adopted.
【0009】また、上記のいずれかの構成の酸化物超電
導積層基板の製造方法において、上記熱処理を施す際の
昇降温速度は、10乃至500K/時間の範囲内とする
手段が採用されることが好ましい。また、上記のいずれ
かの構成の酸化物超電導積層基板の製造方法において、
上記熱処理時間は、1乃至300時間の範囲内とする手
段が採用されることが好ましい。Further, in the method for manufacturing an oxide superconducting laminated substrate having any one of the above structures, means may be employed in which the rate of temperature rise and fall during the heat treatment is in the range of 10 to 500 K / hour. preferable. Further, in the method for producing an oxide superconducting laminated substrate having any one of the above configurations,
It is preferable to employ means for setting the heat treatment time in the range of 1 to 300 hours.
【0010】本発明の超電導集積回路の製造方法は、上
記のいずれかの構成の酸化物超電導積層基板の製造方法
により製造した酸化物超電導積層基板上に誘電体薄膜と
酸化物超電導体薄膜を成膜した後、該酸化物超電導体薄
膜を配線形状にパターニングして酸化物超電導体配線を
形成することを特徴とする。また、本発明の超電導集積
回路の製造方法は、誘電体基板上に酸化物超電導単結晶
または酸化物超電導多結晶からなる酸化物超電導体配線
を形成してなる第一と第二の酸化物超電導積層基板のう
ち少なくとも一方に絶縁膜と酸化物超電体薄膜を成膜し
た後、該酸化物超電導体薄膜を配線形状にパターニング
して酸化物超電導体回路を形成し、ついで、上記第一と
第二の酸化物超電導積層基板の酸化物超電導体配線同士
を直接あるいは酸化物超電導体薄膜を介して接触させて
熱処理を施し、上記第一と第二の酸化物超電導積層基板
の酸化物超電導体配線同士を固着することを特徴とす
る。なお、本発明における酸化物超電導体薄膜や酸化物
超電単結晶、酸化物超電導多結晶とは、超電導特性を有
するものだけでなく、熱処理により超電導特性を生じる
ことができるもののことをいう。A method of manufacturing a superconducting integrated circuit according to the present invention comprises forming a dielectric thin film and an oxide superconducting thin film on an oxide superconducting laminated substrate produced by the method for producing an oxide superconducting laminated substrate having any one of the above constitutions. After forming the film, the oxide superconductor thin film is patterned into a wiring shape to form an oxide superconductor wiring. Further, the method for manufacturing a superconducting integrated circuit according to the present invention comprises a first and a second oxide superconducting layer formed by forming an oxide superconducting wiring made of an oxide superconducting single crystal or an oxide superconducting polycrystal on a dielectric substrate. After forming an insulating film and an oxide superconductor thin film on at least one of the laminated substrates, the oxide superconductor thin film is patterned into a wiring shape to form an oxide superconductor circuit. The oxide superconductors of the first and second oxide superconducting laminated substrates are subjected to a heat treatment by bringing the oxide superconducting wires of the second oxide superconducting laminated substrate into contact with each other directly or via an oxide superconducting thin film. Wirings are fixed to each other. The oxide superconducting thin film, oxide superconducting single crystal, and oxide superconducting polycrystal in the present invention mean not only those having superconducting properties but also those capable of producing superconducting properties by heat treatment.
【0011】[0011]
【発明の実施の形態】以下、本発明の酸化物超電導積層
基板とその製造方法の一実施形態について説明する。図
1は、本発明の酸化物超電導積層基板の第1実施形態例
を示す断面図である。この酸化物超電導積層基板1は、
酸化物超電導結晶基板3と補強用結晶基板5とが熱圧着
されてなるものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the oxide superconducting laminated substrate of the present invention and a method for manufacturing the same will be described. FIG. 1 is a sectional view showing a first embodiment of an oxide superconducting laminated substrate according to the present invention. This oxide superconducting laminated substrate 1
The oxide superconducting crystal substrate 3 and the reinforcing crystal substrate 5 are thermocompression-bonded.
【0012】酸化物超電導結晶基板3は、酸化物超電導
単結晶または酸化物超電導多結晶から構成されており、
これらの結晶は下記化学式(1)で表される酸化物超電
導化合物の結晶である。 R1+XBa2-xCu3Oy ・・・(1) (式中、Rは、Y,Nd,Sm,Gd,Eu,Yb,P
rのうちから選択される1種または2種以上の元素であ
り、yは6乃至7、xは0乃至1である。)The oxide superconducting crystal substrate 3 is composed of an oxide superconducting single crystal or an oxide superconducting polycrystal,
These crystals are crystals of the oxide superconducting compound represented by the following chemical formula (1). R 1 + x Ba 2−x Cu 3 O y (1) (where R is Y, Nd, Sm, Gd, Eu, Yb, P
r is one or more elements selected from r, y is 6 to 7, and x is 0 to 1. )
【0013】補強用結晶基板5をなす材料は、酸化物超
電導結晶基板3を構成する酸化物超電導単結晶または酸
化物超電導多結晶の融点Mp(包晶温度;Tp)より融点
が高く、酸化物超電導結晶基板3より高強度の誘電体が
好ましく、例えば、MgO、SrTiO3、イットリウ
ム安定化ジルコニア(YSZ)などが用いられる。ま
た、これらの中でも酸化物超電導結晶基板3に比べて熱
膨張係数の大きいMgO単結晶を用いるのが好ましい。The material forming the reinforcing crystal substrate 5 has a melting point higher than the melting point M p (peritectic temperature; T p ) of the oxide superconducting single crystal or the oxide superconducting polycrystal constituting the oxide superconducting crystal substrate 3. A dielectric having a higher strength than the oxide superconducting crystal substrate 3 is preferable. For example, MgO, SrTiO 3 , yttrium-stabilized zirconia (YSZ), or the like is used. Among them, it is preferable to use an MgO single crystal having a larger thermal expansion coefficient than the oxide superconducting crystal substrate 3.
【0014】次に、第1実施形態の酸化物超電導積層基
板1の第一の製造方法を図2乃至図4を用いて説明す
る。まず、引き上げ法により上記組成の酸化物超電導単
結晶または酸化物超電導多結晶からなるロッドを作製し
た後、このロッドを切断し、板状の酸化物超電導結晶基
板3aを作製する。ここでの板状の酸化物超電導結晶基
板3aは、後述の工程で2分割されるため厚めに設定さ
れており、本実施形態では目的とする酸化物超電導結晶
基板3の厚みの2倍以上の厚みに設定されている。な
お、酸化物超電導多結晶からなるロッドは、引き上げ法
以外の方法で製造したものであってもよい。また、上記
のようにして作製した板状の酸化物超電導結晶基板3a
の表面のうち補強用結晶基板3と接着させる表面は、粗
研磨により、表面粗さが0.01μm乃至50μmの範
囲内にされていることが補強用結晶基板3との接着性を
向上できることと、酸化物超電導積層基板1の酸化物超
電導結晶基板3の表面平坦度を良好とすることができる
点で好ましい。また、板状の酸化物超電導結晶基板3a
の表面のうち配線や絶縁膜を形成させる表面は、微細研
磨が施されていることが表面平坦度を良好とすることが
できる点で好ましい。ここでロッドを切断する際には、
酸化物超電導単結晶または酸化物超電導多結晶の劈開面
が基板3の表面となるように切断することが、補強用結
晶基板3との接着性を向上できることと、表面平坦性が
良好な酸化物超電導結晶基板3が得られる点でより好ま
しい。Next, a first method for manufacturing the oxide superconducting laminated substrate 1 of the first embodiment will be described with reference to FIGS. First, a rod made of an oxide superconducting single crystal or an oxide superconducting polycrystal having the above composition is produced by a pulling method, and then the rod is cut to produce a plate-shaped oxide superconducting crystal substrate 3a. Here, the plate-shaped oxide superconducting crystal substrate 3a is set to be thicker because it is divided into two in a later-described step, and in this embodiment, the thickness of the target oxide superconducting crystal substrate 3 is twice or more. The thickness is set. The rod made of oxide superconducting polycrystal may be manufactured by a method other than the pulling method. The plate-shaped oxide superconducting crystal substrate 3a produced as described above
Among the surfaces described above, the surface to be bonded to the reinforcing crystal substrate 3 should have a surface roughness within the range of 0.01 μm to 50 μm by rough polishing to improve the adhesiveness with the reinforcing crystal substrate 3. This is preferable because the surface flatness of the oxide superconducting crystal substrate 3 of the oxide superconducting multilayer substrate 1 can be improved. Further, the plate-shaped oxide superconducting crystal substrate 3a
It is preferable that the surface on which the wiring and the insulating film are formed is finely polished from the viewpoint that the surface flatness can be improved. When cutting the rod here,
Cutting such that the cleavage plane of the oxide superconducting single crystal or the oxide superconducting polycrystal becomes the surface of the substrate 3 can improve the adhesiveness to the reinforcing crystal substrate 3 and provide an oxide having good surface flatness. It is more preferable in that a superconducting crystal substrate 3 can be obtained.
【0015】ついで、酸化物超電導結晶基板3aの両面
を補強用結晶基板5,5で挟んで積層体25を作製す
る。ここで用いる各補強用結晶基板5の表面には、研磨
により表面粗さが0.01μm乃至50μmの範囲内に
されていることが、酸化物超電導結晶基板3aとの接着
性を向上できる点で好ましい。ついで、この積層体25
に荷重下で熱処理を施す。ここでの熱処理は、図2に示
すような加熱炉20が用いられる。この加熱炉20は、
アルミナからなる処理容器21と、この処理容器を外側
から加熱するヒータ22と、処理容器21内の温度を測
定するための熱電対23から概略構成されている。Next, a laminated body 25 is prepared by sandwiching both surfaces of the oxide superconducting crystal substrate 3a between the reinforcing crystal substrates 5 and 5. The surface roughness of each of the reinforcing crystal substrates 5 used here is adjusted to be in the range of 0.01 μm to 50 μm by polishing, in that the adhesiveness to the oxide superconducting crystal substrate 3a can be improved. preferable. Then, the laminate 25
Is subjected to a heat treatment under load. For the heat treatment here, a heating furnace 20 as shown in FIG. 2 is used. This heating furnace 20
A processing vessel 21 made of alumina, a heater 22 for heating the processing vessel from the outside, and a thermocouple 23 for measuring the temperature inside the processing vessel 21 are schematically configured.
【0016】上記のような構成の加熱炉20を用いて積
層体25を荷重下で熱処理するには、上記のようにして
作製した積層体25を処理容器21内に入れた後、この
積層体25上に重り30を配置し、ヒータ22により室
温から熱処理温度まで昇温した後、この熱処理温度で所
定時間(熱処理時間)保持した後、室温まで降温する。
図3は、上記積層体25に熱処理を施す際のヒートパタ
ーンを示す図であり、横軸は時間、縦軸は温度である。
図3中、実線は処理容器21内の温度である。この温
度は、熱電対23により測定できる。また、破線は酸
化物超電導結晶基板3aを構成する酸化物超電導単結晶
または酸化物超電導多結晶の融点Mp(あるいは包晶温
度;Tp)より100゜Cを引いたときの温度(Mp−1
00)、破線は酸化物超電導結晶基板3aを構成する
酸化物超電導単結晶または酸化物超電導多結晶の融点M
p(包晶温度;Tp)、破線は補強用結晶基板を構成す
る材料の融点である。あるいは、破線は酸化物超電導
結晶基板3aを構成する酸化物超電導単結晶または酸化
物超電導多結晶の分解温度より100゜Cを引いたとき
の温度、破線は酸化物超電導結晶基板3aを構成する
酸化物超電導単結晶または酸化物超電導多結晶の分解温
度であってもよい。In order to heat-treat the laminate 25 under a load using the heating furnace 20 configured as described above, the laminate 25 manufactured as described above is placed in a processing vessel 21 and then the laminate 25 is heated. The weight 30 is placed on the upper surface 25, the temperature is raised from room temperature to the heat treatment temperature by the heater 22, the temperature is kept at the heat treatment temperature for a predetermined time (heat treatment time), and then the temperature is lowered to room temperature.
FIG. 3 is a diagram showing a heat pattern when the laminate 25 is subjected to a heat treatment. The horizontal axis represents time, and the vertical axis represents temperature.
In FIG. 3, the solid line indicates the temperature inside the processing container 21. This temperature can be measured by the thermocouple 23. The broken line indicates the temperature (M p ) obtained by subtracting 100 ° C. from the melting point M p (or peritectic temperature; T p ) of the oxide superconducting single crystal or the oxide superconducting polycrystal constituting the oxide superconducting crystal substrate 3a. -1
00), the broken line indicates the melting point M of the oxide superconducting single crystal or the oxide superconducting polycrystal constituting the oxide superconducting crystal substrate 3a.
p (peritectic temperature; T p ) and the broken line indicate the melting point of the material constituting the reinforcing crystal substrate. Alternatively, the dashed line indicates the temperature obtained by subtracting 100 ° C. from the decomposition temperature of the oxide superconducting single crystal or the oxide superconducting polycrystal constituting the oxide superconducting crystal substrate 3a, and the dashed line indicates the oxidation forming the oxide superconducting crystal substrate 3a. It may be the decomposition temperature of the superconducting single crystal or oxide superconducting polycrystal.
【0017】上記熱処理を施す際にかける荷重は、5乃
至1000g/cm2であることが好ましい。荷重が5
g/cm2未満であると結合力が不足するため好ましく
なく、1000g/cm2を超えると割れ等が発生する
ため好ましくない。ここでの熱処理温度は、酸化物超電
導結晶基板3aを構成する酸化物超電導単結晶または酸
化物超電導多結晶の融点Mp(あるいは包晶温度;Tp)
より低く、かつ上記Mp−100(K)より高い温度と
することが好ましい。熱処理温度が上記融点Mpより高
いと、酸化物超電導体が融解してしまうため好ましくな
く、上記Mp−100(K)より低いと、結合力が不足
するため好ましくない。また、ここでの熱処理温度は、
酸化物超電導結晶基板3aを構成する酸化物超電導単結
晶または酸化物超電導多結晶の分解温度より低く、かつ
上記分解温度−100(K)より高い温度としてもよ
い。The load applied during the heat treatment is preferably 5 to 1000 g / cm 2 . Load is 5
is not preferable because the bond strength is less than g / cm 2 is insufficient, undesirably like cracks exceeds 1000 g / cm 2 is generated. The heat treatment temperature here is the melting point M p (or peritectic temperature; T p ) of the oxide superconducting single crystal or the oxide superconducting polycrystal constituting the oxide superconducting crystal substrate 3a.
Lower, and it is preferable to set the M p -100 temperature higher than (K). If the heat treatment temperature is higher than the melting point M p, is not preferable because the oxide superconductor will be melted, Below the M p -100 (K), it is not preferred because the bonding strength is insufficient. Also, the heat treatment temperature here is
The temperature may be lower than the decomposition temperature of the oxide superconducting single crystal or the oxide superconducting polycrystal constituting the oxide superconducting crystal substrate 3a and higher than the decomposition temperature −100 (K).
【0018】上記熱処理を施す際の熱処理温度までの昇
温速度は、1乃至500K/時間の範囲内であることが
好ましく、より好ましくは10乃至50K/時間の範囲
内である。熱処理温度までの昇温速度が1K/時間未満
であると、酸素雰囲気中ではツイン生成が顕著となり、
また、処理時間も長くなりすぎるため好ましくなく、昇
温速度が500K/時間を超えると熱応力の為クラック
が多発するため好ましくない。The rate of temperature rise up to the heat treatment temperature during the heat treatment is preferably in the range of 1 to 500 K / hour, more preferably in the range of 10 to 50 K / hour. If the heating rate up to the heat treatment temperature is less than 1 K / hour, twin formation becomes remarkable in an oxygen atmosphere,
In addition, the processing time is too long, which is not preferable. If the heating rate exceeds 500 K / hour, cracks occur frequently due to thermal stress, which is not preferable.
【0019】上記熱処理時間は、1乃至300時間の範
囲内であることが好ましく、より好ましくは10乃至1
50時間の範囲内である。熱処理時間が1時間未満であ
ると溶着が不十分となるため好ましくなく、300時間
を超えると処理時間が長くなり過ぎるため好ましくな
い。The heat treatment time is preferably in the range of 1 to 300 hours, more preferably 10 to 1 hour.
Within 50 hours. If the heat treatment time is less than 1 hour, welding becomes insufficient, which is not preferable. If it exceeds 300 hours, the processing time becomes too long, which is not preferable.
【0020】上記熱処理温度から降温する際の降温速度
は、1乃至500K/時間の範囲内であることが好まし
く、より好ましくは10乃至50K/時間の範囲内であ
る。降温速度が1K/時間未満であると、処理時間が長
くなりすぎ、また、ツイン生成が増大するため好ましく
なく、降温速度が500K/時間を超えると、膨張率の
差による応力や、熱応力等の為、クラックが多発するた
め好ましくない。上記のような熱処理を施す際の雰囲気
は、大気中で行うことができるが、低酸素雰囲気で行う
と、上記酸化物超電導単結晶または酸化物超電導多結晶
の融点M p(あるいは包晶温度;Tp)あるいは分解温度
を下げることができ、熱処理温度を下げることができる
点で好ましい。Cooling rate when cooling from the above heat treatment temperature
Is preferably in the range of 1 to 500 K / hour
And more preferably in the range of 10 to 50 K / hour.
You. When the cooling rate is less than 1 K / hour, the processing time is long.
It is preferable because it becomes too thick and twin generation increases
When the cooling rate exceeds 500K / hour,
Many cracks occur due to stress due to difference, thermal stress, etc.
Not preferred. Atmosphere when performing the above heat treatment
Can be performed in the atmosphere, but performed in a low oxygen atmosphere
And the above oxide superconducting single crystal or oxide superconducting polycrystal
Melting point M p(Or peritectic temperature; Tp) Or decomposition temperature
Can be lowered, and the heat treatment temperature can be lowered
It is preferred in that respect.
【0021】積層体25に上述のような熱処理を荷重下
で施すと、酸化物超電導結晶基板3aの両面に補強用結
晶基板5,5を固着することができる。これは、積層体
25に荷重下で熱処理が施されると、接触界面付近の酸
化物超電導結晶基板3aの構成粒子と補強用結晶基板5
の構成粒子の間の隙間にあった空気が活性化されて移動
するので、酸化物超電導結晶基板3aの構成粒子を構成
する分子と補強用結晶基板5の構成粒子を構成する分子
に分子間力が働き、酸化物超電導結晶基板3aと各補強
用結晶基板5,5とを接着することができる。ついで、
この積層体25を処理容器21から取り出し、図4に示
すように積層体25の酸化物超電導結晶基板3aを表面
方向と平行に切断すると、一度に二枚の酸化物超電導積
層基板1が得られる。ここで酸化物超電導結晶基板3a
を切断する際には、酸化物超電導単結晶または酸化物超
電導多結晶の劈開面が得られる積層基板1の酸化物超電
導結晶基板3の表面となるように切断することが表面平
坦性を向上できる点で好ましい。また、上記のようにし
て得られた酸化物超電導積層基板1の酸化物超電導結晶
基板3の表面には、必要に応じてさらに微細研磨が施さ
れることが、表面平坦性を向上できる点で好ましい。When the above-described heat treatment is applied to the laminate 25 under a load, the reinforcing crystal substrates 5 and 5 can be fixed to both surfaces of the oxide superconducting crystal substrate 3a. This is because when the laminate 25 is subjected to a heat treatment under a load, the constituent particles of the oxide superconducting crystal substrate 3a near the contact interface and the reinforcing crystal substrate 5
The air existing in the gaps between the constituent particles is activated and moves, so that the molecules forming the constituent particles of the oxide superconducting crystal substrate 3a and the molecules forming the constituent particles of the reinforcing crystal substrate 5 have an intermolecular force. Works to bond the oxide superconducting crystal substrate 3a to the reinforcing crystal substrates 5 and 5. Then
When the stacked body 25 is taken out of the processing container 21 and the oxide superconducting crystal substrate 3a of the stacked body 25 is cut parallel to the surface direction as shown in FIG. 4, two oxide superconducting stacked substrates 1 are obtained at one time. . Here, the oxide superconducting crystal substrate 3a
When cutting is performed, it is possible to improve the surface flatness by cutting so that the cleavage plane of the oxide superconducting single crystal or the oxide superconducting polycrystal becomes the surface of the oxide superconducting crystal substrate 3 of the laminated substrate 1 where the cleavage plane is obtained. It is preferred in that respect. Further, the surface of the oxide superconducting crystal substrate 3 of the oxide superconducting laminated substrate 1 obtained as described above is further finely polished as necessary, so that the surface flatness can be improved. preferable.
【0022】なお、このようにして得られた酸化物超電
導積層基板1の酸化物超電導結晶基板3の超電導特性が
不十分である場合には、酸素雰囲気中で基板1を500
゜C〜600゜Cに加熱するアニール処理が施される。
このアニール処理は、酸化物超電導結晶基板3と補強用
結晶基板5とを接着するための熱処理の降温工程中に行
ってもよい。また、上記の実施形態においては、酸化物
超電導結晶基板3aと補強用結晶基板5とを接着するた
めの熱処理を荷重下で行った場合について説明したが、
熱処理温度を先に述べた範囲で上げることにより、特別
な荷重なしに、すなわち自重により接着可能である。If the superconducting properties of the oxide superconducting crystal substrate 3 of the thus obtained oxide superconducting laminated substrate 1 are insufficient, the substrate 1 is placed in an oxygen atmosphere for 500 hours.
An annealing process of heating to ゜ C to 600 ゜ C is performed.
This annealing treatment may be performed during a temperature lowering step of a heat treatment for bonding the oxide superconducting crystal substrate 3 and the reinforcing crystal substrate 5. Further, in the above embodiment, the case where the heat treatment for bonding the oxide superconducting crystal substrate 3a and the reinforcing crystal substrate 5 is performed under a load has been described.
By increasing the heat treatment temperature within the above-mentioned range, bonding can be performed without a special load, that is, by its own weight.
【0023】次に、実施形態の酸化物超電導積層基板1
の第二の製造方法を説明する。先に述べた第一の製造方
法と同様にして作製した酸化物超電導結晶基板3aの片
面に補強用結晶基板5を積層して上記第一の製造方法と
同様にして熱処理を施し、酸化物超電導結晶基板3aと
補強用結晶基板5との接触界面を固着すると、図1に示
すような酸化物超電導積層基板1が得られる。この第二
の製造方法では、酸化物超電導結晶基板3aを面方向に
切断する工程を要しないため、基板3aの厚みは第一の
製造方法で用いるものよりも薄いものが用いられる。Next, the oxide superconducting laminated substrate 1 of the embodiment
The second manufacturing method will be described. The reinforcing crystal substrate 5 is laminated on one side of the oxide superconducting crystal substrate 3a manufactured in the same manner as the first manufacturing method described above, and heat-treated in the same manner as in the first manufacturing method. When the contact interface between crystal substrate 3a and reinforcing crystal substrate 5 is fixed, oxide superconducting laminated substrate 1 as shown in FIG. 1 is obtained. In the second manufacturing method, since the step of cutting the oxide superconducting crystal substrate 3a in the plane direction is not required, the thickness of the substrate 3a is smaller than that used in the first manufacturing method.
【0024】第1実施形態の酸化物超電導積層基板1に
あっては、高い平坦性と高結晶性を有する酸化物超電導
結晶基板3と、高強度の補強用結晶基板5とが熱圧着さ
れたものであるので、酸化物超電導結晶基板3の強度を
向上でき、この積層基板1上に絶縁膜や導電膜を成膜す
る際に熱処理を施しても、酸化物超電導結晶基板3に発
生するクラックを大幅に低減でき、電子デバイスプロセ
スにおける歩留まりを著しく向上できる。また、この酸
化物超電導積層基板1の酸化物超電導結晶基板3は、高
い平坦性と高結晶性を有しているので、酸化物超電導結
晶基板3上に形成した絶縁膜や超電導体配線や電極の表
面にも凹凸が生じにくく、従って、このような絶縁膜や
超電導体配線や電極が形成された二枚の酸化物超電導積
層基板を用意した後、これらを対向させ、熱処理すれ
ば、上下の電極や配線を容易に接続できる。なお、上記
実施形態においては、上記酸化物超電導単結晶又は酸化
物超電導多結晶からなる基板3を引上げ法により作製し
た場合について説明したが、ある程度の厚みを有する上
記酸化物超電導単結晶又は酸化物超電導多結晶からなる
基板を作製できれば他の方法で製造したものであっても
よい。また、酸化物超電導結晶基板3と補強用結晶基板
5とを熱圧着するための熱処理を施す際の荷重として積
層体25に重り30を載せる場合について説明したが、
ステンレスバネ等のバネ部材により積層体25を両側よ
り加圧しながら熱処理を施すようにしてもよい。In the oxide superconducting laminated substrate 1 of the first embodiment, an oxide superconducting crystal substrate 3 having high flatness and high crystallinity and a high-strength reinforcing crystal substrate 5 are thermocompression-bonded. Therefore, the strength of the oxide superconducting crystal substrate 3 can be improved, and even if heat treatment is performed when an insulating film or a conductive film is formed on the laminated substrate 1, cracks generated in the oxide superconducting crystal substrate 3 can be obtained. Can be greatly reduced, and the yield in the electronic device process can be significantly improved. Further, since the oxide superconducting crystal substrate 3 of the oxide superconducting laminated substrate 1 has high flatness and high crystallinity, an insulating film, a superconducting wiring and an electrode formed on the oxide superconducting crystal substrate 3 are formed. The surface of the substrate is unlikely to have irregularities. Therefore, after preparing two oxide superconducting laminated substrates on which such an insulating film, a superconductor wiring and an electrode are formed, these are opposed to each other, and heat treatment is performed. Electrodes and wiring can be easily connected. In the above embodiment, the case where the substrate 3 made of the oxide superconducting single crystal or the oxide superconducting polycrystal is manufactured by the pulling method has been described, but the oxide superconducting single crystal or the oxide having a certain thickness is described. A substrate manufactured by another method may be used as long as a substrate made of superconducting polycrystal can be manufactured. In addition, the case where the weight 30 is placed on the laminate 25 as a load when heat treatment for thermocompression bonding the oxide superconducting crystal substrate 3 and the reinforcing crystal substrate 5 is described.
The heat treatment may be performed while pressing the laminate 25 from both sides with a spring member such as a stainless spring.
【0025】次に、本発明の酸化物超電導積層基板の第
2実施形態について説明する。図5は、第2実施形態の
酸化物超電導積層基板を示す断面図である。この酸化物
超電導積層基板31は、酸化物超電導単結晶または酸化
物超電導多結晶からなる酸化物超電導結晶基板33と、
表面に酸化物超電導体薄膜44が形成された補強用結晶
基板(誘電体薄板)35とからなり、酸化物超電導体薄
膜44と酸化物超電導結晶基板33とが熱圧着されてな
るものである。酸化物超電導結晶基板33が第1実施形
態で用いられた酸化物超電導結晶基板3と特に異なると
ころは、引き上げ法により作製した板状の酸化物超電導
結晶基板の表面の一部が削られた断面台形状のものであ
る点である。この基板33の面方位は任意にとれるが、
磁場侵入長が短くなるc面基板が配線インダクタンスの
低下を図る点で最良である。Next, a second embodiment of the oxide superconducting laminate substrate of the present invention will be described. FIG. 5 is a sectional view showing an oxide superconducting multilayer substrate according to the second embodiment. The oxide superconducting laminated substrate 31 includes an oxide superconducting crystal substrate 33 made of an oxide superconducting single crystal or an oxide superconducting polycrystal,
A reinforcing crystal substrate (dielectric thin plate) 35 having an oxide superconducting thin film 44 formed on the surface thereof is formed by thermocompression bonding of the oxide superconducting thin film 44 and the oxide superconducting crystal substrate 33. The oxide superconducting crystal substrate 33 is particularly different from the oxide superconducting crystal substrate 3 used in the first embodiment in that a section of the surface of the plate-shaped oxide superconducting crystal substrate manufactured by the pulling method is partially cut away. It is trapezoidal. Although the plane orientation of the substrate 33 can be arbitrarily determined,
A c-plane substrate having a short magnetic field penetration length is the best in reducing the wiring inductance.
【0026】補強用結晶基板35が第1実施形態で用い
られた補強用結晶基板5と異なるところは、酸化物超電
導結晶基板33をはめ込むための嵌合孔35aが形成さ
れている点である。嵌合孔35aは、上面側から下面側
にかけて拡径に形成されている。この嵌合孔35aの表
面に、酸化物超電導体薄膜44が成膜されている。そし
て、このような補強用結晶基板35の酸化物超電導体薄
膜44が形成された嵌合孔35aに酸化物超電導結晶基
板33が嵌められ、熱圧着されている。The reinforcing crystal substrate 35 differs from the reinforcing crystal substrate 5 used in the first embodiment in that a fitting hole 35a for receiving the oxide superconducting crystal substrate 33 is formed. The fitting hole 35a is formed to have a larger diameter from the upper surface side to the lower surface side. An oxide superconductor thin film 44 is formed on the surface of the fitting hole 35a. The oxide superconducting crystal substrate 33 is fitted into the fitting hole 35a in which the oxide superconducting thin film 44 of the reinforcing crystal substrate 35 is formed, and is thermocompression-bonded.
【0027】次に、第2実施形態の酸化物超電導積層基
板31の製造方法を説明する。まず、先に述べた方法と
同様にして作製した板状の酸化物超電導結晶基板を、超
音波、レーザー、旋盤等を用いる機械加工法あるいはド
ライエッチング、ウエットエッチング等の化学エッチン
グ法などを用いて断面台形状に切削加工し、酸化物超電
導結晶基板33を作製する。一方、酸化物超電導結晶基
板33を嵌合させるための嵌合孔35aを機械加工によ
り形成した補強用基板35を用意し、この嵌合孔35a
の表面に酸化物超電導多結晶からなる酸化物超電導体薄
膜34を気相堆積法等の成膜技術により成膜する。Next, a method for manufacturing the oxide superconducting laminated substrate 31 of the second embodiment will be described. First, a plate-shaped oxide superconducting crystal substrate prepared in the same manner as described above is formed by using a machining method using ultrasonic waves, a laser, a lathe, or the like, or a chemical etching method such as dry etching or wet etching. The oxide superconducting crystal substrate 33 is manufactured by cutting into a trapezoidal cross section. On the other hand, a reinforcing substrate 35 having a fitting hole 35a for fitting the oxide superconducting crystal substrate 33 formed by machining is prepared.
An oxide superconductor thin film 34 made of oxide superconducting polycrystal is formed on the surface of the substrate by a film forming technique such as a vapor deposition method.
【0028】ついで、補強用基板35の嵌合孔35aに
酸化物超電導結晶基板33を嵌めた後、先に述べた第1
実施形態の酸化物超電導積層基板の製造方法と同様にし
て熱処理を施し、上記酸化物超電導結晶基板33と上記
酸化物超電導体薄膜34とを焼結により接着すると、図
5に示したような酸化物超電導積層基板31が得られ
る。なお、このようにして得られた酸化物超電導積層基
板31の表面を先に述べた方法と同様にして研磨し、平
坦にすることが好ましい。Next, after the oxide superconducting crystal substrate 33 is fitted in the fitting hole 35a of the reinforcing substrate 35, the first
A heat treatment is performed in the same manner as in the method of manufacturing the oxide superconducting laminated substrate of the embodiment, and the oxide superconducting crystal substrate 33 and the oxide superconducting thin film 34 are bonded by sintering. The superconducting multi-layer substrate 31 is obtained. Note that the surface of the oxide superconducting multilayer substrate 31 thus obtained is preferably polished and flattened in the same manner as described above.
【0029】第2実施形態の酸化物超電導積層基板31
にあっては、高い平坦性と高結晶性を有する酸化物超電
導結晶基板33と、高強度の補強用結晶基板35の表面
に形成された酸化物超電導体薄膜34とが熱圧着された
ものであるので、酸化物超電導結晶基板33の強度を向
上でき、この積層基板31上に絶縁膜や導電膜を成膜す
る際に熱処理を施しても、酸化物超電導結晶基板33に
発生するクラックを大幅に低減でき、電子デバイスプロ
セスにおける歩留まりを著しく向上できる。なお、上記
第1並びに第2実施形態においては、酸化物超電導結晶
基板3がR−Ba−Cu−O(但し、Rは、Y,Nd,
Sm,Gd,Eu,Yb,Prのうちから選択される1
種または2種以上の元素)系の酸化物超電導単結晶また
は多結晶から構成されている場合について説明したが、
本発明は、基板3がA−B−Cu−O(但し、AはL
a,Ce,Y,Sc,Ybなどの周期律表IIIa族元素
の1種以上を示し、BはSr,Brなどの周期律表IIa
族元素の1種以上を示す)系の酸化物超電導単結晶また
は多結晶から構成されている場合にも適用できる。Oxide superconducting laminated substrate 31 of second embodiment
In this, an oxide superconducting crystal substrate 33 having high flatness and high crystallinity and an oxide superconducting thin film 34 formed on the surface of a high-strength reinforcing crystal substrate 35 are thermocompression-bonded. Therefore, the strength of the oxide superconducting crystal substrate 33 can be improved, and even if heat treatment is performed when an insulating film or a conductive film is formed on the laminated substrate 31, cracks generated in the oxide superconducting crystal substrate 33 are significantly reduced. And the yield in the electronic device process can be significantly improved. In the first and second embodiments, the oxide superconducting crystal substrate 3 is made of R—Ba—Cu—O (where R is Y, Nd,
1 selected from Sm, Gd, Eu, Yb, and Pr
(Or two or more kinds of elements) -based oxide superconducting single crystal or polycrystal has been described,
In the present invention, the substrate 3 is made of AB-Cu-O (where A is L
a, Ce, Y, Sc, Yb, etc., represents at least one group IIIa element in the periodic table, and B represents periodic table IIa, such as Sr, Br, etc.
The present invention can also be applied to a case where it is composed of an oxide superconducting single crystal or a polycrystal of the oxide superconducting type (which indicates at least one group element).
【0030】次に、本発明の超電導集積回路の製造方法
の実施形態例について説明する。図6は、実施形態の超
電導集積回路の製造方法により製造された超電導体集積
回路を示す図であり、(A)は側面図、(B)は上面図
である。この超電導体集積回路50は、銅製キャビティ
52内に図5に示した第2実施形態の酸化物超電導積層
基板31が収容され、該積層基板31上にMgO等から
なる誘電体薄膜53が形成され、さらにこの誘電体薄膜
53上にYBa2Cu3O y等からなる酸化物超電導体配
線54が成膜され、該配線54に中心導体56が接続さ
れてなるものである。Next, a method for manufacturing a superconducting integrated circuit according to the present invention.
The embodiment will be described. FIG. 6 shows an embodiment of the present invention.
Superconductor integrated manufactured by manufacturing method of conductive integrated circuit
It is a figure which shows a circuit, (A) is a side view, (B) is a top view.
It is. This superconductor integrated circuit 50 has a copper cavity.
The oxide superconducting laminate of the second embodiment shown in FIG.
A substrate 31 is accommodated, and MgO or the like is placed on the laminated substrate 31.
And a dielectric thin film 53 is formed.
YBa on 53TwoCuThreeO yOxide superconductor arrangement consisting of
A wire 54 is formed, and a central conductor 56 is connected to the wire 54.
That's what you get.
【0031】なお、補強用結晶基板35の傾斜部では、
配線幅が位置により変わるテーパ構造となっている。ま
た、超電導マイクロストリップ配線の特性インピーダン
スは、誘電体の厚みと配線パターンの比で決められるた
め、インピーダンス整合をとるには、誘電体からなる補
強用結晶基板35上では、配線54のパターンは太く、
補強用結晶基板35以外の上、すなわち、酸化物超電導
結晶基板33の上では配線54のパターンは細くなって
いる。このような構造にすることにより、超電導体から
なる配線54のインピーダンスを一定に保持したまま、
外部の周辺コネクターと超電導体配線(超電導回路)5
4の接続を容易に行うことができる。In the inclined portion of the reinforcing crystal substrate 35,
It has a tapered structure in which the wiring width changes depending on the position. Further, since the characteristic impedance of the superconducting microstrip wiring is determined by the ratio of the thickness of the dielectric to the wiring pattern, in order to achieve impedance matching, the pattern of the wiring 54 is thick on the reinforcing crystal substrate 35 made of the dielectric. ,
Above the reinforcing crystal substrate 35, that is, on the oxide superconducting crystal substrate 33, the pattern of the wiring 54 is thin. With such a structure, the impedance of the wiring 54 made of a superconductor is kept constant,
External peripheral connector and superconductor wiring (superconducting circuit) 5
4 can be easily performed.
【0032】このような超電導体集積回路50を製造す
るには、まず、先に述べた製造方法により作製した酸化
物超電導積層基板31上に、補強用結晶基板35と同様
の材料からなる誘電体薄膜53と、酸化物超電導多結晶
からなる酸化物超電導体薄膜をレーザ蒸着法(PLD)
等の気相堆積法により成膜した後、該酸化物超電導体薄
膜をフォトリソグラフィーにより配線形状にパターニン
グして酸化物超電導体配線54を形成する。ここで誘電
体薄膜53と、酸化物超電導体薄膜を成膜する際、酸化
物超電導結晶基板33の超電導性を劣化させないよう、
成膜時の加熱温度、酸素分圧をコントロールしながら成
膜することが好ましい。ついで、中心導体56の端部を
銅製キャビティ52から酸化物超電導体配線54上に導
出し、これらを電気的に接続する。このようにすると、
図6に示すような超電導体集積回路50が得られる。In order to manufacture such a superconductor integrated circuit 50, first, a dielectric made of the same material as the reinforcing crystal substrate 35 is placed on the oxide superconducting laminated substrate 31 manufactured by the above-described manufacturing method. A thin film 53 and an oxide superconductor thin film made of oxide superconducting polycrystal are formed by laser vapor deposition (PLD).
After forming a film by a vapor deposition method such as the above, the oxide superconductor thin film is patterned into a wiring shape by photolithography to form an oxide superconductor wiring 54. Here, when the dielectric thin film 53 and the oxide superconducting thin film are formed, the superconductivity of the oxide superconducting crystal substrate 33 is not deteriorated.
It is preferable to form a film while controlling the heating temperature and the oxygen partial pressure during the film formation. Next, the end of the center conductor 56 is led out from the copper cavity 52 onto the oxide superconductor wiring 54, and these are electrically connected. This way,
A superconductor integrated circuit 50 as shown in FIG. 6 is obtained.
【0033】この超電導体集積回路(超電導集積回路)
50は、上記の構成としたことにより、高周波の反射に
よる信号損失が小さい接続を実現することができ、高速
で動作する超電導回路の実装が可能である。また、この
超電導体集積回路50は、先に述べたようにして作製し
た酸化物超電導積層基板31を用いられたことにより、
この積層基板31上に誘電体薄膜53と、酸化物超電導
体薄膜を成膜する際に熱処理を施しても、酸化物超電導
結晶基板33に発生するクラックを大幅に低減でき、電
子デバイスプロセスにおける歩留まりを著しく向上でき
る。This superconductor integrated circuit (superconducting integrated circuit)
By adopting the above configuration, the connection 50 can realize a connection with a small signal loss due to high-frequency reflection, and can mount a superconducting circuit that operates at high speed. Further, this superconductor integrated circuit 50 uses the oxide superconducting laminated substrate 31 manufactured as described above,
Even if heat treatment is performed when forming the dielectric thin film 53 and the oxide superconducting thin film on the laminated substrate 31, cracks generated in the oxide superconducting crystal substrate 33 can be significantly reduced, and the yield in the electronic device process can be reduced. Can be significantly improved.
【0034】次に、本発明の超電導集積回路の製造方法
のその他の実施形態例について説明する。図7は、その
他の実施形態の超電導集積回路の製造方法により製造さ
れた超電導体集積回路を示す図であり、(A)は側面
図、(B)は下面図である。この超電導体集積回路60
は、先に述べたような組成の酸化物超電導多結晶からな
る酸化物超電導体配線64を誘電体基板65上に形成し
てなる対向する第一と第二の酸化物超電導積層基板6
1,62のうちの下側に位置する第一の酸化物超電導積
層基板61上に絶縁膜(層間絶縁膜)66と酸化物超電
導体回路67が形成され、第一と第二の酸化物超電導積
層基板61,62の酸化物超電導体配線64,64同士
が固着され、第二の酸化物超電導積層基板62の酸化物
超電導体配線64に中心導体76が接続されてなるもの
である。下側に位置する第一の酸化物超電導積層基板6
1は、上側に位置する第二の酸化物超電導積層基板62
よりも小さいものが用いられている。誘電体基板65
は、上記補強用結晶基板5と同様の材料や、高誘電率の
SrTiO3などから構成されている。Next, another embodiment of the method for manufacturing a superconducting integrated circuit of the present invention will be described. 7A and 7B are diagrams illustrating a superconductor integrated circuit manufactured by a method of manufacturing a superconducting integrated circuit according to another embodiment, where FIG. 7A is a side view and FIG. 7B is a bottom view. This superconductor integrated circuit 60
Are formed on a dielectric substrate 65 by forming an oxide superconducting wiring 64 of an oxide superconducting polycrystal having the above-described composition on the opposing first and second oxide superconducting laminated substrates 6.
An insulating film (interlayer insulating film) 66 and an oxide superconducting circuit 67 are formed on a first oxide superconducting laminated substrate 61 located on the lower side of the first and second oxide superconducting substrates 61 and 62, and the first and second oxide superconducting circuits The oxide superconductor wirings 64, 64 of the laminated substrates 61, 62 are fixed to each other, and the central conductor 76 is connected to the oxide superconductor wiring 64 of the second oxide superconducting laminated substrate 62. First oxide superconducting laminated substrate 6 located on the lower side
1 is a second oxide superconducting laminated substrate 62 located on the upper side.
Smaller ones are used. Dielectric substrate 65
Is made of the same material as the above-mentioned reinforcing crystal substrate 5, SrTiO 3 having a high dielectric constant, and the like.
【0035】このような構造にすることにより、接続部
のインダクタンスは、面積はある一方、厚みつまり長さ
は殆どなく、従って接続部の配線インダクタンスは極め
て小さい。また、この超電導体集積回路(超電導集積回
路)60は、先に述べた超電導体集積回路50と同様接
合残留抵抗は残っているが、外部回路と酸化物超電導体
回路67のインピーダンス整合をとった接続を容易に行
うことができる。従って、超電導体集積回路60によれ
ば、上記の構成としたことにより、高周波の反射による
信号損失が小さい接続を実現することができる。By adopting such a structure, the inductance of the connecting portion has an area but has almost no thickness, that is, a length, and therefore, the wiring inductance of the connecting portion is extremely small. The superconductor integrated circuit (superconducting integrated circuit) 60 has the same junction residual resistance as the above-described superconducting integrated circuit 50, but the impedance matching between the external circuit and the oxide superconducting circuit 67 is achieved. Connection can be made easily. Therefore, according to the superconductor integrated circuit 60, the above-described configuration can realize connection with a small signal loss due to high-frequency reflection.
【0036】このような超電導体集積回路60を製造す
るには、図8の(A)に示すように誘電体基板65上に
LPE(Liquid Phase Epitaxy)法により酸化物超電導
多結晶からなる酸化物超電導体薄膜64aを成膜した
後、図8の(B)に示すように酸化物超電導体薄膜64
aをフォトリソグラフィーにより電極パッドとなる部分
を残して除去し、電極パッドとしての酸化物超電導体配
線64を形成し、第一の酸化物超電導積層基板61を作
製する。ここでの電極パッドのサイズとしては、例え
ば、径0.5mm程度である。ついで、図8の(C)に
示すように酸化物超電導体配線64が形成された誘電体
基板65の表面に超電導グランドプレーン68を気相成
長法により形成する。In order to manufacture such a superconductor integrated circuit 60, as shown in FIG. 8A, an oxide made of oxide superconducting polycrystal is formed on a dielectric substrate 65 by LPE (Liquid Phase Epitaxy). After forming the superconductor thin film 64a, the oxide superconductor thin film 64 is formed as shown in FIG.
a is removed by photolithography except for a portion to be an electrode pad, an oxide superconductor wiring 64 as an electrode pad is formed, and a first oxide superconducting laminated substrate 61 is manufactured. Here, the size of the electrode pad is, for example, about 0.5 mm in diameter. Next, as shown in FIG. 8C, a superconducting ground plane 68 is formed on the surface of the dielectric substrate 65 on which the oxide superconducting wiring 64 is formed by a vapor phase growth method.
【0037】ついで、図8の(D)に示すように超電導
グランドプレーン68にパターニングを施す。この時、
上側の第二の酸化物超電導積層基板62の電極(上部電
極)と接続される酸化物超電導体配線64の周辺の超電
導グランドプレーン68を取り除かれ、電気的な接続は
切られる。また、磁束トラップの効果を弱める堀構造も
設けられる。ついで、図8の(E)に示すように酸化物
超電導体配線64,64の間の超電導グランドプレーン
68上に層間絶縁膜66を成膜した後、超電導グランド
プレーン68及び層間絶縁膜66上にレーザ蒸着法等に
より酸化物超電導体薄膜を成膜した後、該酸化物超電導
体薄膜をパターニングして図8の(F)に示すような酸
化物超電導体回路(酸化物超電導回路)67を形成す
る。Next, the superconducting ground plane 68 is patterned as shown in FIG. At this time,
The superconducting ground plane 68 around the oxide superconductor wiring 64 connected to the electrode (upper electrode) of the upper second oxide superconducting laminated substrate 62 is removed, and the electrical connection is cut off. In addition, a moat structure for weakening the effect of the magnetic flux trap is provided. Next, as shown in FIG. 8E, an interlayer insulating film 66 is formed on the superconducting ground plane 68 between the oxide superconducting wires 64, 64, and then on the superconducting ground plane 68 and the interlayer insulating film 66. After an oxide superconductor thin film is formed by a laser deposition method or the like, the oxide superconductor thin film is patterned to form an oxide superconductor circuit (oxide superconductor circuit) 67 as shown in FIG. I do.
【0038】一方、図8の(A)乃至(B)の工程と同
様にして誘電体基板65上に酸化物超電導体配線64を
形成し、第二の酸化物超電導積層基板62を作製する。
ついで、第一と第二の酸化物超電導積層基板61,62
の酸化物超電導体配線64,64同士を酸化物超電導体
回路(酸化物超電導体薄膜)67を介して接触させて先
に述べた実施形態の超電導集積回路の製造方法と同様に
して熱処理を施し、第一と第二の酸化物超電導積層基板
61,62の酸化物超電導体配線64,64同士を焼結
により接続する。この後、第二の酸化物超電導積層基板
62の酸化物超電導体配線64と中心導体76を接続す
ると、図7に示すような超電導体集積回路60が得られ
る。上記のような超電導集積回路の製造方法によれば、
上記のような構成としたことにより、上下の酸化物超電
導積層基板61,62の配線64,64同士を容易に接
続できる。On the other hand, the oxide superconductor wiring 64 is formed on the dielectric substrate 65 in the same manner as in the steps of FIGS. 8A and 8B, and the second oxide superconducting laminated substrate 62 is manufactured.
Next, the first and second oxide superconducting laminated substrates 61, 62
The oxide superconductor wirings 64, 64 are brought into contact with each other via an oxide superconductor circuit (oxide superconductor thin film) 67, and heat treatment is performed in the same manner as in the method of manufacturing a superconducting integrated circuit of the above-described embodiment. Then, the oxide superconductor wirings 64, 64 of the first and second oxide superconducting laminated substrates 61, 62 are connected to each other by sintering. Thereafter, when the oxide superconductor wiring 64 of the second oxide superconducting laminate substrate 62 is connected to the central conductor 76, a superconductor integrated circuit 60 as shown in FIG. 7 is obtained. According to the method for manufacturing a superconducting integrated circuit as described above,
With the above configuration, the wirings 64, 64 of the upper and lower oxide superconducting laminated substrates 61, 62 can be easily connected to each other.
【0039】[0039]
【実施例】以下、本発明を実施例により、具体的に説明
するが、本発明は以下に述べる実施例のみに限定される
ものではない。 (実験例1)引き上げ法によりYBa2Cu3Oy単結晶
(分解温度1010゜C)からなるロッドを作製した
後、このロッドを切断後、研磨し、縦8mm、横8m
m、厚さ2.0mmの板状のYBa2Cu3Oy結晶基板
を作製した。ついで、YBa2Cu3Oy結晶基板の両面
に板状のMgO結晶基板(融点2830゜C)で挟んだ
積層体を作製した。EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the examples described below. (Experimental Example 1) After a rod made of a single crystal of YBa 2 Cu 3 O y (decomposition temperature: 1010 ° C.) was prepared by a pulling method, this rod was cut, polished, and 8 mm long and 8 m wide.
A plate-shaped YBa 2 Cu 3 O y crystal substrate having a thickness of 2.0 mm and a thickness of 2.0 mm was produced. Next, a laminate was prepared in which a plate-like MgO crystal substrate (melting point: 2830 ° C.) was sandwiched on both sides of a YBa 2 Cu 3 O y crystal substrate.
【0040】ついで、この積層体を図2に示したような
処理容器21内に入れた後、この積層体上に重り30を
載せて100gfの荷重をかけながらヒータ22により
昇温速度100゜C/時間で室温から995゜Cまで昇
温した後、この温度で20時間保持した後、降温速度1
00゜C/時間で995゜Cから室温まで降温すること
により、YBa2Cu3Oy結晶基板の両面にMgO結晶
基板とを接着した。ついで、これのYBa2Cu3Oy結
晶基板を表面方向と平行に切断し、積層基板(実施例
1)を二枚得た。次に、得られた実施例1の積層基板
と、比較例1としてMgO結晶基板を接着していないY
Ba2Cu3Oy結晶基板(縦8mm、横8mm、厚さ
1.0mm)を、絶縁膜や回路用の導電膜を形成する際
にかかる熱履歴と同様の熱履歴として750K/hで昇
温し、750゜Cで3時間加熱後、750K/hで室温
まで降温し、発生したクラックの密度を調べた。その結
果、実施例1の積層基板に発生したクラックの密度は、
MgO結晶基板で補強していない比較例1の基板の1/
10と低いことが分かった。従って、実施例1の積層基
板は、絶縁膜や導電膜を成膜する際の熱処理に起因する
クラックの発生の防止効果が優れており、著しく強度が
向上していることが明らかとなった。Next, after placing the laminate in a processing vessel 21 as shown in FIG. 2, a weight 30 is placed on the laminate, and a heating rate of 100 ° C. is applied by the heater 22 while applying a load of 100 gf. Per hour, the temperature was raised from room temperature to 995 ° C., and the temperature was maintained for 20 hours.
By lowering the temperature from 995 ° C. to room temperature at 00 ° C./hour, the MgO crystal substrate was bonded to both surfaces of the YBa 2 Cu 3 O y crystal substrate. Then, the YBa 2 Cu 3 O y crystal substrate was cut in parallel with the surface direction to obtain two laminated substrates (Example 1). Next, the obtained laminated substrate of Example 1 was used as a comparative example 1, and the MgO crystal substrate was not bonded to Y.
A Ba 2 Cu 3 O y crystal substrate (length 8 mm, width 8 mm, thickness 1.0 mm) is raised at 750 K / h as a heat history similar to that when forming an insulating film or a conductive film for a circuit. After heating at 750 ° C. for 3 hours, the temperature was lowered to room temperature at 750 K / h, and the density of cracks generated was examined. As a result, the density of cracks generated in the laminated substrate of Example 1 was:
1 / of the substrate of Comparative Example 1 not reinforced with the MgO crystal substrate
It turned out to be as low as 10. Therefore, it was clarified that the laminated substrate of Example 1 was excellent in the effect of preventing the occurrence of cracks due to the heat treatment when forming the insulating film and the conductive film, and that the strength was significantly improved.
【0041】(実験例2)実験例1と同様にして作製し
た積層体を荷重下で熱処理する際の保持温度を950゜
Cから1000゜Cの範囲に変更した以外は、実験例1
と同様にして種々の積層基板を得た。次に、得られた積
層基板のYBa2Cu3Oy結晶基板とMgO結晶基板と
の密着性について調べたところ、保持温度が990゜C
〜997゜Cの範囲のものが、密着性が良好であり、ま
た、保持温度が1000゜CのものはYBa2Cu3O y
結晶基板が一部溶融し、また、保持温度が950゜Cの
ものはYBa2Cu3Oy結晶基板とMgO結晶基板とが
全く固着しないことがわかった。このことより、YBa
2Cu3Oy単結晶からなる基板と、MgO結晶基板とを
熱圧着する場合の熱処理温度としては、990゜C乃至
997゜Cの範囲が好ましいことがわかった。(Experimental example 2)
The holding temperature when heat treating the laminated body under load is 950 °
Experimental Example 1 except that the temperature was changed from C to 1000 ° C.
Various laminated substrates were obtained in the same manner as described above. Next, the obtained product
YBa of layer substrateTwoCuThreeOyCrystal substrate and MgO crystal substrate
When the adhesion temperature was examined, the holding temperature was 990 ° C.
Those within the range of ~ 997 ° C have good adhesion,
In addition, when the holding temperature is 1000 ° C., YBaTwoCuThreeO y
The crystal substrate partially melts and the holding temperature is 950 ° C.
Thing is YBaTwoCuThreeOyCrystal substrate and MgO crystal substrate
It was found that it did not stick at all. From this, YBa
TwoCuThreeOySubstrate made of single crystal and MgO crystal substrate
The heat treatment temperature for thermocompression bonding is from 990 ° C
A range of 997 ° C. has been found to be preferred.
【0042】(実験例3)引き上げ法により作製したY
Ba2Cu3Oy単結晶からなるロッドを切断して板状の
YBa2Cu3Oy結晶基板を作製する際、YBa2Cu3
Oy単結晶の劈開面が表面となるように切断、あるい
は、YBa2Cu3Oy結晶基板の表面のうちMg結晶基
板と接着する表面に施す研磨を粗研磨又は鏡面研磨に変
更した以外は実験例1と同様にして種々の積層基板を得
た。次に、得られた積層基板のYBa2Cu3Oy結晶基
板とMgO結晶基板との密着性について調べたところ、
密着性を良好にできる効果が大きい順は、劈開面、粗研
磨(表面粗さ10μm)、鏡面研磨(表面粗さ1μm以
下)であり、YBa 2Cu3Oy単結晶からなるロッドを
切断する際、YBa2Cu3Oy単結晶の劈開面が表面と
なるように切断することが、最も密着性が優れたYBa
2Cu3Oy結晶基板が得られることがわかった。(Experimental example 3) Y produced by the pulling-up method
BaTwoCuThreeOyBy cutting a rod made of single crystal,
YBaTwoCuThreeOyWhen manufacturing a crystal substrate, YBaTwoCuThree
OyCut or cut so that the cleavage plane of the single crystal becomes the surface
Is YBaTwoCuThreeOyMg crystal group on the surface of the crystal substrate
Polishing of the surface to be bonded to the plate is changed to rough polishing or mirror polishing.
Various laminated substrates were obtained in the same manner as in Experimental Example 1 except for the above.
Was. Next, the YBa of the obtained laminated substrate wasTwoCuThreeOyCrystal base
When the adhesion between the plate and the MgO crystal substrate was examined,
The order in which the effect of improving adhesion is large is cleavage plane, rough polishing
Polishing (surface roughness 10μm), mirror polishing (surface roughness 1μm or less)
Bottom) and YBa TwoCuThreeOyRod made of single crystal
When cutting, YBaTwoCuThreeOyThe cleavage plane of the single crystal is
Is cut so that YBa has the best adhesion.
TwoCuThreeOyIt was found that a crystal substrate was obtained.
【0043】(実験例4)引き上げ法により作製したY
Ba2Cu3Oy単結晶からなるロッドを切断して板状の
YBa2Cu3Oy結晶基板を作製する際、YBa2Cu3
Oy単結晶の劈開面が表面となるように切断すること
と、荷重下で熱処理を施す際の保持温度を997゜C、
保持時間を140時間、荷重を0.25g/mm2とし
た以外は実験例1と同様にして積層基板を作製すること
により、長時間圧着試験を行った。次に、得られた積層
基板のYBa2Cu3Oy単結晶からなる基板とMgO結
晶基板との密着性について調べたところ、YBa2Cu3
Oy結晶基板とMgO結晶基板とが良好に密着している
ことが分かった。(Experimental Example 4) Y produced by the pulling-up method
When manufacturing a plate-like YBa 2 Cu 3 O y crystal substrate by cutting a rod made of Ba 2 Cu 3 O y single crystal, YBa 2 Cu 3
Cutting the cleavage plane of the O y single crystal so as to be the surface, and setting the holding temperature when performing heat treatment under a load at 997 ° C.
A long-term pressure test was performed by preparing a laminated substrate in the same manner as in Experimental Example 1 except that the holding time was 140 hours and the load was 0.25 g / mm 2 . Then, it was examined for adhesion to the substrate and the MgO crystal substrate made of YBa 2 Cu 3 O y single crystals of the obtained multilayer substrate, YBa 2 Cu 3
It was found that the O y crystal substrate and the MgO crystal substrate were in good contact with each other.
【0044】(実験例5)実験例1と同様にして作製し
た厚さ0.3mmのYBa2Cu3Oy結晶基板を断面台
形状に切削加工し、図5と同様のYBa2Cu3Oy結晶
基板を作製した。一方、このYBa2Cu3Oy結晶基板
を嵌合させるための嵌合孔が形成された厚さ0.3mm
のMgO結晶基板を用意し、この嵌合孔の表面にYBa
2Cu3O yの多結晶薄膜をレーザ蒸着法により成膜し
た。ここでの成膜条件は、740゜Cで200mToo
r、O2中で成膜を行った。(Experimental example 5)
0.3mm thick YBaTwoCuThreeOyCross section of crystal substrate
It is cut into a shape, and YBa similar to FIG.TwoCuThreeOycrystal
A substrate was prepared. On the other hand, this YBaTwoCuThreeOyCrystal substrate
0.3mm thick with a fitting hole for fitting
A MgO crystal substrate is prepared and YBa is provided on the surface of the fitting hole.
TwoCuThreeO yOf polycrystalline thin film by laser evaporation
Was. The film forming condition here is 200 mToo at 740 ° C.
r, OTwoThe film was formed in the inside.
【0045】ついで、MgO結晶基板の嵌合孔にYBa
2Cu3Oy結晶基板を嵌めた後、内部雰囲気を酸素雰囲
気にした図2に示したような処理容器21内に入れた
後、ヒータ22により昇温速度100゜C/時間で室温
から920゜Cまで昇温した後、この温度で2時間保持
した後、降温速度100゜C/時間で920゜Cから室
温まで降温することにより、YBa2Cu3Oy結晶基板
とMgO結晶基板に形成されたYBa2Cu3Oyの多結
晶薄膜とを焼結し、接着した。この後、YBa2Cu3O
y結晶基板およびMgO結晶基板の表面のうち配線を形
成する表面を研磨し、平坦にし、図5と同様の積層基板
(実施例2)を得た。なお、YBa2Cu3Oy結晶基板
とYBa2Cu3Oyの多結晶薄膜の接着面を両側より加
圧することで熱処理時の保持温度を下げることが可能
で、ステンレスバネを用いた場合、900゜Cでも接着
することができた。また、熱処理時の保持温度を960
゜C以上に上げた場合には特別な荷重なしにつまり自重
で接着できた。Then, YBa was inserted into the fitting hole of the MgO crystal substrate.
After the 2 Cu 3 O y crystal substrate was fitted, the substrate was placed in a processing vessel 21 as shown in FIG. 2 in which the internal atmosphere was changed to an oxygen atmosphere. ° after the temperature was raised to C, after 2 hours at this temperature, by cooling from 920 ° C at a cooling rate of 100 ° C / time to room temperature, forming the YBa 2 Cu 3 O y crystal substrate and the MgO crystal substrate The obtained polycrystalline thin film of YBa 2 Cu 3 O y was sintered and bonded. After this, YBa 2 Cu 3 O
Of the surfaces of the y- crystal substrate and the MgO crystal substrate, the surface on which the wiring was to be formed was polished and flattened to obtain the same laminated substrate as in FIG. 5 (Example 2). The holding temperature during heat treatment can be lowered by pressing the bonding surface of the YBa 2 Cu 3 O y crystal substrate and the polycrystalline thin film of YBa 2 Cu 3 O y from both sides, and when a stainless steel spring is used, Even at 900 ° C., bonding was possible. Further, the holding temperature during the heat treatment is 960.
When the temperature was increased to ゜ C or more, bonding was possible without a special load, that is, by its own weight.
【0046】次に、得られた実施例2の積層基板上に、
厚さ0.3μmのMgO薄膜と、厚さ0.3μmのYB
a2Cu3Oyの多結晶薄膜をレーザ蒸着法により成膜し
た。ここでMgO薄膜とYBa2Cu3Oy薄膜を成膜す
る際、YBa2Cu3Oy結晶基板の超電導性を劣化させ
ないよう、740゜Cで200mToor(1トールは
約133パスカル)、O2中で成膜を行った。ついで、
YBa2Cu3Oyの多結晶薄膜をフォトリソグラフィー
により配線形状にパターニングしてYBa2Cu3Oy配
線を形成した。このYBa2Cu3Oy配線の幅は、回路
の中心部で0.3μm、外部回路との接続部で0.3m
mとした。 ついで、図5と同様の銅製キャビティ52
から中心導体の端部をYBa2Cu3Oy配線上に導出
し、これらを電気的に接続し、図6と同様の超電導体集
積回路を得た。このようにすると、高周波伝送特性が良
好なKコネクターと良好な電気接続特性を得ることがで
きた。Next, on the obtained laminated substrate of Example 2,
0.3 μm thick MgO thin film and 0.3 μm thick YB
A polycrystalline thin film of a 2 Cu 3 O y was formed by a laser deposition method. Here, when forming the MgO thin film and the YBa 2 Cu 3 O y thin film, 200 mTool at 740 ° C. (1 Torr is about 133 Pascal), O 2 , so as not to deteriorate the superconductivity of the YBa 2 Cu 3 O y crystal substrate. The film was formed in the inside. Then
The polycrystalline thin film of YBa 2 Cu 3 O y was patterned into a wiring shape by photolithography to form a YBa 2 Cu 3 O y wiring. The width of the YBa 2 Cu 3 O y wiring is 0.3 μm at the center of the circuit and 0.3 m at the connection with the external circuit.
m. Next, a copper cavity 52 similar to that of FIG.
The end of the center conductor was led out onto the YBa 2 Cu 3 O y wiring, and these were electrically connected to obtain a superconductor integrated circuit similar to that of FIG. By doing so, a K connector with good high-frequency transmission characteristics and good electrical connection characteristics could be obtained.
【0047】次に、得られた超電導体集積回路の接続面
間抵抗の温度依存性を調べた。ここでの接続面間抵抗は
4端子法で測定した。その結果を図9に示す。図9に示
した結果から電極の超電導転移に伴い90K以下で抵抗
が急激に低下していることがわかる。但し、電極−電圧
特性を見ると超電導電流は流れておらず、電極間には残
留抵抗が残る。これは、結晶粒界の障壁層により生じた
もので、回路の高周波性能に影響しない。また、適当な
表面処理を接着前に行うことにより減少できる。Next, the temperature dependence of the resistance between the connection surfaces of the obtained superconductor integrated circuit was examined. The resistance between the connection surfaces was measured by a four-terminal method. FIG. 9 shows the result. From the results shown in FIG. 9, it can be seen that the resistance sharply drops below 90K with the superconducting transition of the electrodes. However, looking at the electrode-voltage characteristics, the superconducting current does not flow, and a residual resistance remains between the electrodes. This is caused by the barrier layer at the grain boundary and does not affect the high frequency performance of the circuit. It can also be reduced by performing an appropriate surface treatment before bonding.
【0048】[0048]
【発明の効果】以上説明したように本発明の酸化物超電
導積層基板によれば、上記の構成としたことにより、高
い平坦性と高結晶性を有する酸化物超電導結晶基板の強
度を向上できるので、この積層基板上に絶縁膜や導電膜
を成膜する際に熱処理を施しても、上記酸化物超電導結
晶基板に発生するクラックを大幅に低減でき、電子デバ
イスプロセスにおける歩留まりを著しく向上できる。ま
た、この酸化物超電導積層基板の酸化物超電導結晶基板
は、高い平坦性と高結晶性を有しているので、この酸化
物超電導結晶基板上に形成した絶縁膜や配線や電極の表
面にも凹凸が生じにくく、従って、このような絶縁膜や
配線や電極が形成された酸化物超電導積層基板を二枚用
意した後、対向させ、熱処理すれば、上下の電極や配線
を容易に接続できる。As described above, according to the oxide superconducting laminated substrate of the present invention, the strength of the oxide superconducting crystal substrate having high flatness and high crystallinity can be improved by adopting the above structure. Even if a heat treatment is performed when an insulating film or a conductive film is formed on the laminated substrate, cracks generated in the oxide superconducting crystal substrate can be significantly reduced, and the yield in an electronic device process can be significantly improved. In addition, since the oxide superconducting crystal substrate of this oxide superconducting laminated substrate has high flatness and high crystallinity, the surface of the insulating film, wiring, or electrode formed on the oxide superconducting crystal substrate also Irregularities are unlikely to occur. Therefore, if two oxide superconducting laminated substrates on which such insulating films, wirings, and electrodes are formed are prepared, opposed, and heat-treated, the upper and lower electrodes and wirings can be easily connected.
【0049】また、本発明の酸化物超電導積層基板の製
造方法によれば、上記の構成としたことにより、本発明
の酸化物超電導積層基板を好適に得ることができる。ま
た、本発明の超電導集積回路の製造方法によれば、本発
明の酸化物超電導積層基板の製造方法により製造した酸
化物超電導積層基板上に誘電体薄膜と酸化物超電導体薄
膜を成膜した後、該酸化物超電導体薄膜を配線形状にパ
ターニングして酸化物超電導体配線を形成することによ
り、絶縁膜や導電膜を成膜する際に熱処理を施しても、
上記酸化物超電導結晶基板に発生するクラックを大幅に
低減でき、電子デバイスプロセスにおける歩留まりを著
しく向上できる。また、本発明の超電導集積回路の製造
方法によれば、誘電体基板上に酸化物超電導単結晶また
は酸化物超電導多結晶からなる酸化物超電導体配線を形
成してなる第一と第二の酸化物超電導積層基板のうち少
なくとも一方に絶縁膜と酸化物超電導体薄膜を成膜した
後、該酸化物超電導体薄膜を配線形状にパターニングし
て酸化物超電導体回路を形成し、ついで、上記第一と第
二の酸化物超電導積層基板の酸化物超電導体配線同士を
直接あるいは酸化物超電導体薄膜を介して接触させて熱
処理を施し、上記第一と第二の酸化物超電導積層基板の
酸化物超電導体配線同士を固着することにより、第一と
第二の酸化物超電導積層基板の配線同士を容易に接続で
きる。Further, according to the method for manufacturing an oxide superconducting laminated substrate of the present invention, by adopting the above configuration, the oxide superconducting laminated substrate of the present invention can be suitably obtained. Further, according to the method for manufacturing a superconducting integrated circuit of the present invention, after forming a dielectric thin film and an oxide superconducting thin film on the oxide superconducting laminated substrate manufactured by the method for manufacturing an oxide superconducting laminated substrate of the present invention, By patterning the oxide superconductor thin film into a wiring shape to form an oxide superconductor wiring, even if heat treatment is performed when forming an insulating film or a conductive film,
Cracks generated in the oxide superconducting crystal substrate can be significantly reduced, and the yield in an electronic device process can be significantly improved. Further, according to the method of manufacturing a superconducting integrated circuit of the present invention, the first and second oxidations are performed by forming an oxide superconductor wiring made of an oxide superconducting single crystal or an oxide superconducting polycrystal on a dielectric substrate. After forming an insulating film and an oxide superconducting thin film on at least one of the material superconducting laminated substrates, the oxide superconducting thin film is patterned into a wiring shape to form an oxide superconducting circuit. The heat treatment is performed by bringing the oxide superconductor wirings of the first and second oxide superconducting laminated substrates into contact with each other directly or via the oxide superconducting thin film, and performing the heat treatment on the first and second oxide superconducting laminated substrates. By fixing the body wirings, the wirings of the first and second oxide superconducting laminated substrates can be easily connected.
【図1】 本発明の酸化物超電導積層基板の第1実施形
態例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of an oxide superconducting laminated substrate according to the present invention.
【図2】 本発明の酸化物超電導積層基板の製造方法の
実施に好適に用いられる加熱炉の概略構成を示す図であ
る。FIG. 2 is a diagram showing a schematic configuration of a heating furnace suitably used for carrying out the method for manufacturing an oxide superconducting multilayer substrate of the present invention.
【図3】 本発明の実施形態の酸化物超電導積層基板の
製造方法において、熱処理を施す際のヒートパターンの
例を示す図である。FIG. 3 is a diagram showing an example of a heat pattern when performing a heat treatment in the method for manufacturing an oxide superconducting laminated substrate according to the embodiment of the present invention.
【図4】 本発明の第1実施形態の酸化物超電導積層基
板の製造方法を説明するための図である。FIG. 4 is a diagram illustrating a method for manufacturing the oxide superconducting multilayer substrate according to the first embodiment of the present invention.
【図5】 本発明の酸化物超電導積層基板の第2実施形
態例を示す断面図である。FIG. 5 is a cross-sectional view illustrating a second embodiment of the oxide superconducting multilayer substrate of the present invention.
【図6】 本発明の超電導集積回路の製造方法の実施形
態により製造された超電導体集積回路を示す図であり、
(A)は側面図、(B)は上面図である。FIG. 6 is a diagram showing a superconductor integrated circuit manufactured by an embodiment of the method for manufacturing a superconducting integrated circuit of the present invention;
(A) is a side view, (B) is a top view.
【図7】 本発明の超電導集積回路の製造方法のその他
の実施形態により製造された超電導体集積回路を示す図
であり、(A)は側面図、(B)は下面図である。7A and 7B are diagrams illustrating a superconductor integrated circuit manufactured by another embodiment of the method for manufacturing a superconducting integrated circuit according to the present invention, wherein FIG. 7A is a side view and FIG. 7B is a bottom view.
【図8】 本発明の超電導集積回路の製造方法のその他
の実施形態を工程順に示した図である。FIG. 8 is a view showing another embodiment of the method of manufacturing a superconducting integrated circuit according to the present invention in the order of steps.
【図9】 実施例の超電導体集積回路の接続面間抵抗の
温度依存性を示す図である。FIG. 9 is a diagram showing the temperature dependence of the resistance between the connection surfaces of the superconductor integrated circuit of the example.
1,31,61,62・・・酸化物超電導積層基板、3,
3a,33・・・酸化物超電導結晶基板、5,35・・・補強
用結晶基板、20・・・加熱炉、21・・・処理容器、22・・
・ヒータ、23・・・熱電対、25・・・積層体、34,64
a・・・酸化物超電導体薄膜、35a・・・嵌合孔、30・・・
重り、50,60・・・超電導体集積回路、52・・・銅製キ
ャビティ、53・・・誘電体薄膜、54,64・・・酸化物超
電導体配線、56・・・中心導体、65・・・誘電体基板、6
6・・・絶縁膜、67・・・酸化物超電導体回路、68・・・超
電導グランドプレーン、76・・・中心導体。1, 31, 61, 62 ... oxide superconducting laminated substrate, 3,
3a, 33 ... oxide superconducting crystal substrate, 5, 35 ... crystal substrate for reinforcement, 20 ... heating furnace, 21 ... processing vessel, 22 ...
-Heater, 23 ... thermocouple, 25 ... laminated body, 34, 64
a ... oxide superconductor thin film, 35a ... fitting hole, 30 ...
Weight, 50, 60: superconductor integrated circuit, 52: copper cavity, 53: dielectric thin film, 54, 64: oxide superconductor wiring, 56: central conductor, 65 ... .Dielectric substrate, 6
6 ... insulating film, 67 ... oxide superconductor circuit, 68 ... superconducting ground plane, 76 ... central conductor.
フロントページの続き (71)出願人 000002130 住友電気工業株式会社 大阪府大阪市中央区北浜四丁目5番33号 (72)発明者 和泉 輝郎 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 小山 敏 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 塩原 融 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 田中 昭二 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 榎本 陽一 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 江上 雅裕 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 鈴木 秀雄 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 飯山 道朝 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 Fターム(参考) 4M113 AD36 AD37 AD39 AD51 BA21 BA29 CA34 4M114 AA29 CC09 5G307 GA08 GC02 Continued on the front page (71) Applicant 000002130 Sumitomo Electric Industries, Ltd. 4-33, Kitahama, Chuo-ku, Osaka-shi, Osaka (72) Inventor Teruo Izumi 1-1-3, Shinonome, Koto-ku, Tokyo Foundation International Superconductivity Technology Research Center, Superconductivity Engineering Laboratory (72) Inventor Satoshi Koyama 1-14-3, Shinonome, Koto-ku, Tokyo Foundation International Superconductivity Technology Research Center, Superconductivity Research Laboratory (72) Inventor Shiobara No. 1-14-3 Shinonome, Koto-ku, Tokyo Foundation International Research Institute for Superconducting Technology, Superconductivity Engineering Laboratory (72) Inventor Shoji Tanaka 1-14-3, Shinonome, Shintomo, Koto-ku, Tokyo Inside the Superconductivity Engineering Research Center, Industrial Technology Research Center (72) Inventor Yoichi Enomoto 1-14-3 Shinonome, Koto-ku, Tokyo Foundation International Superconductivity Technology Research Center Inside the Superconductivity Engineering Research Laboratory (72) Inventor Masahiro Egami 1 Shinonome, Koto-ku, Tokyo No. 14-3 Inside the Superconductivity Engineering Research Center, International Superconducting Technology Research Center, Japan (72) Hideo Suzuki, Inventor 1-14-3 Shinonome, Koto-ku, Tokyo Inside the research institute (72) Inventor Michiasa Iiyama 1-14-3 Shinonome, Koto-ku, Tokyo F-term in the Superconductivity Engineering Research Center, International Superconducting Technology Research Center (reference) 4M113 AD36 AD37 AD39 AD51 BA21 BA29 CA34 4M114 AA29 CC09 5G307 GA08 GC02
Claims (13)
多結晶からなる酸化物超電導結晶基板と補強用結晶基板
とが熱圧着されてなることを特徴とする酸化物超電導積
層基板。An oxide superconducting laminated substrate characterized in that an oxide superconducting crystal substrate made of an oxide superconducting single crystal or an oxide superconducting polycrystal and a reinforcing crystal substrate are thermocompression-bonded.
多結晶からなる酸化物超電導結晶基板と、表面に酸化物
超電導体薄膜が形成された補強用結晶基板とからなり、
前記酸化物超電導体薄膜と前記酸化物超電導結晶基板と
が熱圧着されてなることを特徴とする酸化物超電導積層
基板。2. An oxide superconducting crystal substrate comprising an oxide superconducting single crystal or an oxide superconducting polycrystal, and a reinforcing crystal substrate having a surface formed with an oxide superconducting thin film,
An oxide superconducting laminated substrate, wherein the oxide superconducting thin film and the oxide superconducting crystal substrate are thermocompression-bonded.
単結晶または酸化物超電導多結晶からなる酸化物超電導
結晶基板と、補強用結晶基板とを接触させて熱処理を施
し、前記酸化物超電導結晶基板と前記補強用結晶基板と
の接触界面を固着することを特徴とする酸化物超電導積
層基板の製造方法。3. An oxide superconducting crystal substrate made of an oxide superconducting single crystal or an oxide superconducting polycrystal produced by a pulling method and a reinforcing crystal substrate are brought into contact with each other and subjected to a heat treatment. A method for manufacturing an oxide superconducting laminated substrate, wherein a contact interface with the reinforcing crystal substrate is fixed.
単結晶または酸化物超電導多結晶からなる酸化物超電導
結晶基板の両面を補強用結晶基板で挟んだ後、熱処理を
施し、前記酸化物超電導結晶基板の両面に前記補強用結
晶基板を固着し、酸化物超電導結晶基板を表面方向と平
行に切断することを特徴とする酸化物超電導積層基板の
製造方法。4. An oxide superconducting crystal substrate made of an oxide superconducting single crystal or an oxide superconducting polycrystal produced by a pulling method, wherein both surfaces of the oxide superconducting crystal substrate are sandwiched between reinforcing crystal substrates, and a heat treatment is performed. Wherein the reinforcing crystal substrate is fixed to both surfaces of the substrate, and the oxide superconducting crystal substrate is cut in parallel with the surface direction.
単結晶または酸化物超電導多結晶からなる酸化物超電導
結晶基板と、酸化物超電導体薄膜が表面に形成された補
強用結晶基板の酸化物超電導体薄膜とを接触させて熱処
理を施し、前記酸化物超電導結晶基板と前記酸化物超電
導体薄膜との接触界面を固着することを特徴とする酸化
物超電導積層基板の製造方法。5. An oxide superconducting crystal substrate made of an oxide superconducting single crystal or an oxide superconducting polycrystal produced by a pulling method and an oxide superconductor of a reinforcing crystal substrate having an oxide superconducting thin film formed on the surface. A method for producing an oxide superconducting laminated substrate, comprising: contacting a thin film with a thin film and performing a heat treatment to fix a contact interface between the oxide superconducting crystal substrate and the oxide superconducting thin film.
徴とする請求項3乃至5のいずれかに記載の酸化物超電
導積層基板の製造方法。6. The method for manufacturing an oxide superconducting multilayer substrate according to claim 3, wherein the heat treatment is performed under a load.
乃至1000g/cm2であることを特徴とする請求項
6に記載の酸化物超電導積層基板の製造方法。7. The load applied during the heat treatment is 5
Method of manufacturing an oxide superconducting multilayer substrate according to claim 6, characterized in that to a 1000 g / cm 2.
結晶基板との接触面のうち少なくとも一方の接触面の表
面粗さを0.01乃至50μmとすることを特徴とする
請求項3乃至7のいずれかに記載の酸化物超電導積層基
板の製造方法。8. The surface roughness of at least one of contact surfaces between the oxide superconducting crystal substrate and the reinforcing crystal substrate is set to 0.01 to 50 μm. The method for producing an oxide superconducting multilayer substrate according to any one of the above.
記酸化物超電導結晶基板を構成する酸化物超電導単結晶
または酸化物超電導多結晶の融点(Mp)より低く、Mp
−100(K)より高いことを特徴とする請求項3乃至
8のいずれかに記載の酸化物超電導積層基板の製造方
法。The heat treatment temperature of 9. When performing the heat treatment, the melting point of the oxide superconducting crystals constituting the substrate oxide superconducting single crystal or an oxide superconductor polycrystalline (M p) from the lower, M p
The method for manufacturing an oxide superconducting multilayer substrate according to any one of claims 3 to 8, wherein the temperature is higher than -100 (K).
10乃至500K/時間の範囲内であることを特徴とす
る請求項3乃至9のいずれかに記載の酸化物超電導積層
基板の製造方法。10. The rate of temperature rise and fall when the heat treatment is performed,
The method for producing an oxide superconducting laminated substrate according to any one of claims 3 to 9, wherein the temperature is in the range of 10 to 500 K / hour.
の範囲内であることを特徴とする請求項3乃至10のい
ずれかに記載の酸化物超電導積層基板の製造方法。11. The method according to claim 3, wherein the heat treatment time is in the range of 1 to 300 hours.
酸化物超電導積層基板の製造方法により製造した酸化物
超電導積層基板上に誘電体薄膜と酸化物超電導体薄膜を
成膜した後、該酸化物超電導体薄膜を配線形状にパター
ニングして酸化物超電導体配線を形成することを特徴と
する超電導集積回路の製造方法。12. After forming a dielectric thin film and an oxide superconductor thin film on an oxide superconducting multilayer substrate manufactured by the method for manufacturing an oxide superconducting multilayer substrate according to claim 3, A method of manufacturing a superconducting integrated circuit, comprising forming an oxide superconductor wiring by patterning an oxide superconductor thin film into a wiring shape.
たは酸化物超電導多結晶からなる酸化物超電導体配線を
形成してなる第一と第二の酸化物超電導積層基板のうち
少なくとも一方に絶縁膜と酸化物超電導体薄膜を成膜し
た後、該酸化物超電導体薄膜を配線形状にパターニング
して酸化物超電導体回路を形成し、ついで、前記第一と
第二の酸化物超電導積層基板の酸化物超電導体配線同士
を直接あるいは酸化物超電導体薄膜を介して接触させて
熱処理を施し、前記第一と第二の酸化物超電導積層基板
の酸化物超電導体配線同士を固着することを特徴とする
超電導集積回路の製造方法。13. An insulated at least one of a first and a second oxide superconducting laminated substrate in which an oxide superconducting wiring made of an oxide superconducting single crystal or an oxide superconducting polycrystal is formed on a dielectric substrate. After forming the film and the oxide superconductor thin film, the oxide superconductor thin film is patterned into a wiring shape to form an oxide superconductor circuit, and then the first and second oxide superconductor laminate substrates Heat-treating the oxide superconductor wirings directly or through an oxide superconductor thin film, and fixing the oxide superconductor wirings of the first and second oxide superconducting laminate substrates. Of manufacturing a superconducting integrated circuit.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27761699A JP2001101930A (en) | 1999-09-29 | 1999-09-29 | Oxide superconducting laminated substrate, method for producing the same, and method for producing superconducting integrated circuit |
US09/653,404 US6613463B1 (en) | 1999-09-06 | 2000-09-01 | Superconducting laminated oxide substrate and superconducting integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27761699A JP2001101930A (en) | 1999-09-29 | 1999-09-29 | Oxide superconducting laminated substrate, method for producing the same, and method for producing superconducting integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001101930A true JP2001101930A (en) | 2001-04-13 |
Family
ID=17585910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27761699A Withdrawn JP2001101930A (en) | 1999-09-06 | 1999-09-29 | Oxide superconducting laminated substrate, method for producing the same, and method for producing superconducting integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001101930A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018212041A1 (en) * | 2017-05-16 | 2018-11-22 | 国立研究開発法人産業技術総合研究所 | Quantum bit device |
-
1999
- 1999-09-29 JP JP27761699A patent/JP2001101930A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018212041A1 (en) * | 2017-05-16 | 2018-11-22 | 国立研究開発法人産業技術総合研究所 | Quantum bit device |
US11362257B2 (en) | 2017-05-16 | 2022-06-14 | National Institute Of Advanced Industrial Science And Technology | Quantum bit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5770947B2 (en) | Superconducting recovery method by joining 2nd generation ReBCO high temperature superconductor using partial fine melt diffusion welding by direct contact of high temperature superconductor layer and annealing with oxygen supply annealing | |
US5051397A (en) | Joined body of high-temperature oxide superconductor and method of joining oxide superconductors | |
EP0584410A1 (en) | Superconducting electronic structures and methods of preparing same | |
JP2009507358A (en) | High temperature superconducting wire and coil | |
JP2013535083A (en) | Multifilament superconductor with reduced AC loss and its formation method | |
CN1018114B (en) | superconducting device | |
US8470744B2 (en) | High temperature superconductor, in particular improved coated conductor | |
JP5548441B2 (en) | Superconducting connection structure, superconducting wire connecting method, superconducting coil device | |
JPH1167523A (en) | Connecting method of oxide superconductive wire rod oxide superconductor coil and superconductive device using the same | |
JP4182832B2 (en) | Superconducting plate connection method and connection part thereof | |
US6613463B1 (en) | Superconducting laminated oxide substrate and superconducting integrated circuit | |
JP2001101930A (en) | Oxide superconducting laminated substrate, method for producing the same, and method for producing superconducting integrated circuit | |
KR100964361B1 (en) | Melt diffusion bonding method of 2nd generation superconducting wire by adjusting oxygen partial pressure | |
JPH09260734A (en) | Composite substrate and manufacturing method thereof | |
JP2914328B2 (en) | Method for producing oxide superconducting thin film | |
JPH07309700A (en) | Oxide thin film, its production and superconducting element using the same | |
JP4589698B2 (en) | Superconducting bulk material | |
JP3831307B2 (en) | Low resistance conductor and method of manufacturing the same | |
JP2001080994A (en) | Oxide superconducting laminated substrate and manufacturing method thereof | |
JP6311209B2 (en) | Oxide superconducting thin film wire | |
JP2002289049A (en) | Low resistance conductor, method of manufacturing the same, and electric member using the same | |
JP2001127351A (en) | Superconducting circuit device and manufacturing method thereof | |
JP2595670B2 (en) | Method for manufacturing superconducting film-formed substrate | |
JPH08264312A (en) | Current lead | |
Kopperschmidt et al. | Back-to-back substrate wafer bonding: A new approach to the fabrication of double-side coated wafers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061205 |