[go: up one dir, main page]

JP2001099070A - Refrigeration air conditioning compressor - Google Patents

Refrigeration air conditioning compressor

Info

Publication number
JP2001099070A
JP2001099070A JP27906399A JP27906399A JP2001099070A JP 2001099070 A JP2001099070 A JP 2001099070A JP 27906399 A JP27906399 A JP 27906399A JP 27906399 A JP27906399 A JP 27906399A JP 2001099070 A JP2001099070 A JP 2001099070A
Authority
JP
Japan
Prior art keywords
lubricating oil
ultrasonic
ultrasonic probe
lubricating
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27906399A
Other languages
Japanese (ja)
Other versions
JP3864264B2 (en
Inventor
Tomonaga Oyamada
具永 小山田
Yoichi Inoue
陽一 井上
Muneo Mizumoto
宗男 水本
Yuichi Yanase
裕一 柳瀬
Yoshitaka Fujimoto
芳貴 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27906399A priority Critical patent/JP3864264B2/en
Publication of JP2001099070A publication Critical patent/JP2001099070A/en
Application granted granted Critical
Publication of JP3864264B2 publication Critical patent/JP3864264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

(57)【要約】 【課題】 圧縮機の摺動部各所での冷媒混合潤滑油の性
状を検出し、潤滑油の不良に応じて圧縮機を保護するよ
う運転制御する冷凍空調圧縮機を実現する。 【解決手段】 固定スクロール4、旋回スクロール5、
オルダムリング10等を有する圧縮機構2と、旋回スク
ロール5を偏心旋回させる回転軸9を有する電動機3を
備え、スクロール4、5間やオルダムリング10の摺動
部及び回転軸9を支持する軸受21等に冷媒混合潤滑油
を供給する冷凍空調圧縮機において、各潤滑箇所に超音
波プローブ19(a,e,d,g)を配し、各超音波プロー
ブが送受信した超音波強度を計る計測手段の出力から超
音波減衰率を算出し、算出した超音波減衰率と、予め求
めた潤滑油中の超音波伝播距離と潤滑油の気泡含有率と
超音波減衰率との関係とから、気泡含有率を求める演算
手段と、該気泡含有率が所定値以上で電動機3回転数を
下げるよう制御する制御手段とを設けたものである。
(57) [Problem] To provide a refrigeration air-conditioning compressor that detects the properties of refrigerant-mixed lubricating oil at various points of a sliding portion of the compressor and controls the operation so as to protect the compressor according to the lubricating oil failure. I do. SOLUTION: Fixed scroll 4, orbiting scroll 5,
A compression mechanism 2 having an Oldham ring 10 and the like, and an electric motor 3 having a rotating shaft 9 for eccentrically orbiting the orbiting scroll 5, and a bearing 21 for supporting the rotating shaft 9 between the scrolls 4 and 5 and the sliding portion of the Oldham ring 10. In a refrigerating air-conditioning compressor for supplying a refrigerant-mixed lubricating oil to a lubricating unit, etc., an ultrasonic probe 19 (a, e, d, g) is arranged at each lubricating point, and measuring means for measuring the ultrasonic intensity transmitted and received by each ultrasonic probe Calculate the ultrasonic attenuation rate from the output of, the calculated ultrasonic attenuation rate, and the relationship between the ultrasonic propagation distance in the lubricant oil and the bubble content rate of the lubricant and the ultrasonic attenuation rate, the bubble attenuation rate It is provided with arithmetic means for calculating the rate, and control means for controlling so as to reduce the number of revolutions of the electric motor 3 when the bubble content rate is equal to or more than a predetermined value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫や空気調和
機等に用いる容積型冷凍空調圧縮機に係り、特に圧縮機
内の潤滑油の状態を局所的に検知して、潤滑油の不良時
に圧縮機を保護するように制御する容積型冷凍空調圧縮
機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement type refrigerating and air-conditioning compressor for use in refrigerators, air conditioners, and the like, and in particular, detects the state of lubricating oil in the compressor locally and compresses the lubricating oil when defective. The present invention relates to a positive displacement refrigeration / air-conditioning compressor that controls so as to protect the compressor.

【0002】[0002]

【従来の技術】冷凍空調圧縮機では、通常、摺動部の焼
き付きを防止あるいは摩耗低減のために潤滑油が用いら
れている。しかしながら、このような冷凍空調圧縮機に
あっては次のような問題があった。ケーシング内部の圧
力変化及び温度変化に際して、潤滑油に溶け込む冷媒の
量が変化するため、潤滑油の粘度が大きく変化するほ
か、潤滑油中に過剰に溶け込んだ冷媒が潤滑油中から離
脱するときに油中に気泡を発生する。この気泡を含む潤
滑油は一般に潤滑性に乏しく、この結果、摺動部におい
て潤滑不良を生じさせる危惧があった。このような潤滑
不良が発生すると、摺動部に摩耗が起こり性能低下、騒
音の増大、信頼性の低下等につながった。さらには、摺
動部分が焼き付いたりして故障する心配があった。そこ
で、圧縮機運転中に潤滑油に混入した気泡量を把握でき
れば、潤滑油の潤滑能力が損なわれる前に冷凍空調圧縮
機の運転を止め、または軸の回転速度を変化させ、潤滑
不良状態を回避することができる。また、信頼性評価の
視点においては、圧縮機の長期試験による故障を待たず
に故障の危惧のある異常な潤滑状態を発見できる。
2. Description of the Related Art In a refrigerating air-conditioning compressor, lubricating oil is usually used to prevent seizure of a sliding portion or to reduce wear. However, such a refrigeration / air-conditioning compressor has the following problems. At the time of pressure change and temperature change inside the casing, the amount of refrigerant dissolved in the lubricating oil changes, so that the viscosity of the lubricating oil changes greatly, and when the refrigerant excessively dissolved in the lubricating oil separates from the lubricating oil. Generates bubbles in oil. The lubricating oil containing the bubbles generally has poor lubricity, and as a result, there is a fear that poor lubrication may occur in the sliding portion. When such poor lubrication occurs, abrasion occurs on the sliding portion, leading to a decrease in performance, an increase in noise, a decrease in reliability, and the like. Further, there is a fear that the sliding portion may be burned or malfunctioned. Therefore, if the amount of air bubbles mixed into the lubricating oil during the operation of the compressor can be grasped, the operation of the refrigeration / air-conditioning compressor is stopped before the lubricating ability of the lubricating oil is impaired, or the rotational speed of the shaft is changed to prevent poor lubrication. Can be avoided. In addition, from the viewpoint of reliability evaluation, an abnormal lubrication state with a fear of failure can be found without waiting for a failure in a long-term test of the compressor.

【0003】摺動部における潤滑不良の発生を検知する
手段として、特開平8−151992号公報に記載のよ
うに、アコースティックエミッション(AE)信号を用い
て検知する手段や、特開平10−288182号公報に
記載のように通電信号を用いて検知する手段が知られて
いる。これらのAE信号や通電信号は、摺動面と摺動面
とが接触して初めて発生するために、摩耗の発生を未然
に予測する事が困難であった。
As means for detecting the occurrence of poor lubrication in a sliding portion, means for detecting using an acoustic emission (AE) signal as described in JP-A-8-151992, and JP-A-10-288182. As described in the gazette, means for detecting using an energization signal is known. Since the AE signal and the energization signal are generated only when the sliding surfaces come into contact with each other, it is difficult to predict the occurrence of wear beforehand.

【0004】また、超音波を利用して圧縮機内の計測を
行う例としては、特開平6−94687公報に記載のよ
うに、圧縮機の外部から圧縮機内の油溜めにおける潤滑
油への冷媒混入量を計測する装置がある。しかし、この
装置においては、計測される超音波信号の感度が圧縮機
容器の材質及び表面あらさによりばらつくため正確な計
測が難しいこと、また、摺動部における潤滑油中への気
泡の進入を検知し圧縮機の潤滑不良を未然に予測するこ
とは非常に困難であった。
As an example of measuring the inside of a compressor using ultrasonic waves, as described in Japanese Patent Application Laid-Open No. 6-94687, refrigerant mixed into lubricating oil in an oil sump inside the compressor from outside the compressor. There are devices for measuring quantities. However, with this device, it is difficult to measure accurately because the sensitivity of the measured ultrasonic signal varies depending on the material and surface roughness of the compressor container, and it detects the entry of air bubbles into the lubricating oil at the sliding part. However, it was very difficult to predict poor lubrication of the compressor.

【0005】[0005]

【発明が解決しようとする課題】従来、冷凍空調圧縮機
においては、気泡の発生に起因した潤滑不足や局所的な
潤滑不良による摩耗の増加等の信頼性の低下を回避する
のが困難であった。
Conventionally, in a refrigerating and air-conditioning compressor, it has been difficult to avoid a decrease in reliability such as insufficient lubrication due to the generation of air bubbles and increased wear due to local poor lubrication. Was.

【0006】また、運転中に潤滑油の点検を行うことが
困難であり、周期的に運転を停止して潤滑油、及び摺動
部の点検を行なう必要があった。
In addition, it is difficult to check the lubricating oil during operation, and it is necessary to periodically stop the operation to check the lubricating oil and sliding parts.

【0007】そこで、本発明は、圧縮運転を継続したま
まで摺動部における潤滑油の状態を把握して、潤滑油不
良に応じて圧縮機の運転を制御する装置を付加した冷凍
空調圧縮機の実現を目的としている。
Therefore, the present invention provides a refrigerating and air-conditioning compressor to which a device for controlling the operation of a compressor in accordance with lubricating oil failure by grasping the state of lubricating oil in a sliding portion while the compression operation is continued is provided. The purpose is to realize.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の冷凍空調圧縮機は、密閉容器内に圧縮機構
及び該圧縮機構を回転軸を介して駆動する電動機を備
え、圧縮機構を構成する可動部材の摺動部及び電動機の
回転軸を支持する軸受部などの潤滑箇所に冷媒混合潤滑
油を供給する冷凍空調圧縮機において、各潤滑箇所ない
しその近辺で周期的に超音波を発信し潤滑油中を所定距
離だけ伝播した後に受信する各超音波プローブと、各超
音波プローブの発信した超音波の強度及び受信した超音
波の強度を計測する計測手段と、該計測した超音波の発
信強度と受信強度から発信強度に対する受信強度の超音
波減衰率を算出し、該算出した超音波減衰率と、予め求
めた潤滑油中の超音波伝播距離と潤滑油の気泡含有率と
超音波減衰率との関係とから、各潤滑箇所の潤滑油の気
泡含有率を求める演算手段と、演算手段が求めた気泡含
有率が各潤滑箇所のいずれかで所定値より大きい時に電
動機の回転数を下げるもしくは停止するように制御する
制御手段とを設けたことを特徴とする。
In order to achieve the above object, a refrigerating and air-conditioning compressor according to the present invention comprises a compression mechanism in a closed container and an electric motor for driving the compression mechanism via a rotating shaft. In a refrigeration / air-conditioning compressor that supplies refrigerant-mixed lubricating oil to lubricating points such as a sliding part of a movable member and a bearing part that supports a rotating shaft of an electric motor, ultrasonic waves are periodically generated at or near each lubricating point. Each ultrasonic probe which is transmitted and received after propagating through the lubricating oil by a predetermined distance, measuring means for measuring the intensity of the ultrasonic wave transmitted from each ultrasonic probe and the intensity of the received ultrasonic wave, and the measured ultrasonic wave Calculate the ultrasonic attenuation rate of the reception intensity with respect to the transmission intensity from the transmission intensity and the reception intensity of the transmission intensity, the calculated ultrasonic attenuation rate, the ultrasonic wave propagation distance in the lubricating oil, the bubble content of the lubricating oil, and the Relationship with sound attenuation And calculating means for determining the bubble content of the lubricating oil at each lubricating point, and reducing or stopping the rotation speed of the motor when the bubble content determined by the calculating means is greater than a predetermined value at any of the lubricating points. And control means for performing the control.

【0009】また別の冷凍空調圧縮機は、上記の冷凍空
調圧縮機と同様に超音波プローブを設置し、各超音波プ
ローブの発信から受信までの所要時間を計測する計測手
段と、該計測した所要時間と、予め求めた潤滑油中の超
音波伝播距離と伝播所要時間前記演算手段が求めた潤滑
油粘度が所定値より低いときに電動機の回転数を下げる
もしくは停止するように制御する制御手段とを設けたこ
とを特徴とする。
In another refrigeration / air-conditioning compressor, an ultrasonic probe is installed in the same manner as in the above-mentioned refrigeration / air-conditioning compressor, and measuring means for measuring the time required from transmission to reception of each ultrasonic probe is provided. The required time, the ultrasonic wave propagation distance in the lubricating oil determined in advance, and the required propagation time. The control means for controlling the rotational speed of the electric motor to be reduced or stopped when the lubricating oil viscosity determined by the arithmetic means is lower than a predetermined value. Are provided.

【0010】上記各冷凍空調圧縮機においては、冷媒や
気泡の混入した潤滑油中を伝播した超音波の強度あるい
は音速との関係から摺動部に存在する冷媒油中に存在す
る気泡量あるいは潤滑油の粘度を算出し、異常な低粘度
状態あるいは油膜の断裂状態といった異常状態を検出し
て、圧縮機を制御して潤滑不良状態を回避する。
In each of the refrigerating and air-conditioning compressors described above, the amount of air bubbles or the amount of lubrication present in the refrigerant oil existing in the sliding portion depends on the intensity or sound speed of the ultrasonic wave propagating in the lubricating oil containing the refrigerant or air bubbles. An oil viscosity is calculated, and an abnormal state such as an abnormally low viscosity state or an oil film rupture state is detected, and the compressor is controlled to avoid a poor lubrication state.

【0011】冷凍空調圧縮機の潤滑箇所である摺動部と
しては、例えば、スクロール圧縮機においては、固定ス
クロールの下面と該固定スクロールに対して偏心旋回す
る旋回スクロールの上面により形成される摺動部や偏心
旋回時に旋回スクロールの自転防止のため直線動作する
キー・キー溝摺動機構を有するオルダムリングにおける
キーとキー溝により形成される摺動部などがある。ま
た、ロータリ圧縮機においては、偏心軸部を収納するシ
リンダの両端面に設けられすべり軸受で偏心部と接続す
る回転軸を支持するすべり軸受などがある。
As a sliding portion which is a lubricating portion of the refrigerating and air-conditioning compressor, for example, in a scroll compressor, a sliding formed by a lower surface of a fixed scroll and an upper surface of an orbiting scroll eccentrically rotated with respect to the fixed scroll. There is a sliding portion formed by a key and a key groove in an Oldham ring having a key / key groove sliding mechanism that operates linearly to prevent rotation of the orbiting scroll during eccentric orbiting. Further, in a rotary compressor, there is a slide bearing provided on both end surfaces of a cylinder accommodating an eccentric shaft portion and supporting a rotary shaft connected to the eccentric portion by a slide bearing.

【0012】ところで、摺動部に設置された超音波プロ
ーブは、摺動部の可動側部材の相手方である静止側部材
に埋め込み、超音波プローブから発信した超音波は潤滑
油を介して前記可動側部材から反射して戻るように配置
するのがよい。
The ultrasonic probe installed in the sliding portion is embedded in a stationary member opposite to the movable member of the sliding portion, and the ultrasonic wave transmitted from the ultrasonic probe is transmitted to the movable member via lubricating oil. It is preferable to arrange so as to reflect from the side member and return.

【0013】[0013]

【発明の実施の形態】以下、図1から図10を参照しな
がら本発明の冷凍空調圧縮機を具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a refrigeration / air-conditioning compressor according to the present invention will be described in detail with reference to FIGS.

【0014】図1は本発明の実施の形態1となるスクロ
ール圧縮機の縦断面図、図2は図1A−A断面図のであ
る。このスクロール圧縮機は、空調に用いた後の冷媒ガ
スを吸入し、そして圧縮して高温高圧の冷媒ガスとして
空調用に供給するものである。このスクロール圧縮機
は、機能的に大別して、円筒形の密閉容器1と、容器1
内で圧縮空気を生成する圧縮機構2と、圧縮機構2を駆
動する電動機3と、圧縮機構2を構成する部品や部材間
で形成される各摺動面に供給する冷媒混合潤滑油を貯え
る潤滑油溜め16と、潤滑油溜め16から圧縮機構2の
各摺動面に至る潤滑油循環経路の各所に設置されて潤滑
油の性状を検出する超音波プローブとから構成されてい
る。密閉容器1は、その上部に圧縮機構2を、中間部に
電動機3を収納し、下部に潤滑油溜め16を設けてい
る。
FIG. 1 is a longitudinal sectional view of a scroll compressor according to a first embodiment of the present invention, and FIG. 2 is a sectional view of FIG. 1A-A. This scroll compressor sucks refrigerant gas used for air conditioning, compresses it, and supplies it as high-temperature and high-pressure refrigerant gas for air conditioning. This scroll compressor is roughly classified into a cylindrical hermetic container 1 and a container 1
A compression mechanism 2 for generating compressed air therein, an electric motor 3 for driving the compression mechanism 2, and a lubrication oil for storing a refrigerant mixed lubricating oil to be supplied to each sliding surface formed between components and members constituting the compression mechanism 2. It comprises an oil reservoir 16 and ultrasonic probes installed at various points in a lubricating oil circulation path from the lubricating oil reservoir 16 to each sliding surface of the compression mechanism 2 to detect the properties of the lubricating oil. The closed container 1 houses the compression mechanism 2 in the upper part, the electric motor 3 in the middle part, and the lubricating oil reservoir 16 in the lower part.

【0015】圧縮機構2は、概略、渦巻き状のラップ4
bを有する固定スクロール4と、固定スクロール4のラ
ップ4bと噛み合わせるラップ5bを有して両ラップ間
4b、5b間に圧縮室を形成する旋回スクロール5と、
旋回スクロール5を固定スクロール4に対して自転する
ことなく旋回運動させるように両者を4、5を組み立て
るオルダムリング10と、固定スクロール4、旋回スク
ロール5、オルダムリング10を所定の位置に保持する
フレーム8とから構成されている。
The compression mechanism 2 has a spiral wrap 4
a scroll 5 having a fixed scroll 4 and a wrap 5b meshing with the wrap 4b of the fixed scroll 4 to form a compression chamber between the two wraps 4b and 5b;
An Oldham ring 10 that assembles the orbiting scroll 4 and the orbiting ring 5 so that the orbiting scroll 5 rotates without rotating with respect to the fixed scroll 4, and a frame that holds the fixed scroll 4, the orbiting scroll 5, and the Oldham ring 10 in predetermined positions. And 8.

【0016】さらに詳しく圧縮機構2を構成する要素に
ついて説明する。固定スクロール4は、鏡板4aと、該
鏡板4aの下部(背面側)に形成された凹部内にインボ
リュート曲線あるいはこれに近似の曲線に形成されたラ
ップ4bとから構成されている。一方、旋回スクロール
5は、固定スクール4のラップ4bと噛み合う渦巻き状
のラップ5bを鏡板5a上面から突出させ、鏡板5a下
面には電動機3の回転軸9先端の偏心軸部を挿入させる
穴を有するボス5cを突出させてなり、鏡板5a上面の
周部を固定スクロール4の下面と摺動しながら旋回する
ように構成されている。フレーム8は、下すぼまり状の
容器であって、固定スクロール4を上面にボルトにより
固定し、内部空間に旋回スクロール5及びオルダムリン
グを収納し、下部には電動機3の回転軸に直結する主軸
9を支持するころがり軸受け21を設置して構成され、
かつ自らは容器1内に固定されている。オルダムリング
10は、固定スクロール4に対して偏心運動する旋回ス
クロール5を自転させないように、旋回スクロール5に
形成されたキー溝5dおよびフレーム8内部に形成され
たキー溝8aとそれぞれ嵌合する2つのキーを回転軸9
の偏心軸に関して対称に設け、キー溝とキーが摺動して
直線的な往復運動を行うように構成されている。
The components constituting the compression mechanism 2 will be described in more detail. The fixed scroll 4 includes a head plate 4a and a wrap 4b formed in an involute curve or a curve similar to the involute curve in a concave portion formed at a lower portion (back side) of the head plate 4a. On the other hand, the orbiting scroll 5 has a spiral wrap 5b that meshes with the wrap 4b of the fixed school 4 protruding from the upper surface of the end plate 5a, and has a hole in the lower surface of the end plate 5a for inserting the eccentric shaft portion at the tip of the rotating shaft 9 of the electric motor 3. The boss 5c is protruded, and is configured to turn while sliding on the peripheral portion of the upper surface of the end plate 5a with the lower surface of the fixed scroll 4. The frame 8 is a container having a downwardly tapered shape. The fixed scroll 4 is fixed to the upper surface with bolts, the orbiting scroll 5 and the Oldham ring are housed in the internal space, and the main shaft directly connected to the rotating shaft of the electric motor 3 is provided in the lower part. 9 is configured by installing a rolling bearing 21
And it is itself fixed in the container 1. The Oldham ring 10 is fitted with a key groove 5 d formed in the orbiting scroll 5 and a key groove 8 a formed in the frame 8 so as not to rotate the orbiting scroll 5 eccentric to the fixed scroll 4. One key for rotating axis 9
Are arranged symmetrically with respect to the eccentric axis of the key, so that the key groove and the key slide to perform a linear reciprocating motion.

【0017】圧縮機構2により圧縮される冷媒ガスは、
密閉容器2外の冷凍サイクル系から容器2に設けた吸入
管11を通じて容器1内の固定スクロール4の吸入口7
から取り入れられ、両スクロール4、5のラップ4b、
5b間に形成される圧縮室で圧縮され、そして固定スク
ロール4の鏡板4aの中心に形成された吐出口6から密
閉容器1の上部の吐出室12に吐出される。吐出室12
に吐出された高温高圧の冷媒ガスは、通路を介してフレ
ーム8と密閉容器1間に形成された下の部屋に流入し、
そして密閉容器1の外壁に設けられた吐出管13を通じ
て、冷凍サイクル系に供給される。
The refrigerant gas compressed by the compression mechanism 2 is
The suction port 7 of the fixed scroll 4 in the container 1 from the refrigeration cycle system outside the closed container 2 through the suction pipe 11 provided in the container 2.
Wrap 4b of both scrolls 4 and 5,
It is compressed in a compression chamber formed between 5b, and is discharged from a discharge port 6 formed in the center of the end plate 4a of the fixed scroll 4 to a discharge chamber 12 on the upper part of the closed container 1. Discharge chamber 12
High-temperature and high-pressure refrigerant gas discharged into the lower chamber formed between the frame 8 and the sealed container 1 through the passage,
Then, it is supplied to the refrigeration cycle system through a discharge pipe 13 provided on the outer wall of the closed container 1.

【0018】他方、旋回スクロール5の背面とフレーム
8でかこまれた空間(背圧室)14には吸入圧力と吐出
圧力の中間の圧力が作用している。この中間圧力は、旋
回スクロール5の鏡板5aに細孔(背圧孔)15を設
け、この細孔15を介してスクロール内部の圧縮途中の
ガスを空間(背圧室)14に導き、旋回スクロール5の
背面にガスを作用させる。この背面からのガスにより、
旋回スクロール5を固定スクロール4に押し付け、各圧
縮室の密封を行うとともに両スクロール部材4、5の外
周鏡板面の密封をも行う。
On the other hand, a pressure intermediate between the suction pressure and the discharge pressure acts on a space (back pressure chamber) 14 surrounded by the back surface of the orbiting scroll 5 and the frame 8. At this intermediate pressure, a fine hole (back pressure hole) 15 is provided in the end plate 5 a of the orbiting scroll 5, and the gas under compression inside the scroll is guided to the space (back pressure chamber) 14 through the fine hole 15, and The gas is made to act on the back of 5. By the gas from this back,
The orbiting scroll 5 is pressed against the fixed scroll 4 to seal the respective compression chambers and also seal the outer mirror plate surfaces of the scroll members 4 and 5.

【0019】密閉容器1底部の油溜め16の冷媒混合潤
滑油は、フレーム8外の吐出圧力とフレーム8内の背圧
室14の圧力の圧力差により、電動機3の回転軸9の下
に取り付けられた給油管17から、該回転軸9の軸心を
貫通する給油孔9a及び給油孔9aから回転軸9の径方
向に分岐する給油孔を経て、フレーム8内のころがり軸
受21、オルダムリングのキー・キー溝、両スクロール
4、5などの摺動部へ給油される。そして各摺動部より
排出された潤滑油は、フレーム8の背圧室14から旋回
スクロール5の鏡板5aに設けた背圧孔15、両スクロ
ール4、5間の圧縮室を経て固定スクロール4の鏡板4
aに設けた吐出口6から吐出室12に吐出される。この
とき、潤滑油は冷媒ガスに伴って吐出される。これら冷
媒ガスと潤滑油は、吐出室12から通路、ガイド(図示
せず)により密閉容器1に添って電動機部3に向かって
流れ、電動機部3上部のコイルエンド3aで分離された
潤滑油は下方の油溜め16へ流れ、一方、冷媒ガスは容
器1内壁に添って流れ吐出管13より冷凍サイクル系へ
送り出される。
The refrigerant mixed lubricating oil in the oil reservoir 16 at the bottom of the closed casing 1 is attached below the rotating shaft 9 of the electric motor 3 due to the pressure difference between the discharge pressure outside the frame 8 and the pressure in the back pressure chamber 14 inside the frame 8. From the supplied oil supply pipe 17, through a fuel supply hole 9 a penetrating the axis of the rotary shaft 9 and a fuel supply hole branched from the fuel supply hole 9 a in the radial direction of the rotary shaft 9, the rolling bearing 21 in the frame 8 and the Oldham ring Oil is supplied to sliding parts such as keys and key grooves and both scrolls 4 and 5. The lubricating oil discharged from each sliding portion passes from the back pressure chamber 14 of the frame 8 to the fixed scroll 4 via the back pressure hole 15 provided in the end plate 5a of the orbiting scroll 5 and the compression chamber between the two scrolls 4, 5. End plate 4
The liquid is discharged into the discharge chamber 12 from the discharge port 6 provided at the position a. At this time, the lubricating oil is discharged with the refrigerant gas. The refrigerant gas and the lubricating oil flow from the discharge chamber 12 toward the electric motor unit 3 along the closed container 1 by a passage and a guide (not shown), and the lubricating oil separated by the coil end 3a above the electric motor unit 3 The refrigerant gas flows to the lower oil reservoir 16, while the refrigerant gas flows along the inner wall of the container 1 and is sent out from the discharge pipe 13 to the refrigeration cycle system.

【0020】オルダムリング10の摺動部への給油は、
フレーム8内外の差圧により油溜め16から主軸9の給
油孔9aを通過して旋回軸受の潤滑に利用し、フレーム
8のバランスウェイト18に落下した潤滑油がフレーム
8の背圧室14内にはねかけられることにより行われ、
キー・キー溝の摺動部に流体油膜が形成される。
The lubrication of the sliding part of the Oldham ring 10 is as follows.
Due to the differential pressure between the inside and outside of the frame 8, the oil from the oil reservoir 16 passes through the oil supply hole 9 a of the main shaft 9 and is used for lubrication of the slewing bearing, and the lubricating oil dropped on the balance weight 18 of the frame 8 enters the back pressure chamber 14 of the frame 8. It is done by being splashed,
A fluid oil film is formed on the sliding portion of the key / key groove.

【0021】冷媒混合潤滑油の性状を検出する超音波プ
ローブ19(超音波プローブを総称して符合19を付
す)として、電動機3の回転軸を支持するころがり軸受
け21部に超音波プローブ19gが配置され、該軸受け
21近傍の潤滑油流路に超音波プローブ19bが、オル
ダムリング10のキー・キー溝の摺動部には超音波プロ
ーブ19d、19eが、固定スクロール4の鏡板4bと
旋回スクロール5の鏡板5bの摺動部に超音波プローブ
19aが、フレーム8内の背圧室14の底部に超音波プ
ローブ19hが、容器1底部の潤滑油溜め16内に超音
波プローブ19cが配置されている。その他任意の箇所
に配置する。超音波プローブ19は、スクロール圧縮機
内の潤滑油経路の各所における潤滑油中の泡の量あるい
は潤滑油の粘度を計測する。超音波プローブ19は絶縁
性の接着剤を用いて取り付けられ、外周は絶縁されてい
る。
As an ultrasonic probe 19 for detecting the properties of the refrigerant-mixed lubricating oil (ultrasonic probes are collectively denoted by reference numeral 19), an ultrasonic probe 19g is arranged on a rolling bearing 21 that supports the rotating shaft of the electric motor 3. The ultrasonic probe 19b is provided in the lubricating oil flow path near the bearing 21, and the ultrasonic probes 19d and 19e are provided in the sliding portion of the Oldham ring 10 in the key / key groove, and the end plate 4b of the fixed scroll 4 and the orbiting scroll 5 are provided. The ultrasonic probe 19a is arranged on the sliding portion of the end plate 5b, the ultrasonic probe 19h is arranged on the bottom of the back pressure chamber 14 in the frame 8, and the ultrasonic probe 19c is arranged in the lubricating oil reservoir 16 on the bottom of the container 1. . Place it at any other location. The ultrasonic probe 19 measures the amount of foam in the lubricating oil or the viscosity of the lubricating oil at various points in the lubricating oil path in the scroll compressor. The ultrasonic probe 19 is attached using an insulating adhesive, and the outer periphery is insulated.

【0022】摺動部(例えばオルダムリング10のキー
とフレーム8のキー溝の摺動部)に介在する潤滑油の計
測を目的に超音波プローブを設置する場合、図3に示す
ように超音波プローブのセンサ面を静止するキー溝8a
側の摺動面上に露出させて計測を行うか、図4に示すよ
うにセンサ面を露出させずに超音波プローブ19eの表
面とオルダムリングのキー部10bの表面との間に壁部
8bを介して計測を行う方法がある。前者を実行した場
合は後者を実行した場合に比べて高い感度が得られる。
超音波プローブ表面を摺動面上に露出させて計測を行う
場合には、超音波プローブのセンサ面は摺動面と等しい
位置かあるいは摺動面より数マイクロメートルから数十
マイクロメートル掘り下げた位置に設置することが望ま
しい。最適な超音波プローブの取り付け位置を選ぶこと
によって、摺動面間の流体膜がとぎれた場合でも超音波
プローブが保護される他、摺動面の不慮の接触に影響さ
れないより信頼性の高い計測が実現できる。また、互い
に摺動する2部材間の接触を検出した超音波センサ19
の部位から潤滑不良の原因を特定出来るので、信頼性の
高い圧縮機を実現できる。
When an ultrasonic probe is installed for measuring a lubricating oil interposed in a sliding portion (for example, a sliding portion between a key of the Oldham ring 10 and a key groove of the frame 8), as shown in FIG. Keyway 8a for resting the sensor surface of the probe
The measurement is performed by exposing on the side sliding surface, or as shown in FIG. 4, without exposing the sensor surface, the wall portion 8b is provided between the surface of the ultrasonic probe 19e and the surface of the key portion 10b of the Oldham ring. There is a method of performing measurement via the. When the former is executed, higher sensitivity is obtained than when the latter is executed.
When measuring by exposing the ultrasonic probe surface on the sliding surface, the sensor surface of the ultrasonic probe is at the same position as the sliding surface or at a position dug several micrometers to several tens of micrometers below the sliding surface. It is desirable to install in By selecting the optimal mounting position of the ultrasonic probe, the ultrasonic probe is protected even if the fluid film between the sliding surfaces breaks, and more reliable measurement is not affected by accidental contact of the sliding surface Can be realized. Further, the ultrasonic sensor 19 which detects the contact between the two members sliding with each other.
Since the cause of poor lubrication can be specified from the part, a highly reliable compressor can be realized.

【0023】スクロール圧縮機内の摺動部に超音波プロ
ーブ19を設ける場合、オルダムリング10の摺動部で
は、図2及び図3に示すように、超音波プローブ19e
をキー溝8aの一方の側面に埋め込み、センサ面がキー
溝の摺動面にあって摺動方向と直角になるような設置
し、キー10bの一方の摺動面を反射面として用いる。
キー溝8aの他方の側面に設置する超音波プローブ19
fも超音波プローブ19eと同様に設置し、キー10b
の他方の摺動面を反射面として用いる。またキー溝8a
の下面に設置された超音波プローブ19dはキー10b
の下面に垂直に設置され、キー10bの底面を反射面と
して用いる。
When the ultrasonic probe 19 is provided on the sliding portion in the scroll compressor, the ultrasonic probe 19e is provided on the sliding portion of the Oldham ring 10 as shown in FIGS.
Is embedded in one side surface of the key groove 8a, and the sensor surface is disposed so as to be at right angles to the sliding direction of the key groove, and one sliding surface of the key 10b is used as a reflection surface.
Ultrasonic probe 19 installed on the other side of keyway 8a
f is also set in the same manner as the ultrasonic probe 19e, and the key 10b
Is used as a reflection surface. Keyway 8a
The ultrasonic probe 19d installed on the lower surface of the key is a key 10b
And the bottom surface of the key 10b is used as a reflection surface.

【0024】電動機3の回転主軸9を支持するころがり
軸受21部においては、ころがり軸受21のスラスト軸
受部材の端面に対向するように、フレーム8側に超音波
プローブ19gが設置されており、このプローブ19g
はスラスト軸受部材の端面を反射面として用いる。ま
た、ころがり軸受21に至る潤滑油経路の潤滑油、すな
わち電動機3の回転主軸9とそれを挿通するフレーム8
に設けた穴との間の隙間に流れる潤滑油をチェックする
ために、超音波プローブ19bがフレーム8側に回転主
軸9の表面に垂直な方向に設置され、この超音波プロー
ブ19bは主軸9表面を反射面として用いる。これら超
音波プローブ19b、19gは、軸受21の摺動部にお
ける潤滑油流体膜への気泡の進入、あるいは摺動部にお
ける油量不足から発生する潤滑不良を検知する。
In the rolling bearing 21 for supporting the rotating main shaft 9 of the electric motor 3, an ultrasonic probe 19g is provided on the frame 8 side so as to face the end face of the thrust bearing member of the rolling bearing 21. 19g
Uses the end face of the thrust bearing member as a reflection surface. Further, the lubricating oil in the lubricating oil path leading to the rolling bearing 21, that is, the rotating main shaft 9 of the electric motor 3 and the frame 8 passing therethrough
An ultrasonic probe 19b is installed on the frame 8 side in a direction perpendicular to the surface of the rotating spindle 9 in order to check the lubricating oil flowing in the gap between the holes provided in the spindle 9 and the ultrasonic probe 19b. Is used as a reflection surface. These ultrasonic probes 19b and 19g detect the lubrication failure caused by the entry of air bubbles into the lubricating oil fluid film in the sliding portion of the bearing 21 or the insufficient oil amount in the sliding portion.

【0025】潤滑油溜め16あるいは潤滑油の溜まる場
所に超音波プローブ19を取り付ける場合は、図5に示
すように、2つの超音波プローブ19i、19jを一定
距離に直線上に対抗させて、一方を発信側超音波プロー
ブ、他方を受信側超音波プローブと定め、これら2つの
プローブの間に計測対象の潤滑油が流れるように設置す
るか、あるいは図6に示すように、一つの超音波プロー
ブ19cと反射面20を同様に一定距離に直線上に対向
させて設置し、これらの超音波プローブ19cと反射面
20との間を計測対象の潤滑油が流れるようにする。潤
滑油溜め16内と同様に、フレーム8の背圧室14内に
も、超音波プローブ19hとそれに対向する反射面を設
けている。超音波プローブ19hは、背圧室14内の潤
滑油中の気泡状態と粘度を計測し、そして超音波プロー
ブ19cは油溜まり16内の潤滑油の状態を計測する。
潤滑油中の気泡量や粘度を一つの計測手段で同時に計測
することから、潤滑油中の気泡量の増大及び極度の粘度
低下から潤滑状態が悪化するのを事前に予測する。
When the ultrasonic probe 19 is attached to the lubricating oil reservoir 16 or a place where the lubricating oil is stored, as shown in FIG. 5, the two ultrasonic probes 19i and 19j are opposed to each other on a straight line at a certain distance. Is defined as a transmitting-side ultrasonic probe and the other as a receiving-side ultrasonic probe, and is installed so that lubricating oil to be measured flows between these two probes, or one ultrasonic probe as shown in FIG. Similarly, the reflection surface 19c and the reflection surface 20 are installed so as to be linearly opposed to each other at a fixed distance, and the lubricating oil to be measured flows between the ultrasonic probe 19c and the reflection surface 20. As in the lubricating oil reservoir 16, an ultrasonic probe 19h and a reflecting surface facing the ultrasonic probe 19h are provided also in the back pressure chamber 14 of the frame 8. The ultrasonic probe 19h measures the state of bubbles and the viscosity in the lubricating oil in the back pressure chamber 14, and the ultrasonic probe 19c measures the state of the lubricating oil in the oil reservoir 16.
Since the amount of air bubbles and the viscosity in the lubricating oil are simultaneously measured by one measuring means, it is predicted in advance that the lubrication state will be deteriorated due to the increase in the amount of air bubbles in the lubricating oil and the extremely low viscosity.

【0026】次に図7により、本発明の冷凍空調用圧縮
機の第2の実施の形態となるロータリー圧縮機を説明す
る。このロータリー圧縮機は、機能的には、縦型円筒状
の密閉容器と、密閉容器内で冷媒ガスを圧縮する圧縮機
構と、圧縮機構を駆動する電動機と、圧縮機構を構成す
る部品や部材の摺動面に供給する冷媒混合潤滑油を蓄え
る潤滑油溜めと、各摺動面における潤滑油の性状を検出
する超音波プローブとから構成されている。密閉容器内
では、上から順に電動機、圧縮機構、潤滑油溜めが設置
されている。
Next, a rotary compressor according to a second embodiment of the refrigerating and air conditioning compressor of the present invention will be described with reference to FIG. This rotary compressor is functionally composed of a vertical cylindrical hermetic container, a compression mechanism for compressing the refrigerant gas in the hermetic container, an electric motor driving the compression mechanism, and components and members constituting the compression mechanism. It is composed of a lubricating oil reservoir for storing refrigerant mixed lubricating oil supplied to the sliding surfaces, and an ultrasonic probe for detecting the properties of the lubricating oil on each sliding surface. In the closed container, an electric motor, a compression mechanism, and a lubricating oil reservoir are installed in order from the top.

【0027】電動機47は下方に延びる回転シャフト4
2を有している。圧縮機構は回転回転シャフト42の下
方先端部近くに形成された偏心軸部42aと、偏心軸部
42aにより偏心回転が与えられるローラ46と、偏心
軸部42a及びローラ46を収納するシリンダ45と、
シリンダ45の上蓋となると共に回転シャフト42を支
持する主軸受部材41(ジャーナルすべり軸受)と、シ
リンダ45の下蓋となると共に回転シャフト42の先端
部を支持する副軸受部材44(ジャーナルすべり軸受)
とから構成されている。そして潤滑油溜めの冷媒混合潤
滑油は回転シャフト42の軸心に形成された軸心孔から
径方向に分岐する分岐孔を通じて軸受部材41、44に
供給され、各軸受部材の摺動部は潤滑油によって流体油
膜が作られ、円滑な潤滑が確保される。
The electric motor 47 has a rotating shaft 4 extending downward.
Two. The compression mechanism includes an eccentric shaft portion 42a formed near the lower end of the rotary rotating shaft 42, a roller 46 to which eccentric rotation is given by the eccentric shaft portion 42a, and a cylinder 45 that stores the eccentric shaft portion 42a and the roller 46;
A main bearing member 41 (journal slide bearing) serving as an upper lid of the cylinder 45 and supporting the rotary shaft 42, and a sub-bearing member 44 (journal slide bearing) serving as a lower lid of the cylinder 45 and supporting a tip end of the rotary shaft 42.
It is composed of The refrigerant-mixed lubricating oil in the lubricating oil reservoir is supplied to the bearing members 41 and 44 through branch holes radially branched from an axial hole formed in the axis of the rotary shaft 42, and the sliding portions of each bearing member are lubricated. A fluid oil film is formed by the oil to ensure smooth lubrication.

【0028】超音波プローブ19は、図7に示す如く、
主軸受部材41で圧縮室43側の位置に超音波プローブ
19kが設置され、また副軸受部材44で圧縮室43側
近傍の位置に超音波プローブ19lが、副軸受部材44
の下端側に超音波プローブ19mが、さらに主軸受部材
41の上端側に超音波プローブ19nに設置されてい
る。これら超音波プローブは、各軸受部材と回転シャフ
ト42との摺動面間における潤滑油中の気泡量等を計測
する。
The ultrasonic probe 19 is, as shown in FIG.
The ultrasonic probe 19k is installed at a position on the compression chamber 43 side of the main bearing member 41, and the ultrasonic probe 19l is installed at a position near the compression chamber 43 side on the auxiliary bearing member 44.
An ultrasonic probe 19m is installed on the lower end side of the main bearing member 41, and an ultrasonic probe 19n is installed on the upper end side of the main bearing member 41. These ultrasonic probes measure the amount of bubbles in the lubricating oil between the sliding surfaces of each bearing member and the rotating shaft 42.

【0029】なお、潤滑油の性状を検出する超音波プロ
ーブは、スクロール圧縮機、ロータリー圧縮機のほか
に、レシプロ圧縮機に適用することも可能である。
The ultrasonic probe for detecting the properties of the lubricating oil can be applied to a reciprocating compressor in addition to a scroll compressor and a rotary compressor.

【0030】次に潤滑油内の気泡と超音波強度、音速等
の関係及び該関係を利用して上記の各種圧縮機を保護す
る制御について説明する。HFC系冷媒が混合し、気泡
の混在するエーテル系潤滑油中に周波数10MHzの超
音波を発射して、気泡量と、その油中において5mmの
距離を伝播した超音波の強度(受信強度)との関係を求
めた。その結果、超音波の強度は、図8に示すように、
気泡量の増大とともに減少する傾向になる。ここで、気
泡のない潤滑油における超音波の受信強度を100とし
た。超音波の減衰率は、気泡のない潤滑油における受信
強度から気泡の含む潤滑油における受信強度を減じた値
を、気泡のない潤滑油における受信強度で除して算出す
る。また、同じ条件において、潤滑油の粘度とその油中
の超音波の音速との関係を求めた。その結果、超音波の
音速は、図9に示すように、冷媒の混合した潤滑油の粘
度の増大とともに増加する傾向になる。この傾向は温度
や圧力の変化に大きく左右されない。10MHzより他
の周波数を用いた場合は、図示していないが、超音波プ
ローブより発信する超音波の周波数により潤滑油中の気
泡に対する特性が異なる。5MHz以上の高周波の超音
波を用いると直径の小さな気泡まで敏感に検知でき、少
量の気泡に対しても反射波の強度は大きく減少する。ま
た、数百kHzないしそれ以下の低い周波数の超音波を
用いると、反射波の強度の減少が小さくなり、多量の気
泡を含む潤滑油の計測に適する。
Next, the relationship between the bubbles in the lubricating oil and the ultrasonic intensity, sound speed, and the like, and the control for protecting the various compressors using the relationship will be described. The HFC-based refrigerant is mixed, and an ultrasonic wave having a frequency of 10 MHz is emitted into ether-based lubricating oil containing air bubbles, and the amount of air bubbles and the intensity (reception intensity) of the ultrasonic wave propagated in the oil over a distance of 5 mm. Sought a relationship. As a result, as shown in FIG.
It tends to decrease as the amount of bubbles increases. Here, the reception intensity of the ultrasonic wave in the lubricating oil without bubbles was set to 100. The attenuation rate of the ultrasonic wave is calculated by dividing a value obtained by subtracting the receiving intensity of the lubricating oil containing bubbles from the receiving intensity of the lubricating oil without bubbles by the receiving intensity of the lubricating oil without bubbles. Further, under the same conditions, the relationship between the viscosity of the lubricating oil and the speed of sound of ultrasonic waves in the oil was obtained. As a result, the sound speed of the ultrasonic wave tends to increase as the viscosity of the lubricating oil mixed with the refrigerant increases, as shown in FIG. This tendency is not largely affected by changes in temperature or pressure. When a frequency other than 10 MHz is used, although not shown, the characteristics of bubbles in the lubricating oil differ depending on the frequency of the ultrasonic wave transmitted from the ultrasonic probe. If a high frequency ultrasonic wave of 5 MHz or more is used, even bubbles having a small diameter can be detected sensitively, and the intensity of the reflected wave is greatly reduced even for a small amount of bubbles. In addition, when an ultrasonic wave having a low frequency of several hundred kHz or less is used, a decrease in the intensity of the reflected wave is reduced, which is suitable for measurement of lubricating oil containing a large amount of bubbles.

【0031】演算制御装置30は、図10に示すよう
に、計測回路31と演算回路32と制御手段33とから
構成される。計測回路31は周期的に各超音波プローブ
19を動作させ、超音波プローブ19の出力から、超音
波プローブ19が発射した超音波が反射して戻ってきた
強度及び反射時間を計測し、その値を演算回路32に与
える。演算回路32は、冷凍空調用圧縮機内に設置され
た各超音波プローブについて、その超音波の伝搬距離に
応じて図8に示すような冷媒混合の潤滑油中を伝播した
超音波の強度と潤滑油中に含まれる気泡量との関係及び
減衰率を予め記憶しており、圧縮機稼動中に周期的に各
超音波プローブから与えられる超音波の強度から減衰率
を算出し、この減衰率から油中の気泡量(%)に対応す
る値を出力するようにしている。また演算回路32は、
同様に各超音波プローブについて、図9に示すような冷
媒混合の潤滑油中を伝播する超音波の音速と潤滑油の粘
度との関係を予め記憶しており、圧縮機稼動中に周期的
に各超音波プローブから与えられた超音波の音速に基づ
いて潤滑油粘度の値を出力するようにしている。
As shown in FIG. 10, the arithmetic and control unit 30 comprises a measuring circuit 31, an arithmetic circuit 32 and a control means 33. The measuring circuit 31 periodically operates each ultrasonic probe 19, and measures the intensity and the reflection time of the ultrasonic wave emitted from the ultrasonic probe 19 which is reflected and returned from the output of the ultrasonic probe 19, and the value is measured. Is given to the arithmetic circuit 32. The arithmetic circuit 32 determines the intensity and lubrication of the ultrasonic wave transmitted through the lubricating oil of the refrigerant mixture as shown in FIG. 8 for each ultrasonic probe installed in the compressor for refrigeration and air conditioning in accordance with the propagation distance of the ultrasonic wave. The relationship with the amount of air bubbles contained in the oil and the attenuation rate are stored in advance, and the attenuation rate is calculated from the intensity of the ultrasonic wave given from each ultrasonic probe periodically during the operation of the compressor, and from this attenuation rate The value corresponding to the bubble amount (%) in the oil is output. The arithmetic circuit 32
Similarly, for each ultrasonic probe, the relationship between the sound speed of ultrasonic waves propagating in the lubricating oil mixed with the refrigerant and the viscosity of the lubricating oil is stored in advance as shown in FIG. The value of the viscosity of the lubricating oil is output based on the sound speed of the ultrasonic wave given from each ultrasonic probe.

【0032】制御手段33は演算回路32からの信号に
基づき圧縮機の運転周波数を変化させ、電動機部3を制
御する。一般的には、圧力負荷が過大な場合に潤滑不良
が多く発生するため、回転周波数を下げて負荷を軽減す
るように制御する。
The control means 33 changes the operating frequency of the compressor based on the signal from the arithmetic circuit 32 and controls the motor unit 3. In general, when the pressure load is excessively large, poor lubrication often occurs. Therefore, the rotation frequency is reduced to reduce the load.

【0033】冷凍サイクルが圧力負荷の検出機構を持
ち、圧力負荷の過大が潤滑油不良の原因ではないと判断
できる場合には、摺動速度を上げて被膜形成を上げるこ
とを目的として圧縮機回転周波数を上げる対応が適する
場合もある。圧縮機の吐出圧力と吸入圧力の差が小さい
場合には、必要量の給油が出来ないことが潤滑不良の原
因と判断されることがあり、この場合には回転数を上げ
て圧力の差を大きくする。また、圧縮機構部2の運転を
一時的に停止させて、潤滑不良の解消を図るようする場
合もある。
If the refrigeration cycle has a pressure load detection mechanism and it can be determined that the excessive pressure load is not the cause of the lubricating oil failure, the compressor speed is increased for the purpose of increasing the sliding speed and increasing the film formation. In some cases, increasing the frequency is appropriate. If the difference between the discharge pressure and the suction pressure of the compressor is small, it may be determined that the inability to supply the required amount of oil is the cause of poor lubrication.In this case, increase the rotation speed and reduce the pressure difference. Enlarge. In some cases, the operation of the compression mechanism 2 is temporarily stopped to eliminate poor lubrication.

【0034】なお、各超音波プローブについて、演算装
置への入力信号、演算内容及び演算装置からの出力信号
を表示する表示手段を設けるとよい。これにより、圧縮
機運転中の摺動部における冷媒混合潤滑油中の局所的な
気泡量や粘度といった要素を連続的かつ定量的に判断で
き、従来、長時間にわたる連続運転試験によって生じた
摩耗状態によって確認されていた各摺動部の潤滑状態の
把握を容易にすることが出来るため、冷凍空調圧縮機の
信頼性の向上を実現することが出来る。
For each ultrasonic probe, display means for displaying the input signal to the arithmetic unit, the contents of the arithmetic operation, and the output signal from the arithmetic unit may be provided. This makes it possible to continuously and quantitatively determine factors such as the local bubble amount and viscosity in the refrigerant-mixed lubricating oil at the sliding portion during compressor operation, and to evaluate the wear state that has conventionally been caused by long-term continuous operation tests. Therefore, it is possible to easily grasp the lubrication state of each sliding portion, which has been confirmed by the above, so that it is possible to improve the reliability of the refrigeration / air-conditioning compressor.

【0035】[0035]

【発明の効果】本発明によれば、運転を継続したままで
圧縮機内の摺動部における潤滑油の状態を、冷媒混合潤
滑油中の気泡量や粘度といったパラメータにより定量的
に把握して、潤滑油不良に応じて圧縮機を保護するよう
に運転を制御できる冷凍空調圧縮機を実現することがで
きる。
According to the present invention, the state of the lubricating oil in the sliding section in the compressor is quantitatively grasped by the parameters such as the amount of air bubbles and the viscosity in the lubricating oil mixed with the refrigerant while the operation is continued. A refrigeration / air-conditioning compressor capable of controlling operation to protect the compressor in response to lubricating oil failure can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1となるスクロール圧縮機
の縦断面図である。
FIG. 1 is a vertical sectional view of a scroll compressor according to a first embodiment of the present invention.

【図2】図1のA−A線の断面図である。FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】図2のB−B線の断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 2;

【図4】摺動面に超音波プローブを露出させない検出部
の構成図である。
FIG. 4 is a configuration diagram of a detection unit that does not expose an ultrasonic probe to a sliding surface.

【図5】背圧室及び油溜めにおける2つの超音波プロー
ブを用いた検出部の構成図である。
FIG. 5 is a configuration diagram of a detection unit using two ultrasonic probes in a back pressure chamber and an oil sump.

【図6】背圧室及び油溜めにおける1つの超音波プロー
ブと反射面を用いた検出部の構成図である。
FIG. 6 is a configuration diagram of a detection unit using one ultrasonic probe and a reflection surface in a back pressure chamber and an oil sump.

【図7】本発明の実施の形態となるロータリー圧縮機を
示す断面図である。
FIG. 7 is a sectional view showing a rotary compressor according to an embodiment of the present invention.

【図8】冷媒の混じる潤滑油中の気泡含有量と超音波減
衰率との関係を示すグラフである。
FIG. 8 is a graph showing a relationship between a bubble content in a lubricating oil mixed with a refrigerant and an ultrasonic attenuation rate.

【図9】冷媒の混じる潤滑油の粘度とその油中の超音波
の音速との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the viscosity of lubricating oil mixed with a refrigerant and the speed of sound of ultrasonic waves in the oil.

【図10】圧縮機に設置した超音波プローブからの信号
を処理する演算制御装置の構成を示す図である。
FIG. 10 is a diagram illustrating a configuration of an arithmetic and control unit that processes a signal from an ultrasonic probe installed in a compressor.

【符号の説明】[Explanation of symbols]

1 密閉容器 2 圧縮機構 3 電動機 4 固定スクロール 5 旋回スクロール 8 フレーム 8a フレーム側キー溝 8b 超音波プローブ保護壁 9 主軸 9a 給油孔 10 オルダムリング 10b オルダムリング側キー部 16 潤滑油溜め 19a〜19h 超音波プローブ 20 反射面 21 スラスト軸受部材 22 副軸受部材 30 演算制御装置 31 計測回路 32 演算回路 33 制御手段 40 密閉容器 41 主軸受部材 42 回転シャフト 43 圧縮室 44 副軸受部材 45 シリンダ 46 ローラ 47 電動機 DESCRIPTION OF SYMBOLS 1 Closed container 2 Compression mechanism 3 Electric motor 4 Fixed scroll 5 Orbiting scroll 8 Frame 8a Frame side keyway 8b Ultrasonic probe protection wall 9 Main shaft 9a Oil supply hole 10 Oldham ring 10b Oldham ring side key part 16 Lubricating oil reservoir 19a-19h Ultrasonic wave Probe 20 Reflecting surface 21 Thrust bearing member 22 Sub bearing member 30 Arithmetic controller 31 Measurement circuit 32 Arithmetic circuit 33 Control means 40 Closed vessel 41 Main bearing member 42 Rotating shaft 43 Compression chamber 44 Sub bearing member 45 Cylinder 46 Roller 47 Motor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 49/02 550 F25B 49/02 550 560 560 (72)発明者 水本 宗男 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 柳瀬 裕一 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 藤本 芳貴 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 3H003 AA05 AB03 AC03 BD00 BD02 3H029 AA02 AA14 AB03 BB50 BB60 CC51 CC62 3H045 AA05 AA09 AA12 AA27 BA43 BA44 CA00 DA02 DA07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme Court ゛ (Reference) F25B 49/02 550 F25B 49/02 550 560 560 (72) Inventor Muneo 502 Kandatecho, Tsuchiura City, Ibaraki Prefecture Address Machinery Research Laboratory, Hitachi, Ltd. (72) Inventor Yuichi Yanase 502, Kantachi-cho, Tsuchiura-shi, Ibaraki Prefecture Machinery Laboratory, Hitachi, Ltd. (72) Yoshiki Fujimoto 390, Muramatsu, Shimizu-shi, Shizuoka Hitachi Air Conditioning Co., Ltd. 3H003 AA05 AB03 AC03 BD00 BD02 3H029 AA02 AA14 AB03 BB50 BB60 CC51 CC62 3H045 AA05 AA09 AA12 AA27 BA43 BA44 CA00 DA02 DA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内に圧縮機構及び該圧縮機構を
回転軸を介して駆動する電動機を備え、前記圧縮機構を
構成する可動部材の摺動部及び前記回転軸を支持する軸
受部などの潤滑箇所に冷媒混合潤滑油を供給する冷凍空
調圧縮機において、各潤滑箇所ないしその近辺で周期的
に超音波を発信し潤滑油中を所定距離だけ伝播した後に
受信する各超音波プローブと、各超音波プローブの発信
した超音波の強度及び受信した超音波の強度を計測する
計測手段と、該計測した超音波の発信強度と受信強度か
ら発信強度に対する受信強度の超音波減衰率を算出し、
該算出した超音波減衰率と、予め求めた潤滑油中の超音
波伝播距離と潤滑油の気泡含有率と超音波減衰率との関
係とから、各潤滑箇所の潤滑油の気泡含有率を求める演
算手段と、前記演算手段が求めた気泡含有率が各潤滑箇
所のいずれかで所定値より大きい時に前記電動機の回転
数を下げるもしくは停止するように制御する制御手段と
を設けたことを特徴とする冷凍空調圧縮機。
1. A compression mechanism and an electric motor for driving the compression mechanism via a rotary shaft in a closed container, wherein a sliding portion of a movable member constituting the compression mechanism and a bearing portion for supporting the rotary shaft are provided. In a refrigerating air-conditioning compressor that supplies a refrigerant mixed lubricating oil to a lubricating point, each ultrasonic probe that periodically transmits ultrasonic waves at or near each lubricating point and receives after propagating through a predetermined distance in the lubricating oil, Measuring means for measuring the intensity of the ultrasonic wave transmitted by the ultrasonic probe and the intensity of the received ultrasonic wave, and calculating the ultrasonic attenuation rate of the reception intensity with respect to the transmission intensity from the transmission intensity and the reception intensity of the measured ultrasonic wave,
From the calculated ultrasonic attenuation rate and the relationship between the ultrasonic propagation distance in the lubricating oil, the previously determined ultrasonic wave propagation distance, the air bubble content of the lubricating oil, and the ultrasonic attenuation rate, determine the air bubble content of the lubricating oil at each lubricating point. Calculating means, and control means for controlling so as to reduce or stop the rotation speed of the electric motor when the bubble content calculated by the calculating means is larger than a predetermined value at any of the lubrication points. Refrigeration air conditioning compressor.
【請求項2】 密閉容器内に圧縮機構及び該圧縮機構を
回転軸を介して駆動する電動機を備え、前記圧縮機構を
構成する可動部材の摺動部及び前記回転軸を支持する軸
受部などの潤滑箇所に冷媒混合潤滑油を供給する冷凍空
調圧縮機において、前記潤滑箇所それぞれないしその近
辺で周期的に超音波を発信し潤滑油中を所定距離だけ伝
播した後に受信する各超音波プローブと、各超音波プロ
ーブの発信から受信までの所要時間を計測する計測手段
と、該計測した所要時間と、予め求めた潤滑油中の超音
波伝播距離と伝播所要時間と潤滑油粘度との関係から、
各潤滑箇所の潤滑油粘度を求める演算手段と、前記演算
手段が求めた潤滑油粘度が所定値より低いときに前記電
動機の回転数を下げるもしくは停止するように制御する
制御手段とを設けたことを特徴とする冷凍空調圧縮機。
2. A compression mechanism and an electric motor for driving the compression mechanism via a rotary shaft in a closed container, wherein a sliding portion of a movable member constituting the compression mechanism and a bearing portion for supporting the rotary shaft are provided. In a refrigerating air-conditioning compressor that supplies a refrigerant-mixed lubricating oil to a lubricating point, each ultrasonic probe that periodically transmits ultrasonic waves at or near each of the lubricating points and receives after propagating a predetermined distance in the lubricating oil, Measuring means for measuring the required time from transmission to reception of each ultrasonic probe, and the measured required time, from the relationship between the ultrasonic propagation distance and the required propagation time in the lubricating oil and the required lubricating oil viscosity,
Calculating means for calculating the lubricating oil viscosity of each lubricating point; and control means for controlling to reduce or stop the rotation speed of the electric motor when the lubricating oil viscosity obtained by the calculating means is lower than a predetermined value. Refrigeration and air conditioning compressor.
【請求項3】 固定スクロールと該固定スクロールに対
して偏心旋回する旋回スクロールと該偏心旋回時に前記
旋回スクロールの自転防止のため直線動作するキー・キ
ー溝摺動機構を有するオルダムリングと前記固定スクロ
ール、前記旋回スクロール及び前記オルダムリングを所
定位置に保持するフレームとから構成される圧縮機構
と、前記旋回スクロールを偏心旋回させる回転軸を有す
る電動機とを密閉容器中に備え、前記固定スクロール下
面と前記旋回スクロールの上面が互いに摺動する摺動
部、前記オルダムリングのキー・キー溝摺動部及び前記
フレーム内に設置され前記回転軸を支持する軸受部など
の潤滑箇所に冷媒混合潤滑油を供給する冷凍空調圧縮機
において、各潤滑箇所ないしその近辺で周期的に超音波
を発信し潤滑油中を所定距離だけ伝播した後に受信する
各超音波プローブと、各超音波プローブの発信した超音
波の強度及び受信した超音波の強度を計測する計測手段
と、該計測した超音波の発信強度と受信強度から発信強
度に対する受信強度の超音波減衰率を算出し、該算出し
た超音波減衰率と、予め求めた潤滑油中の超音波伝播距
離と潤滑油の気泡含有率と超音波減衰率との関係とか
ら、各潤滑箇所の潤滑油の気泡含有率を求める演算手段
と、前記演算手段が求めた気泡含有率が各潤滑箇所のい
ずれかで所定値以上の時に前記電動機の回転数を下げる
もしくは停止するように制御する制御手段とを設けたこ
とを特徴とする冷凍空調圧縮機。
3. An Oldham ring having a fixed scroll, an orbiting scroll that eccentrically turns with respect to the fixed scroll, a key / keyway sliding mechanism that operates linearly to prevent rotation of the orbiting scroll during the eccentric turning, and the fixed scroll. A compression mechanism composed of the orbiting scroll and a frame for holding the Oldham ring in a predetermined position, and an electric motor having a rotating shaft for eccentrically orbiting the orbiting scroll, provided in a closed container, Supplies refrigerant-mixed lubricating oil to lubricating points such as a sliding part on which the upper surfaces of the orbiting scrolls slide together, a key / key groove sliding part of the Oldham ring, and a bearing part installed in the frame and supporting the rotary shaft. Refrigeration and air-conditioning compressors periodically transmit ultrasonic waves at or near each lubrication point and Each ultrasonic probe to be received after propagating by a distance, and measuring means for measuring the intensity of the ultrasonic wave transmitted from each ultrasonic probe and the intensity of the received ultrasonic wave, and from the measured transmission intensity and reception intensity of the ultrasonic wave, Calculate the ultrasonic attenuation rate of the reception intensity with respect to the transmission intensity, the calculated ultrasonic attenuation rate, and the relationship between the ultrasonic propagation distance and the bubble content rate of the lubricant oil and the ultrasonic attenuation rate determined in advance. And calculating means for calculating the bubble content of the lubricating oil at each lubricating point, and reducing or stopping the rotation speed of the electric motor when the bubble content determined by the calculating means is a predetermined value or more at any of the lubricating points. Refrigeration and air-conditioning compressor provided with control means for performing such control.
【請求項4】 前記摺動部である潤滑箇所に設置された
超音波プローブは摺動部の可動側部材の相手方である静
止側部材に埋め込み、超音波プローブから発信した超音
波は潤滑油を介して前記可動側部材から反射して戻るよ
うに配置したことを特徴とする請求項1、2又は3に記
載の冷凍空調圧縮機。
4. An ultrasonic probe installed at a lubricating point which is the sliding portion is embedded in a stationary member which is a counterpart of a movable member of the sliding portion, and ultrasonic waves transmitted from the ultrasonic probe use lubricating oil. The refrigeration / air-conditioning compressor according to claim 1, 2 or 3, wherein the compressor is arranged so as to be reflected from the movable side member and returned.
【請求項5】 シリンダと該シリンダ内に収納された偏
心軸部と前記シリンダ両端に設置された各すべり軸受と
を有する圧縮機構と、前記偏心軸部に接続し前記すべり
軸受に支持される回転軸を有する電動機とを備え、前記
すべり軸受に冷媒混合潤滑油を供給する冷凍空調圧縮機
において、各すべり軸受のすべり面に埋め込まれた超音
波プローブと、該各超音波プローブから発信され前記回
転軸表面から反射して冷媒混合潤滑油を介して戻る超音
波の発信強度及び受信強度を計測する計測手段と、該計
測した超音波の発信強度と受信強度から発信強度に対す
る受信強度の超音波減衰率を算出し、該算出した超音波
減衰率と、予め求めた潤滑油中の超音波伝播距離と潤滑
油の気泡含有率と超音波減衰率との関係とから、各超音
波プローブの位置における潤滑油の気泡含有率を求める
演算手段と、前記演算手段が求めた気泡含有率が所定値
以上の時に前記電動機の回転数を下げるもしくは停止す
るように制御する制御手段とを設けたことを特徴とする
冷凍空調圧縮機。
5. A compression mechanism having a cylinder, an eccentric shaft portion housed in the cylinder, and respective slide bearings installed at both ends of the cylinder, and a rotation connected to the eccentric shaft portion and supported by the slide bearing. An electric motor having a shaft, and in a refrigerating air-conditioning compressor for supplying a refrigerant-mixed lubricating oil to the sliding bearing, an ultrasonic probe embedded in the sliding surface of each sliding bearing, and the rotation transmitted from each ultrasonic probe and the rotation Measuring means for measuring the transmission intensity and the reception intensity of the ultrasonic wave reflected from the shaft surface and returning through the refrigerant-mixed lubricating oil; and the ultrasonic attenuation of the reception intensity with respect to the transmission intensity from the transmission intensity and the reception intensity of the measured ultrasonic wave Calculate the rate, the calculated ultrasonic attenuation rate, and the relationship between the ultrasonic propagation distance in the lubricating oil and the relationship between the bubble content of the lubricating oil and the ultrasonic attenuation rate determined in advance, the position of each ultrasonic probe Calculating means for calculating the bubble content of the lubricating oil in the motor, and control means for controlling to reduce or stop the rotation speed of the electric motor when the bubble content determined by the calculating means is equal to or more than a predetermined value. A refrigeration and air conditioning compressor.
JP27906399A 1999-09-30 1999-09-30 Refrigeration air conditioning compressor Expired - Fee Related JP3864264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27906399A JP3864264B2 (en) 1999-09-30 1999-09-30 Refrigeration air conditioning compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27906399A JP3864264B2 (en) 1999-09-30 1999-09-30 Refrigeration air conditioning compressor

Publications (2)

Publication Number Publication Date
JP2001099070A true JP2001099070A (en) 2001-04-10
JP3864264B2 JP3864264B2 (en) 2006-12-27

Family

ID=17605901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27906399A Expired - Fee Related JP3864264B2 (en) 1999-09-30 1999-09-30 Refrigeration air conditioning compressor

Country Status (1)

Country Link
JP (1) JP3864264B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125715A (en) * 2004-10-28 2006-05-18 Sanyo Electric Co Ltd Air conditioner
US7392158B2 (en) 2002-07-25 2008-06-24 Daikin Industries, Ltd. Drive unit for compressor and refrigerator
WO2017081872A1 (en) * 2015-11-11 2017-05-18 株式会社ナンバ Device for detecting refrigerant leakage in refrigeration cycle
KR20180024958A (en) * 2016-08-31 2018-03-08 엘지전자 주식회사 Compressor and control method of the same
WO2018150706A1 (en) * 2017-02-17 2018-08-23 三菱重工サーマルシステムズ株式会社 Compressor
WO2019123924A1 (en) * 2017-12-19 2019-06-27 三菱重工サーマルシステムズ株式会社 Oil pump control device, control method, control program, and turbo refrigerator
JP2019218928A (en) * 2018-06-22 2019-12-26 ダイキン工業株式会社 Refrigeration device
JP2021134791A (en) * 2020-02-25 2021-09-13 三菱電機株式会社 Compressor, air conditioner, refrigerator, compressor control method, compressor control learning data creation method and creation method of model which has learned compressor control
CN117268654A (en) * 2023-11-22 2023-12-22 广州市柏琳汽车零件制造有限公司 Air tightness detection equipment for production of vortex disc of automobile air conditioner compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030192B (en) * 2018-01-11 2020-12-25 广东华强电器集团有限公司 Screw compressor control system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173151A (en) * 1985-01-29 1986-08-04 Matsushita Electric Ind Co Ltd Detector for lubricating condition of lubricating agent
JPS63273764A (en) * 1987-04-30 1988-11-10 松下電器産業株式会社 Method of controlling operation of air conditioner
JPH0469729U (en) * 1990-10-30 1992-06-19
JPH05280470A (en) * 1990-03-15 1993-10-26 Abbott Lab Volumetric pump and method for preventing flow variation using the same
JPH0618396A (en) * 1992-07-03 1994-01-25 Idemitsu Kosan Co Ltd Viscosity measurement method for viscous liquids
JPH07103583A (en) * 1993-09-30 1995-04-18 Toshiba Corp Air-conditioning equipment
JPH08122307A (en) * 1994-08-30 1996-05-17 Mitsubishi Heavy Ind Ltd Detection apparatus of mixture ratio of refrigerant in lubricant in container
JPH08200234A (en) * 1995-01-20 1996-08-06 Hitachi Ltd Air conditioner
JPH1182349A (en) * 1997-09-01 1999-03-26 Sanyo Electric Co Ltd Oil supply device for compressor
JPH11173967A (en) * 1997-12-12 1999-07-02 Riken Corp Method and apparatus for measuring viscosity of liquid
JP2000258362A (en) * 1999-03-05 2000-09-22 Toshiba Joho Seigyo System Kk Microwave type densitometer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173151A (en) * 1985-01-29 1986-08-04 Matsushita Electric Ind Co Ltd Detector for lubricating condition of lubricating agent
JPS63273764A (en) * 1987-04-30 1988-11-10 松下電器産業株式会社 Method of controlling operation of air conditioner
JPH05280470A (en) * 1990-03-15 1993-10-26 Abbott Lab Volumetric pump and method for preventing flow variation using the same
JPH0469729U (en) * 1990-10-30 1992-06-19
JPH0618396A (en) * 1992-07-03 1994-01-25 Idemitsu Kosan Co Ltd Viscosity measurement method for viscous liquids
JPH07103583A (en) * 1993-09-30 1995-04-18 Toshiba Corp Air-conditioning equipment
JPH08122307A (en) * 1994-08-30 1996-05-17 Mitsubishi Heavy Ind Ltd Detection apparatus of mixture ratio of refrigerant in lubricant in container
JPH08200234A (en) * 1995-01-20 1996-08-06 Hitachi Ltd Air conditioner
JPH1182349A (en) * 1997-09-01 1999-03-26 Sanyo Electric Co Ltd Oil supply device for compressor
JPH11173967A (en) * 1997-12-12 1999-07-02 Riken Corp Method and apparatus for measuring viscosity of liquid
JP2000258362A (en) * 1999-03-05 2000-09-22 Toshiba Joho Seigyo System Kk Microwave type densitometer

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7392158B2 (en) 2002-07-25 2008-06-24 Daikin Industries, Ltd. Drive unit for compressor and refrigerator
EP2312159A2 (en) 2002-07-25 2011-04-20 Daikin Industries, Ltd. Drive unit for compressor and refrigerator
EP2312160A2 (en) 2002-07-25 2011-04-20 Daikin Industries, Ltd. Drive unit for compressor and refrigerator
JP2006125715A (en) * 2004-10-28 2006-05-18 Sanyo Electric Co Ltd Air conditioner
TWI680286B (en) * 2015-11-11 2019-12-21 日商難波股份有限公司 Refrigerant leakage sensing system in refrigerating cycle
US11150156B2 (en) 2015-11-11 2021-10-19 Nanba Co., Ltd. Device for detecting refrigerant leak in refrigeration cycle
JP2017089983A (en) * 2015-11-11 2017-05-25 株式会社 ナンバ Refrigerant leakage detection device in refrigeration cycle
WO2017081872A1 (en) * 2015-11-11 2017-05-18 株式会社ナンバ Device for detecting refrigerant leakage in refrigeration cycle
KR20180024958A (en) * 2016-08-31 2018-03-08 엘지전자 주식회사 Compressor and control method of the same
KR102509989B1 (en) * 2016-08-31 2023-03-13 엘지전자 주식회사 Compressor and control method of the same
WO2018150706A1 (en) * 2017-02-17 2018-08-23 三菱重工サーマルシステムズ株式会社 Compressor
JP2019109023A (en) * 2017-12-19 2019-07-04 三菱重工サーマルシステムズ株式会社 Oil pump control device, control method, control program, and turbo refrigerator
CN111433533A (en) * 2017-12-19 2020-07-17 三菱重工制冷空调系统株式会社 Oil pump control device, control method, control program, and turbo refrigerator
WO2019123924A1 (en) * 2017-12-19 2019-06-27 三菱重工サーマルシステムズ株式会社 Oil pump control device, control method, control program, and turbo refrigerator
US11137179B2 (en) 2018-06-22 2021-10-05 Daikin Industries, Ltd. Refrigeration apparatus
JP2019218928A (en) * 2018-06-22 2019-12-26 ダイキン工業株式会社 Refrigeration device
JP2021134791A (en) * 2020-02-25 2021-09-13 三菱電機株式会社 Compressor, air conditioner, refrigerator, compressor control method, compressor control learning data creation method and creation method of model which has learned compressor control
CN115135890A (en) * 2020-02-25 2022-09-30 三菱电机株式会社 Compressor, air conditioner, refrigerator, and compressor control method
CN115135890B (en) * 2020-02-25 2023-08-15 三菱电机株式会社 Compressor, air conditioner, refrigerator, compressor control method, compressor control learning model creation method, and compressor control learning data creation method
CN117268654A (en) * 2023-11-22 2023-12-22 广州市柏琳汽车零件制造有限公司 Air tightness detection equipment for production of vortex disc of automobile air conditioner compressor
CN117268654B (en) * 2023-11-22 2024-02-02 广州市柏琳汽车零件制造有限公司 Air tightness detection equipment for production of vortex disc of automobile air conditioner compressor

Also Published As

Publication number Publication date
JP3864264B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP2001099070A (en) Refrigeration air conditioning compressor
US11137179B2 (en) Refrigeration apparatus
CN102713288A (en) Compressor
JP3364016B2 (en) Scroll compressor for refrigerator
EP3369931A1 (en) Fluid machine
US20160230762A1 (en) Method and apparatus for oil sensing in a compressor
JP2002317785A (en) Refrigerating device and refrigerant compressor
JP2003003961A (en) Hermetic compressor
EP3499042A1 (en) Compressor
JPH02291484A (en) Compressor
CN114787577B (en) Compressor system, compressor and refrigeration cycle device
KR102044315B1 (en) compressor
KR20150056317A (en) Oil level detecting device
JP3988033B2 (en) Apparatus and system for detecting abnormality of contact surface of mechanical parts that move relative to each other
KR102068338B1 (en) Apparatus and method for testing non-lubrication rotary seal unit
WO2017134742A1 (en) Refrigerant compression device and refrigeration device
Oyamada Application of Ultrasonic Sensing to Monitoring Lubrication Conditions in a Refrigeration Compressor
JP3616908B2 (en) Contact state measuring method and measuring device
JP2000283070A (en) Scroll compressor
US11953002B2 (en) Scroll compressor for compressing a refrigerant and method for oil enrichment and distribution
JP2013087678A (en) Scroll compressor
JPH0727061A (en) Scroll compressor
JP2021085327A (en) Compressor
KR20230146705A (en) Scroll Compressor and Diagnosis Method thereof
JPH11125189A (en) Fluid compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees