[go: up one dir, main page]

JP2001098366A - METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL - Google Patents

METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL

Info

Publication number
JP2001098366A
JP2001098366A JP28192499A JP28192499A JP2001098366A JP 2001098366 A JP2001098366 A JP 2001098366A JP 28192499 A JP28192499 A JP 28192499A JP 28192499 A JP28192499 A JP 28192499A JP 2001098366 A JP2001098366 A JP 2001098366A
Authority
JP
Japan
Prior art keywords
powder
producing
density
target material
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28192499A
Other languages
Japanese (ja)
Inventor
Kazuya Hashimoto
和弥 橋本
Masaru Yanagimoto
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP28192499A priority Critical patent/JP2001098366A/en
Publication of JP2001098366A publication Critical patent/JP2001098366A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a Ge-Sb-Te sputtering target of a thin film medium for recording information by utilizing the phase transformation of a recording layer material. SOLUTION: In this method of producing a Ge-Sb-Te sputtering target material, an alloy powder containing Ge, Sb and Te and having tap density (relative density) of >=50% is allowed to flow into a die and is subjected to cold or warm compacting, and the compacted material whose density after the cold compacting is >=95% is sintered by being heated in Ar or vacuum atmosphere, by which the content of oxygen in the sintered body is controlled to <=700 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、記録層材料の相変
態を利用して情報を記録する薄膜媒体のGe−Sb−T
e系スパッタリングターゲット材の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ge-Sb-T thin film medium for recording information by utilizing a phase transformation of a recording layer material.
The present invention relates to a method for producing an e-based sputtering target material.

【0002】[0002]

【従来の技術】従来、特開平10−81962号公報に
開示されているように、原料となるGe,Te,Sbの
金属よりなる粉末材料を所定の割合に均一に混合し、こ
の混合粉末を型に充填して液相が生じるより低い温度で
Geが他の元素と反応してGeの単相がなくなるまで加
圧焼結を行うGe−Te−Sb系スパッタリング用ター
ゲット材の製造方法や、特開平3−180468号公報
のように、原料となるGe,Sb,Teの金属または半
金属よりなる材料を粉砕混合して均一な混合物とした
後、この混合物をホットプレスにより非金属状態の成形
体とするスパッタ用ターゲットの製造方法、並ぶに原料
となるGe,Sb,Teを所定の割合に配合し溶解後粉
砕し焼結する方法が提案されている。
2. Description of the Related Art Conventionally, as disclosed in Japanese Patent Application Laid-Open No. Hei 10-81962, a powder material made of a metal such as Ge, Te and Sb as a raw material is uniformly mixed at a predetermined ratio, and this mixed powder is mixed. A method for producing a Ge—Te—Sb-based sputtering target material in which Ge is reacted with other elements at a lower temperature than a liquid phase is generated by filling into a mold and pressure sintering is performed until a single phase of Ge disappears, As disclosed in Japanese Patent Application Laid-Open No. 3-180468, a raw material of a metal or metalloid of Ge, Sb, Te as a raw material is pulverized and mixed to form a uniform mixture, and the mixture is formed into a non-metallic state by hot pressing. There has been proposed a method of manufacturing a sputtering target as a body, and a method of mixing, melting, pulverizing and sintering Ge, Sb, and Te as raw materials in a predetermined ratio.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の成形方法である、特開平10−81962号公
報にあっては、金属容器中に粉砕粉末を挿入した後、真
空脱気後プレスを行い、さらに金属容器を切断する必要
があるため工程が非常に煩雑であり、かつ金属容器も使
い捨てであったために工程コストが余計にかかると言う
問題があった。また、粉砕した粉末はタップ密度が、例
えば35%前後と低いため、冷間で成形体を得るために
は、異常に高い圧力が必要となる。そのためホットプレ
スやHIPを用いて高温で成形する方法しかとれないと
言う問題がある。さらに、ターゲット材のポア(空孔)
が残存していると、スパッタ時に異常放電を起こしやす
くなると言う問題がある。
However, in the above-mentioned conventional molding method, Japanese Patent Application Laid-Open No. Hei 10-81962, after pulverized powder is inserted into a metal container, vacuum degassing is performed and then pressing is performed. In addition, there is a problem that the process is very complicated because the metal container needs to be cut, and that the metal container is also disposable, so that the process cost is increased. Further, since the pulverized powder has a low tap density of, for example, about 35%, an abnormally high pressure is required to obtain a compact in a cold state. Therefore, there is a problem that only a method of molding at a high temperature using a hot press or HIP is available. In addition, pores (voids) in the target material
Is left, there is a problem that abnormal discharge is apt to occur during sputtering.

【0004】一方、特開平3−180468号公報にあ
っては、焼結しても、単体元素相が残るため、各元素の
単相が存在するとスパッタリングレートの小さい元素が
混在することになるため、スパッタリングレートの小さ
い元素がターゲット中に残留したり、得られた薄膜の組
成分布にばらつき等の問題が生ずる。
On the other hand, in JP-A-3-180468, a single element phase remains even after sintering, and if a single phase of each element is present, elements having a low sputtering rate are mixed. In addition, there are problems such as an element having a low sputtering rate remaining in the target and a variation in the composition distribution of the obtained thin film.

【0005】[0005]

【課題を解決するための手段】上述したような問題を解
消するため、発明者らは鋭意開発を進めた結果、ガスア
トマイズ法により粉末を製造すると共に、炉内の雰囲気
を制御することにより酸素による汚染を防ぎ、容器を封
入し、真空脱気、さらに金属容器を切断する必要がない
ため、製造の簡略化が可能で、低コスト化が図れる方法
を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive developments. As a result, while producing powder by a gas atomizing method, oxygen is controlled by controlling the atmosphere in the furnace. It is an object of the present invention to provide a method capable of simplifying production and reducing cost because it is not necessary to prevent contamination, enclose a container, vacuum degassing, and further cut a metal container.

【0006】その発明の要旨とするところは、 (1)Ge,Sb,Teを含む合金粉末のうち、タップ
密度(相対密度)が50%以上になる粉末を型に流し込
み、冷間もしくは温間で加圧し、冷間加圧後の密度が9
5%以上である成形材をArもしくは真空雰囲気中で熱
処理を行い焼結することにより、該焼結体の含有酸素量
が700ppm以下であることを特徴とするGe−Sb
−Te系スパッタリングターゲット材の製造方法。
The gist of the invention is as follows: (1) Among alloy powders containing Ge, Sb, and Te, a powder having a tap density (relative density) of 50% or more is poured into a mold, and is cold or warm. And the density after cold pressing is 9
Ge-Sb wherein the oxygen content of the sintered body is 700 ppm or less by sintering the formed material of 5% or more by heat treatment in an Ar or vacuum atmosphere.
-A method for producing a Te-based sputtering target material.

【0007】(2)前記(1)に記載の粉末は、不活性
ガスアトマイズ法により製造することを特徴とするGe
−Sb−Te系スパッタリングターゲット材の製造方
法。 (3)無加圧もしくはホットプレス等の加圧焼結により
熱処理を行うことを特徴とする前記(1)に記載のGe
−Sb−Te系スパッタリングターゲット材の製造方法
にある。
(2) The powder according to (1) is manufactured by an inert gas atomization method.
-A method for producing an Sb-Te-based sputtering target material. (3) The Ge according to the above (1), wherein the heat treatment is performed by pressureless sintering such as no pressure or hot press.
-Sb-Te-based sputtering target material.

【0008】[0008]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明において、Ge,Sb,Teを含む金属粉
末のうち、タップ密度(相対密度)50%以上になる粉
末を型に流し込み冷間で加圧する。しかも、粉末は不活
性ガスアトマイズ法により製造することにより、球状粉
末が容易に得られるため、タップ密度(相対密度)を容
易に50%以上にすることができる。さらには、この合
金の硬さはHvで50程度であるために、冷間にて簡単
に成形することができる。しかし、50%未満では冷間
成型材の密度を100%にするためには、異常な加圧を
必要とすることになる。その異常な加圧を必要としない
で容易にタップ密度を50%以上得ることが出来る。ま
た、Arもしくは真空雰囲気中で熱処理を施すことによ
り、酸素による汚染を防ぎ、容器を封入し、真空脱気、
さらに金属容器を切断する必要がないため、製造の簡略
化が可能で、低コスト化が図れる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, a powder having a tap density (relative density) of 50% or more among metal powders containing Ge, Sb, and Te is poured into a mold and pressurized cold. Moreover, since the powder is easily produced by the inert gas atomizing method, a spherical powder can be easily obtained, so that the tap density (relative density) can be easily increased to 50% or more. Further, since the hardness of this alloy is about 50 in Hv, it can be easily formed in a cold state. However, if it is less than 50%, abnormal pressurization is required to make the density of the cold-formed material 100%. A tap density of 50% or more can be easily obtained without the need for abnormal pressurization. In addition, by performing heat treatment in an Ar or vacuum atmosphere, contamination by oxygen is prevented, the container is sealed, and vacuum degassing is performed.
Further, since it is not necessary to cut the metal container, the production can be simplified and the cost can be reduced.

【0009】[0009]

【実施例】原料のGe,Sb,Teの各インゴットを秤
量し、Ar雰囲気中で溶解し、ガスアトマイズを行い、
Ge/Te/Sb=2/5/2(原子比)の粉末を得
た。この得られた粉末のタップ密度を測定した。次にそ
の粉末を下パンチをつけた円筒形のダイス内に充填し、
その上に上パンチを挿入し、3、5、8t/cm2 で加
圧した。成形体を金型から脱型した後、相対密度を測定
した。次に焼結温度400℃で5時間、Ar雰囲気中で
焼結を行った。この成形体の相対密度を測定した。その
結果を表1に示す。
EXAMPLES Ingots of raw materials Ge, Sb, and Te were weighed, dissolved in an Ar atmosphere, and subjected to gas atomization.
A powder of Ge / Te / Sb = 2/5/2 (atomic ratio) was obtained. The tap density of the obtained powder was measured. Next, the powder is filled into a cylindrical die with a lower punch,
An upper punch was inserted thereon, and pressure was applied at 3, 5, and 8 t / cm 2 . After releasing the molded body from the mold, the relative density was measured. Next, sintering was performed at a sintering temperature of 400 ° C. for 5 hours in an Ar atmosphere. The relative density of this compact was measured. Table 1 shows the results.

【0010】(比較例1)原料のGe,Sb,Teの各
インゴットを秤量し、Ar雰囲気中で溶解し、Ge/T
e/Sb=2/5/2(原子比)の鋳造材を得た。この
得られた鋳造材を粉砕した。先ず得られた粉砕粉末のタ
ップ密度を測定した。次にその粉末を下パンチをつけた
円筒形のダイス内に充填し、その上に上パンチを挿入
し、3、5、8t/cm2 で加圧した。成形体を金型か
ら脱型した後、相対密度を測定した。次に焼結温度40
0℃で5時間、Ar雰囲気中で焼結を行った。この成形
体の相対密度を測定した。その結果を同じく表1に示
す。
(Comparative Example 1) Ingots of Ge, Sb, and Te as raw materials were weighed and dissolved in an Ar atmosphere, and Ge / T
A cast material of e / Sb = 2/5/2 (atomic ratio) was obtained. The obtained cast material was pulverized. First, the tap density of the obtained ground powder was measured. Next, the powder was filled in a cylindrical die provided with a lower punch, and an upper punch was inserted thereon, and the powder was pressed at 3, 5, and 8 t / cm 2 . After releasing the molded body from the mold, the relative density was measured. Next, sintering temperature 40
Sintering was performed at 0 ° C. for 5 hours in an Ar atmosphere. The relative density of this compact was measured. The results are also shown in Table 1.

【0011】(比較例2)原料のGe,Sb,Teの各
インゴットを秤量し、Ar雰囲気中で溶解し、ガスアト
マイズを行い、Ge/Te/Sb=2/5/2(原子
比)の粉末を得た。次にこの粉末を型に充填し、プレス
圧0.03t/cm2 、焼結温度400℃で5時間、A
r雰囲気中でホットプレスにて加圧焼結を行った。得ら
れた成形体の密度を測定した。その結果を同じく表1に
示す。
Comparative Example 2 Ge, Sb, and Te ingots as raw materials were weighed, dissolved in an Ar atmosphere, gas-atomized, and powdered with Ge / Te / Sb = 2/5/2 (atomic ratio). I got Next, this powder was filled in a mold, and pressed at a pressing pressure of 0.03 t / cm 2 and a sintering temperature of 400 ° C. for 5 hours.
Pressure sintering was performed by a hot press in an r atmosphere. The density of the obtained molded body was measured. The results are also shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示す本発明に係る実施例のように、
タップ密度(相対密度)が高い場合、冷間や温間にて成
型し密度を95%以上にした後、熱処理を施して焼結さ
せれば従来方法と同等の密度をもち、かつアトマイズ球
形粉末を用いれば酸素含有量の少ないターゲット材を作
製することが可能である。これに対して、比較例1のよ
うに、相対密度が低い粉末の場合には、冷間成形後の相
対密度および熱処理後相対密度は95%未満であり、タ
ーゲット材のポアが残存し、スパッタ時に異常放電が発
生した。
As in the embodiment according to the present invention shown in Table 1,
If the tap density (relative density) is high, it is molded at a cold or warm temperature to make the density 95% or more, then heat-treated and sintered to have the same density as the conventional method, and atomized spherical powder If used, it is possible to produce a target material having a low oxygen content. On the other hand, in the case of a powder having a low relative density as in Comparative Example 1, the relative density after the cold forming and the relative density after the heat treatment are less than 95%, the pores of the target material remain, and the Sometimes abnormal discharge occurred.

【0014】[0014]

【発明の効果】以上述べたように、本発明によりスパッ
タに適した高密度ターゲット材を安価に製造することが
出来る極めて優れた効果を奏するものである。
As described above, according to the present invention, it is possible to produce a high-density target material suitable for sputtering at low cost.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ge,Sb,Teを含む合金粉末のう
ち、タップ密度(相対密度)が50%以上になる粉末を
型に流し込み、冷間もしくは温間で加圧し、冷間加圧後
の密度が95%以上である成形材をArもしくは真空雰
囲気中で熱処理を行い焼結することにより、該焼結体の
含有酸素量が700ppm以下であることを特徴とする
Ge−Sb−Te系スパッタリングターゲット材の製造
方法。
1. Among alloy powders containing Ge, Sb, and Te, a powder having a tap density (relative density) of 50% or more is poured into a mold, pressurized in a cold or warm state, and after cold pressurization. Ge-Sb-Te-based sputtering characterized in that a formed material having a density of 95% or more is subjected to a heat treatment in an Ar or vacuum atmosphere and sintered, whereby the oxygen content of the sintered body is 700 ppm or less. Target material manufacturing method.
【請求項2】 請求項1に記載の粉末は、不活性ガスア
トマイズ法により製造することを特徴とするGe−Sb
−Te系スパッタリングターゲット材の製造方法。
2. The powder according to claim 1, wherein the powder is produced by an inert gas atomization method.
-A method for producing a Te-based sputtering target material.
【請求項3】 無加圧もしくはホットプレス等の加圧焼
結により熱処理を行うことを特徴とする請求項1に記載
のGe−Sb−Te系スパッタリングターゲット材の製
造方法。
3. The method for producing a Ge—Sb—Te based sputtering target material according to claim 1, wherein the heat treatment is performed by pressureless sintering such as hot pressing or the like.
JP28192499A 1999-07-26 1999-10-01 METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL Withdrawn JP2001098366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28192499A JP2001098366A (en) 1999-07-26 1999-10-01 METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21013299 1999-07-26
JP11-210132 1999-07-26
JP28192499A JP2001098366A (en) 1999-07-26 1999-10-01 METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL

Publications (1)

Publication Number Publication Date
JP2001098366A true JP2001098366A (en) 2001-04-10

Family

ID=26517879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28192499A Withdrawn JP2001098366A (en) 1999-07-26 1999-10-01 METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL

Country Status (1)

Country Link
JP (1) JP2001098366A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044260A1 (en) * 2002-11-12 2004-05-27 Nikko Materials Co., Ltd. Sputtering target and powder for production thereof
JP2006137962A (en) * 2004-11-10 2006-06-01 Mitsubishi Materials Corp Method for producing target for forming phase change recording film with which presputtering time is shortened
WO2006059429A1 (en) 2004-11-30 2006-06-08 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTERED SPATTERING TARGET
WO2006077692A1 (en) 2005-01-18 2006-07-27 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
WO2008044626A1 (en) 2006-10-13 2008-04-17 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTER SPUTTERING TARGET
KR100872772B1 (en) * 2007-06-29 2008-12-09 한국생산기술연구원 Sputtering Target and Manufacturing Method Thereof
WO2009034775A1 (en) 2007-09-13 2009-03-19 Nippon Mining & Metals Co., Ltd. Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
WO2009057422A1 (en) 2007-11-01 2009-05-07 Nippon Mining & Metals Co., Ltd. Copper anode or phosphorus-containing copper anode, method for electroplating copper on semiconductor wafer, and semiconductor wafer with particle not significantly deposited thereon
JP2010056092A (en) * 2009-11-30 2010-03-11 Hitachi Chem Co Ltd Mixed conductive powder
EP2264216A2 (en) 2004-12-24 2010-12-22 Nippon Mining & Metals Co., Ltd. Process for manufacturing an Sb-Te alloy sintered compact target
JP2011204688A (en) * 2011-06-08 2011-10-13 Hitachi Chem Co Ltd Mixed conductive powder
WO2011136120A1 (en) 2010-04-26 2011-11-03 Jx日鉱日石金属株式会社 Sb-te based alloy sintered compact sputtering target
JP4885305B2 (en) * 2008-03-17 2012-02-29 Jx日鉱日石金属株式会社 Sintered body target and method for producing sintered body
US9299543B2 (en) 2009-05-27 2016-03-29 Jx Nippon Mining & Metals Corporation Target of sintered compact, and method of producing the sintered compact
US20160314945A1 (en) * 2014-03-25 2016-10-27 Jx Nippon Mining & Metals Corporation SPUTTERING TARGET OF SINTERED Sb-Te-BASED ALLOY

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044260A1 (en) * 2002-11-12 2004-05-27 Nikko Materials Co., Ltd. Sputtering target and powder for production thereof
JP2006137962A (en) * 2004-11-10 2006-06-01 Mitsubishi Materials Corp Method for producing target for forming phase change recording film with which presputtering time is shortened
WO2006059429A1 (en) 2004-11-30 2006-06-08 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTERED SPATTERING TARGET
EP2264216A2 (en) 2004-12-24 2010-12-22 Nippon Mining & Metals Co., Ltd. Process for manufacturing an Sb-Te alloy sintered compact target
WO2006077692A1 (en) 2005-01-18 2006-07-27 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
WO2008044626A1 (en) 2006-10-13 2008-04-17 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTER SPUTTERING TARGET
US8882975B2 (en) 2006-10-13 2014-11-11 Jx Nippon Mining & Metals Corporation Sb-Te base alloy sinter sputtering target
KR100872772B1 (en) * 2007-06-29 2008-12-09 한국생산기술연구원 Sputtering Target and Manufacturing Method Thereof
WO2009034775A1 (en) 2007-09-13 2009-03-19 Nippon Mining & Metals Co., Ltd. Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
JP5396276B2 (en) * 2007-09-13 2014-01-22 Jx日鉱日石金属株式会社 Sintered body manufacturing method, sintered body target, and sputtering target-backing plate assembly
WO2009057422A1 (en) 2007-11-01 2009-05-07 Nippon Mining & Metals Co., Ltd. Copper anode or phosphorus-containing copper anode, method for electroplating copper on semiconductor wafer, and semiconductor wafer with particle not significantly deposited thereon
JP4885305B2 (en) * 2008-03-17 2012-02-29 Jx日鉱日石金属株式会社 Sintered body target and method for producing sintered body
US9299543B2 (en) 2009-05-27 2016-03-29 Jx Nippon Mining & Metals Corporation Target of sintered compact, and method of producing the sintered compact
JP2010056092A (en) * 2009-11-30 2010-03-11 Hitachi Chem Co Ltd Mixed conductive powder
KR20140097415A (en) 2010-04-26 2014-08-06 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sb-te based alloy sintered compact sputtering target
US20120279857A1 (en) * 2010-04-26 2012-11-08 Jx Nippon Mining & Metals Corporation Sb-Te-Based Alloy Sintered Compact Sputtering Target
WO2011136120A1 (en) 2010-04-26 2011-11-03 Jx日鉱日石金属株式会社 Sb-te based alloy sintered compact sputtering target
KR20170020541A (en) 2010-04-26 2017-02-22 제이엑스금속주식회사 Sb-te based alloy sintered compact sputtering target
KR101967945B1 (en) 2010-04-26 2019-04-10 제이엑스금속주식회사 Sb-te based alloy sintered compact sputtering target
US11846015B2 (en) 2010-04-26 2023-12-19 Jx Metals Corporation Sb—Te-based alloy sintered compact sputtering target
JP2011204688A (en) * 2011-06-08 2011-10-13 Hitachi Chem Co Ltd Mixed conductive powder
US20160314945A1 (en) * 2014-03-25 2016-10-27 Jx Nippon Mining & Metals Corporation SPUTTERING TARGET OF SINTERED Sb-Te-BASED ALLOY
US10854435B2 (en) * 2014-03-25 2020-12-01 Jx Nippon Mining & Metals Corporation Sputtering target of sintered Sb—Te-based alloy

Similar Documents

Publication Publication Date Title
JP2001098366A (en) METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL
KR100755724B1 (en) Manufacturing of high density intermetallic sputter targets
JP4119750B2 (en) Powder metallurgy for producing high density molded parts
JP2000265262A (en) PRODUCTION OF TARGET MATERIAL FOR Ge-Sb-Te SYSTEM SPUTTERING
JPH1081962A (en) Production of ge-te-sb target for sputtering
JP2542566B2 (en) Method for manufacturing target for sputtering device
JP3721557B2 (en) Thermoelectric material manufacturing method
JPS6199640A (en) Method for manufacturing composite target material
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
TW446595B (en) Method for making thermocouple wires
US3126279A (en) Powder-metallurgical production of
JP2001342559A (en) METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL
JPH03219035A (en) Titanium base alloy for high strength structural member, manufacture of titanium base alloy for high strength structural member and manufacture of high strength structural member made of titanium base alloy
JPH0254760A (en) Manufacture of target
JP2002212607A (en) Method for producing high melting point alloy
JPS61145828A (en) Sputtering target and manufacture of the same
JPS61229314A (en) Target material and manufacture thereof
JP2946350B2 (en) Method for producing sintered body made of amorphous alloy powder
JPS6350469A (en) Manufacture of alloy target for sputtering
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH03166368A (en) Production of pb-zr-ti oxide type target material
JPH03173705A (en) Production of high density sintered body
JPS6176664A (en) Target for sputtering apparatus and its manufacture
JPH0978154A (en) Production of titanium-nickel alloy
SU827577A1 (en) Method of making cast magnets

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205