JP2001094131A - Method for fabricating integrated photovoltaic power device - Google Patents
Method for fabricating integrated photovoltaic power deviceInfo
- Publication number
- JP2001094131A JP2001094131A JP26860499A JP26860499A JP2001094131A JP 2001094131 A JP2001094131 A JP 2001094131A JP 26860499 A JP26860499 A JP 26860499A JP 26860499 A JP26860499 A JP 26860499A JP 2001094131 A JP2001094131 A JP 2001094131A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- transparent conductive
- laser
- film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Photovoltaic Devices (AREA)
- Laser Beam Processing (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、非晶質半導体を
用いた集積型光起電力装置の製造方法に関する。The present invention relates to a method for manufacturing an integrated photovoltaic device using an amorphous semiconductor.
【0002】[0002]
【従来の技術】近年、非晶質シリコン(a−Si)系半
導体を光活性層に用いた光起電力装置が色々な用途に使
用されている。これは一枚の基板上に多数の光電変換素
子をカスケード接続することにより、高電圧を取り出さ
れるようにした集積型a−Si光起電力装置の開発に負
うところが大きい。2. Description of the Related Art In recent years, photovoltaic devices using an amorphous silicon (a-Si) semiconductor as a photoactive layer have been used for various purposes. This largely depends on the development of an integrated a-Si photovoltaic device that can take out a high voltage by cascading a large number of photoelectric conversion elements on one substrate.
【0003】一般的なa−Si光起電力装置は、ガラス
基板の上に透明導電薄膜、p型、i型、n型a−Si
膜、裏面金属電極膜をこの順序で積層して形成される。
そして、集積型a−Si光起電力装置は、全体として1
枚の基板から高い電圧を取り出すように、多数の光電変
換素子をカスケード接続している。[0003] A general a-Si photovoltaic device comprises a transparent conductive thin film, p-type, i-type, and n-type a-Si on a glass substrate.
It is formed by laminating a film and a back metal electrode film in this order.
Then, the integrated a-Si photovoltaic device has 1
A large number of photoelectric conversion elements are connected in cascade so as to extract a high voltage from a single substrate.
【0004】集積型構造を形成するためには、ガラス基
板上の透明導電薄膜、a−Si膜、金属電極膜を分離す
る必要がある。各々の膜の分離の方法としては、主にレ
ーザを用いたレーザパターニング法が用いられている
(例えば、特公平4−64473号公報参照)。In order to form an integrated structure, it is necessary to separate a transparent conductive thin film, an a-Si film, and a metal electrode film on a glass substrate. As a method of separating each film, a laser patterning method using a laser is mainly used (for example, see Japanese Patent Publication No. 4-64473).
【0005】従来のレーザパターニング法を用いた集積
型光起電力装置の製造方法につき図8に従い説明する。
図8は、従来の集積型光起電力装置の製造方法を工程別
に示す要部拡大断面図であって、2つの光電変換素子を
電気的に直列接続する隣接間隔部を中心に示している。A method for manufacturing an integrated photovoltaic device using a conventional laser patterning method will be described with reference to FIG.
FIG. 8 is an enlarged cross-sectional view of a main part showing a conventional method of manufacturing an integrated photovoltaic device for each step, and mainly shows an adjacent space where two photoelectric conversion elements are electrically connected in series.
【0006】ガラスなどの絶縁性透光性基板11の一主
面上にITO(In2Sn2O3)やSnO2などからなる
透明導電薄膜12を形成し、例えば、レーザビームの照
射により透明導電薄膜12を任意の段数に短冊状に分割
する(図8(a)参照)。そして、この分割された透明
導電薄膜12上に内部にpin接合を有するa−Si膜
からなる非晶質半導体層13を堆積する(図8(b)参
照)。A transparent conductive thin film 12 made of ITO (In 2 Sn 2 O 3 ) or SnO 2 is formed on one main surface of an insulating translucent substrate 11 made of glass or the like. The conductive thin film 12 is divided into strips having an arbitrary number of steps (see FIG. 8A). Then, an amorphous semiconductor layer 13 made of an a-Si film having a pin junction is deposited on the divided transparent conductive thin film 12 (see FIG. 8B).
【0007】その後、基板11の他主面側から、透明導
電薄膜12の分割ラインに沿って、この分割ラインと重
ならないようにしてレーザビームを照射し、この水素の
放出により非晶質半導体層を除去して、非晶質半導体層
13を分割する(図8(c)参照)。After that, a laser beam is irradiated from the other main surface side of the substrate 11 along the dividing line of the transparent conductive thin film 12 so as not to overlap the dividing line, and the amorphous semiconductor layer is released by the release of hydrogen. Is removed to divide the amorphous semiconductor layer 13 (see FIG. 8C).
【0008】続いて、非晶質半導体層13上にアルミニ
ウムなどの裏面金属電極膜14を形成して、透明導電薄
膜12と裏面金属電極膜14とを接続する(図8(d)
参照)。その後、透明導電薄膜12及び非晶質半導体層
13の分割ラインに沿って、両分割ラインと重ならない
ようにして、基板11の他主面側からレーザビームを照
射し、非晶質半導体層13内の水素を急激に放出させ
て、非晶質半導体層及びその上の裏面金属電極膜を除去
し、隣接するセル間を分離する(図8(e)参照)。Subsequently, a back metal electrode film 14 of aluminum or the like is formed on the amorphous semiconductor layer 13 and the transparent conductive thin film 12 and the back metal electrode film 14 are connected (FIG. 8D).
reference). Thereafter, a laser beam is irradiated from the other main surface side of the substrate 11 along the division line of the transparent conductive thin film 12 and the amorphous semiconductor layer 13 so as not to overlap with both division lines. The hydrogen in the cell is rapidly released to remove the amorphous semiconductor layer and the back metal electrode film thereon, thereby separating adjacent cells (see FIG. 8E).
【0009】[0009]
【発明が解決しようとする課題】上記したレーザビーム
を用いたパターニング方法においては、以下の理由によ
り、使用できるレーザの出力や各層の条件、すなわち、
非晶質シリコン層の水素量、膜厚、裏面金属電極膜の材
質、膜厚、透明導電薄膜の材質等が限定されるなどの難
点があった。In the above-mentioned patterning method using a laser beam, the available laser output and the conditions of each layer, that is,
There are disadvantages such as the amount of hydrogen and the thickness of the amorphous silicon layer, the material and thickness of the back metal electrode film, the material of the transparent conductive thin film, and the like are limited.
【0010】非晶質シリコン層では、レーザの出力が低
すぎると溶融飛散物が基板に再付着し、不良の原因にな
る。また、出力が高すぎると、非晶質シリコン層の加工
端面が溶融再結晶化し短絡するなどの問題がある。In the case of an amorphous silicon layer, if the output of the laser is too low, the scattered melted substances are reattached to the substrate, causing a defect. Further, if the output is too high, there is a problem that the processed end face of the amorphous silicon layer is melted and recrystallized and short-circuited.
【0011】透明導電薄膜層は、材料によっては飛散物
が著しく不良の原因になる。In the transparent conductive thin film layer, scattered matter may cause a remarkable defect depending on the material.
【0012】例えば、SnO2からなる透明導電薄膜層
はレーザの照射により加工部が気化するが、ZnOから
なる透明導電薄膜層では溶融状態で飛散するために、特
に加工部周辺に再付着し易い。このため、ZnOからな
る透明導電薄膜層をレーザで加工するにあたっては、特
にレーザの波長や出力が狭い範囲に制限されていた。For example, the processed portion of the transparent conductive thin film layer made of SnO 2 is vaporized by laser irradiation, but the transparent conductive thin film layer made of ZnO is scattered in a molten state, so that it is easily re-attached particularly around the processed portion. . Therefore, when processing a transparent conductive thin film layer made of ZnO with a laser, the wavelength and output of the laser are particularly limited to a narrow range.
【0013】この発明は、上述した従来の問題点に鑑み
なされたものにして、レーザパーターニング法におい
て、加工不良を無くすことをその目的とする。The present invention has been made in consideration of the above-mentioned conventional problems, and has as its object to eliminate processing defects in a laser patterning method.
【0014】[0014]
【課題を解決するための手段】この発明は、透光性基板
の一主面上に、透明導電薄膜、非晶質半導体薄膜及び裏
面金属電極薄膜をこの順序で形成した集積型光起電力装
置の製造方法であって、前記いずれかの薄膜もしくは複
数の薄膜を表面が不燃性の液体に接した状態でエネルギ
ービームを照射してパターニングすることを特徴とす
る。SUMMARY OF THE INVENTION The present invention provides an integrated photovoltaic device in which a transparent conductive thin film, an amorphous semiconductor thin film, and a back metal electrode thin film are formed in this order on one main surface of a translucent substrate. The method according to any one of claims 1 to 3, characterized in that any one of the thin films or the plurality of thin films is patterned by irradiating an energy beam with the surface in contact with a nonflammable liquid.
【0015】また、前記非晶質半導体薄膜を含む薄膜を
パターニングする際、前記不燃性の液体として水酸化ナ
トリウム溶液を用いることを特徴とする。Further, when patterning a thin film including the amorphous semiconductor thin film, a sodium hydroxide solution is used as the nonflammable liquid.
【0016】固体と液体の界面は固体と気体の界面より
の熱伝導率が高い。従って、気体より冷却効果が高くパ
ターニングされた端面に、飛散物が溶着することが防止
されると共に、エッジ部の溶融変形を防止できるThe solid / liquid interface has a higher thermal conductivity than the solid / gas interface. Therefore, it is possible to prevent the scattered matter from being welded to the patterned end face having a higher cooling effect than the gas and to prevent the edge portion from being melted and deformed.
【0017】[0017]
【発明の実施の形態】以下、この発明の実施の形態につ
き図面を参照して説明する。尚、従来例と同一部分には
同一符号を付す。Embodiments of the present invention will be described below with reference to the drawings. The same parts as those of the conventional example are denoted by the same reference numerals.
【0018】図1は、この発明が適用されるレーザを用
いたパターニング装置の構成を示す模式的側面図であ
る。FIG. 1 is a schematic side view showing the structure of a patterning apparatus using a laser to which the present invention is applied.
【0019】このレーザパターニング装置は、YAG
(イットリウム・アルミニウム・ガーネット)レーザ発
振装置1から出射されたレーザビーム2を反射ミラー3
で方向を変え、集光レンズ4により集光し、XYZステ
ージからなる移動テーブル5に載置された被加工物10
の被加工領域に照射する。被加工物10は移動テーブル
5上に設置された内部に水、シリコンオイル等の不燃性
の液体7が蓄えられた加工容器6内に浸されている。パ
ターンは被加工物10を載置している移動テーブル5を
動かすことにより制御される。移動テーブル5を動かし
ながら、基板11上に形成された薄膜11aの被加工領
域にレーザビームを照射し、被加工領域の薄膜を除去す
る。このとき、パターニングされる薄膜11a表面は液
体に接している。固体と液体の界面は固体と気体の界面
より熱伝達率が高い。従って、気体より冷却効果が高く
パターニングされた端面に、飛散物が溶着することが防
止されると共に、エッジ部の溶融変形を防止できる。す
なわち、加工端面の、非晶質シリコンの結晶化、金属の
だれが軽減できる。また、液体は気体より抵抗が大きい
ので、飛散物の拡散が防止できる効果もある。This laser patterning apparatus is a YAG
(Yttrium aluminum garnet) The laser beam 2 emitted from the laser oscillation device 1 is reflected by the reflection mirror 3
To change the direction, condensed by the condenser lens 4 and placed on the moving table 5 comprising an XYZ stage.
Irradiates the region to be processed. The workpiece 10 is immersed in a processing container 6 in which a non-flammable liquid 7 such as water or silicone oil is stored inside a moving table 5. The pattern is controlled by moving the moving table 5 on which the workpiece 10 is placed. While moving the moving table 5, the processing area of the thin film 11a formed on the substrate 11 is irradiated with a laser beam to remove the thin film in the processing area. At this time, the surface of the thin film 11a to be patterned is in contact with the liquid. The interface between solid and liquid has a higher heat transfer coefficient than the interface between solid and gas. Therefore, it is possible to prevent the flying matter from being welded to the patterned end face having a higher cooling effect than the gas and to prevent the edge portion from being melted and deformed. That is, crystallization of amorphous silicon and dripping of metal on the processed end face can be reduced. In addition, since liquid has higher resistance than gas, there is also an effect that diffusion of flying matter can be prevented.
【0020】また、上記装置において、液体7を循環あ
るいは攪拌するようにして、冷却効果を高めるように構
成してもよい。In the above-mentioned apparatus, the liquid 7 may be circulated or stirred to enhance the cooling effect.
【0021】次に、この発明が適用される集積型光起電
力装置の製造方法の具体例につき図2に従い説明する。
図2は、この発明による集積型光起電力装置の製造方法
を工程別に示す要部拡大断面図であって、2つの光電変
換素子を電気的に直列接続する隣接間隔部を中心に示し
ている。Next, a specific example of a method of manufacturing an integrated photovoltaic device to which the present invention is applied will be described with reference to FIG.
FIG. 2 is an enlarged sectional view of a main part showing a method of manufacturing an integrated type photovoltaic device according to the present invention in each step, and mainly shows an adjacent space where two photoelectric conversion elements are electrically connected in series. .
【0022】ガラスからなる絶縁性透光性基板11の一
主面上に膜厚0.2から1μm、この実施の形態では約
0.8μmの膜厚のSnO2からなる透明導電薄膜12
を熱CVD法などにより形成する。その後、液体7とし
て水を蓄えた加工容器6内に基板11を浸す。波長1.
06μm、パルス周波数3kHz、エネルギー密度13
J/cm2 のYAGレーザ2を照射して透明導電薄膜1
2を任意の段数に短冊状に分割する(図2(a)参
照)。A transparent conductive thin film 12 made of SnO 2 having a thickness of 0.2 to 1 μm, in this embodiment, about 0.8 μm, is formed on one main surface of an insulating translucent substrate 11 made of glass.
Is formed by a thermal CVD method or the like. After that, the substrate 11 is immersed in the processing container 6 storing water as the liquid 7. Wavelength 1.
06 μm, pulse frequency 3 kHz, energy density 13
A transparent conductive thin film 1 is irradiated with a YAG laser 2 of J / cm 2.
2 is divided into strips of an arbitrary number of steps (see FIG. 2A).
【0023】そして、基板を洗浄した後、透明導電薄膜
12上に内部にpin接合を有するフロントのa−Si
膜とボトムのa−SiGeとを積層したトータル膜厚が
0.3から0.5μm程度の非晶質半導体層13をプラ
ズマCVD法により堆積する(図2(b)参照)。この
実施の形態においては、トータル膜厚が約0.4μmの
非晶質半導体層13をプラズマCVD法により形成し
た。この非晶質半導体層13は、この実施の形態では、
a−SiCからなる膜厚100オングストロームのフロ
ントp型非晶質半導体層とa−SiCからなる膜厚10
0オングストロームのフロントバッファ層、a−Siか
らなる膜厚2000オングストロームのフロントi型非
晶質半導体層とa−Siからなる膜厚200オングスト
ロームのフロントn型非晶質半導体層、a−SiCから
なる膜厚300オングストロームのボトムp型非晶質半
導体層とa−SiGeからなる膜厚2000オングスト
ロームのボトムi型非晶質半導体層とa−Si:Hから
なる膜厚200オングストロームのボトムn型非晶質半
導体層とで構成されている。After the substrate is washed, the front a-Si having a pin junction inside on the transparent conductive thin film 12 is formed.
An amorphous semiconductor layer 13 having a total thickness of about 0.3 to 0.5 μm in which the film and the bottom a-SiGe are stacked is deposited by a plasma CVD method (see FIG. 2B). In this embodiment, the amorphous semiconductor layer 13 having a total thickness of about 0.4 μm is formed by a plasma CVD method. In this embodiment, the amorphous semiconductor layer 13 is
a 100-angstrom thick front p-type amorphous semiconductor layer made of a-SiC and a film thickness 10 made of a-SiC
A front buffer layer having a thickness of 0 Å, a front i-type amorphous semiconductor layer having a thickness of 2,000 Å made of a-Si, a front n-type amorphous semiconductor layer having a thickness of 200 Å made of a-Si, and a-SiC. A bottom p-type amorphous semiconductor layer having a thickness of 300 angstroms, a bottom i-type amorphous semiconductor layer having a thickness of 2000 angstroms made of a-SiGe, and a bottom n-type amorphous semiconductor having a thickness of 200 angstroms made of a-Si: H. And a high-quality semiconductor layer.
【0024】その後、液体7として水を蓄えた加工容器
6内に基板11を浸す。波長0.53μm、パルス周波
数4kHz、エネルギー密度0.7J/cm2 のYAG
レーザ2を透明導電薄膜12の分割ラインに沿って、こ
の分割ラインと重ならないように照射し、非晶質半導体
層13を分割する(図2(c)参照)。Thereafter, the substrate 11 is immersed in the processing container 6 in which water is stored as the liquid 7. YAG having a wavelength of 0.53 μm, a pulse frequency of 4 kHz, and an energy density of 0.7 J / cm 2
The amorphous semiconductor layer 13 is divided by irradiating the laser 2 along the division line of the transparent conductive thin film 12 so as not to overlap with the division line (see FIG. 2C).
【0025】続いて、基板を洗浄後、非晶質半導体層1
3上に膜厚2000オングストロームのAlと膜厚20
00オングストロームのTiの積層膜からなる裏面金属
電極膜14をスパッタ法により形成して、透明導電薄膜
12と裏面金属電極膜14とを接続する。(図2(d)
参照)。Subsequently, after cleaning the substrate, the amorphous semiconductor layer 1
2,000 Å of Al and a thickness of 20 on 3
A back metal electrode film 14 made of a laminated film of 00 Å Ti is formed by a sputtering method, and the transparent conductive thin film 12 and the back metal electrode film 14 are connected. (FIG. 2 (d)
reference).
【0026】その後、液体7として水を蓄えた加工容器
6内に基板11を浸す。波長0.53μm、パルス周波
数4kHz、エネルギー密度0.7J/cm2 のYAG
レーザ2を透明導電薄膜12及び非晶質半導体層13の
分割ラインに沿って、裏面金属電極加工部分に照射し、
裏面金属電極膜14を溶融させ非晶質半導体層及びその
上の裏面金属電極膜を除去し、隣接するセル間を分離す
る(図2(e)参照)。Thereafter, the substrate 11 is immersed in the processing container 6 in which water is stored as the liquid 7. YAG having a wavelength of 0.53 μm, a pulse frequency of 4 kHz, and an energy density of 0.7 J / cm 2
A laser 2 is irradiated on the back metal electrode processing portion along the dividing line of the transparent conductive thin film 12 and the amorphous semiconductor layer 13,
The back metal electrode film 14 is melted to remove the amorphous semiconductor layer and the back metal electrode film thereon, thereby separating adjacent cells (see FIG. 2E).
【0027】このようにして、この発明にかかる集積型
光起電力装置が製造される。Thus, the integrated photovoltaic device according to the present invention is manufactured.
【0028】固体と液体の界面は固体と気体の界面より
熱伝達率が高い。従って、気体より冷却効果が高く飛散
物の溶着やエッジ部の溶融変形を防止できる。すなわ
ち、加工端面の、非晶質シリコンの結晶化、金属のだれ
が軽減できる。さらに、溶融飛散物を冷却し、再付着
(溶着)が防止できる。また、液体は気体より抵抗が大
きいので、飛散物の拡散が防止できる効果もある。The interface between the solid and the liquid has a higher heat transfer coefficient than the interface between the solid and the gas. Therefore, the cooling effect is higher than that of the gas, and it is possible to prevent the welding of the scattered matter and the melting deformation of the edge portion. That is, crystallization of amorphous silicon and dripping of metal on the processed end face can be reduced. Further, the melted splatter can be cooled to prevent re-adhesion (welding). In addition, since liquid has higher resistance than gas, there is also an effect that diffusion of flying matter can be prevented.
【0029】この結果、従来は、エネルギー密度を10
〜50%増すと電極層の溶融やアモルファス層の結晶化
等の問題が生じたが、この発明により、従来の2倍のエ
ネルギー密度が使用できるようになり、被加工層の条件
の選択幅が広がった。As a result, conventionally, an energy density of 10
If it increases by up to 50%, problems such as melting of the electrode layer and crystallization of the amorphous layer occur. However, according to the present invention, it becomes possible to use twice as much energy density as the conventional one, and the range of selection of the conditions of the layer to be processed becomes wider. Spread.
【0030】上記した実施の形態においては、加工容器
6内に蓄える液体として水を用いたが、液体としては、
不燃物であればよく、水以外にシリコーンオイルや被加
工物に悪影響を及ぼさない化学溶液が用いられる。In the above-described embodiment, water is used as the liquid stored in the processing container 6, but the liquid is
Any non-flammable substance may be used, and in addition to water, a silicone oil or a chemical solution that does not adversely affect the workpiece is used.
【0031】また、上記した半導体層13及び裏面金属
電極膜14のパターニングの際の液体として、水酸化ナ
トリウム水溶液を用いると、レーザのパターニングと水
酸化ナトリウム水溶液によるエッチング作用により、半
導体層のエッチングが促進され、パターニングに要する
時間を削減できる。なお、水酸化ナトリウム水溶液とし
ては、0.1wt%の溶液を用いればよい。When an aqueous solution of sodium hydroxide is used as the liquid for patterning the semiconductor layer 13 and the back metal electrode film 14, the semiconductor layer is etched by laser patterning and the etching action of the aqueous sodium hydroxide solution. Is accelerated and the time required for patterning can be reduced. As the aqueous sodium hydroxide solution, a 0.1 wt% solution may be used.
【0032】上記した実施の形態においては、透明導電
薄膜12としてSnO2を用いた場合について説明した
が、透明導電薄膜としてZnOを用いても同様な効果が
得られる。特に、ZnOからなる透明導電薄膜では、レ
ーザ加工の際、溶融状態で飛散するために、加工部周辺
に再付着し易いが、この発明によれば、飛散物の再付着
が防止できる。そして、この発明を用いれば、ZnOか
らなる透明導電薄膜層をレーザ加工するにあたって、レ
ーザの波長や出力を従来よりも広範な範囲とすることが
できる。In the above embodiment, the case where SnO 2 is used as the transparent conductive thin film 12 has been described. However, the same effect can be obtained by using ZnO as the transparent conductive thin film. In particular, the transparent conductive thin film made of ZnO is scattered in a molten state during laser processing, and thus easily adheres to the periphery of the processed portion. However, according to the present invention, reattachment of the scattered matter can be prevented. According to the present invention, when laser processing a transparent conductive thin film layer made of ZnO, the wavelength and output of the laser can be set in a wider range than before.
【0033】図3は、上記したレーザパターニング装置
において、加工容器6に被加工物10をセットし、レー
ザパターニングを行って、被加工物10を取り出すまで
の状態を示す概略図である。FIG. 3 is a schematic view showing a state in which the workpiece 10 is set in the processing vessel 6 in the above-described laser patterning apparatus, laser patterning is performed, and the workpiece 10 is taken out.
【0034】まず、加工容器6内に被加工物10をセッ
トする(図3(a)参照)。続いて、ポンプ20を用い
て、給排水口21から加工容器6内に水などの液体7を
給水する(図3(b)参照)。所定量の液体の給水が完
了すると、レーザビームを被加工物10の被加工領域に
照射し、パターニングする。加工が終了すると、ポンプ
20により、加工容器6から液体7を排水する(図3
(c)参照)。その後、加工容器6内から被加工物10
を取り出す。First, the workpiece 10 is set in the processing container 6 (see FIG. 3A). Subsequently, the liquid 7 such as water is supplied from the water supply / drain port 21 into the processing container 6 using the pump 20 (see FIG. 3B). When the supply of a predetermined amount of liquid is completed, a laser beam is applied to a region to be processed of the workpiece 10 to perform patterning. When the processing is completed, the pump 20 drains the liquid 7 from the processing container 6 (FIG. 3).
(C)). Then, the workpiece 10 is removed from the processing vessel 6.
Take out.
【0035】上記した実施の形態においては、ガラス基
板11の膜面11a側からレーザビームを照射させる方
法について説明したが、ガラス面側からレーザビームを
照射して、加工する場合につき説明する。In the above-described embodiment, the method of irradiating the laser beam from the film surface 11a side of the glass substrate 11 has been described. However, the case of processing by irradiating the laser beam from the glass surface side will be described.
【0036】被加工物10のガラス基板11面側からレ
ーザビーームを照射して加工する場合には、被加工領域
の薄膜11aの膜面が液体7に接触させる。図4に示す
ように、加工容器6に水などの液体7を満たし、薄膜1
1aの膜面を加工容器6側に向けて基板11を設置す
る。このとき、基板11に形成された薄膜11aの被加
工領域の膜面が液体7と接するように、加工容器6内に
液体7を充填しておく。この加工容器6も上述した実施
の形態と同様に、移動テーブル上に設置されている。When processing is performed by irradiating a laser beam from the glass substrate 11 side of the workpiece 10, the film surface of the thin film 11 a in the processing area is brought into contact with the liquid 7. As shown in FIG. 4, a processing vessel 6 is filled with a liquid 7 such as water,
The substrate 11 is placed with the film surface 1a facing the processing vessel 6 side. At this time, the processing container 6 is filled with the liquid 7 so that the film surface of the region to be processed of the thin film 11 a formed on the substrate 11 is in contact with the liquid 7. This processing container 6 is also set on a moving table, as in the above-described embodiment.
【0037】そして、レーザビーム2をガラス基板11
側から照射し、移動テーブルをXYZ方向に制御しなが
ら透明導電薄膜などの薄膜11aの被加工領域をレーザ
ビーム2で除去してゆくものである。Then, the laser beam 2 is applied to the glass substrate 11.
Irradiation is performed from the side, and the processing area of the thin film 11a such as a transparent conductive thin film is removed by the laser beam 2 while controlling the moving table in the XYZ directions.
【0038】上記したように、固体と液体の界面は固体
と気体の界面より熱伝達率が高い。従って、気体より冷
却効果が高く、飛散物の溶着やエッジ部の溶融変形を防
止できる。すなわち、加工端面の非晶質シリコンの結晶
化、金属のだれが軽減できる。As described above, the interface between the solid and the liquid has a higher heat transfer coefficient than the interface between the solid and the gas. Therefore, the cooling effect is higher than that of the gas, and it is possible to prevent the welding of the flying matter and the melting deformation of the edge portion. That is, crystallization of amorphous silicon and dripping of metal on the processed end face can be reduced.
【0039】図4に示した例では、基板11の端部を支
持しているだけであるので、基板11が大きくなるとた
わみが生じるおそれがある。そこで、図5及び図6に示
す実施の形態においては、基板11のたわみを防止する
ために、被加工領域をさけて加工容器6内に支持部材6
aを設け、この支持部材6aで基板11を支持するよう
に構成したものである。In the example shown in FIG. 4, since only the end of the substrate 11 is supported, if the substrate 11 becomes large, there is a possibility that bending occurs. Therefore, in the embodiment shown in FIGS. 5 and 6, in order to prevent the substrate 11 from bending, the support member 6 is placed in the processing container 6 while avoiding the region to be processed.
a, and the substrate 11 is supported by the support member 6a.
【0040】上記した支持部材6aで基板11の被加工
領域側の膜面を支持する。被加工領域の膜面は加工容器
6内に充填された液体7が接した状態となっている。こ
の加工容器6も上述した実施の形態と同様に、移動テー
ブル上に設置されている。The film surface on the processing region side of the substrate 11 is supported by the support member 6a. The film surface of the region to be processed is in a state where the liquid 7 filled in the processing container 6 is in contact therewith. This processing container 6 is also set on a moving table, as in the above-described embodiment.
【0041】そして、レーザビームをガラス基板11側
から照射し、移動テーブルをXYZ方向に制御しながら
透明導電薄膜などの薄膜11aの被加工領域をレーザビ
ームで除去してゆく。尚、図5及び図6に示した支持部
材6aは、矩形形状に形成しているが、棒状など支持で
きるものであれば、形状は問わない。Then, a laser beam is irradiated from the glass substrate 11 side, and the processing area of the thin film 11a such as a transparent conductive thin film is removed by the laser beam while controlling the moving table in the XYZ directions. Although the support member 6a shown in FIGS. 5 and 6 is formed in a rectangular shape, any shape can be used as long as it can support, such as a bar.
【0042】図7に示した実施の形態は、液体に浸した
吸湿材6bを被加工領域の膜面に接触させる構造の加工
容器6を用いたものである。膜面と吸湿剤6bの界面に
は、表面張力により液体が存在する。この加工容器6も
上述した実施の形態と同様に、移動テーブル上に設置さ
れている。The embodiment shown in FIG. 7 uses a processing container 6 having a structure in which a moisture absorbing material 6b immersed in a liquid is brought into contact with a film surface of a region to be processed. A liquid exists at the interface between the film surface and the hygroscopic agent 6b due to surface tension. This processing container 6 is also set on a moving table, as in the above-described embodiment.
【0043】そして、レーザビームをガラス基板11側
から照射し、移動テーブルをXYZ方向に制御しながら
透明導電薄膜などの薄膜11aの被加工領域をレーザビ
ームで除去してゆくものである。Then, a laser beam is irradiated from the glass substrate 11 side, and the processing area of the thin film 11a such as a transparent conductive thin film is removed by the laser beam while controlling the moving table in the XYZ directions.
【0044】[0044]
【発明の効果】以上説明したように、この発明によれ
ば、固体と液体の界面は固体と気体の界面より熱伝達率
が高いので、レーザ加工時の冷却効果が向上し、飛散物
の溶着やエッジ部の溶融変形が防止でき、集積型光起電
力装置の製造が効率よく行える。As described above, according to the present invention, since the interface between the solid and the liquid has a higher heat transfer coefficient than the interface between the solid and the gas, the cooling effect during laser processing is improved, and the scattered matter is deposited. And the edge portion can be prevented from being melted and deformed, and the integrated photovoltaic device can be manufactured efficiently.
【0045】特に、この発明は、ZnOからなる透明導
電薄膜層をレーザで加工するにあたって、レーザの波長
や出力を従来よりも広範な範囲とすることができる。In particular, according to the present invention, when a transparent conductive thin film layer made of ZnO is processed with a laser, the wavelength and output of the laser can be set in a wider range than in the past.
【図1】この発明が適用されるレーザを用いたパターニ
ング装置の構成を示す模式的側面図である。FIG. 1 is a schematic side view showing a configuration of a patterning apparatus using a laser to which the present invention is applied.
【図2】この発明による集積型光起電力装置の製造方法
を工程別に示す要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part showing a method of manufacturing an integrated photovoltaic device according to the present invention for each step.
【図3】この発明に用いられるレーザパターニング装置
において、加工容器に基板をセットし、レーザパターニ
ングを行って、基板を取り出すまでの状態を示す概略図
である。FIG. 3 is a schematic diagram showing a state in which a substrate is set in a processing container, laser patterning is performed, and the substrate is taken out in the laser patterning apparatus used in the present invention.
【図4】この発明の他の実施形態を示す模式的側面図で
ある。FIG. 4 is a schematic side view showing another embodiment of the present invention.
【図5】この発明の異なる実施形態を示す模式的斜視図
である。FIG. 5 is a schematic perspective view showing a different embodiment of the present invention.
【図6】この発明の異なる実施形態を示す模式的側面図
である。FIG. 6 is a schematic side view showing a different embodiment of the present invention.
【図7】この発明のさらに異なる実施形態を示す模式的
側面図である。FIG. 7 is a schematic side view showing still another embodiment of the present invention.
【図8】従来の集積型光起電力装置の製造方法を工程別
に示す要部拡大断面図である。FIG. 8 is an enlarged sectional view of a main part showing a method of manufacturing a conventional integrated photovoltaic device for each process.
1 レーザ発振装置 2 レーザビーム 5 移動テーブル 6 加工容器 7 液体 10 被加工物 11 基板 11a 薄膜 DESCRIPTION OF SYMBOLS 1 Laser oscillation device 2 Laser beam 5 Moving table 6 Processing container 7 Liquid 10 Workpiece 11 Substrate 11a Thin film
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E068 AB00 CJ07 DA09 5F004 AA09 BB03 BB31 CA05 DB00 DB08 DB30 DB31 EA38 EB02 FA05 5F033 HH03 HH05 HH40 QQ08 QQ19 QQ53 XX00 5F051 AA05 CB29 DA04 EA05 EA09 EA10 EA11 EA16 FA02 GA03 ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4E068 AB00 CJ07 DA09 5F004 AA09 BB03 BB31 CA05 DB00 DB08 DB30 DB31 EA38 EB02 FA05 5F033 HH03 HH05 HH40 QQ08 QQ19 QQ53 XX00 5F051 AA05 CB29 DA04 EA05 EA09 EA09 EA09
Claims (3)
膜、非晶質半導体薄膜及び裏面金属電極薄膜をこの順序
で形成した集積型光起電力装置の製造方法であって、前
記いずれかの薄膜もしくは複数の薄膜を表面が不燃性の
液体に接した状態でエネルギービームを照射してパター
ニングすることを特徴とする集積型光起電力装置の製造
方法。1. A method of manufacturing an integrated photovoltaic device, comprising: forming a transparent conductive thin film, an amorphous semiconductor thin film, and a back metal electrode thin film on one main surface of a light-transmitting substrate in this order; A method of manufacturing an integrated photovoltaic device, characterized in that any one or a plurality of thin films is patterned by irradiating an energy beam with a surface in contact with a nonflammable liquid.
ーニングする際、前記不燃性の液体として水酸化ナトリ
ウム溶液を用いることを特徴とする請求項1に記載の集
積型光起電力装置の製造方法。2. The integrated photovoltaic device according to claim 1, wherein when patterning the thin film including the amorphous semiconductor thin film, a sodium hydroxide solution is used as the nonflammable liquid. Method.
のZnOからなる透明導電薄膜の表面を不燃性の液体に
接した状態でエネルギービームを照射してパターニング
することを特徴とする請求項1又は2に記載の集積型光
起電力装置の製造方法。3. The transparent conductive thin film is made of ZnO, and is patterned by irradiating an energy beam with the surface of the transparent conductive thin film made of ZnO in contact with a nonflammable liquid. 3. The method for manufacturing an integrated photovoltaic device according to item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26860499A JP2001094131A (en) | 1999-09-22 | 1999-09-22 | Method for fabricating integrated photovoltaic power device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26860499A JP2001094131A (en) | 1999-09-22 | 1999-09-22 | Method for fabricating integrated photovoltaic power device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001094131A true JP2001094131A (en) | 2001-04-06 |
Family
ID=17460854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26860499A Pending JP2001094131A (en) | 1999-09-22 | 1999-09-22 | Method for fabricating integrated photovoltaic power device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001094131A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005259882A (en) * | 2004-03-10 | 2005-09-22 | Sharp Corp | Method thin film patterning, patterning device, and manufacturing method of thin film solar cell |
JP2006315030A (en) * | 2005-05-12 | 2006-11-24 | Shibaura Mechatronics Corp | Thin film panel processing equipment |
JP2007296534A (en) * | 2006-04-27 | 2007-11-15 | Sigma Koki Kk | Short pulse laser processing method and apparatus |
WO2012105079A1 (en) * | 2011-01-31 | 2012-08-09 | 富士電機株式会社 | Thin film photovoltaic cell and method of producing same |
JP2014226685A (en) * | 2013-05-21 | 2014-12-08 | 独立行政法人産業技術総合研究所 | Processing method of semiconductor material, and laser processing device |
KR101533244B1 (en) * | 2009-04-10 | 2015-07-03 | 주성엔지니어링(주) | Method and apparatus for manufacturing of thin film type solar cell |
JP2021057614A (en) * | 2018-10-18 | 2021-04-08 | 株式会社サイオクス | Structure manufacturing method and structure manufacturing apparatus |
-
1999
- 1999-09-22 JP JP26860499A patent/JP2001094131A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005259882A (en) * | 2004-03-10 | 2005-09-22 | Sharp Corp | Method thin film patterning, patterning device, and manufacturing method of thin film solar cell |
JP2006315030A (en) * | 2005-05-12 | 2006-11-24 | Shibaura Mechatronics Corp | Thin film panel processing equipment |
JP2007296534A (en) * | 2006-04-27 | 2007-11-15 | Sigma Koki Kk | Short pulse laser processing method and apparatus |
KR101533244B1 (en) * | 2009-04-10 | 2015-07-03 | 주성엔지니어링(주) | Method and apparatus for manufacturing of thin film type solar cell |
WO2012105079A1 (en) * | 2011-01-31 | 2012-08-09 | 富士電機株式会社 | Thin film photovoltaic cell and method of producing same |
CN102792459A (en) * | 2011-01-31 | 2012-11-21 | 富士电机株式会社 | Thin film photovoltaic cell and method of producing same |
JP2014226685A (en) * | 2013-05-21 | 2014-12-08 | 独立行政法人産業技術総合研究所 | Processing method of semiconductor material, and laser processing device |
JP2021057614A (en) * | 2018-10-18 | 2021-04-08 | 株式会社サイオクス | Structure manufacturing method and structure manufacturing apparatus |
JP7295836B2 (en) | 2018-10-18 | 2023-06-21 | 住友化学株式会社 | Structure manufacturing method and structure manufacturing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6455347B1 (en) | Method of fabricating thin-film photovoltaic module | |
JPH10242489A (en) | Manufacturing method of thin film solar cell | |
JP3510740B2 (en) | Manufacturing method of integrated thin-film solar cell | |
US5296674A (en) | Laser processing method for a thin-film structure | |
US4542578A (en) | Method of manufacturing photovoltaic device | |
JPH0472392B2 (en) | ||
PT1319254E (en) | METHOD FOR PRODUCING A SEMICONDUCTOR METALLIC CONTACT THROUGH A DIELECTRIC LAYER. | |
JPH11312815A (en) | Manufacturing method of thin film solar cell | |
KR102729996B1 (en) | Local metallization for semiconductor substrates using laser beams | |
CN101689574A (en) | Method and apparatus for the laser scribing of ultra lightweight semiconductor devices | |
JP2001094131A (en) | Method for fabricating integrated photovoltaic power device | |
JP2007005345A (en) | Solar cell module and manufacturing method thereof | |
JP3746410B2 (en) | Method for manufacturing thin film solar cell | |
JP2002280580A (en) | Integrated photovoltaic device and manufacturing method therefor | |
JP2001210851A (en) | Integrated thin-film solar cell | |
JP4078137B2 (en) | How to set the laser beam pulse width | |
JP3521268B2 (en) | Method for manufacturing photovoltaic device | |
JPS61280680A (en) | Manufacturing method of semiconductor device | |
JPH0243776A (en) | Method for manufacturing thin film solar cells | |
JP4162373B2 (en) | Photovoltaic device manufacturing method | |
JPH11224956A (en) | Thin film solar cell and method of manufacturing the same | |
JP2000049371A (en) | Photovoltaic device and its manufacture | |
JPH065897A (en) | Integrated photovoltaic device | |
JPS63283077A (en) | Manufacture of solar cell | |
JPH05299678A (en) | Manufacture of integrated photoelectromotive force device |