[go: up one dir, main page]

JP2001089953A - Insulating reinforcing material for multilayer printed circuit board and prepreg and laminate formed from the same - Google Patents

Insulating reinforcing material for multilayer printed circuit board and prepreg and laminate formed from the same

Info

Publication number
JP2001089953A
JP2001089953A JP26868299A JP26868299A JP2001089953A JP 2001089953 A JP2001089953 A JP 2001089953A JP 26868299 A JP26868299 A JP 26868299A JP 26868299 A JP26868299 A JP 26868299A JP 2001089953 A JP2001089953 A JP 2001089953A
Authority
JP
Japan
Prior art keywords
woven fabric
reinforcing material
liquid crystalline
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26868299A
Other languages
Japanese (ja)
Inventor
Naoaki Minagawa
尚亮 皆川
Yoshihiro Akiyama
芳広 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Glass Fiber Co Ltd
Original Assignee
Unitika Glass Fiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Glass Fiber Co Ltd filed Critical Unitika Glass Fiber Co Ltd
Priority to JP26868299A priority Critical patent/JP2001089953A/en
Publication of JP2001089953A publication Critical patent/JP2001089953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulating reinforcing material which has excellent dimensional stability, excellent impact resistance and excellent processability and is useful for multilayer printed circuit boards. SOLUTION: This insulating reinforcing material which has an air permeability of <=50 cm3/cmR2/sec and a thickness of <=150 μm is obtained by applying an opening treatment to a woven fabric comprising melt liquid crystalline copolyester-based fibers. The reinforcing material can be used to produce prepregs and multilayer laminates which are suitable for applying to multilayer printed circuit boards.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多層プリント配線板
に使用される樹脂絶縁層の強化材、特に溶融液晶性ポリ
エステル系繊維織布からなる絶縁補強材に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reinforcing material for a resin insulating layer used for a multilayer printed wiring board, and more particularly to an insulating reinforcing material made of a molten liquid crystalline polyester fiber woven fabric.

【0002】[0002]

【従来の技術】近年益々加速される高度情報化社会にあ
って、各種コンピューター、計測機器等の電子機器、衛
星放送や移動無線などの通信機器、オーディオ、ビジュ
アル機器その他ハイテク機器等は滔々たるデジタル化、
信号の高速処理化の傾向にある。それに対応してハイテ
ク機器に用いられるプリント配線基板にも更なる高性能
が要求され、小型化、軽量化、高密度化への傾向が顕著
となっている。かかる高性能を具備するプリント配線基
板には、高い寸法安定性、低誘電率、低誘電正接を満た
す材料が要求されており、さらにそのような材料を活か
したプリント配線板製造のための新技術が望まれてい
る。
2. Description of the Related Art In the advanced information society, which has been increasingly accelerated in recent years, electronic devices such as various computers and measuring devices, communication devices such as satellite broadcasting and mobile radio, audio and visual devices, and other high-tech devices have become increasingly digital. ,
There is a trend toward faster signal processing. Correspondingly, printed wiring boards used in high-tech equipment have been required to have higher performance, and the trend toward miniaturization, weight reduction, and high density has been remarkable. Materials that satisfy high dimensional stability, low dielectric constant, and low dielectric loss tangent are required for printed wiring boards having such high performance, and new technologies for manufacturing printed wiring boards utilizing such materials are required. Is desired.

【0003】現在、その要求に対処するために、ICチ
ップの表面実装技術、さらにはプリント配線板のビルド
アップ工法と呼ばれる多層プリント配線板の製造技術
(以下、ビルドアップ工法と略す)が注目されている。
このビルドアップ工法によれば、コア基板の片面又は両
面に絶縁樹脂もしくは銅箔付きの絶縁樹脂をコーティン
グした後、バイアの孔を穿孔し、エッチングにより導体
パターンを形成する。次いで前記一連の同じ工程を実施
し、必要に応じて、さらにこの工程を繰り返す。つまり
従来の熱板プレスによる加熱加圧成型によらない方法で
ある。
At present, attention has been paid to the surface mounting technology of IC chips and the manufacturing technology of a multilayer printed wiring board called a build-up method of a printed wiring board (hereinafter abbreviated as a build-up method) in order to meet the demand. ing.
According to this build-up method, after one or both surfaces of a core substrate are coated with an insulating resin or an insulating resin with a copper foil, holes in vias are formed, and a conductive pattern is formed by etching. Then, the above series of the same steps are performed, and this step is repeated as necessary. That is, it is a method that does not rely on the heat and pressure molding by a conventional hot plate press.

【0004】[0004]

【発明が解決しようとする課題】前記ビルドアップ工法
によるプリント配線基板の製造において、従来、これら
コーティングに使用される絶縁樹脂は加工性および樹脂
硬化の際の収縮による寸法安定性に難があり、さらには
コーティングする樹脂層厚さが極めて薄いことのために
衝撃による割れの問題が生じている。これら問題点に対
処するために、樹脂内へのフィラーの添加、薄いガラス
クロスなどによる補強を行うなどの様々な手法により解
決する取り組みがなされている。特に、補強材として従
来一般的であったガラス繊維補強材はそれなりに優れた
素材であり技術的にもほぼ成熟状態にあるが、比重、絶
縁抵抗、レーザー加工性の点などでなお改善の余地を残
している。それに対応するために新素材として、例えば
耐熱性、絶縁性に優れた溶融液晶性ポリエステル繊維が
注目されてきており、不織布、紙等の形でプリント基板
用基材として使用する様々な試みもなされている(例え
ば特開平10−716784)。しかしながらその場
合、加工性、寸法安定性、耐衝撃性など必要な性能をす
べて満足させうるような方法、製品は未だ実用化される
に至っていないのが現状である。
In the manufacture of printed wiring boards by the above-mentioned build-up method, conventionally, insulating resins used for these coatings have difficulty in workability and dimensional stability due to shrinkage during resin curing. Further, since the thickness of the resin layer to be coated is extremely thin, a problem of cracking due to impact occurs. In order to address these problems, efforts have been made to solve the problems by various methods, such as adding a filler into the resin and reinforcing with a thin glass cloth. In particular, glass fiber reinforcement, which has been generally used as a conventional reinforcement, is a reasonably good material and is almost in a technically mature state, but there is still room for improvement in terms of specific gravity, insulation resistance, laser workability, etc. Is leaving. In order to respond to the demand, for example, a molten liquid crystalline polyester fiber having excellent heat resistance and insulation properties has been attracting attention, and various attempts have been made to use it as a substrate for a printed circuit board in the form of a nonwoven fabric, paper, or the like. (For example, JP-A-10-716784). However, in such a case, methods and products that can satisfy all required performances such as workability, dimensional stability, and impact resistance have not yet been put to practical use.

【0005】[0005]

【課題を解決するための手段】本発明は従って前記多層
プリント配線基板用絶縁補強材の問題点を解消するため
に実験、検討を加えた結果、含浸させる絶縁性樹脂層内
に挿入される補強材として、特定の通気度と厚さ特性を
有する溶融液晶性共重合ポリエステル系繊維製の織布を
見出すことにより、寸法安定性、耐衝撃性および加工性
を高めることを可能にしたものである。その絶縁補強材
とは、より一般化して言えば、溶融液晶性共重合ポリエ
ステル繊維からなるフィラメント糸束から構成された縦
・横糸から織成された織布生布またはクリーニング後の
織布に、通気度低下と平滑化の物理的処理を施してなる
織布でなる。
SUMMARY OF THE INVENTION The present invention has been made through experiments and studies to solve the problems of the insulating reinforcing material for a multilayer printed wiring board. As a result, the reinforcing material inserted into the insulating resin layer to be impregnated is obtained. As a material, it has become possible to enhance dimensional stability, impact resistance and workability by finding a woven fabric made of a molten liquid crystalline copolyester fiber having specific air permeability and thickness characteristics. . The insulation reinforcing material is, more generally speaking, a raw woven fabric or a woven fabric after cleaning, woven from warp and weft composed of filament yarn bundles composed of a molten liquid crystalline copolyester fiber, It is a woven fabric that has been subjected to a physical treatment of decreasing air permeability and smoothing.

【0006】本発明は溶融液晶性共重合ポリエステル繊
維のマルチフィラメント糸束から構成される経糸と横糸
から織成された織布であって、厚さ150μm以下であ
りかつ1.27cmの水圧低下時における通気度が50
cm/cm/sec以下であるような溶融液晶性共
重合ポリエステル繊維織布からなることを特徴とする多
層プリント配線板用絶縁補強材にある。ここで、前記通
気度はJISL1096.6.27.1A法フラジール
形試験機による測定方法(いわゆるフラジール法)によ
るものであり、水の圧力降下が1.27cmのときの毎
秒1平方センチメートル面積当たり布を通過する空気量
により表わされる。
The present invention relates to a woven fabric woven from a warp and a weft composed of a multifilament yarn bundle of a molten liquid crystalline copolyester fiber, having a thickness of 150 μm or less and a water pressure drop of 1.27 cm. Air permeability at 50
An insulating reinforcing material for a multilayer printed wiring board, comprising a woven fabric of a molten liquid crystalline copolymerized polyester fiber having a density of not more than cm 3 / cm 2 / sec. Here, the air permeability is based on a measurement method (a so-called Frazier method) by a JISL 1096.66.27.1A method Frazier type tester, and the cloth per square centimeter area per second when the pressure drop of water is 1.27 cm. Expressed by the amount of air passing through.

【0007】本発明の好ましい態様によれば、前記溶融
液晶性共重合ポリエステル繊維織布は、経糸と横糸を構
成する各モノフィラメントの直径が3〜25μmであ
り、生機又はクリーニング後に通気度低下および平滑化
処理、たとえばジェット流等による開繊処理されてなる
ことを特徴とし、40cm/cm/sec以下の通
気度を有する。
According to a preferred embodiment of the present invention, in the woven fabric of the molten liquid crystalline copolymerized polyester fiber, the diameter of each of the monofilaments constituting the warp and the weft is 3 to 25 μm, and the air permeability is reduced and the smoothness is reduced after greige or cleaning. It is characterized by being subjected to an opening treatment, for example, a fiber opening treatment by a jet flow or the like, and has an air permeability of 40 cm 3 / cm 2 / sec or less.

【0008】本発明の他の実施態様は前記通気度と厚さ
を有する溶融液晶性共重合ポリエステル繊維職布に対
し、エポキシ樹脂を主成分とする熱硬化性樹脂を半硬化
状態で含浸させてなるプリプレグである。
[0008] In another embodiment of the present invention, a molten liquid crystalline copolyester fabric having the above-mentioned air permeability and thickness is impregnated with a thermosetting resin mainly composed of an epoxy resin in a semi-cured state. Prepreg.

【0009】本発明の更に他の実施態様によれば、前記
プリプレグを1層として多層積層してなる電子部品用プ
リント配線基板が提供される。
According to still another embodiment of the present invention, there is provided a printed wiring board for an electronic component, wherein the prepreg is formed as a single layer and laminated in multiple layers.

【0010】以下本発明をより詳細に説明する。本発明
の絶縁補強材としての織布を構成する繊維は溶融液晶性
(サーモトロピック液晶の)共重合ポリエステルからな
るが、これは芳香族ジカルボン酸、芳香族ジオール、芳
香族ヒドロキシカルボン酸等より得られるポリマーであ
って、好適には化1、化2、化3、化4、化5、化6、
化7、化8、化9又は/及び化10に例示される反復構
成単位の組合せからなるポリマーが挙げられる。
Hereinafter, the present invention will be described in more detail. The fiber constituting the woven fabric as the insulating reinforcing material of the present invention is composed of a molten liquid crystalline (thermotropic liquid crystal) copolymerized polyester, which is obtained from an aromatic dicarboxylic acid, an aromatic diol, an aromatic hydroxycarboxylic acid, or the like. Which is preferably a compound represented by the formulas (1), (2), (3), (4), (5), (6):
Polymers comprising a combination of repeating structural units exemplified in Chemical formula 7, Chemical formula 8, Chemical formula 9 and / or Chemical formula 10.

【0011】[0011]

【化1】 Embedded image

【0012】[0012]

【化2】 Embedded image

【0013】[0013]

【化3】 Embedded image

【0014】[0014]

【化4】 である。)Embedded image It is. )

【0015】[0015]

【化5】 Embedded image

【0016】[0016]

【化6】 Embedded image

【0017】[0017]

【化7】 Embedded image

【0018】[0018]

【化8】 Embedded image

【0019】[0019]

【化9】 Embedded image

【0020】[0020]

【化10】 Embedded image

【0021】前記ポリマーの融点は260〜380℃、特に27
0〜350℃のものが好ましい。ここでいう融点とは、示差
走査熱量測定装置で観察される主吸熱ピークのピーク温
度である。特に好ましくは化5で表わされるパラヒドロ
キシ安息香酸と2−ヒドロキシ6−ナフトエ酸の構成単
位からなる部分が80モル%以上である溶融異方性芳香
族ポリエステルであり、特に両成分の合計量に対する後
者成分の割合が5〜45モル%である芳香族ポリエステ
ルが好ましい。
The melting point of the polymer is 260-380 ° C., especially 27
The thing of 0-350 ° C is preferred. Here, the melting point is a peak temperature of a main endothermic peak observed by a differential scanning calorimeter. Particularly preferred is a melt-anisotropic aromatic polyester in which the portion composed of the structural units of parahydroxybenzoic acid and 2-hydroxy-6-naphthoic acid represented by Chemical Formula 5 is 80 mol% or more, and particularly to the total amount of both components. Aromatic polyesters having a ratio of the latter component of from 5 to 45 mol% are preferred.

【0022】前記溶融液晶性ポリエステルポリマーに対
しては、本発明の目的を損なわない限りにおいて、ポリ
エチレンテレフタレート、ポリオレフィン、ポリカーボ
ネート、ポリアリレート、ポリアミド、ポリフェニレン
サルファイド、ポリエーテルエーテルケトン、フッ素樹
脂などの熱可塑性ポリマーを添加してなるものを使用す
ることもできる。また、適宜酸化チタン、カオリン、シ
リカ、硫酸バリウム、カーボンブラック、顔料、酸化防
止剤、紫外線吸収剤、光安定剤などを含んでいてもよ
い。
As long as the object of the present invention is not impaired, thermoplastic polymers such as polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyether ether ketone, and fluororesin are used for the molten liquid crystalline polyester polymer. Those obtained by adding a polymer can also be used. Further, titanium oxide, kaolin, silica, barium sulfate, carbon black, pigment, antioxidant, ultraviolet absorber, light stabilizer and the like may be appropriately contained.

【0023】そして本発明織布の繊維成分である溶融液
晶性ポリエステル系繊維とは、上記溶融液晶性共重合ポ
リエステルポリマーを溶融紡糸した後、固相重合などの
重合度を高める処理を施したものである。紡糸方法にお
いては、直接紡糸法、海島繊維分割法と特に限定される
ものではなく、その結果得られる繊維の形態についても
円形、異形断面繊維、極細繊維等と特に限定されるもの
ではない。
The molten liquid crystalline polyester fiber, which is a fiber component of the woven fabric of the present invention, is obtained by melt-spinning the above-mentioned molten liquid crystalline copolyester polymer and then performing a treatment such as solid phase polymerization to increase the degree of polymerization. It is. The spinning method is not particularly limited to the direct spinning method and the sea-island fiber splitting method, and the resulting fiber form is not particularly limited to circular, irregular cross-section fibers, ultrafine fibers, and the like.

【0024】かくして得られた溶融液晶性ポリエステル
繊維からなるフィラメントはたとえば10〜800本収束さ
せてマルチフィラメント糸束とされるが、その単フィラ
メント直径は、次後の開繊処理ないし平滑化処理を経て
本発明の目的とする所定の通気度と厚さを有する織布を
得る上で、3〜25μmであることが不可欠である。単
フィラメント直径が3μm未満では繊維製造が非常に困
難となり、他方25μm以上になると単フィラメント自
身の屈曲性が損なわれ、開繊が困難となって本発明の目
的を達成することができなくなるからである。
The filaments made of the molten liquid crystalline polyester fiber thus obtained are converged into, for example, 10 to 800 filaments to form a multifilament yarn bundle. The diameter of the single filament is adjusted by the subsequent opening or smoothing treatment. In order to obtain a woven fabric having a predetermined air permeability and thickness intended by the present invention, it is essential that the thickness is 3 to 25 μm. If the diameter of the single filament is less than 3 μm, fiber production becomes extremely difficult. On the other hand, if the diameter is more than 25 μm, the flexibility of the single filament itself is impaired, and the fiber opening becomes difficult, so that the object of the present invention cannot be achieved. is there.

【0025】前記フィラメント糸束を経糸と横糸に使用
して、織り密度がともに例えば45〜70本/25mm
の範囲で、例えば平織、綾織、朱子織など適当な組織に
製織されるが、特に好ましいのは平織である。得られた
生布はそのままで又は糊剤除去のためのクリーニングを
経た後、次いでフィラメント開繊処理、例えば水、空気
などの流体の圧力波(ジェット流)または振動波を受け
ることにより、或いはカレンダー処理等によって、最終
的に前記フラジール試験機測定法による通気度が50c
/cm/sec以下、より好ましくは40cm
/cm/sec以下にされる。かつまた織布の厚さが
150μm以下であることは、高機能性プリント配線基
板での絶縁補強材として必要不可欠である。このような
範囲の通気度と厚さを有する織布が即ち目的とする本発
明の多層プリント配線基板用の絶縁補強材としての用途
に供される。
The filament yarn bundle is used for the warp and the weft, and the weaving density is, for example, 45 to 70 yarns / 25 mm.
Is woven into a suitable structure such as plain weave, twill weave and satin weave, but plain weave is particularly preferred. The obtained cloth is left as it is or after being subjected to cleaning for removing the sizing agent, and then subjected to a filament opening treatment, for example, by receiving a pressure wave (jet stream) or a vibration wave of a fluid such as water or air, or a calender. By the treatment or the like, the air permeability finally measured by the Frazier tester measurement method is 50c.
m 3 / cm 2 / sec or less, more preferably 40 cm 3
/ Cm 2 / sec or less. Further, it is indispensable that the thickness of the woven fabric is 150 μm or less as an insulation reinforcing material in a high-performance printed wiring board. The woven fabric having the air permeability and the thickness in such ranges is provided for use as an insulating reinforcing material for the intended multilayer printed wiring board of the present invention.

【0026】絶縁補強材としての前記織布が上記上限値
以下の通気度と厚さを有することが本発明にとり必要不
可欠な要件である理由は次の通りである。すなわちその
ような性質は、織布をミクロの観点で見れば、その経糸
と横糸の織り目の間隙が開繊されたフィラメントにより
均一に大部分埋められた状態になっていることを意味す
るので、織布表面を平滑化するのみならず、絶縁補強材
として使用するときの樹脂含有量を一様にすることがで
きる。プリント配線基板とした際、製織時に発生する内
部応力の緩和、歪みの除去により、内部応力に起因する
プリント配線基板の寸法安定性を改良することができる
のみならず、プリント配線基板とした際、基板単位体積
当たりに占める織布(基材)の体積率の斑を低減化させ
ることによる寸法安定性の改良ともなるのである。
The reason why it is an essential requirement for the present invention that the woven fabric as the insulating reinforcing material has an air permeability and a thickness below the above upper limits is as follows. In other words, such a property means that when viewed from a microscopic viewpoint, the gap between the warp and the weft threads is in a state in which most of the gaps between the warp and the weft threads are uniformly filled with the opened filaments. Not only can the surface of the woven fabric be smoothed, but also the resin content when used as an insulating reinforcing material can be made uniform. When a printed wiring board is used, the dimensional stability of the printed wiring board caused by internal stress can be improved by relaxing internal stress generated during weaving and removing distortion. The dimensional stability can be improved by reducing the unevenness of the volume ratio of the woven fabric (substrate) per unit volume of the substrate.

【0027】本発明プリプレグにおいて使用されるエポ
キシ樹脂主体の熱硬化性樹脂組成物は、樹脂、硬化剤、
溶剤等から構成される。前記樹脂としてはエポキシ樹脂
の他に、ビスマレイミドとトリアジン成分を有するBT樹
脂、ポリイミド樹脂、フッ素重合体樹脂ならびにシアネ
ート、ジシアネートおよびベンゾジシクロブタンの単量
体から誘導される樹脂などが挙げられ、単独または組合
せて使用できる。また臭素化された難燃性エポキシ樹脂
主体の樹脂でもよい。硬化剤としては、例えばジシアン
ジアミドが、溶剤としてはジメチルホルムアミド(DM
F)、メチルエチルケトン(MEK)、アセトン、メチルセ
ロソルブなどが挙げられる。
The thermosetting resin composition mainly composed of an epoxy resin used in the prepreg of the present invention comprises a resin, a curing agent,
It is composed of a solvent and the like. Examples of the resin include, in addition to the epoxy resin, a BT resin having a bismaleimide and a triazine component, a polyimide resin, a fluoropolymer resin, and a resin derived from monomers of cyanate, dicyanate, and benzodicyclobutane, and the like. Or can be used in combination. A brominated flame-retardant epoxy resin-based resin may also be used. For example, dicyandiamide is used as a curing agent, and dimethylformamide (DM
F), methyl ethyl ketone (MEK), acetone, methyl cellosolve and the like.

【0028】前記エポキシ樹脂主体の熱硬化性樹脂を、
上記通気度と厚さ特性を有する溶融液晶性ポリエステル
繊維織布に含浸させて半硬化状態にすることによりプリ
プレグを得るが、その場合織布の経糸と横糸との間隙に
は単フィラメントが存在するので、熱硬化性樹脂が介在
することが可能となる。しかしながら通気度がもし50
cm/cm/sec以上になると、経糸と横糸によ
って生ずる間隙の単フィラメント密度が疎となり、熱硬
化性樹脂が介在することが困難となって、空隙ができる
ので本発明の目的は達成できないのである。なお、積層
板の寸法安定化率が単位積層板体積あたりに占める織布
(基材)の体積率と関係していることから、樹脂含有量
のばらつきが少ない方が寸法安定性にとって好ましい。
The thermosetting resin mainly composed of the epoxy resin is
A prepreg is obtained by impregnating a molten liquid crystalline polyester fiber woven fabric having the above-mentioned air permeability and thickness characteristics to a semi-cured state, in which case there is a single filament in the gap between the warp and the weft of the woven fabric. Therefore, a thermosetting resin can be interposed. However, if the air permeability is 50
When the density is not less than cm 3 / cm 2 / sec, the density of single filaments in the gap formed by the warp and the weft becomes low, and it becomes difficult for the thermosetting resin to intervene. It is. Since the dimensional stabilization rate of the laminate is related to the volume ratio of the woven fabric (base material) per unit laminate volume, it is preferable for the dimensional stability that the variation in the resin content be small.

【0029】[0029]

【発明の実施の形態】以下実施例および比較例により本
発明をより具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be more specifically described below with reference to examples and comparative examples.

【0030】[0030]

【実施例】実施例1〜3および比較例1、2 表1に示す本発明範囲内のモノフィラメント径を有する
溶融液晶性ポリエステル繊維から平織織物を製織し、ジ
ェット水流噴射処理を施すかまたは施さずして補強材を
作製したのち、以下の熱硬化性樹脂組成物を含浸させ
て、150℃にて5分間乾熱処理して樹脂含有率60重量%
のプリプレグを作製した。また、このプリプレグを作製
した。このプリプレグを4枚積層し、170℃、圧力4
0kg/cmで60分間加圧成形を行なって、プリン
ト配線基板をも作製した。 熱硬化性樹脂組成物の処方 エピコート5045(油化シェル製) 80重量部 エピコート154(油化シェル製) 20重量部 ジシアンジアミド 3.2重量部 ベンジルジメチルアミン 0.18重量部 ジメチルフォルムアミド 20重量部 メチルセルソルブ 20重量部 メチルエチルケトン 25重量部 比較例においては本発明のモノフィラメント径範囲と開
繊処理条件のいずれかを欠いた条件にて、本発明と同様
にして織布を作製し、プリプレグそしてプリント配線基
板を作製した。そして本発明の実施例と比較例に係る各
織布について通気度、厚みおよび平滑度を測定し、さら
にプリプレグの状態、積層板の寸法安定性などを測定し
た。結果は同じく表1に掲げる通りである。
EXAMPLES Examples 1 to 3 and Comparative Examples 1 and 2 Plain woven fabrics are woven from a molten liquid crystalline polyester fiber having a monofilament diameter within the range of the present invention shown in Table 1 and subjected to jet water jet treatment or not. After making a reinforcing material, impregnated with the following thermosetting resin composition, and dry-heat-treated at 150 ° C. for 5 minutes to obtain a resin content of 60% by weight.
Was prepared. Further, this prepreg was produced. Four prepregs were laminated, and the pressure was 4 ° C. at 170 ° C.
Pressure molding was performed at 0 kg / cm 2 for 60 minutes to produce a printed wiring board. Formulation of thermosetting resin composition Epicoat 5045 (manufactured by Yuka Shell) 80 parts by weight Epicoat 154 (manufactured by Yuka Shell) 20 parts by weight Dicyandiamide 3.2 parts by weight Benzyldimethylamine 0.18 parts by weight Dimethylformamide 20 parts by weight Methyl cellosolve 20 parts by weight Methyl ethyl ketone 25 parts by weight In a comparative example, a woven fabric was prepared, prepreg and printed in the same manner as in the present invention, under the conditions lacking either the monofilament diameter range or the opening treatment conditions of the present invention. A wiring board was manufactured. The air permeability, thickness, and smoothness of each of the woven fabrics according to the examples of the present invention and the comparative examples were measured, and the state of the prepreg, the dimensional stability of the laminate, and the like were also measured. The results are also shown in Table 1.

【0031】[0031]

【表1】 但し、表1において各種性質の測定法は次の方法に拠
る。 通気度:JIS L 1096.6.27.1A法に準拠す
る。 平面平滑性:JIS B0601「表面粗さ測定方法」に準
拠する。なお、万能形状測定装置として、小坂研究所株
式会社製、SEF−IAを使用。評価基準については、15
μmを基準に設け、非常に良い◎、よい○、普通△、悪
い×の4段階で評価した。 プリプレグの状態:樹脂含浸、半硬化でプリプレグを作
製した状態における空隙の有無により判定した(空隙な
し○、空隙少しあり△、空隙多くあり×)。 寸法安定性:JIS C 6486に準拠する。評価基準に
ついては、縦横ともに30ppmを基準とする。(非常
に良い◎、良い○、普通△、悪い×の4段階)
[Table 1] However, in Table 1, methods for measuring various properties are based on the following methods. Air permeability: conforms to the JIS L 1096.66.27.1A method. Flatness: conforms to JIS B0601 “Method for measuring surface roughness”. In addition, SEF-IA manufactured by Kosaka Laboratory Co., Ltd. was used as a universal shape measuring device. For evaluation criteria, see 15
μm was set as a reference, and evaluated on four scales: very good 、, good 、, normal △, and bad x. State of prepreg: Judgment was made based on the presence or absence of voids in the state in which the prepreg was prepared by resin impregnation and semi-curing (no voids, little voids, many voids x). Dimensional stability: based on JIS C 6486. The evaluation criteria are based on 30 ppm both vertically and horizontally. (Very good ◎, good ○, normal △, bad × 4 levels)

【0032】以上から、本発明補強材をモノフィラメン
ト径3〜25μmの糸から製織し、平滑化処理して、通
気度40cm/cm/sec以下とすることによっ
て、それを使用して優れた多層プリント配線基板用積層
材が得られることが分かる。
As described above, the reinforcing material of the present invention is woven from a yarn having a monofilament diameter of 3 to 25 μm, is subjected to a smoothing treatment, and has an air permeability of 40 cm 3 / cm 2 / sec or less. It can be seen that a laminated material for a multilayer printed wiring board can be obtained.

【0033】[0033]

【発明の効果】本発明によれば、溶融液晶性ポリエステ
ル系繊維織布を多層プリント配線基板用絶縁補強材とす
ることによって、優れた加工性が得られるのみならず、
平面内において優れた寸法安定性と耐衝撃性を有する多
層プリント配線基板用絶縁材が可能となるので、ビルド
アップ工法によるかかる基板の多層化と軽量化、コンパ
クト化に十分対応できる。しかもこの補強材の生産に当
たってはそのための新規設備を何ら要することなく、現
行の生産設備で実施できるので無駄な投資の必要がな
く、加工性の点でも容易であって、生産性の向上を図る
ことができる。
According to the present invention, not only excellent workability can be obtained by using a molten liquid crystalline polyester fiber woven fabric as an insulation reinforcing material for a multilayer printed wiring board,
Since an insulating material for a multilayer printed wiring board having excellent dimensional stability and impact resistance in a plane can be obtained, it is possible to sufficiently cope with such a multilayered board, light weight, and compactness by a build-up method. In addition, the production of this reinforcing material does not require any new equipment, and can be carried out with the existing production equipment, so that there is no need for unnecessary investment, the workability is easy, and the productivity is improved. be able to.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 溶融液晶性共重合ポリエステル繊維のマ
ルチフィラメント糸束から構成される経糸と横糸から織
成された織布であって、厚さ150μm以下でありかつ
1.27cmの水圧降下時における通気度が50cm
/cm/sec以下であるような溶融液晶性共重合ポ
リエステル繊維織布からなることを特徴とする多層プリ
ント配線基板用絶縁補強材。
1. A woven fabric woven from a warp and a weft composed of a multifilament yarn bundle of a molten liquid crystalline copolyester fiber, having a thickness of 150 μm or less and a water pressure drop of 1.27 cm. Air permeability is 50cm 3
An insulating reinforcing material for a multilayer printed wiring board, comprising a molten liquid crystalline copolymerized polyester fiber woven fabric having a density of not more than / cm 2 / sec or less.
【請求項2】 通気度が40cm/cm/sec以
下であることを特徴とする請求項1記載の多層プリント
配線基板用絶縁補強材。
2. The insulation reinforcing material for a multilayer printed wiring board according to claim 1, wherein the air permeability is 40 cm 3 / cm 2 / sec or less.
【請求項3】 溶融液晶性共重合ポリエステル繊維織布
が各糸の単フィラメント直径が3〜25μmであること
を特徴とする請求項1〜2記載の多層プリント配線基板
用絶縁補強材。
3. The insulation reinforcing material for a multilayer printed wiring board according to claim 1, wherein a single filament diameter of each yarn of the molten liquid crystalline copolyester fiber woven fabric is 3 to 25 μm.
【請求項4】 溶融結晶性共重合ポリエステル繊維織布
が、生機またはクリーニング後、通気度低下および平滑
化処理されてなる織布であることを特徴とする請求項1
〜3記載の多層プリント配線基板用絶縁補強材。
4. The molten crystalline copolyester fiber woven fabric is a woven fabric obtained by reducing air permeability and smoothing after greige or cleaning.
4. The insulation reinforcing material for a multilayer printed wiring board according to any one of items 3 to 3.
【請求項5】 溶融液晶性共重合ポリエステル繊維織布
が生機またはクリーニング後、フィラメントに対しジェ
ット流による開繊処理されてなる織布であることを特徴
とする請求項1〜4記載の多層プリント配線基板用絶縁
補強材。
5. The multilayer print according to claim 1, wherein the molten liquid crystalline copolyester fiber woven fabric is a woven fabric obtained by subjecting a filament to a fiber opening treatment by jet flow after greige or cleaning. Insulation reinforcement for wiring boards.
【請求項6】 請求項1〜5記載の溶融液晶性共重合ポ
リエステル繊維織布からなる絶縁補強材に、エポキシ樹
脂を主成分とする熱硬化性樹脂を半硬化状態で含浸させ
てなるプリプレグ。
6. A prepreg obtained by impregnating a thermosetting resin containing an epoxy resin as a main component in a semi-cured state with the insulating reinforcing material comprising the molten liquid crystalline copolyester fiber woven fabric according to claim 1.
【請求項7】 各層が請求項6記載のプリプレグからな
る多層積層板から形成されてなる電子部品用プリント配
線基板。
7. A printed wiring board for electronic parts, wherein each layer is formed from a multilayer laminate comprising the prepreg according to claim 6.
JP26868299A 1999-09-22 1999-09-22 Insulating reinforcing material for multilayer printed circuit board and prepreg and laminate formed from the same Pending JP2001089953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26868299A JP2001089953A (en) 1999-09-22 1999-09-22 Insulating reinforcing material for multilayer printed circuit board and prepreg and laminate formed from the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26868299A JP2001089953A (en) 1999-09-22 1999-09-22 Insulating reinforcing material for multilayer printed circuit board and prepreg and laminate formed from the same

Publications (1)

Publication Number Publication Date
JP2001089953A true JP2001089953A (en) 2001-04-03

Family

ID=17461940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26868299A Pending JP2001089953A (en) 1999-09-22 1999-09-22 Insulating reinforcing material for multilayer printed circuit board and prepreg and laminate formed from the same

Country Status (1)

Country Link
JP (1) JP2001089953A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114392A1 (en) * 2006-03-30 2007-10-11 Kyocera Corporation Wiring board and mounting structure
JP2008109073A (en) * 2006-03-30 2008-05-08 Kyocera Corp Wiring board and mounting structure
JP2009122783A (en) * 2007-11-12 2009-06-04 Krd Corporation Kk IC tag
WO2009093412A1 (en) * 2008-01-25 2009-07-30 Kuraray Co., Ltd. High-strength, high-elasticity modulus sheet-like article
JP2010199437A (en) * 2009-02-26 2010-09-09 Kuraray Co Ltd Laminated board for printed wiring board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114392A1 (en) * 2006-03-30 2007-10-11 Kyocera Corporation Wiring board and mounting structure
JP2008109073A (en) * 2006-03-30 2008-05-08 Kyocera Corp Wiring board and mounting structure
US8446734B2 (en) 2006-03-30 2013-05-21 Kyocera Corporation Circuit board and mounting structure
JP2009122783A (en) * 2007-11-12 2009-06-04 Krd Corporation Kk IC tag
WO2009093412A1 (en) * 2008-01-25 2009-07-30 Kuraray Co., Ltd. High-strength, high-elasticity modulus sheet-like article
JP2010199437A (en) * 2009-02-26 2010-09-09 Kuraray Co Ltd Laminated board for printed wiring board

Similar Documents

Publication Publication Date Title
US7646098B2 (en) Multilayered circuitized substrate with p-aramid dielectric layers and method of making same
US8084863B2 (en) Circuitized substrate with continuous thermoplastic support film dielectric layers
CA2455078C (en) Solid sheet material especially useful for circuit boards
US6283166B1 (en) Woven glass fabrics and laminate for printed wiring boards
US5346747A (en) Composite printed circuit board substrate and process for its manufacture
JP2002242047A (en) Glass cloth for printed wiring board
WO2000060153A1 (en) Glass cloth and printed wiring board
JPH05286065A (en) Inorganic-fiber woven fabric for reinforcement and multilayer printed wiring board using said inorganic-fiber woven fabric
US20090258161A1 (en) Circuitized substrate with P-aramid dielectric layers and method of making same
JP2001089953A (en) Insulating reinforcing material for multilayer printed circuit board and prepreg and laminate formed from the same
JP4017769B2 (en) Printed wiring board base material and manufacturing method thereof
US5436301A (en) Epoxy resin-impregnated prepreg
JP3023427B2 (en) Glass cloth and printed wiring board
JP2001055642A (en) Cloth for resin reinforcement and laminated board using the same
JPH1161596A (en) Glass cloth and laminate therefrom
JP2010199437A (en) Laminated board for printed wiring board
JP2000077803A (en) Organic fiber reinforced printed wiring board and manufacture thereof
JP2004149577A (en) Prepreg and laminated sheet
JPS63270833A (en) Glass fiber fabric for printed wiring circuit board
US20040132372A1 (en) Solid sheet material especially useful for circuit boards
JP2004043690A (en) Prepreg
JP2002064254A (en) Resin laminates for printed wiring boards
JP2000234239A (en) Glass cloth and printed circuit board
JPH11158752A (en) Glass cloth
JP2001329449A (en) Glass cloth for printed circuit board