[go: up one dir, main page]

JP2001084982A - Metal hydroxide-hydrogen storage battery - Google Patents

Metal hydroxide-hydrogen storage battery

Info

Publication number
JP2001084982A
JP2001084982A JP26296999A JP26296999A JP2001084982A JP 2001084982 A JP2001084982 A JP 2001084982A JP 26296999 A JP26296999 A JP 26296999A JP 26296999 A JP26296999 A JP 26296999A JP 2001084982 A JP2001084982 A JP 2001084982A
Authority
JP
Japan
Prior art keywords
separator
hydrogen storage
polyolefin
storage battery
metal hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26296999A
Other languages
Japanese (ja)
Inventor
Koji Yuasa
浩次 湯浅
Yohei Hattori
洋平 服部
Fumihiko Yoshii
史彦 吉井
Hideo Kaiya
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26296999A priority Critical patent/JP2001084982A/en
Publication of JP2001084982A publication Critical patent/JP2001084982A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】 【課題】 寿命特性や充放電サイクル後の保存性能に優
れた金属水酸化物−水素蓄電池を提供する。 【解決手段】 正極と水素吸蔵合金を主構成材料とする
負極と親水化処理されたセパレータとアルカリ電解液と
からなる金属水酸化物−水素蓄電池において、少なくと
も1層のポリオレフィン製織布または不織布と、ポリオ
レフィン製織布または不織布よりも平均孔径の小さい少
なくとも1層のポリオレフィン製多孔膜層との多層構造
を有するセパレータを用いることにより、寿命特性や充
放電サイクル後の保存性能に優れた金属水酸化物−水素
蓄電池を得ることができる。
(57) [Problem] To provide a metal hydroxide-hydrogen storage battery having excellent life characteristics and storage performance after charge / discharge cycles. SOLUTION: In a metal hydroxide-hydrogen storage battery comprising a positive electrode, a negative electrode mainly composed of a hydrogen storage alloy, a hydrophilized separator and an alkaline electrolyte, at least one layer of a polyolefin woven or nonwoven fabric is used. By using a separator having a multilayer structure with at least one polyolefin porous membrane layer having an average pore diameter smaller than that of a polyolefin woven or nonwoven fabric, metal hydroxide having excellent life characteristics and storage performance after charge / discharge cycles is provided. Article-hydrogen storage battery can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極に水素吸蔵合
金電極を用いた金属水酸化物−水素蓄電池に関するもの
である。
The present invention relates to a metal hydroxide-hydrogen storage battery using a hydrogen storage alloy electrode as a negative electrode.

【0002】[0002]

【従来の技術】水素吸蔵合金を用いて実用化されたニッ
ケル−水素蓄電池は高エネルギー密度などの特徴を持つ
電池として、各種コードレス機器や電子機器の電源に広
く使用されるようになってきた。また、電気自動車、電
動工具などの動力電源としても、使用されるようになっ
てきている。
2. Description of the Related Art Nickel-hydrogen storage batteries that have been put to practical use by using a hydrogen storage alloy have been widely used as power sources for various cordless devices and electronic devices as batteries having characteristics such as high energy density. In addition, they are also being used as power sources for electric vehicles, electric tools, and the like.

【0003】ニッケル−水素蓄電池の負極材料として
は、一般にCaCu5型の結晶構造を有するMmNi
5(Mmは希土類元素の混合物)系合金のNiの一部を
Co,Mn,Al,Cuなどの金属により置換したもの
が用いられている。合金組成に合うように各種合金を秤
量し、高周波溶解炉などを用いて各種金属の混合物を溶
解させて、鋳型に流し込み所望の組成を有する合金を製
造する。また、最近では、合金組織の更なる均質化を目
的とし、高周波溶解して得た合金溶湯をロール急冷法や
アトマイズ法などの急冷法により合金製造する場合もあ
る。この合金を、必要に応じて、さらに粉砕して数10
μm程度の粉末とし、この粉末に結着剤、導電剤、増粘
剤などを添加して均一状態となるように混練してペース
ト状とし、パンチングメタル、発泡状金属多孔体等の電
極支持体に塗着あるいは加圧充填した後、乾燥、プレス
して電極体としている。この水素吸蔵電極を負極とし、
セパレータを介して公知のニッケル正極などと組み合わ
せて金属水酸化物−水素蓄電池が構成される。
As a negative electrode material for nickel-hydrogen storage batteries, MmNi having a CaCu 5 type crystal structure is generally used.
5 (Mm is a mixture of rare earth elements) -based alloy in which a part of Ni is replaced by a metal such as Co, Mn, Al, or Cu is used. Various alloys are weighed so as to match the alloy composition, and a mixture of various metals is melted using a high-frequency melting furnace or the like and poured into a mold to produce an alloy having a desired composition. Recently, in order to further homogenize the alloy structure, an alloy is sometimes produced from a molten alloy obtained by high-frequency melting by a quenching method such as a roll quenching method or an atomizing method. This alloy is further pulverized, if necessary, to several tens.
A powder of about μm, a binder, a conductive agent, a thickener, etc. are added to the powder and kneaded so as to be uniform to form a paste, and an electrode support such as a punched metal, foamed metal porous body, etc. After being coated or pressurized, dried and pressed to form an electrode body. Using this hydrogen storage electrode as a negative electrode,
A metal hydroxide-hydrogen storage battery is configured by combining with a known nickel positive electrode or the like via a separator.

【0004】また、そのセパレータとしてはポリオレフ
ィン繊維の不織布に、スルホン化処理、アクリル酸グラ
フト重合処理、界面活性剤処理などにより親水性を付与
したものが広く用いられている。
Further, as the separator, a non-woven fabric of polyolefin fibers, which has been rendered hydrophilic by a sulfonation treatment, an acrylic acid graft polymerization treatment, a surfactant treatment, or the like, is widely used.

【0005】[0005]

【発明が解決しようとする課題】水素吸蔵電極に好まし
い合金は高周波溶解法などにより製造されるが、合金組
織の均質性が重要であり、少しでも均質性を向上させた
合金を製造させる必要がある。しかし、この合金には、
MnやAlやCoのようにアルカリ性の水溶液に溶解す
るような金属元素も含まれており、完全に合金化されな
い場合には、この種の金属の一部が電解液であるアルカ
リ溶液中に溶解する。特に高温になると、この溶解速
度、溶解量が多くなる。
The preferred alloy for the hydrogen storage electrode is manufactured by a high-frequency melting method or the like, but the homogeneity of the alloy structure is important, and it is necessary to manufacture an alloy with even improved homogeneity. is there. However, this alloy has
Metal elements such as Mn, Al, and Co that dissolve in alkaline aqueous solutions are also included, and when they are not completely alloyed, some of these metals dissolve in alkaline solutions that are electrolytes. I do. In particular, when the temperature becomes high, the dissolution rate and the dissolution amount increase.

【0006】また、電気自動車、電動工具などの動力用
途に用いる場合には、この電池は50Aや時には100
A以上の大電流で放電される。このような大電流放電時
には水素吸蔵電極中で電位分布が生じ易く、より貴な電
位になった電極部位では合金中の構成元素の酸化溶解が
起こり易くなる。
When used for power applications such as electric vehicles and electric tools, this battery is 50 A or sometimes 100 A.
It is discharged with a large current of A or more. At the time of such a large current discharge, a potential distribution is easily generated in the hydrogen storage electrode, and oxidation and dissolution of the constituent elements in the alloy are likely to occur at an electrode portion having a more noble potential.

【0007】上記の電解液中に溶解した金属イオンは正
・負極上での酸化還元反応や溶解度の関係から、負極上
では金属状態で、正極上では酸化物や水酸化物の状態で
析出したりする。これらの微細な析出物の多くはセパレ
ータ上に付着成長し、セパレータの絶縁性を悪くし、最
悪の場合には電池内で短絡が発生する。特にMnやCo
はアルカリ電解液中ではHMnO2 -やHCoO2 -などの
陰イオンの状態で溶解するため正極に移動し析出しやす
くなる。
[0007] The metal ions dissolved in the electrolytic solution are deposited in a metal state on the negative electrode and in an oxide or hydroxide state on the positive electrode due to the oxidation-reduction reaction and solubility on the positive and negative electrodes. Or Many of these fine precipitates adhere to and grow on the separator, deteriorating the insulation of the separator, and in the worst case, a short circuit occurs in the battery. Especially Mn and Co
The HMnO 2 in alkaline electrolyte - and HCoO 2 - easily move to the positive electrode precipitation to dissolve in the form of anions such as.

【0008】上記の課題解決のための検討としては、下
記の内容が上げられる 水素吸蔵合金にアルカリ可溶成分であるMn,Al,
Coなどを含有させない。
In order to solve the above-mentioned problems, the following contents can be raised. Mn, Al, which are alkali-soluble components in a hydrogen storage alloy, are as follows.
Do not contain Co or the like.

【0009】水素吸蔵合金表面から予め可溶成分を除
去しておく。
[0009] Soluble components are previously removed from the surface of the hydrogen storage alloy.

【0010】溶出したイオンを電池内で短絡が発生す
る前にトラップする。
[0010] The eluted ions are trapped before a short circuit occurs in the battery.

【0011】に関しては、Mnフリー合金、Coフリ
ー合金やAlフリー合金等多数提案されているが、実際
には水素吸蔵容量の減少、放電特性の低下や寿命特性の
低下等種々の課題が有り実用化されていない。
[0011] Regarding Mn-free alloy, Co-free alloy, Al-free alloy, etc., many proposals have been made. However, in practice, there are various problems such as a decrease in hydrogen storage capacity, a decrease in discharge characteristics and a decrease in life characteristics. Not converted.

【0012】に関しては、合金を粉末状態や電極状態
でアルカリ水溶液にて浸漬処理し合金表面から予め可溶
成分を除去する(特開昭61−285658)方法が提
案されている。しかしながら、この方法は充放電初期の
合金の溶出性を抑制することは可能であるが、電池の充
放電サイクルに伴い、合金は微細化し新生面が露出する
ため、露出した新生面より合金構成元素が溶出する。そ
のため恒久的な対策とはなり得ない。
Regarding the method, a method has been proposed in which an alloy is immersed in an alkaline aqueous solution in a powder state or an electrode state to remove a soluble component from the alloy surface in advance (JP-A-61-285658). However, although this method can suppress the dissolution of the alloy at the beginning of charge and discharge, the alloy constituent elements elute from the exposed new surface because the alloy becomes finer and the new surface is exposed with the charge and discharge cycle of the battery. I do. Therefore, it cannot be a permanent measure.

【0013】に関しては、電解液中にEDTA等の遷
移金属との錯形成反応が可能である酸解離型錯化剤を添
加する方法(特開平4−167372)などが提案され
ているが、少量の添加では効果が小さかったり、多量に
添加すると電解液のpH変化により放電性能が低下する
課題があった。
As for the method, a method has been proposed in which an acid dissociation type complexing agent capable of forming a complex with a transition metal such as EDTA is added to an electrolytic solution (JP-A-4-167372). There is a problem in that the effect is small with the addition of, or the discharge performance decreases due to a change in the pH of the electrolytic solution when added in a large amount.

【0014】また、同様なアルカリ蓄電池である負極に
カドミウムを用いたニッケル−カドミウム蓄電池では、
溶解したカドミウム化合物の負極から正極への通過によ
る電池内での短絡を防止するため、孔径の異なる2種類
のセパレータを用い正極側に孔径1μm以下のセパレー
タを配置する提案(特開昭51−12645)がなされ
ている。しかしながら、この方法を金属水素化物−水素
蓄電池に採用した場合、後述するように、孔径1μm以
下のセパレータにより合金極の溶出に伴う析出物の成長
は抑制可能であるが、主セパレータとしてポリアミド不
織布を採用しているため金属水素化物−水素蓄電池では
自己放電特性が低下したり、親水性を有するポリアミド
不織布と親水性に乏しいフィルム状ポリプロピレンとを
併用しているためセパレータ中で電解液の偏在が起きや
すく放電性能が低下するという課題があった。
In a nickel-cadmium storage battery using cadmium for the negative electrode, which is a similar alkaline storage battery,
In order to prevent a short circuit in the battery due to the passage of the dissolved cadmium compound from the negative electrode to the positive electrode, a proposal has been made in which two types of separators having different pore sizes are used and a separator having a pore size of 1 μm or less is arranged on the positive electrode side (Japanese Patent Application Laid-Open No. Sho 51-12645). ) Has been made. However, when this method is applied to a metal hydride-hydrogen storage battery, as described later, the growth of precipitates due to elution of the alloy electrode can be suppressed by a separator having a pore diameter of 1 μm or less, but a polyamide nonwoven fabric is used as a main separator. The self-discharge characteristics of metal hydride-hydrogen storage batteries are reduced due to the adoption, and uneven distribution of the electrolyte solution occurs in the separator due to the combined use of a hydrophilic polyamide nonwoven fabric and a poorly hydrophilic film-like polypropylene. There is a problem that the discharge performance is easily lowered.

【0015】本発明はこのような課題を解決するもの
で、充放電サイクル中に上記短絡現象が発生しないよう
にし、長寿命で品質の安定した金属水酸化物−水素蓄電
池を提供することを目的とするものである。
An object of the present invention is to provide a metal hydroxide-hydrogen storage battery having a long life and a stable quality by preventing the above-mentioned short-circuit phenomenon from occurring during a charge / discharge cycle. It is assumed that.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明は充放電サイクル時の短絡の発生を防止する
目的で、上記の金属あるいは金属酸化物、水酸化物のセ
パレータ上での付着成長を抑えるために、少なくとも1
枚のポリオレフィン製織布または不織布と、ポリオレフ
ィン製織布または不織布よりも平均孔径の小さい少なく
とも1枚のポリオレフィン製多孔膜とを3枚以上重ね合
わせた構造を有する親水化処理されたセパレータを用い
た、好ましくは、ポリオレフィン製多孔膜の両面が少な
くとも1枚のポリオレフィン製織布または不織布に挟ま
れた重ね合わせ構造を有した、また、セパレータ中のポ
リオレフィン製多孔膜を負極よりも正極に近い位置に配
置した、さらに好ましくは、セパレータの親水化処理と
してスルホン化処理を施した、寿命特性や充放電サイク
ル後の保存性能に優れる金属水酸化物−水素蓄電池を提
供するものである。
In order to achieve the above object, the present invention provides a method for preventing the occurrence of a short circuit during a charge / discharge cycle by using the above metal, metal oxide, or hydroxide on a separator. At least one to reduce adhesion growth
A hydrophilized separator having a structure in which three or more polyolefin woven fabrics or nonwoven fabrics and at least one polyolefin porous membrane having an average pore diameter smaller than that of the polyolefin woven fabric or nonwoven fabric are laminated three or more times is used. Preferably, both surfaces of the polyolefin porous membrane had a superposed structure sandwiched between at least one polyolefin woven or nonwoven fabric, and the polyolefin porous membrane in the separator at a position closer to the positive electrode than the negative electrode An object of the present invention is to provide a metal hydroxide-hydrogen storage battery which is disposed, more preferably, subjected to a sulfonation treatment as a hydrophilic treatment of a separator, and which has excellent life characteristics and storage performance after charge / discharge cycles.

【0017】また、同様に、少なくとも1層のポリオレ
フィン製織布層または不織布層と、ポリオレフィン製織
布層または不織布層よりも平均孔径の小さい少なくとも
1層のポリオレフィン製多孔膜層との多層構造を有する
親水化処理されたセパレータを用いた、好ましくは、ポ
リオレフィン製多孔膜層の両面が少なくとも1層のポリ
オレフィン製織布層または不織布層に挟まれた多層構造
を有した、また、セパレータ中のポリオレフィン製多孔
膜層を正極に近い位置に配置した、さらに好ましくは、
セパレータの親水化処理としてスルホン化処理を施し
た、寿命特性や充放電サイクル後の保存性能に優れる金
属水酸化物−水素蓄電池を提供するものである。
Similarly, the multilayer structure of at least one polyolefin woven or non-woven fabric layer and at least one polyolefin porous membrane layer having an average pore diameter smaller than that of the polyolefin woven or non-woven fabric layer is defined. Using a separator subjected to hydrophilization treatment, preferably having a multilayer structure in which both surfaces of a polyolefin porous membrane layer are sandwiched between at least one polyolefin woven or nonwoven fabric layer, and a polyolefin in the separator The porous membrane layer is arranged at a position close to the positive electrode, more preferably,
An object of the present invention is to provide a metal hydroxide-hydrogen storage battery which has been subjected to sulfonation treatment as hydrophilic treatment of a separator and has excellent life characteristics and storage performance after charge / discharge cycles.

【0018】[0018]

【発明の実施の形態】本発明の請求項1に記載の発明
は、正極と水素吸蔵合金を主構成材料とする負極と親水
化処理されたセパレータとアルカリ電解液とからなる金
属水酸化物−水素蓄電池において、前記セパレータは、
少なくとも1枚のポリオレフィン製織布または不織布
と、ポリオレフィン製織布または不織布よりも平均孔径
の小さい少なくとも1枚のポリオレフィン製多孔膜とを
3枚以上重ね合わせた構造を有することを特徴とする金
属水酸化物−水素蓄電池である。このセパレータを用い
ることにより、放電特性を大きく低減させること無く、
充放電サイクルの放電時の電池電圧低下時に、負極より
電解液中にイオン状態で溶解し、正・負極上に析出した
微細析出物のセパレータ上での付着成長を抑制し、寿命
特性や充放電サイクル後の保存性能に優れた密閉型の金
属水酸化物−水素蓄電池が作製可能となる。重ね合わせ
構造の形成法としては、使用時に積層するだけでも良い
し、使用前に熱溶着やエンボス加工等により一体化して
も良い。また、多孔膜は1軸もしくは2軸に延伸するこ
とにより膜表面に微細な凹凸と内部に葉脈状の繊維層を
有するような表面積の大きいものであることがより好ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention relates to a metal hydroxide comprising a positive electrode, a negative electrode mainly composed of a hydrogen storage alloy, a separator subjected to hydrophilic treatment, and an alkaline electrolyte. In the hydrogen storage battery, the separator includes:
A metal water having a structure in which at least one polyolefin woven fabric or nonwoven fabric and at least one polyolefin porous membrane having an average pore diameter smaller than that of the polyolefin woven fabric or nonwoven fabric are laminated three or more times. An oxide-hydrogen storage battery. By using this separator, without greatly reducing the discharge characteristics,
When the battery voltage drops during discharge in the charge / discharge cycle, the negative electrode dissolves in the electrolyte from the negative electrode in an ionic state, and the deposition of fine precipitates deposited on the positive and negative electrodes on the separator is suppressed. A sealed metal hydroxide-hydrogen storage battery having excellent storage performance after cycling can be manufactured. As a method of forming the superposed structure, the layers may be simply laminated at the time of use, or may be integrated by heat welding or embossing before use. Further, it is more preferable that the porous membrane has a large surface area such that it has fine irregularities on the membrane surface and a vein-like fiber layer inside by stretching uniaxially or biaxially.

【0019】請求項2において、本発明の重ね合わせ構
造を有するセパレータはポリオレフィン製多孔膜の両面
が少なくとも1枚のポリオレフィン製織布または不織布
に挟まれた構造とすることが好ましい。これは、ポリオ
レフィン製織布または不織布がポリオレフィン製多孔膜
よりも孔径が大きいため電解液の物質移動度が大きく、
大電流放電時に電極表面での水やOH-イオンの枯渇が
生じることが無く、大きな放電特性の低下を引き起こさ
ないためである。
In the second aspect of the present invention, the separator having the overlapping structure of the present invention preferably has a structure in which both surfaces of a polyolefin porous membrane are sandwiched between at least one polyolefin woven or nonwoven fabric. This is because the polyolefin woven or nonwoven fabric has a larger pore diameter than the polyolefin porous membrane, so the electrolyte has a high mass mobility,
This is because water and OH 2 - ions are not depleted on the electrode surface during a large current discharge, and a large decrease in discharge characteristics is not caused.

【0020】請求項3において、本発明の重ね合わせ構
造を有するセパレータ中のポリオレフィン製多孔膜部分
を負極よりも正極に近い位置に配置するものである。こ
れは負極合金構成元素のうち特にMnやCoの化合物の
セパレータでの付着成長を抑制するのに効果がある。そ
れは、MnやCoはアルカリ電解液中ではHMnO2 -
HCoO2 -などの陰イオンの状態で溶解するため正極に
移動し析出しやすくなり、正極近傍で析出物の成長を抑
制する必要が有るためである。
According to a third aspect of the present invention, the polyolefin porous membrane portion in the separator having the superposed structure of the present invention is arranged at a position closer to the positive electrode than to the negative electrode. This is effective in suppressing the adhesion growth of a compound of Mn or Co among the constituent elements of the negative electrode alloy, particularly on the separator. It, Mn and Co are HMnO 2 in alkaline electrolyte - and HCoO 2 - tends to move to the positive electrode precipitation to dissolve in the form of anions such, should there inhibit the growth of precipitates at the positive electrode near That's why.

【0021】請求項4において、ポリオレフィン製多孔
膜の平均孔径を0.1〜10μmとするのが好ましい。
種々検討した結果、正・負極上に析出した微細析出物の
大きさは10〜20μm程度であることが分かった。一
般に現在使用されているニッケル−水素蓄電池用セパレ
ータであるポリオレフィン製不織布の平均孔径は15〜
30μm程度である。この孔径では微細析出物の成長を
完全に抑制することは困難である。このため、微細析出
物の成長を抑制する役割を担うポリオレフィン製多孔膜
の平均孔径としては10μm以下が好ましい。また、平
均孔径が小さくなると、電解液の物質移動度が低下する
ためセパレータの膜抵抗が上昇し、大電流放電特性が低
下する傾向となる。そのため、ポリオレフィン製多孔膜
の平均孔径の下限値は、電池に対する用途別の要求性能
により変化はするが、0.1μmとするのが好ましく、
さらに好ましくは1μm以上である。
In claim 4, it is preferable that the average pore diameter of the polyolefin porous membrane is 0.1 to 10 μm.
As a result of various studies, it was found that the size of the fine precipitate deposited on the positive and negative electrodes was about 10 to 20 μm. The average pore size of a nonwoven fabric made of polyolefin, which is a currently used nickel-hydrogen storage battery separator, is generally 15 to
It is about 30 μm. With this pore size, it is difficult to completely suppress the growth of fine precipitates. For this reason, the average pore diameter of the polyolefin porous membrane that plays a role in suppressing the growth of fine precipitates is preferably 10 μm or less. In addition, when the average pore diameter is small, the mass mobility of the electrolytic solution is reduced, so that the membrane resistance of the separator is increased, and the large-current discharge characteristics tend to be reduced. Therefore, the lower limit of the average pore diameter of the polyolefin porous membrane varies depending on the required performance for each application to the battery, but is preferably 0.1 μm.
More preferably, it is 1 μm or more.

【0022】請求項5において、ポリオレフィン製多孔
膜の膜厚みを10〜50μmとするのが好ましい。ポリ
オレフィン製多孔膜の膜厚みを厚くすればするほど保存
特性は向上するが、放電特性は低下する。一般に現在使
用されているニッケル−水素蓄電池用セパレータである
ポリオレフィン製不織布の厚みは100〜200μm程
度である。析出物の大きさが10μm程度であるため、
放電性能を可能な限り低下させずに保存性能を向上させ
るためにはポリオレフィン製多孔膜の膜厚みを10〜5
0μm、さらに好ましくは10〜30μmとする必要が
ある。
In the present invention, it is preferable that the polyolefin porous membrane has a thickness of 10 to 50 μm. As the thickness of the polyolefin porous membrane is increased, the storage characteristics are improved, but the discharge characteristics are reduced. Generally, the thickness of a polyolefin nonwoven fabric, which is a currently used separator for a nickel-hydrogen storage battery, is about 100 to 200 μm. Since the size of the precipitate is about 10 μm,
In order to improve the storage performance without lowering the discharge performance as much as possible, the thickness of the polyolefin porous film should be 10 to 5 times.
It is required to be 0 μm, more preferably 10 to 30 μm.

【0023】請求項6において、重ね合わせ構造を有す
るセパレータの親水化処理方法としてはスルホン化処理
が好ましい。詳細な理由は明確ではないが、親水化処理
方法としてはスルホン化処理を採用したセパレータはア
クリル酸グラフト重合処理やコロナ放電処理など他の親
水化処理方法を採用したセパレータに比べ、微細析出物
の成長を抑制する効果が顕著であった。
In claim 6, a sulfonation treatment is preferable as a method for hydrophilizing a separator having an overlapping structure. Although the detailed reason is not clear, the separator employing the sulfonation treatment as the hydrophilic treatment method has a fine precipitate compared to the separator employing another hydrophilic treatment method such as acrylic acid graft polymerization treatment or corona discharge treatment. The effect of suppressing the growth was remarkable.

【0024】本発明の請求項7に記載の発明は、正極と
水素吸蔵合金を主構成材料とする負極と親水化処理され
たセパレータとアルカリ電解液とからなる金属水酸化物
−水素蓄電池において、前記セパレータは、少なくとも
1層のポリオレフィン製織布層または不織布層と、ポリ
オレフィン製織布層または不織布層よりも平均孔径の小
さい少なくとも1層のポリオレフィン製多孔膜層との多
層構造を有することを特徴とする金属水酸化物−水素蓄
電池である。このセパレータを用いることにより、請求
項1と同様に、放電特性を大きく低減させること無く、
充放電サイクルの放電時の電池電圧低下時に、負極より
電解液中にイオン状態で溶解し、正・負極上に析出した
微細析出物のセパレータ上での付着成長を抑制し、寿命
特性や充放電サイクル後の保存性能に優れた密閉型の金
属水酸化物−水素蓄電池が作製可能となる。多層構造の
形成法としては、あらかじめ多孔膜を作製し、この多孔
膜を基材とし、表面に織布層や不織布層を形成する方法
などがある。請求項1の重ね合わせ構造と比較した場合
の利点としては、電池作製時のセパレータのずれが無く
良品率が高いことと、重ね合わせ構造の場合に生ずる、
セパレータ−セパレータ間のいわゆる電解液溜まりがな
くなるため電池内の電解液が有効に使え、放電特性がよ
り良好となることがあげられる。
According to a seventh aspect of the present invention, there is provided a metal hydroxide-hydrogen storage battery comprising a positive electrode, a negative electrode mainly composed of a hydrogen storage alloy, a hydrophilized separator, and an alkaline electrolyte. The separator has a multilayer structure of at least one polyolefin woven or nonwoven fabric layer and at least one polyolefin porous membrane layer having an average pore size smaller than that of the polyolefin woven or nonwoven fabric layer. And a metal hydroxide-hydrogen storage battery. By using this separator, as in claim 1, without greatly reducing the discharge characteristics,
When the battery voltage drops during discharge in the charge / discharge cycle, the negative electrode dissolves in the electrolyte from the negative electrode in an ionic state, and the deposition of fine precipitates deposited on the positive and negative electrodes on the separator is suppressed. A sealed metal hydroxide-hydrogen storage battery having excellent storage performance after cycling can be manufactured. As a method for forming a multilayer structure, there is a method in which a porous film is prepared in advance, and a woven or non-woven fabric layer is formed on the surface of the porous film as a base material. Advantages when compared with the superimposed structure of claim 1 are that there is no shift in the separator at the time of battery production and the non-defective product rate is high, and this occurs in the case of the superimposed structure.
Since there is no so-called electrolyte solution pool between the separators, the electrolyte solution in the battery can be used effectively, and the discharge characteristics can be further improved.

【0025】請求項8において、本発明の多層構造を有
するセパレータはポリオレフィン製多孔膜層の両面が少
なくとも1層のポリオレフィン製織布層または不織布層
に挟まれた構造とすることが好ましい。これは、請求項
2と同様に、ポリオレフィン製織布層または不織布層が
ポリオレフィン製多孔膜層よりも孔径が大きいため電解
液の物質移動度が大きく、大電流放電時に電極表面での
水やOH-イオンの枯渇が生じることが無く、大きな放
電特性の低下を引き起こさないためである。
In the eighth aspect, the separator having a multilayer structure of the present invention preferably has a structure in which both surfaces of a polyolefin porous membrane layer are sandwiched between at least one polyolefin woven or nonwoven fabric layer. This is because, similarly to claim 2, the polyolefin woven or non-woven fabric layer has a larger pore diameter than the polyolefin porous membrane layer, so that the electrolyte has a high mass mobility, and water and OH on the electrode surface during large current discharge. - there is no depletion of ions occurs, because the do not slow down the large discharge characteristics.

【0026】請求項9において、本発明の多層構造を有
するセパレータ中のポリオレフィン製多孔膜層を負極よ
りも正極に近い位置に配置するものである。これは請求
項3と同様に、負極合金構成元素のうち特にMnやCo
の化合物のセパレータでの付着成長を抑制するのに効果
がある。それは、MnやCoはアルカリ電解液中ではH
MnO2 -やHCoO2 -などの陰イオンの状態で溶解する
ため正極に移動し析出しやすくなり、正極近傍で析出物
の成長を抑制する必要が有るためである。
In the ninth aspect, the polyolefin porous membrane layer in the separator having a multilayer structure of the present invention is arranged at a position closer to the positive electrode than to the negative electrode. This is the same as in claim 3, particularly among the constituent elements of the negative electrode alloy, particularly Mn and Co.
Is effective in suppressing the adhesion growth of the compound in the separator. Mn and Co are H in alkaline electrolyte.
MnO 2 - or HCoO 2 - tends to move to the positive electrode precipitation to dissolve in the form of anions such, because the need to suppress the growth of precipitates at the positive electrode vicinity there.

【0027】請求項10において、請求項4と同様の理
由により、ポリオレフィン製多孔膜層の平均孔径を0.
1〜10μmとするのが好ましい。正・負極上に析出し
た微細析出物の大きさは10〜20μm程度であり、平
均孔径が15〜30μm程度のポリオレフィン製不織布
層では微細析出物の成長を完全に抑制することは困難で
ある。このため、微細析出物の成長を抑制する役割を担
うポリオレフィン製多孔膜層の平均孔径としては10μ
m以下が好ましい。また、平均孔径が小さくなると、電
解液の物質移動度が低下するためセパレータの膜抵抗が
上昇し、大電流放電特性が低下する傾向となる。そのた
め、ポリオレフィン製多孔膜層の平均孔径の下限値は、
電池に対する用途別の要求性能により変化はするが、
0.1μmとするのが好ましく、さらに好ましくは1μ
m以上である。
In the tenth aspect, for the same reason as in the fourth aspect, the average pore diameter of the polyolefin porous membrane layer is set to 0.1.
The thickness is preferably 1 to 10 μm. The size of the fine precipitate deposited on the positive and negative electrodes is about 10 to 20 μm, and it is difficult to completely suppress the growth of the fine precipitate in a polyolefin nonwoven fabric layer having an average pore diameter of about 15 to 30 μm. For this reason, the average pore diameter of the polyolefin porous membrane layer that plays a role in suppressing the growth of fine precipitates is 10 μm.
m or less is preferable. In addition, when the average pore diameter is small, the mass mobility of the electrolytic solution is reduced, so that the membrane resistance of the separator is increased, and the large-current discharge characteristics tend to be reduced. Therefore, the lower limit of the average pore diameter of the polyolefin porous membrane layer,
It varies depending on the required performance of the battery for each application,
It is preferably 0.1 μm, more preferably 1 μm.
m or more.

【0028】請求項11において、請求項5と同様な理
由により、ポリオレフィン製多孔膜層の膜厚みを10〜
50μmとするのが好ましい。ポリオレフィン製多孔膜
層の膜厚みを厚くすればするほど保存特性は向上する
が、放電特性は低下する。析出物の大きさが10μm程
度であるため、放電性能を可能な限り低下させずに保存
性能を向上させるためにはポリオレフィン製多孔膜層の
膜厚みを10〜50μm、さらに好ましくは10〜30
μmとする必要がある。
In the eleventh aspect, for the same reason as in the fifth aspect, the thickness of the polyolefin porous membrane layer is set to 10 to 10.
It is preferably 50 μm. As the thickness of the polyolefin porous membrane layer is increased, the storage characteristics are improved, but the discharge characteristics are reduced. Since the size of the precipitate is about 10 μm, the thickness of the polyolefin porous membrane layer is 10 to 50 μm, more preferably 10 to 30 μm, in order to improve the storage performance without lowering the discharge performance as much as possible.
It is required to be μm.

【0029】請求項12において、請求項6と同様な理
由により、多層構造を有するセパレータの親水化処理方
法としてはスルホン化処理が好ましい。
In the twelfth aspect, for the same reason as in the sixth aspect, a sulfonation treatment is preferable as a method for hydrophilizing a separator having a multilayer structure.

【0030】[0030]

【実施例】以下、本発明の実施例を図面とともに説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0031】(実施例1)本実施例では、ポリオレフィ
ン製不織布にポリエチレン多孔膜を重ね合わせたスルホ
ン化処理したセパレータを用いたニッケル−水素蓄電池
を例にとり説明する。
(Example 1) In this example, a nickel-hydrogen storage battery using a sulfonated separator in which a polyethylene porous film is laminated on a polyolefin nonwoven fabric will be described as an example.

【0032】セパレータは以下の手順で作製した。The separator was manufactured according to the following procedure.

【0033】まず、公称繊維径4.7μmのPP/PE
分割性複合繊維を80重量部と公称繊維径9μmのPP
/PE芯鞘繊維を20重量部とを混合し、湿式水流交絡
法にて平均孔径15μmのポリオレフィン製不織布を作
製した。この不織布に親水性を付与するためスルホン化
処理を施した。まず、濡れ性を付与するため非イオン性
界面活性剤である花王(株)製のエマルゲン709に浸漬
した。その後、60℃で25%濃度の発煙硫酸中に10
分間浸漬した後、発煙硫酸を除去しKOHでアルカリ洗
浄し、過剰なアルカリを水洗除去した。
First, PP / PE having a nominal fiber diameter of 4.7 μm
PP having a splittable conjugate fiber of 80 parts by weight and a nominal fiber diameter of 9 μm
/ PE core-sheath fiber was mixed with 20 parts by weight, and a nonwoven fabric made of polyolefin having an average pore diameter of 15 μm was prepared by a wet-type hydroentanglement method. This nonwoven fabric was subjected to a sulfonation treatment to impart hydrophilicity. First, it was immersed in Emulgen 709 manufactured by Kao Corporation, which is a nonionic surfactant, to impart wettability. Then, 10% in fuming sulfuric acid of 25% concentration at 60 ° C.
After immersion for a minute, the fuming sulfuric acid was removed, and alkali washing was performed with KOH, and excess alkali was washed off with water.

【0034】次にポリエチレン多孔膜を二軸延伸法によ
り作製した。このフィルムの孔径分布を測定したところ
平均孔径は1μmであった。このフィルムも上記不織布
と同様の方法でスルホン化処理を施した。
Next, a polyethylene porous membrane was prepared by a biaxial stretching method. When the pore size distribution of this film was measured, the average pore size was 1 μm. This film was also subjected to a sulfonation treatment in the same manner as the above nonwoven fabric.

【0035】これらのスルフォン化処理したポリオレフ
ィン製不織布とポリエチレン多孔膜とを目付け重量と厚
みとを種々変更して作製し、複数枚重ね合わせた後、群
構成時のずれ防止のために一部を熱溶着して、合わせて
目付け重量72g/m2、厚さ0.18mm、幅51m
m、長さ1320mmの重ね合わせ構造のセパレータを
作製した。
These sulfonated polyolefin nonwoven fabrics and polyethylene porous membranes are prepared by changing the basis weight and thickness in various ways, and after superposing a plurality of them, a part thereof is prevented in order to prevent misalignment during group formation. Heat welded, combined weight 72g / m 2 , thickness 0.18mm, width 51m
m, a separator having a superposed structure having a length of 1320 mm was produced.

【0036】水素吸蔵合金負極は以下の手順で作製し
た。高周波溶解法により溶解し水冷鋳型に鋳造して作製
した、組成がMmNi3.55Mn0.4Al0.3Co0.75(M
mは希土類元素の混合物)で表わされる水素吸蔵合金
を、湿式ボールミルにより水中で平均粒径30μmにな
るように機械的に粉砕した。この粉末を以下の条件でア
ルカリ処理した。粉末と同重量の80℃に加温した比重
1.30の水酸化カリウム水溶液に60分浸漬攪拌し、
水洗水のpHが10以下となるまで水洗し、加圧脱水し
た。その後、以下の条件で酸処理を行った。粉末と同重
量の60℃でpH3.0の酢酸水溶液にて30分間浸漬
攪拌処理し、水洗水のpHが6以上となるまで水洗し、
水素吸蔵合金粉末スラリーを得た。この合金粉末スラリ
ーの合金100重量部に対し、増粘剤としてカルボキシ
メチルセルロースを0.15重量部と、導電剤としてカ
ーボンブラックを0.3重量部と、結着剤としてのスチ
レン−ブタジエン共重合体を0.8重量部および分散媒
として水とを混合して合金ペーストを作製した。このペ
ーストをパンチングメタルからなる芯材に塗着し、乾
燥、加圧を行い、幅49mm、長さ665mm、厚さ
0.27mm、容量11000mAhの水素吸蔵合金電
極を作製した。正極としては公知の焼結式のニッケル正
極(幅49mm、長さ590mm、厚さ0.53mm、
容量6800mAh)を用いた。上記、正・負極をセパ
レータを介して渦巻き状に巻いた。この時、正極板と負
極板とのそれぞれの極板先端が上下にそれぞれ突出する
ように渦巻き状電極群を作製して、その後の集電体溶接
時に電極同士が短絡しないようにした。次に、上記電極
群の上下にそれぞれ円盤状の集電体をセットした後、電
極群と集電体とをスポット溶接し、Dサイズの金属ケー
スに挿入後、比重1.20の水酸化カリウム水溶液に4
0g/lの水酸化リチウムと100g/lの水酸化ナト
リウムとを溶解した電解液を12cc注液した。この
後、ケースを封口し、図1に示すような密閉型電池を構
成した。尚、極板と集電体との溶接点数は、正極が50
点、負極が70点と、正極よりも負極の方が集電点の間
隔を狭くするようにした。これは、放電時の電圧低下が
負極に起因する場合が多いため、負極の分極を極力小さ
くしようとしたためである。また、集電点数に関して
は、本発明の電極長さでは正極側は65点までは点数が
多くなればなるほど放電性能は向上した。
The negative electrode of the hydrogen storage alloy was produced by the following procedure. The composition was MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 (M
m is a mixture of rare earth elements), and the hydrogen storage alloy was mechanically pulverized in water by a wet ball mill so as to have an average particle diameter of 30 μm. This powder was alkali-treated under the following conditions. The powder was immersed and stirred in a potassium hydroxide aqueous solution having a specific gravity of 1.30 and heated to 80 ° C. for the same weight for 60 minutes,
Water washing was performed until the pH of the washing water became 10 or less, followed by dehydration under pressure. Thereafter, an acid treatment was performed under the following conditions. The powder was immersed and stirred in an acetic acid aqueous solution having a pH of 3.0 at 60 ° C. for 30 minutes at the same weight as the powder, and washed with water until the pH of the washing water became 6 or more.
A hydrogen storage alloy powder slurry was obtained. 0.15 parts by weight of carboxymethyl cellulose as a thickener, 0.3 parts by weight of carbon black as a conductive agent, and a styrene-butadiene copolymer as a binder, based on 100 parts by weight of the alloy of the alloy powder slurry Was mixed with water as a dispersion medium to prepare an alloy paste. This paste was applied to a core material made of punching metal, dried and pressed to produce a hydrogen storage alloy electrode having a width of 49 mm, a length of 665 mm, a thickness of 0.27 mm, and a capacity of 11,000 mAh. As the positive electrode, a known sintered nickel positive electrode (width 49 mm, length 590 mm, thickness 0.53 mm,
A capacity of 6800 mAh) was used. The positive and negative electrodes were spirally wound through a separator. At this time, a spiral electrode group was formed so that the tips of the positive electrode plate and the negative electrode plate respectively protruded up and down, so that the electrodes were not short-circuited during the current collector welding. Next, after setting a disk-shaped current collector above and below the electrode group, the electrode group and the current collector were spot-welded and inserted into a D-size metal case, and then potassium hydroxide having a specific gravity of 1.20. 4 in aqueous solution
12 cc of an electrolyte solution in which 0 g / l of lithium hydroxide and 100 g / l of sodium hydroxide were dissolved was injected. Thereafter, the case was sealed to form a sealed battery as shown in FIG. The number of welding points between the electrode plate and the current collector was 50 for the positive electrode.
The point and the negative electrode were 70 points, and the distance between the collecting points was narrower in the negative electrode than in the positive electrode. This is because an attempt was made to minimize the polarization of the negative electrode because the negative electrode often caused the voltage drop during discharge. Regarding the number of current collecting points, the discharge performance was improved as the number of points increased up to 65 on the positive electrode side in the electrode length of the present invention.

【0037】(表1)に作製した電池と用いたセパレー
タとを示す。尚、セパレータは負極表面側より第1枚目
とした。また、図2に本発明の実施例の一例である電池
Bの電極とセパレータとの配置の断面図を示す。
Table 1 shows the batteries produced and the separators used. In addition, the separator was the first sheet from the negative electrode surface side. FIG. 2 shows a cross-sectional view of the arrangement of the electrodes and the separator of the battery B which is an example of the embodiment of the present invention.

【0038】[0038]

【表1】 【table 1】

【0039】以上の方法により得られたA〜Gの7種類
の電池を用いて、高率放電特性と寿命特性とを評価し
た。高率放電特性は20℃雰囲気下で、6.5Aで1.
2時間充電し、1時間の休止後100Aで0.8Vまで
放電を行い、理論容量に対する放電容量の比で評価し
た。寿命特性は20℃雰囲気下で、6.5Aで理論容量
の105%充電し、1時間の休止後30Aで1.0Vま
で放電するサイクルを繰返し、放電容量が1サイクル目
の60%となった時点のサイクル数をその電池の充放電
可能サイクル数とした。それぞれの試験は各電池を5個
づつ試験に供した。
Using seven types of batteries A to G obtained by the above method, high-rate discharge characteristics and life characteristics were evaluated. The high-rate discharge characteristics are as follows.
The battery was charged for 2 hours, discharged after 1 hour rest at 100 A to 0.8 V, and evaluated by the ratio of the discharge capacity to the theoretical capacity. The life characteristics were as follows: in a 20 ° C. atmosphere, a cycle of charging 105% of the theoretical capacity at 6.5 A and discharging to 1.0 V at 30 A after a pause of 1 hour was repeated, and the discharge capacity was 60% in the first cycle. The number of cycles at that time was defined as the number of chargeable / dischargeable cycles of the battery. In each test, five batteries were subjected to the test.

【0040】(表2)に各電池の放電特性の平均値と寿
命特性の最大値と最小値、即ち充放電可能なサイクル数
の変動幅とを示す。
Table 2 shows the average value of the discharge characteristics and the maximum value and the minimum value of the life characteristics of each battery, that is, the fluctuation range of the number of chargeable / dischargeable cycles.

【0041】[0041]

【表2】 [Table 2]

【0042】(表2)の寿命試験結果から、電池A〜E及
びGは、上記試験条件では、少なくとも1000サイク
ル以上の充放電が可能であり、5個の電池のサイクル数
の変動幅も小さく、実使用上問題が無かった。但し、電
池A〜Eは1サイクル目の放電容量が、正極理論容量の
97%以上あったのに対し、電池Gはサイクルに伴う容
量低下は小さかったが、放電容量が1サイクル目から、
正極理論容量の85%と低かった。これは、今回使用し
た多孔膜の孔径が1μmと、不織布の孔径の1/15と
小さかったため放電時の電解液の移動度が小さく、放電
分極が大きくなったためと推測した。一方、電池Fは5
個の電池の充放電可能サイクル数が大きく変動した。1
000サイクルに到達した電池が2個あったものの、残
りの3個の電池は、200サイクル以降容量低下をし、
1個の電池が400サイクル、残りの2個の電池が60
0サイクルと700サイクルとで放電容量が初期容量の
60%まで低下した。
From the life test results shown in Table 2, the batteries A to E and G can be charged / discharged for at least 1000 cycles or more under the above test conditions, and the variation width of the number of cycles of the five batteries is small. There was no problem in actual use. However, while the discharge capacity in the first cycle of the batteries A to E was 97% or more of the theoretical capacity of the positive electrode, the capacity decrease of the battery G due to the cycle was small.
It was as low as 85% of the theoretical capacity of the positive electrode. This was presumed to be because the pore diameter of the porous membrane used this time was 1 μm, which was as small as 1/15 of the pore diameter of the nonwoven fabric, so that the mobility of the electrolyte during discharge was small and the discharge polarization was increased. On the other hand, battery F
The number of chargeable / dischargeable cycles of each battery fluctuated greatly. 1
Although two batteries reached 000 cycles, the remaining three batteries decreased in capacity after 200 cycles,
One battery has 400 cycles and the remaining two batteries have 60
The discharge capacity was reduced to 60% of the initial capacity between 0 cycle and 700 cycles.

【0043】上記寿命特性の差異は水素吸蔵合金負極中
に含有している金属の一部が溶解し、この溶解した金属
イオンが再度、正・負極やセパレータの表面や内部に析
出し、この析出物によってセパレータが絶縁機能を失
い、短絡現象を起こしたことによる容量低下であった。
また、その短絡に至る速度によって、個々の電池の充放
電可能サイクル数が変動したと考えられる。充放電の繰
り返しにより、徐々に金属が溶解し、再析出した金属ま
たは金属水酸化物などのセパレータ上での成長速度の違
いにより充放電可能サイクル数が変動した。実際に容量
低下をした電池Hを分解調査してみると、セパレータの
表面と内部に粒径10μm程度の黒色の析出物が付着し
ており、その元素分析を行なったところMnとCoが検
出された。
The difference in the life characteristics is that a part of the metal contained in the hydrogen storage alloy negative electrode is dissolved, and the dissolved metal ions precipitate again on the surface and inside of the positive / negative electrode and the separator. The separator lost its insulation function due to the material, and the capacity was reduced due to the occurrence of a short circuit phenomenon.
It is also considered that the number of chargeable / dischargeable cycles of each battery fluctuated depending on the speed at which the short circuit occurred. As the charge and discharge were repeated, the metal gradually dissolved, and the number of chargeable and dischargeable cycles fluctuated due to the difference in the growth rate of the reprecipitated metal or metal hydroxide on the separator. When the battery H whose capacity was actually reduced was disassembled and investigated, black precipitates having a particle size of about 10 μm were attached to the surface and inside of the separator, and Mn and Co were detected when the elemental analysis was performed. Was.

【0044】これに対し、本発明の電池である電池A〜
Eを同様に分解調査したところ不織布セパレータの表面
と内部には黒色の析出物が付着していたが、多孔膜セパ
レータの部分では黒色の析出物がほとんど観察されなか
った。また、多孔膜を不織布でサンドイッチしたような
構成のセパレータの場合、より正極に近い不織布の方が
負極側の不織布よりも析出物が多く観察された。また、
比較例である、多孔膜のみをセパレータとして用いた電
池Gでも多孔膜セパレータの部分では黒色の析出物がほ
とんど観察されず、その代わり正極表面上に同様の黒色
析出物のようなものが確認できた。
On the other hand, batteries A to B, which are the batteries of the present invention,
When E was similarly disassembled and investigated, a black precipitate was attached to the surface and the inside of the nonwoven fabric separator, but almost no black precipitate was observed at the portion of the porous membrane separator. Further, in the case of a separator having a configuration in which the porous film is sandwiched by a nonwoven fabric, more precipitates were observed in the nonwoven fabric closer to the positive electrode than in the nonwoven fabric on the negative electrode side. Also,
In Comparative Example, even in the battery G using only the porous membrane as the separator, almost no black precipitate was observed in the portion of the porous membrane separator, and instead, a similar black precipitate could be confirmed on the positive electrode surface. Was.

【0045】以上のことから、電池の寿命特性に関し、
以下のように推測できる。
From the above, regarding the life characteristics of the battery,
It can be guessed as follows.

【0046】寿命低下の主要因となる析出物はMnと
Coからなっており、その析出物は正極側より析出・成
長する。
Precipitates that are the main cause of the reduction in life are Mn and Co, and the precipitates are deposited and grown from the positive electrode side.

【0047】析出物の大きさは粒径10μm程度であ
り、平均孔径15μmの不織布内では成長するが平均孔
径1μmの多孔膜内では成長しにくい。
The size of the precipitate is about 10 μm in particle size, and it grows in a nonwoven fabric having an average pore diameter of 15 μm, but hardly grows in a porous film having an average pore diameter of 1 μm.

【0048】セパレータ内で成長した析出物が、セパ
レータの絶縁機能を低下させ、短絡現象を引き起こす。
The precipitate grown in the separator lowers the insulating function of the separator and causes a short circuit phenomenon.

【0049】以上のことから、電池長寿命化のためには
セパレータとして多孔膜のような孔径の小さい物を用い
るほうが良い。但し、電池Gのように孔径1μmの多孔
膜のみをセパレータとして用いると、放電性能に著しい
弊害を引き起こす。そのため、電池の放電性能を低下さ
せずに寿命特性を向上させるためには、電池A〜Eのよ
うに孔径の大きいセパレータと孔径の小さいセパレータ
とを組み合わせたものをセパレータとして用いるのが良
い。孔径の制御さえできれば、孔径の大きいセパレータ
として多孔膜を用いたり、孔径の小さいセパレータとし
て不織布を用いてもよいが、その製造プロセスから考
え、本発明では孔径の大きいセパレータとして不織布
を、孔径の小さいセパレータとして多孔膜を用いた。即
ち、不織布は繊維を抄紙して作るため孔径の大きいもの
が作りやすく、逆に多孔膜は多孔度の小さいものを延伸
して作るため孔径の小さいものが作りやすいためであ
る。
From the above, in order to prolong the life of the battery, it is preferable to use a separator having a small pore size such as a porous membrane as the separator. However, when only a porous film having a pore size of 1 μm is used as a separator as in the battery G, a significant adverse effect is caused on the discharge performance. Therefore, in order to improve the life characteristics without lowering the discharge performance of the battery, it is preferable to use a combination of a separator having a large pore size and a separator having a small pore size as in batteries A to E as the separator. As long as the pore size can be controlled, a porous membrane may be used as the large pore size separator, or a nonwoven fabric may be used as the small pore size separator.However, considering the manufacturing process, in the present invention, the nonwoven fabric is used as the large pore size separator, and the small pore size is used. A porous membrane was used as a separator. That is, the nonwoven fabric is easily made with a large pore size because it is made by making paper, and the porous membrane is easily made with a small pore size because it is made by stretching a small porous material.

【0050】また、片面が多孔膜であるセパレータを用
いた電池と電池A〜Eのように真ん中の多孔膜を両面の
不織布でサンドイッチしたセパレータを用いた電池とを
比較すると、寿命性能はほぼ同等であるものの、放電性
能は電池A〜Eの方が良好であった。これは、ポリオレ
フィン製織布または不織布がポリオレフィン製多孔膜層
よりも孔径が大きいため電解液の物質移動度が大きく、
大電流放電時に電極表面での水やOH-イオンの枯渇が
生じることが無く、大きな放電特性の低下を引き起こさ
ないためであると考えられる。このことから、放電性能
をより重視する用途の場合、セパレータはポリオレフィ
ン製多孔膜の両面が少なくとも1枚のポリオレフィン製
織布または不織布に挟まれた構造とすることが好まし
い。
When a battery using a separator having a porous film on one side is compared with a battery using a separator in which a middle porous film is sandwiched between nonwoven fabrics on both sides, such as batteries A to E, the life performances are almost the same. However, the discharge performance of the batteries A to E was better. This is because the polyolefin woven or nonwoven fabric has a larger pore diameter than the polyolefin porous membrane layer, so the electrolyte has a high mass mobility,
This is presumably because water and OH - ions are not depleted on the electrode surface during the large current discharge, and the large discharge characteristics do not deteriorate. For this reason, in a case where the discharge performance is more important, the separator preferably has a structure in which both surfaces of the polyolefin porous membrane are sandwiched between at least one polyolefin woven or nonwoven fabric.

【0051】また、信頼性をより重視する電池では、極
板上に析出した微細析出物を、よりその極板近傍で成長
を抑制することが重要である。前記したように、析出物
はその大半が正極側より成長する。そのため、電池A〜
Cの三枚重ね合わせ構造セパレータを用いた電池を比較
すると、多孔膜がより正極に近い位置に位置している、
B,A,Cの順に特性が良好であった。このことから、
多孔膜は負極よりも、より正極に近い位置に配置した方
が好ましい。
In a battery in which reliability is more important, it is important to suppress the growth of fine precipitates deposited on the electrode plate in the vicinity of the electrode plate. As described above, most of the precipitate grows from the positive electrode side. Therefore, batteries A ~
Comparing the batteries using the three-layer stacked structure separator of C, the porous membrane is located at a position closer to the positive electrode,
The characteristics were good in the order of B, A, and C. From this,
It is preferable that the porous film is arranged at a position closer to the positive electrode than to the negative electrode.

【0052】(実施例2)多孔膜の孔径の差による電池特
性の違いを評価した。多孔膜作製時の延伸条件を変更す
ることにより、多孔膜の平均孔径を0.05μm、0.
1μm、1μm(電池A)、10μm、15μmと変更
させた以外は、電池Aと同様な3枚重ねあわせ構造セパ
レータを用いた電池を作製した。これを(実施例1)と
同様な電池試験に供した。その結果を(表3)に示す。
(Example 2) A difference in battery characteristics due to a difference in pore diameter of a porous membrane was evaluated. By changing the stretching conditions at the time of producing the porous membrane, the average pore diameter of the porous membrane was set to 0.05 μm and 0.1 μm.
A battery using a three-layer laminated separator similar to Battery A, except that the thickness was changed to 1 μm, 1 μm (Battery A), 10 μm, and 15 μm. This was subjected to the same battery test as in (Example 1). The results are shown in (Table 3).

【0053】[0053]

【表3】 [Table 3]

【0054】(表3)の結果から、多孔膜の平均孔径が
0.1〜10μmの場合は放電性能と寿命性能との両特
性がバランス良く向上していた。しかし、不織布と同程
度の平均孔径15μmの多孔膜を使用した電池の場合、
不織布のみのセパレータである電池Fと同程度の電池特
性となり、寿命特性の向上は見られなかった。これは析
出物の大きさが10μm程度であることからも妥当な結
果である。また、逆に多孔膜の平均孔径が0.05μm
となると、たとえ不織布を併用したとしても、放電特性
が、多孔膜のみをセパレータとして用いた電池Gのレベ
ルまでは低下しないものの、大きく低下した。このこと
から、多孔膜の平均孔径としては、不織布の平均孔径よ
りも小さいものである必要が有り、放電特性も考慮する
と0.1〜10μmの範囲であることが好ましい。
From the results shown in Table 3, when the average pore diameter of the porous film was 0.1 to 10 μm, both characteristics of the discharge performance and the life performance were improved in a well-balanced manner. However, in the case of a battery using a porous membrane having an average pore diameter of
The battery characteristics were almost the same as those of the battery F, which is a separator made of only the nonwoven fabric, and no improvement in the life characteristics was observed. This is a reasonable result because the size of the precipitate is about 10 μm. Conversely, the average pore size of the porous membrane is 0.05 μm
Thus, even when a nonwoven fabric was used in combination, the discharge characteristics did not decrease to the level of Battery G using only the porous film as a separator, but greatly decreased. For this reason, the average pore size of the porous membrane needs to be smaller than the average pore size of the nonwoven fabric, and is preferably in the range of 0.1 to 10 μm in consideration of discharge characteristics.

【0055】同様に多孔膜層の膜厚みに関しても検討し
たところ、厚みを10〜50μmとするのが好ましいこ
とが分かった。ポリオレフィン製多孔膜層の膜厚みを厚
くすればするほど保存特性は向上したが、放電特性は低
下した。析出物の大きさが10μm程度であるため、万
一多孔膜上に析出した場合にも短絡現象を引き起こさな
いためには最低限の膜厚として10μm必要である。逆
に放電性能を可能な限り低下させないためには膜厚みの
上限値を50μmとする必要があった。
Similarly, when the film thickness of the porous film layer was examined, it was found that the thickness was preferably set to 10 to 50 μm. As the thickness of the polyolefin porous membrane layer was increased, the storage characteristics were improved, but the discharge characteristics were lowered. Since the size of the precipitate is about 10 μm, a minimum film thickness of 10 μm is necessary so that a short circuit phenomenon does not occur even if the precipitate is deposited on the porous film. Conversely, the upper limit of the film thickness had to be set to 50 μm in order not to lower the discharge performance as much as possible.

【0056】また、セパレータに親水性を付与する表面
処理に関して、上記のスルホン化処理の他に、アクリル
酸グラフト重合処理、エチレンビニルアルコール水溶液
への浸漬処理、コロナ放電処理の検討を行なったが、寿
命特性はスルホン化処理を施したものが最も良好であっ
た。寿命試験終了後の電池を分解調査したところ、理由
は定かではないが、表面処理の違いにより不織布上の黒
色析出物の分布状態が異なっていた。スルホン化処理を
施したものは黒色析出物が不織布内に均一に分布してい
たが、他の表面処理を施したものは黒色析出物が不織布
の一部に集中して析出成長していた。黒色析出物の成長
を抑制し短絡現象を防止するためには黒色析出物の析出
を分散させるほうが好ましい。このため、セパレータの
表面処理としてはスルホン化処理が好ましい。
With respect to the surface treatment for imparting hydrophilicity to the separator, an acrylic acid graft polymerization treatment, an immersion treatment in an aqueous solution of ethylene vinyl alcohol, and a corona discharge treatment were examined in addition to the above-mentioned sulfonation treatment. The life characteristics were the best when subjected to the sulfonation treatment. When the battery after the life test was disassembled and examined, the distribution of the black precipitate on the nonwoven fabric was different due to the difference in surface treatment, although the reason was not clear. In the case where the sulfonation treatment was performed, the black precipitate was uniformly distributed in the nonwoven fabric, whereas in the case where the other surface treatment was performed, the black precipitate was concentrated and grown on a part of the nonwoven fabric. In order to suppress the growth of the black precipitate and prevent the short circuit phenomenon, it is preferable to disperse the precipitation of the black precipitate. Therefore, a sulfonation treatment is preferable as the surface treatment of the separator.

【0057】(実施例3)本実施例では、ポリエチレン多
孔膜層にポリオレフィン製不織布層を積層しスルホン化
処理したセパレータを用いたニッケル−水素蓄電池を例
にとり説明する。
(Embodiment 3) In this embodiment, a nickel-hydrogen battery using a separator obtained by laminating a polyolefin nonwoven fabric layer on a polyethylene porous membrane layer and performing sulfonation will be described as an example.

【0058】セパレータは以下の手順で作製した。The separator was manufactured according to the following procedure.

【0059】まず、ポリエチレン多孔膜を、(実施例
1)と同様に、二軸延伸法により作製した。このフィル
ムの孔径分布を測定したところ平均孔径は1μmであっ
た。
First, a polyethylene porous membrane was prepared by a biaxial stretching method in the same manner as in (Example 1). When the pore size distribution of this film was measured, the average pore size was 1 μm.

【0060】次に上記のポリエチレン多孔膜を基材と
し、その片面または両面に、公称繊維径4.7μmのP
P/PE分割性複合繊維80重量部と公称繊維径9μm
のPP/PE芯鞘繊維20重量部とを混合し、湿式水流
交絡法にて平均孔径15μmのポリオレフィン製不織布
層を形成して、合わせて目付け重量72g/m2、厚さ
0.18mmの層構造を有するセパレータを作製した。
そして、このセパレータを(実施例1)と同様な方法で
親水性を付与するためスルホン化処理を施した。
Next, the above polyethylene porous membrane was used as a base material, and one side or both sides thereof were coated with a P of nominal fiber diameter of 4.7 μm.
80 parts by weight of P / PE splittable conjugate fiber and nominal fiber diameter of 9 μm
And 20 parts by weight of PP / PE core-sheath fiber, and a nonwoven fabric layer made of polyolefin having an average pore diameter of 15 μm is formed by a wet entanglement method, and a layer having a basis weight of 72 g / m 2 and a thickness of 0.18 mm A separator having a structure was produced.
Then, the separator was subjected to a sulfonation treatment to impart hydrophilicity in the same manner as in (Example 1).

【0061】このセパレータを用い、(実施例1)と同
様な電池を作製し、電池試験に供した。
Using this separator, a battery similar to that of (Example 1) was produced and subjected to a battery test.

【0062】(表4)に作製した電池と用いたセパレー
タとを示す。尚、セパレータは負極表面側より第1層と
した。
Table 4 shows the batteries produced and the separators used. The separator was the first layer from the negative electrode surface side.

【0063】[0063]

【表4】 [Table 4]

【0064】(表5)に各電池の放電特性の平均値と寿
命特性の最大値と最小値、即ち充放電可能なサイクル数
の変動幅とを示す。
Table 5 shows the average value of the discharge characteristics and the maximum value and the minimum value of the life characteristics of each battery, that is, the fluctuation range of the number of chargeable / dischargeable cycles.

【0065】[0065]

【表5】 [Table 5]

【0066】上記電池H〜Lも(実施例1)の電池A〜
Eと同様に寿命特性が良好であった。また、電池J,
K,Lは、それぞれと同様の構成で重ねあわせ構造のセ
パレータを用いた電池A,B,Cと比較し高率放電性能
が向上した。これは、不織布とフィルムとを層状構造に
することにより、実施例1の不織布とフィルムとの重ね
あわせ構造の場合よりも、セパレータ内の電解液溜りが
なくなりセパレータ内の電解液分布がより均一となった
ためである。
The above-mentioned batteries HL are also the batteries A- (of the first embodiment).
The life characteristics were good as in E. Also, batteries J,
For K and L, the high-rate discharge performance was improved as compared with the batteries A, B, and C using the same configuration as the respective batteries and using the stacked separator. This is because the nonwoven fabric and the film have a layered structure, so that the electrolyte does not remain in the separator and the electrolyte distribution in the separator is more uniform than in the case of the superposed structure of the nonwoven and the film in Example 1. Because it became.

【0067】尚、本実施例では合金は高周波溶解法によ
り溶解し水冷鋳型に鋳造して作製したが、より合金組織
の均質性を向上させる目的で、単ロールまたは双ロール
によるロール急冷法やガスアトマイズ法で作製した合金
を使用すると更に寿命特性が向上した。また、水素吸蔵
合金の表面処理としてアルカリ水溶液で処理を行った
後、酸性水溶液を用いて行なったが、アルカリ水溶液は
カリウム以外のナトリウムあるいはリチウムからなるも
のでも良く、また、酸性水溶液は酢酸/酢酸ナトリウム
のような酸性緩衝液による処理でも同様な効果が得られ
る。また、正極材料としては水酸化ニッケル以外に、水
酸化ニッケルのニッケルの一部をCo,Zn,Cd,M
n,Al,Mgなどで置換固溶させたものなど他の材料
でも同様の効果が得られるし、焼結式正極だけでなく、
発泡金属に種々の金属元素を固溶した水酸化ニッケル粉
末を充填したペースト式正極でも同様な効果が得られる
ことは言うまでもない。
In the present embodiment, the alloy was melted by a high frequency melting method and cast into a water-cooled mold. Use of the alloy produced by the method further improved the life characteristics. The surface treatment of the hydrogen storage alloy was performed with an aqueous alkali solution and then with an acidic aqueous solution. The alkaline aqueous solution may be made of sodium or lithium other than potassium, and the acidic aqueous solution may be acetic acid / acetic acid. Similar effects can be obtained by treatment with an acidic buffer such as sodium. As the positive electrode material, in addition to nickel hydroxide, part of nickel of nickel hydroxide may be Co, Zn, Cd, M
The same effect can be obtained with other materials such as those substituted and dissolved with n, Al, Mg, and the like.
Needless to say, the same effect can be obtained even with a paste-type positive electrode in which a foamed metal is filled with nickel hydroxide powder in which various metal elements are dissolved.

【0068】[0068]

【発明の効果】本発明によれば、正極と水素吸蔵合金を
主構成材料とする負極と親水化処理されたセパレータと
アルカリ電解液とからなる金属水酸化物−水素蓄電池に
おいて、少なくとも1枚のポリオレフィン製織布または
不織布とポリオレフィン製織布または不織布よりも平均
孔径の小さい少なくとも1枚のポリオレフィン製多孔膜
との3枚以上の重ねあわせ構造を有するセパレータ、ま
たは、1層のポリオレフィン製織布または不織布とポリ
オレフィン製織布層または不織布層よりも平均孔径の小
さい少なくとも1層のポリオレフィン製多孔膜層との多
層構造を有するセパレータを用いることにより、寿命特
性や充放電サイクル後の保存性能や保存特性に優れた金
属水酸化物−水素蓄電池を得ることができる。
According to the present invention, at least one sheet of a metal hydroxide-hydrogen storage battery comprising a positive electrode, a negative electrode mainly composed of a hydrogen storage alloy, a hydrophilized separator, and an alkaline electrolyte is provided. A separator having a laminated structure of three or more polyolefin woven or nonwoven fabrics and at least one polyolefin porous membrane having an average pore size smaller than that of the polyolefin woven or nonwoven fabric, or a one-layer polyolefin woven fabric or By using a separator having a multilayer structure of a nonwoven fabric and a polyolefin woven fabric layer or at least one polyolefin porous membrane layer having an average pore diameter smaller than that of the nonwoven fabric layer, the life characteristics, storage performance after charge / discharge cycles, and storage characteristics And a metal hydroxide-hydrogen storage battery having excellent heat resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における金属水酸化物−水素蓄
電池の構成を示す断面構造図
FIG. 1 is a sectional structural view showing a configuration of a metal hydroxide-hydrogen storage battery according to an embodiment of the present invention.

【図2】本発明の実施例の一例である電池Bの電極とセ
パレータとの配置を示す略図
FIG. 2 is a schematic diagram showing an arrangement of electrodes and separators of a battery B which is an example of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 正極集電板 5 負極集電板 3a 電池Dの負極側第1層セパレータ(不織布) 3b 電池Dの負極側第2層セパレータ(多孔膜) 3c 電池Bの負極側第3層セパレータ(不織布) DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode current collector plate 5 Negative electrode current collector plate 3a Negative side first layer separator (nonwoven fabric) of battery D 3b Negative side second layer separator of battery D (porous membrane) 3c Negative electrode of battery B Side third layer separator (nonwoven fabric)

フロントページの続き (72)発明者 吉井 史彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4F074 CB91 CD14 CD17 DA03 DA20 DA49 4L035 CC20 DD07 DD14 FF01 FF05 MA01 MA10 5H021 CC00 CC02 CC04 EE04 EE18 HH03 5H028 AA05 BB10 EE01 EE05 EE06 HH05 (72) Inventor Fumihiko Yoshii 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. 4F074 CB91 CD14 CD17 DA03 DA20 DA49 4L035 CC20 DD07 DD14 FF01 FF05 MA01 MA10 5H021 CC00 CC02 CC04 EE04 EE18 HH03 5H028 AA05 BB10 EE01 EE05 EE06 HH05

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】正極と水素吸蔵合金を主構成材料とする負
極と親水化処理されたセパレータとアルカリ電解液とか
らなる金属水酸化物−水素蓄電池において、前記セパレ
ータは、少なくとも1枚のポリオレフィン製織布または
不織布と、前記ポリオレフィン製織布または不織布より
も平均孔径の小さい少なくとも1枚のポリオレフィン製
多孔膜とを3枚以上重ね合わせた構造を有することを特
徴とする金属水酸化物−水素蓄電池。
1. A metal hydroxide-hydrogen storage battery comprising a positive electrode, a negative electrode mainly composed of a hydrogen storage alloy, a hydrophilized separator and an alkaline electrolyte, wherein the separator is made of at least one sheet of polyolefin. A metal hydroxide-hydrogen storage battery having a structure in which three or more woven or nonwoven fabrics and at least one polyolefin porous membrane having an average pore diameter smaller than that of the polyolefin woven or nonwoven fabric are stacked. .
【請求項2】ポリオレフィン製多孔膜の両面が少なくと
も1枚のポリオレフィン製織布または不織布に挟まれた
重ね合わせ構造を有するセパレータを用いた請求項1記
載の金属水酸化物−水素蓄電池。
2. The metal hydroxide-hydrogen storage battery according to claim 1, wherein a separator having an overlapping structure in which both surfaces of the polyolefin porous membrane are sandwiched between at least one woven or nonwoven fabric of polyolefin is used.
【請求項3】セパレータ中のポリオレフィン製多孔膜を
負極よりも正極に近い位置に配置した請求項1または2
記載の金属水酸化物−水素蓄電池。
3. The polyolefin porous membrane in the separator is located closer to the positive electrode than the negative electrode.
A metal hydroxide-hydrogen storage battery as described in the above.
【請求項4】ポリオレフィン製多孔膜層の平均孔径が
0.1〜10である重ね合わせ構造を有するセパレータ
を用いた請求項1〜3のいずれかに記載の金属水酸化物
−水素蓄電池。
4. The metal hydroxide-hydrogen storage battery according to claim 1, wherein a separator having a superposed structure in which the polyolefin porous membrane layer has an average pore size of 0.1 to 10 is used.
【請求項5】ポリオレフィン製多孔膜の膜厚みが10〜
50μmである重ね合わせ構造を有するセパレータを用
いた請求項1〜3のいずれかに記載の金属水酸化物−水
素蓄電池。
5. A polyolefin porous membrane having a thickness of 10 to 10.
The metal hydroxide-hydrogen storage battery according to any one of claims 1 to 3, wherein a separator having an overlapping structure of 50 µm is used.
【請求項6】セパレータの親水化処理法がスルホン化処
理である請求項1〜5のいずれかに記載の金属水酸化物
−水素蓄電池。
6. The metal hydroxide-hydrogen storage battery according to claim 1, wherein the method for hydrophilizing the separator is a sulfonation treatment.
【請求項7】正極と水素吸蔵合金を主構成材料とする負
極と親水化処理されたセパレータとアルカリ電解液とか
らなる金属水酸化物−水素蓄電池において、前記セパレ
ータは、少なくとも1層のポリオレフィン製織布層また
は不織布層と、ポリオレフィン製織布層または不織布層
よりも平均孔径の小さい少なくとも1層のポリオレフィ
ン製多孔膜層との多層構造を有することを特徴とする金
属水酸化物−水素蓄電池。
7. A metal hydroxide-hydrogen storage battery comprising a positive electrode, a negative electrode mainly composed of a hydrogen storage alloy, a hydrophilized separator and an alkaline electrolyte, wherein the separator comprises at least one layer of polyolefin. A metal hydroxide-hydrogen storage battery having a multilayer structure of a woven or nonwoven fabric layer and at least one polyolefin porous membrane layer having an average pore size smaller than that of the polyolefin woven or nonwoven fabric layer.
【請求項8】ポリオレフィン製多孔膜層の両面が少なく
とも1層のポリオレフィン製織布層または不織布層に挟
まれた多層構造を有するセパレータを用いた請求項7記
載の金属水酸化物−水素蓄電池。
8. The metal hydroxide-hydrogen storage battery according to claim 7, wherein a separator having a multilayer structure in which both surfaces of the polyolefin porous membrane layer are sandwiched between at least one polyolefin woven or nonwoven fabric layer is used.
【請求項9】セパレータ中のポリオレフィン製多孔膜層
を負極よりも正極に近い位置に配置した請求項7または
8記載の金属水酸化物−水素蓄電池。
9. The metal hydroxide-hydrogen storage battery according to claim 7, wherein the polyolefin porous membrane layer in the separator is located closer to the positive electrode than to the negative electrode.
【請求項10】ポリオレフィン製多孔膜層の平均孔径が
0.1〜10μmである多層構造を有するセパレータを
用いた請求項7〜9のいずれかに記載の金属水酸化物−
水素蓄電池。
10. The metal hydroxide according to any one of claims 7 to 9, wherein a separator having a multilayer structure in which the polyolefin porous membrane layer has an average pore size of 0.1 to 10 µm is used.
Hydrogen storage battery.
【請求項11】ポリオレフィン製多孔膜層の膜厚みが1
0〜50μmである多層構造を有するセパレータを用い
た請求項7〜9のいずれかに記載の金属水酸化物−水素
蓄電池。
11. The polyolefin porous membrane layer having a thickness of 1
The metal hydroxide-hydrogen storage battery according to any one of claims 7 to 9, wherein a separator having a multilayer structure of 0 to 50 µm is used.
【請求項12】セパレータの親水化処理法がスルホン化
処理である請求項7〜11のいずれかに記載の金属水酸
化物−水素蓄電池。
12. The metal hydroxide-hydrogen storage battery according to claim 7, wherein the hydrophilizing treatment of the separator is a sulfonation treatment.
JP26296999A 1999-09-17 1999-09-17 Metal hydroxide-hydrogen storage battery Pending JP2001084982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26296999A JP2001084982A (en) 1999-09-17 1999-09-17 Metal hydroxide-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26296999A JP2001084982A (en) 1999-09-17 1999-09-17 Metal hydroxide-hydrogen storage battery

Publications (1)

Publication Number Publication Date
JP2001084982A true JP2001084982A (en) 2001-03-30

Family

ID=17383073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26296999A Pending JP2001084982A (en) 1999-09-17 1999-09-17 Metal hydroxide-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP2001084982A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068270A (en) * 2001-08-29 2003-03-07 Sanyo Electric Co Ltd Nickel-metal hydride storage battery separator and nickel-metal hydride storage battery
JP2005235494A (en) * 2004-02-18 2005-09-02 Sanyo Electric Co Ltd Positive pole for nickel-hydrogen storage battery
CN108063285A (en) * 2018-01-05 2018-05-22 泉州劲鑫电子有限公司 A kind of width warm area Ni-MH battery and preparation method thereof
CN108075130A (en) * 2018-01-05 2018-05-25 泉州劲鑫电子有限公司 A kind of great-capacity power battery and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068270A (en) * 2001-08-29 2003-03-07 Sanyo Electric Co Ltd Nickel-metal hydride storage battery separator and nickel-metal hydride storage battery
JP2005235494A (en) * 2004-02-18 2005-09-02 Sanyo Electric Co Ltd Positive pole for nickel-hydrogen storage battery
CN108063285A (en) * 2018-01-05 2018-05-22 泉州劲鑫电子有限公司 A kind of width warm area Ni-MH battery and preparation method thereof
CN108075130A (en) * 2018-01-05 2018-05-25 泉州劲鑫电子有限公司 A kind of great-capacity power battery and preparation method thereof
CN108063285B (en) * 2018-01-05 2023-05-02 泉州劲鑫电子有限公司 Nickel-hydrogen battery with wide temperature range and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5278411B2 (en) Hydrogen storage alloy powder and nickel metal hydride storage battery using the same.
JP2011165680A (en) Alkaline secondary battery applying alkaline secondary battery anode plate
JP4429569B2 (en) Nickel metal hydride storage battery
JP4307020B2 (en) Alkaline storage battery
CN105723548B (en) Alloy powder for electrode, the nickel-metal hydride battery cathode and nickel-metal hydride battery for having used it
JP2007012572A (en) Nickel hydrogen battery
JP3363670B2 (en) Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP2001084982A (en) Metal hydroxide-hydrogen storage battery
JPH0855618A (en) Sealed alkaline storage battery
JPH11111330A (en) Nickel-hydrogen storage battery
JPH10106545A (en) Organic electrolyte secondary battery and manufacture of electrode thereof
JP2004124132A (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode, and nickel-metal hydride storage battery using the same.
CN109585942B (en) Method and composition for improving high temperature performance of NIMH batteries
JP3209071B2 (en) Alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3031156B2 (en) Alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
KR102052297B1 (en) Electrode for lithium rechargeable battery, lithium rechargeable battery including the same and method for fabricating the same
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP3148409B2 (en) Stationary batteries
JPH01315962A (en) Alkali secondary battery
JP4703154B2 (en) Alkaline storage battery and method of manufacturing the same
JPH10172550A (en) Alkaline battery with nickel positive electrode and method of activating the same
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same