JP2001083176A - Acceleration sensor - Google Patents
Acceleration sensorInfo
- Publication number
- JP2001083176A JP2001083176A JP26021899A JP26021899A JP2001083176A JP 2001083176 A JP2001083176 A JP 2001083176A JP 26021899 A JP26021899 A JP 26021899A JP 26021899 A JP26021899 A JP 26021899A JP 2001083176 A JP2001083176 A JP 2001083176A
- Authority
- JP
- Japan
- Prior art keywords
- acceleration
- capacitance
- acceleration sensor
- elastic body
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 92
- 239000010408 film Substances 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000009413 insulation Methods 0.000 abstract 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 30
- 239000000758 substrate Substances 0.000 description 18
- 239000003990 capacitor Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052573 porcelain Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 241000219977 Vigna Species 0.000 description 1
- 235000010726 Vigna sinensis Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Pressure Sensors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車の振動や衝
突時の加速度、電子機器類の携帯時の振動や加速度、さ
らには、モータや各種機械類の異常振動などを検出する
ために用いられる加速度センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for detecting vibrations of automobiles and acceleration during collisions, vibrations and accelerations of portable electronic equipment, and abnormal vibrations of motors and various machines. It relates to an acceleration sensor.
【0002】[0002]
【従来の技術】従来、機械類の振動や衝撃を検出するた
めに多くの種類の加速度センサが用いられている。加速
度センサは、検出する加速度の大きさや周波数範囲によ
り、用途に適合したものが使用され、例えば、自動車用
のエンジンのノッキングにともなう振動や機械の振動検
出には、図5に示すように、2枚の圧電円環51,52
をそれぞれの分極の向きを逆向きにして重ね、おもりと
なる金属中空円柱53とを一緒にネジ54により固定し
た構造の加速度センサ50が使用され、数Gから数十G
の加速度の検出に使用されている。加速度センサ50の
ケース55は一般にアースに接続され、端子56のアー
スとともに、取り付け用のネジ57を介して、被検出体
のアースに接続される。2. Description of the Related Art Conventionally, many types of acceleration sensors have been used to detect vibration and impact of machinery. As the acceleration sensor, a sensor suitable for the application is used depending on the magnitude and frequency range of the acceleration to be detected. For example, for detecting vibration due to knocking of an automobile engine or vibration of a machine, as shown in FIG. Sheets of piezoelectric rings 51 and 52
Are stacked in such a manner that their polarization directions are reversed, and an acceleration sensor 50 having a structure in which a metal hollow cylinder 53 serving as a weight is fixed together with screws 54 is used.
It is used to detect acceleration. The case 55 of the acceleration sensor 50 is generally connected to the ground, and is connected to the ground of the terminal via the mounting screw 57 together with the ground of the terminal 56.
【0003】図5の加速度センサにおいては、外部から
加速度α5が印加されると、圧電円環51,52には、
F5=M5α5の力が加わる。ここで、M5はおもりの
質量である。圧電円環51,52は、字の如く圧力が加
わると電圧を発生する素子であり、V=kgF5で与え
られる電圧を発生する。ここで、kは、加速度センサの
形状、寸法によって定まる定数、gは圧電材料によつて
定まる定数である。つまり、図5に示した加速度センサ
に代表される圧電型の加速度センサの動作原理は、印加
加速度がおもり53に作用して力を発生し、その力によ
り圧電円環51,52が変形して電圧を発生するもので
ある。[0003] In the acceleration sensor of FIG. 5, when acceleration alpha 5 from the outside is applied to the piezoelectric ring 51 and 52,
The Power of F 5 = M 5 α 5 is applied. Here, M 5 is the mass of the weight. Piezoelectric ring 51 and 52, when applied pressure as shaped a device for generating a voltage, generates a voltage given by V = kgF 5. Here, k is a constant determined by the shape and dimensions of the acceleration sensor, and g is a constant determined by the piezoelectric material. That is, the operating principle of the piezoelectric acceleration sensor represented by the acceleration sensor shown in FIG. 5 is that the applied acceleration acts on the weight 53 to generate a force, and the piezoelectric rings 51 and 52 are deformed by the force. It generates a voltage.
【0004】また、最近になって、半導微細加工技術を
駆使して形成される、いわゆるマイクロマシン型の静電
容量式加速度センサが開発されている。これは、直流的
な加速度の検出が可能な上に、1G以下の小さい加速度
から自動車の衝突時の数10Gの大きい加速度まで広い
範囲に、機械振動系の共振周波数や各部の機械強度を要
求に合わせて設計することにより対応できる。Further, recently, a so-called micromachine type capacitance type acceleration sensor formed by making full use of semiconductor fine processing technology has been developed. This requires not only the detection of DC acceleration, but also the resonance frequency of the mechanical vibration system and the mechanical strength of each part in a wide range from a small acceleration of 1 G or less to a large acceleration of several tens G at the time of an automobile collision. It can be handled by designing together.
【0005】図6は、マイクロマシン技術を利用した静
電容量型加速度センサの1つの例の構造の概略を示す斜
視図である。この静電容量型加速度センサは、表面マイ
クロマシン技術により、Si単結晶板60の上に、アン
カー61に支持されたおもりとなる可動板62に一体に
形成された可動電極X63とこの可動電極と対向して静
電容量を形成する2つの固定電極Y64,Z65とから
構成されている。図7は、図6に示した静電容量型加速
度センサの動作説明図である。FIG. 6 is a perspective view schematically showing the structure of one example of a capacitance type acceleration sensor utilizing micromachine technology. This capacitance-type acceleration sensor is configured such that a movable electrode X63 integrally formed on a Si single crystal plate 60 and a movable plate 62 serving as a weight supported by an anchor 61 is opposed to the movable electrode by a surface micromachine technology. And two fixed electrodes Y64 and Z65 that form a capacitance. FIG. 7 is an operation explanatory diagram of the capacitance type acceleration sensor shown in FIG.
【0006】以下、図6と図7を用いて加速度検出の原
理を説明する。図6において、各々の電極X(63),
Y(64),Z(65)は、それぞれ共通に接続されて
いるため、図7に示すように、対向電極Y(64),Z
(65)の間に、もうーつの電極X(63)が挿入され
た、2つのコンデンサが直列に接続された回路と考えら
れる。図6において、検出加速度の方向は、X,Y,Z
それぞれの電極の長さ方向と直角な方向であるため、加
速度α6が印加されると、圧電型加速度センサの場合と
同様に、F6=M6α6の力が発生する。この場合の質
量M6は可動電極X(63)を含めた可動板62の質量
である。力F6が発生すると、可動電極X(63)はア
ンカー62に固定された支持部66のバネに釣り合う位
置まで変位する。つまり、図6において、可動電極X
(63)が中央の位置から固定電極Y(64),Z(6
5)いずれかの方向にずれることになる。図6におい
て、電極Y(64)とΖ(65)に、互いに位相が18
0°異なり、振幅が同じ電圧67,68を印加すると、
図7に示すように、可動電極X(63)が固定電極Y
(64)とZ(65)の中央に位置するときには、可動
電極X(63)の電圧79は互いにキャンセルされてゼ
ロであるが、加速度が印加されて、可動電極X(63)
が固定電極Y(64)とZ(65)の中央の位置からず
れると、可動電極X(63)に電圧79が発生し、その
電圧の大きさは可動電極X(63)の変位量すなわち印
加された加速度の大きさに比例する。従って可動電極X
(63)の電圧から印加された加速度を検出することが
出来る。The principle of acceleration detection will be described below with reference to FIGS. 6 and 7. In FIG. 6, each electrode X (63),
Since Y (64) and Z (65) are commonly connected to each other, as shown in FIG.
It can be considered as a circuit in which another capacitor X (63) is inserted between (65) and two capacitors are connected in series. In FIG. 6, the directions of the detected acceleration are X, Y, Z
Since the direction is perpendicular to the length direction of each electrode, when the acceleration α 6 is applied, a force of F 6 = M 6 α 6 is generated as in the case of the piezoelectric acceleration sensor. Mass M 6 in this case is the mass of the movable plate 62 including the movable electrode X (63). When the force F 6 is generated, the movable electrode X (63) is displaced to a position where the movable electrode X (63) is balanced with the spring of the support 66 fixed to the anchor 62. That is, in FIG.
(63) are fixed electrodes Y (64), Z (6) from the center position.
5) It will shift in either direction. In FIG. 6, the phases of the electrodes Y (64) and Ζ (65) are 18
By applying voltages 67 and 68 which differ by 0 ° and have the same amplitude,
As shown in FIG. 7, the movable electrode X (63) is fixed
When located at the center of (64) and Z (65), the voltage 79 of the movable electrode X (63) cancels each other and is zero, but the acceleration is applied and the movable electrode X (63) is applied.
Is shifted from the center between the fixed electrodes Y (64) and Z (65), a voltage 79 is generated at the movable electrode X (63), and the magnitude of the voltage is determined by the displacement of the movable electrode X (63), that is, the applied voltage. Is proportional to the magnitude of the applied acceleration. Therefore, the movable electrode X
The applied acceleration can be detected from the voltage of (63).
【0007】[0007]
【発明が解決しようとする課題】図5に示した、圧電型
の加速度センサは、構造が簡単で原理的に電源が不要で
あると言う利点を有しているが、直流的な加速度すなわ
ち一定の力が圧電素子に加わっている状態では、変形に
より発生した電荷が、検出用の電子回路や圧電材料の表
面や内部を通して流れ出てしまうため、電圧が減少して
しまい、印加されている加速度を正しく検出できないと
言う欠点がある。The piezoelectric acceleration sensor shown in FIG. 5 has the advantage that the structure is simple and no power source is required in principle. When the force is applied to the piezoelectric element, the charge generated by the deformation flows out through the surface or inside of the electronic circuit for detection or the piezoelectric material, so that the voltage decreases and the applied acceleration is reduced. There is a disadvantage that it cannot be detected correctly.
【0008】また、図6および図7に示した静電容量型
の加速度センサにおいては、静電容量を構成するため
に、固定電極と可動電極が必要であり、印加された加速
度は、まず、この固定電極と可動電極の間隔寸法の変化
に変換され、その結果として静電容量の変化に変換され
る。従つて、固定電極と可動電極を精度良く作成するた
めに、高い加工精度を出し得る高価な設備を必要とし
た。Further, in the capacitance type acceleration sensor shown in FIGS. 6 and 7, a fixed electrode and a movable electrode are required in order to form a capacitance. This is converted into a change in the distance between the fixed electrode and the movable electrode, and as a result is converted into a change in capacitance. Therefore, in order to produce the fixed electrode and the movable electrode with high accuracy, expensive equipment capable of providing high processing accuracy was required.
【0009】それ故に本発明の課題は、直流的な加速度
の検出が可能な静電容量型の加速度センサの長所を有
し、しかも固定電極と可動電極と言う2つの電極を用い
ないで、加速度が印加された場合の弾性体の変形にとも
なう静電容量の変化を単一の素子から検出することが可
能な加速度センサを提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an advantage of a capacitance type acceleration sensor capable of detecting a DC acceleration, and to use an acceleration sensor without using two electrodes, a fixed electrode and a movable electrode. It is an object of the present invention to provide an acceleration sensor capable of detecting, from a single element, a change in capacitance due to deformation of an elastic body when is applied.
【0010】[0010]
【課題を解決するための手段】本発明によれば、平面あ
るいは曲面を有する絶縁性を有する板状あるいは棒状の
弾性体の表面に、厚さがほぼ一様で歪みにより誘電率が
変化する厚膜あるいは薄膜層を形成し、この厚膜層ある
いは薄膜層の上の被検出加速度により歪が発生する部分
に、線状指電極の向きが前記被検出加速度により発生す
る歪みの方向に垂直あるいは平行の少なくとも1個の交
差指電極を形成して第1の静電容量素子とするととも
に、前記板状あるいは棒状の弾性体の長さ方向の少なく
とも一方の端部あるいは周辺部を支持固定し、印加され
た加速度により生ずる前記板状あるいは棒状の弾性体の
変形に伴う、前記第1の静電容量素子の静電容量の変化
から印加された加速度を検出することを特徴とする加速
度センサが得られる。According to the present invention, there is provided a plate-like or rod-like elastic body having a flat or curved surface and having an insulating property, the thickness of which is substantially uniform and whose dielectric constant changes due to distortion. A film or a thin film layer is formed, and the direction of the linear finger electrode is perpendicular or parallel to the direction of the strain caused by the detected acceleration at a portion where the strain occurs due to the detected acceleration on the thick film layer or the thin film layer. Forming at least one interdigital electrode as a first capacitance element, and supporting and fixing at least one end or peripheral portion in the longitudinal direction of the plate-like or rod-like elastic body; An acceleration sensor is provided which detects an applied acceleration based on a change in capacitance of the first capacitance element accompanying a deformation of the plate-like or rod-like elastic body caused by the applied acceleration.
【0011】前記板状あるいは棒状の弾性体の支持固定
されていない端部近傍あるいは中央部に質量を付加して
もよい。[0011] A mass may be added near or at the center of the plate-shaped or rod-shaped elastic body, which is not supported and fixed.
【0012】前記板状あるいは棒状の弾性体の印加され
た加速度により歪が発生しない領域に、前記第1の静電
容量素子を構成する交差指電極とほぼ同じ寸法、形状の
交差指電極を形成し、第2の静電容量素子とし、前記第
2の静電容量素子により加速度検出の基準となる静電容
量を得るようにしてもよい。An interdigital electrode having substantially the same size and shape as the interdigital electrode constituting the first capacitance element is formed in a region where no distortion is generated by the applied acceleration of the plate-like or rod-like elastic body. Alternatively, the second capacitance element may be used to obtain a capacitance serving as a reference for acceleration detection.
【0013】[0013]
【発明の実施の形態】図1は、本発明の加速度センサの
基本原理である、印加された歪により静電容量が変化す
る素子の説明図である。図1において、絶縁性材料から
なる矩形板11の一方の面に歪により誘電率が変化する
強誘電体厚膜12が形成され、さらにその表面に交差指
電極13が形成されている。交差指電極とは、図1に示
すように、互いにーつ置きの線状指電極14,15がそ
れぞれ共通電極に接続されて構成される電極で、互いに
隣り合う線状電極との間に静電容量を持つように一対の
端子16,17を有している。図1に示した交差指電極
が形成された基板11を、線状指電極14,15の長さ
方向と直角な方向に屈曲させると、互いに隣り合う線状
電極の間の間隔が変化するとともに、電極面が凸となる
変形の場合には誘電体層12に伸び歪が発生し、電極面
が凹となる変形の場合には誘電体層12に圧縮歪が発生
する。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of an element whose capacitance changes due to applied strain, which is a basic principle of an acceleration sensor according to the present invention. In FIG. 1, a ferroelectric thick film 12 whose permittivity changes due to strain is formed on one surface of a rectangular plate 11 made of an insulating material, and interdigital electrodes 13 are formed on the surface thereof. As shown in FIG. 1, the interdigital electrode is an electrode formed by connecting every other linear finger electrodes 14 and 15 to a common electrode. It has a pair of terminals 16 and 17 so as to have a capacitance. When the substrate 11 on which the interdigital electrodes shown in FIG. 1 are formed is bent in a direction perpendicular to the length direction of the linear finger electrodes 14 and 15, the distance between the linear electrodes adjacent to each other changes. On the other hand, in the case of a deformation in which the electrode surface is convex, extension strain occurs in the dielectric layer 12, and in the case of the deformation in which the electrode surface is concave, compression strain occurs in the dielectric layer 12.
【0014】図2は、絶縁性の矩形板21として比較的
可とう性に優れているジルコニア磁器板を用い、その表
面に、セラミックコンデンサに使用されている鉛系の高
誘電率誘電体厚膜層22を形成し、さらにその上に指の
方向がジルコニア磁器板の短辺に平行な交差指電極を形
成したコンデンサ素子に対して、長方形のジルコニア磁
器板の長さ方向両端部を支持した状態で、長方形のジル
コニア磁器板の中央部をナイフエッジ状の加圧板でその
短辺に平行に加圧した場合の加圧力と静電容量の関係の
測定例を示している。FIG. 2 shows a zirconia porcelain plate having relatively excellent flexibility as an insulating rectangular plate 21 having a lead-based high dielectric constant dielectric thick film used for a ceramic capacitor on its surface. A state in which a longitudinal direction both ends of a rectangular zirconia porcelain plate is supported on a capacitor element in which a layer 22 is formed and a finger direction is formed on the layer 22 and a cross finger electrode in which a finger direction is parallel to a short side of the zirconia porcelain plate. The figure shows a measurement example of the relationship between the pressing force and the capacitance when the central part of a rectangular zirconia porcelain plate is pressed in parallel with its short side by a knife-edge-shaped pressing plate.
【0015】図2において、口印の線は、交差指電極面
の裏側を加圧した場合であり、Δ印の線は、交差指電極
面を加圧した場合の測定値である。図2から分かるよう
に、口印の場合は、電極間隔が大きくなるような変形で
あるにもかかわらず、加圧力を大きくするにつれて静電
容量の値が大きくなっており、逆に、Δ印の場合は、電
極間隔が小さくなるような変形であるにもかかわらず、
加圧力を大きくするにつれて静電容量の値が小さくなっ
ており、誘電体層22が、歪が印加された場合にその方
向の誘電率が大きくなる、いわゆる「正歪一誘電率特
性」を有していることを示している。In FIG. 2, the line of the seal is a case where the back side of the interdigital electrode surface is pressurized, and the line of the Δ mark is a measured value when the interdigital electrode surface is pressurized. As can be seen from FIG. 2, in the case of the seal, the capacitance value increases as the pressing force increases, even though the deformation is such that the electrode interval is increased. In the case of, despite the deformation that the electrode spacing becomes smaller,
As the applied pressure increases, the value of the capacitance decreases, and the dielectric layer 22 has a so-called “positive strain-dielectric constant characteristic” in which the dielectric constant in that direction increases when strain is applied. It indicates that you are doing.
【0016】図3は、木発明の実施の形態に係る加速度
センサを示す斜視図であり、ジルコニア基板31の表面
に、厚さがほぼ一様で歪みにより誘電率が変化する強誘
電体厚膜層32を形成し、この厚膜層32の上のほぼ中
央部に、線状指電極34,35の向きが前記被検出加速
度により発生する歪みの方向に垂直あるいは平行の交差
指電極33が形成され、共通電極から第1の静電容量素
子の端子36,37が引出されている。前記ジルコニア
基板31の一方の端部は、支持固定用のブロック38に
より固定され、他方の端部にはおもり39が付加されて
いる。図3の加速度センサにおいて、ジルコニア基板3
1の平面と直角な方向に加速度α3が印加されると、お
もり39にF3=M3α3の力が作用し、ジルコニア基
板31はこの力F3により屈曲するように変形する。そ
の結果、端子36,37の静電容量の値が変化する。静
電容量の変化は、図2に示したように印加された力すな
わち印加された加速度に比例して変化するため、静電容
量の変化から印加された加速度を検出することができ
る。FIG. 3 is a perspective view showing an acceleration sensor according to an embodiment of the present invention. A ferroelectric thick film whose thickness is substantially uniform and whose dielectric constant changes due to strain is formed on the surface of a zirconia substrate 31. A layer 32 is formed, and an interdigital finger electrode 33 in which the direction of the linear finger electrodes 34 and 35 is perpendicular or parallel to the direction of the distortion generated by the detected acceleration is formed substantially at the center of the thick film layer 32. Then, the terminals 36 and 37 of the first capacitance element are drawn from the common electrode. One end of the zirconia substrate 31 is fixed by a block 38 for supporting and fixing, and a weight 39 is added to the other end. In the acceleration sensor shown in FIG.
When acceleration alpha 3 is applied to the first plane perpendicular to the direction, force F 3 = M 3 α 3 acts on the weight 39, the zirconia substrate 31 is deformed so as to bend by the force F 3. As a result, the value of the capacitance of the terminals 36 and 37 changes. Since the change in capacitance changes in proportion to the applied force, that is, the applied acceleration, as shown in FIG. 2, the applied acceleration can be detected from the change in capacitance.
【0017】図4は、本発明の他の実施の形態に係る加
速度センサを示す斜視図であり、ジルコニア基板41の
表面に、厚さがほぼ一様で歪みにより誘電率が変化する
強誘電体厚膜層42を形成し、この厚膜層42の上のほ
ぼ中央部に、線状指電極44,45の向きが前被検出加
速度により発生する歪みの方向に垂直あるいは平行の交
差指電極43が形成され、共通電極から第lの静電容量
素子の端子46,47が引出されている。前記ジルコニ
ア基板41の一方の端部は、支持固定用のブロック48
により固定され、他方の端部にはおもり49が付加され
ている。さらに、前記ジルコニア基板41が支持固定用
のブロック48と接合されている部分に、前記交差指電
極43と同じ形状寸法の線状指電極44´,45´を有
する交差指電極43´が形成され、それぞれの線状指電
極の共通電極から第2の静電容量素子の端子46´,4
7´が引出されている。図4の加速度センサにおいても
図3の場合と同様に、ジルコニア基板41の平面と直角
な方向に加速度α4が印加されると、おもり49にF4
=M4α4の力が作用し、ジルコニア基板41はこの力
F4により屈曲するように変形する。その結果、端子4
6,47の静電容量の値が変化する。一方、交差指電極
43´が形成された部分は、前記ジルコニア基板41が
支持固定用のブロック48と接合されているため、印加
された加速度によつて生ずる力F4によってほとんど変
形することが無い。したがって端子46´,47´の静
電容量の値は、印加された加速度によつてほとんど変化
しない。FIG. 4 is a perspective view showing an acceleration sensor according to another embodiment of the present invention. A ferroelectric material whose thickness is substantially uniform and whose dielectric constant changes due to strain is formed on the surface of a zirconia substrate 41. A thick film layer 42 is formed, and at approximately the center of the thick film layer 42, the direction of the linear finger electrodes 44, 45 is perpendicular to or parallel to the direction of the distortion generated by the previously detected acceleration. Are formed, and the terminals 46 and 47 of the first capacitive element are drawn out from the common electrode. One end of the zirconia substrate 41 is provided with a support and fixing block 48.
, And a weight 49 is added to the other end. Further, at the portion where the zirconia substrate 41 is joined to the block 48 for supporting and fixing, there are formed cross finger electrodes 43 'having linear finger electrodes 44' and 45 'having the same shape and dimensions as the cross finger electrodes 43. From the common electrode of each linear finger electrode to the terminals 46 ', 4 of the second capacitance element.
7 'is pulled out. In the acceleration sensor of FIG. 4, similarly to the case of FIG. 3, when the acceleration α 4 is applied in a direction perpendicular to the plane of the zirconia substrate 41, F 4 is applied to the weight 49.
= M 4 α 4 acts, and the zirconia substrate 41 is deformed to be bent by the force F 4 . As a result, terminal 4
The capacitance values of 6, 47 change. Meanwhile, the portion interdigital 43 'is formed, since the zirconia substrate 41 is joined to the block 48 for supporting and fixing, there is little to be deformed by the force F 4 to occur through cowpea to applied acceleration . Therefore, the capacitance values of the terminals 46 'and 47' hardly change due to the applied acceleration.
【0018】図4の加速度センサにおいて、交差指電極
43及び43´は、同じ材質の強誘電体厚膜の上に、ほ
ぼ同じ形状寸法でごく近くに形成されるため、それぞれ
の交差指電極の静電容量は、周囲温度変化や電磁ノイズ
などの加速度以外の環境条件に対しては同じように影響
を受けることになり、このような場合の常套手段である
差動増幅回路を用いることにより、それらの外乱をキャ
ンセルすることができる。即ち、第2の静電容量素子に
より得た静電容量を加速度検出の基準として用いること
ができる。In the acceleration sensor shown in FIG. 4, the interdigital electrodes 43 and 43 'are formed on the ferroelectric thick film of the same material and are very close to each other with almost the same shape and size. The capacitance is similarly affected by environmental conditions other than acceleration such as changes in ambient temperature and electromagnetic noise, and by using a differential amplifier circuit, which is a conventional means in such a case, These disturbances can be canceled. That is, the capacitance obtained by the second capacitance element can be used as a reference for detecting acceleration.
【0019】以上の説明では、加速度センサの構造を一
方の端部が固定された、いわゆる片持ち梁構造で先端部
におもりを付加した場合について述べたが、矩形板の両
端部を固定し、中央部におもりを付加した構造でも同様
の効果を得ることができる。さらに、円形板あるいは正
方形板上の基板を用いた場合には、その周辺部を固定
し、中央部におもりを付加しても同様の効果が得られ
る。特に、基板の形状が円形あるいは正方形の場合、板
面に垂直な方向の加速度が印加された場合に発生する歪
はほぼ同心円状になるため、交差指電極の形状も、その
歪分布に合わせて、同心円状にするのがより効果的であ
る。In the above description, the structure of the acceleration sensor has been described in the case where a weight is added to the tip end in a so-called cantilever structure in which one end is fixed, but both ends of the rectangular plate are fixed. The same effect can be obtained with a structure in which a weight is added to the center. Further, when a substrate on a circular plate or a square plate is used, the same effect can be obtained by fixing the peripheral portion and adding a weight to the central portion. In particular, when the shape of the substrate is circular or square, the strain generated when an acceleration in the direction perpendicular to the plate surface is applied is substantially concentric, so the shape of the interdigital electrode is also adjusted to the strain distribution. It is more effective to make them concentric.
【0020】また、実施例では、絶縁基板として、ジル
コニア基板を用い、強誘電体層を厚膜で形成したが、絶
縁基板として、ガラスやSi単結晶基板の表面にSiO
2膜を形成した基板の表面に、スパッタリング等により
強誘電体薄膜層を形成しても良い。In the embodiment, a zirconia substrate is used as the insulating substrate, and the ferroelectric layer is formed as a thick film.
A ferroelectric thin film layer may be formed by sputtering or the like on the surface of the substrate on which the two films are formed.
【0021】また、実施例の説明では、おもりを付加し
た場合について述べたが、検出感度や共振周波数の条件
によっては、特別のおもりを付加しないで、基板自身の
質量をおもりとしても良い。In the description of the embodiment, the case where a weight is added has been described. However, depending on the conditions of the detection sensitivity and the resonance frequency, the weight of the substrate itself may be used without adding a special weight.
【0022】[0022]
【発明の効果】以上に示したように、本発明によれば、
従来の圧電型加速度センサの、原理的に、直流的な加速
度の検出ができないと言う欠点及び、従来の静電容量型
加速度センサの、固定電極と可動電極が必要で、高い加
工精度が必要と言う欠点を除去し、簡単な構造で、自分
自身の変形にともなう静電容量の変化から印加された加
速度を検出できるセンサを提供することができる。As described above, according to the present invention,
The disadvantage of the conventional piezoelectric acceleration sensor that it cannot detect DC acceleration in principle, and the conventional capacitive acceleration sensor requires fixed electrodes and movable electrodes, and requires high processing accuracy. It is possible to provide a sensor capable of detecting the applied acceleration from a change in capacitance due to its own deformation with a simple structure by eliminating the above-mentioned drawback.
【図1】本発明の加速度センサの基本原理である、印加
された歪により静電容量が変化する素子の説明図であ
り、(a)は平面図、(b)は正面図である。FIGS. 1A and 1B are explanatory diagrams of an element whose capacitance changes due to applied strain, which is a basic principle of an acceleration sensor of the present invention, wherein FIG. 1A is a plan view and FIG. 1B is a front view.
【図2】図1の構造の基板の中央部に力を加えた場合の
加圧力と静電容量の関係の測定例を示している。FIG. 2 shows a measurement example of a relationship between a pressing force and a capacitance when a force is applied to a central portion of the substrate having the structure of FIG.
【図3】本発明の実施の形態に係る加速度センサを示す
斜視図である。FIG. 3 is a perspective view showing an acceleration sensor according to the embodiment of the present invention.
【図4】本発明の他の実施の形態に係る加速度センサを
示す斜視図である。FIG. 4 is a perspective view showing an acceleration sensor according to another embodiment of the present invention.
【図5】従来の圧電型加速度センサの構造を示す断面図
である。FIG. 5 is a cross-sectional view showing a structure of a conventional piezoelectric acceleration sensor.
【図6】マイクロマシン技術を利用した静電容量型加速
度センサの構造の概略を示す斜視図である。FIG. 6 is a perspective view schematically showing the structure of a capacitance type acceleration sensor using micromachine technology.
【図7】図6に示した静電容量型加速度センサの動作説
明図である。FIG. 7 is an operation explanatory diagram of the capacitance type acceleration sensor shown in FIG. 6;
11 絶縁性を有する矩形板 12,32,42 強誘電体厚膜層 13,33,43,43´交差指電極 14,15,34,35,44,45,44´,45´
線状指電極 16,17,36,37,46,47,46´,47´
静電容量子の端子 31,41 ジルコニア基板 38,48 支持固定用のブロック 39,49,53 おもり 50 加速度センサ 51,52 圧電円環 54 ネジ 55 加速度センサのケース 56 端子 57 取り付け用のネジ 61 アンカー 62 おもりとなる可動板 63 可動電極X 64 固定電極Y 65 固定電極Z 66 支持部 77,78 印加電圧 79 可動電極Xの電圧11 Insulating rectangular plate 12, 32, 42 Ferroelectric thick film layer 13, 33, 43, 43 'Cross finger electrode 14, 15, 34, 35, 44, 45, 44', 45 '
Linear finger electrodes 16, 17, 36, 37, 46, 47, 46 ', 47'
Capacitor terminals 31, 41 Zirconia substrate 38, 48 Supporting and fixing block 39, 49, 53 Weight 50 Acceleration sensor 51, 52 Piezoelectric ring 54 Screw 55 Acceleration sensor case 56 Terminal 57 Mounting screw 61 Anchor 62 Movable plate 63 serving as a weight 63 movable electrode X 64 fixed electrode Y 65 fixed electrode Z 66 support 77, 78 applied voltage 79 voltage of movable electrode X
Claims (3)
る板状あるいは棒状の弾性体の表面に、厚さがほぼ一様
で歪みにより誘電率が変化する厚膜あるいは薄膜層を形
成し、この厚膜層あるいは薄膜層の上の被検出加速度に
より歪が発生する部分に、線状指電極の向きが前記被検
出加速度により発生する歪みの方向に垂直あるいは平行
の少なくとも1個の交差指電極を形成して第1の静電容
量素子とするとともに、前記板状あるいは棒状の弾性体
の長さ方向の少なくとも一方の端部あるいは周辺部を支
持固定し、印加された加速度により生ずる前記板状ある
いは棒状の弾性体の変形に伴う、前記第1の静電容量素
子の静電容量の変化から印加された加速度を検出するこ
とを特徴とする加速度センサ。1. A thick film or thin film layer having a substantially uniform thickness and a dielectric constant that changes due to strain is formed on the surface of an insulating plate-like or rod-like elastic body having a flat surface or a curved surface. At least one cross finger electrode in which the direction of the linear finger electrode is perpendicular or parallel to the direction of the strain caused by the detected acceleration is formed at the portion of the film layer or the thin film layer where the strain occurs due to the detected acceleration. And at least one end or peripheral portion of the plate-shaped or rod-shaped elastic body in the longitudinal direction is fixed, and the plate-shaped or rod-shaped elastic body is generated by an applied acceleration. An acceleration sensor for detecting an applied acceleration from a change in capacitance of the first capacitance element accompanying the deformation of the elastic body.
定されていない端部近傍あるいは中央部に質量を付加し
た請求項1に記載の加速度センサ。2. The acceleration sensor according to claim 1, wherein a mass is added near or at the center of the plate-shaped or rod-shaped elastic body that is not supported and fixed.
れた加速度により歪が発生しない領域に、前記第1の静
電容量素子を構成する交差指電極とほぼ同じ寸法、形状
の交差指電極を形成して第2の静電容量素子とし、前記
第2の静電容量素子により加速度検出の基準となる静電
容量を得るようにした請求項1又は2に記載の加速度セ
ンサ。3. An inter-finger electrode having substantially the same size and shape as the inter-finger electrode constituting the first capacitance element, in a region where no distortion occurs due to the applied acceleration of the plate-shaped or rod-shaped elastic body. 3. The acceleration sensor according to claim 1, wherein the acceleration sensor is formed as a second capacitance element, and the second capacitance element obtains a capacitance serving as a reference for acceleration detection. 4.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26021899A JP4394212B2 (en) | 1999-09-14 | 1999-09-14 | Acceleration sensor |
CNB008018863A CN1157594C (en) | 1999-07-09 | 2000-07-07 | Capacitive strain sensor and method of using the same |
TW089113557A TW432198B (en) | 1999-07-09 | 2000-07-07 | The static capacitor type strain detector with the used same |
KR10-2001-7002948A KR100421304B1 (en) | 1999-07-09 | 2000-07-07 | Capacitive strain sensor and method for using the same |
EP00944327A EP1113252A4 (en) | 1999-07-09 | 2000-07-07 | Capacitive strain sensor and method for using the same |
US09/786,944 US6532824B1 (en) | 1999-07-09 | 2000-07-07 | Capacitive strain sensor and method for using the same |
PCT/JP2000/004538 WO2001004593A1 (en) | 1999-07-09 | 2000-07-07 | Capacitive strain sensor and method for using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26021899A JP4394212B2 (en) | 1999-09-14 | 1999-09-14 | Acceleration sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001083176A true JP2001083176A (en) | 2001-03-30 |
JP4394212B2 JP4394212B2 (en) | 2010-01-06 |
Family
ID=17345000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26021899A Expired - Lifetime JP4394212B2 (en) | 1999-07-09 | 1999-09-14 | Acceleration sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4394212B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310814A (en) * | 2001-04-17 | 2002-10-23 | Toyota Central Res & Dev Lab Inc | Pressure sensor element |
JP2002310813A (en) * | 2001-04-10 | 2002-10-23 | Toyota Central Res & Dev Lab Inc | Load sensor element |
JP2007102085A (en) * | 2005-10-07 | 2007-04-19 | Canon Inc | Method for detecting developer amount, and image forming device |
JP2007333618A (en) * | 2006-06-16 | 2007-12-27 | Univ Kansai | Acceleration sensor |
KR101309934B1 (en) * | 2012-02-23 | 2013-10-14 | 성균관대학교산학협력단 | Multi-axis sensor |
JP2015515612A (en) * | 2012-03-15 | 2015-05-28 | フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | SENSOR DEVICE COMPRISING CARRIER SUBSTRATE AND FERROELECTRIC LAYER, AND MANUFACTURING METHOD AND USE THEREOF |
-
1999
- 1999-09-14 JP JP26021899A patent/JP4394212B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310813A (en) * | 2001-04-10 | 2002-10-23 | Toyota Central Res & Dev Lab Inc | Load sensor element |
JP2002310814A (en) * | 2001-04-17 | 2002-10-23 | Toyota Central Res & Dev Lab Inc | Pressure sensor element |
JP2007102085A (en) * | 2005-10-07 | 2007-04-19 | Canon Inc | Method for detecting developer amount, and image forming device |
JP2007333618A (en) * | 2006-06-16 | 2007-12-27 | Univ Kansai | Acceleration sensor |
KR101309934B1 (en) * | 2012-02-23 | 2013-10-14 | 성균관대학교산학협력단 | Multi-axis sensor |
US9515157B2 (en) | 2012-03-05 | 2016-12-06 | Forschungszentrum Juelich Gmbh | Sensor arrangement comprising a carrier substrate and a ferroelectric layer and method for producing and using the sensor arrangement |
JP2015515612A (en) * | 2012-03-15 | 2015-05-28 | フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | SENSOR DEVICE COMPRISING CARRIER SUBSTRATE AND FERROELECTRIC LAYER, AND MANUFACTURING METHOD AND USE THEREOF |
Also Published As
Publication number | Publication date |
---|---|
JP4394212B2 (en) | 2010-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6532824B1 (en) | Capacitive strain sensor and method for using the same | |
US5495761A (en) | Integrated accelerometer with a sensitive axis parallel to the substrate | |
KR100563868B1 (en) | Piezoelectric acceleration sensor, acceleration detection method and piezoelectric acceleration sensor manufacturing method | |
US8225662B2 (en) | Acceleration sensing device | |
KR100514064B1 (en) | Capacitive dynamic quantity sensor | |
EP0855583B1 (en) | Device for measuring a pressure | |
JP4394212B2 (en) | Acceleration sensor | |
JP2586406B2 (en) | Capacitive acceleration sensor | |
JPH02248865A (en) | Acceleration detector | |
CN113640569B (en) | Voltage detection device | |
US6633172B1 (en) | Capacitive measuring sensor and method for operating same | |
JP2004170145A (en) | Capacitance-type dynamic quantity sensor | |
CN216593886U (en) | Micro-electromechanical resonance type pressure sensitive structure | |
US7398694B2 (en) | Pressure sensor and method for manufacturing pressure sensor | |
US4458292A (en) | Multiple capacitor transducer | |
JP2010223666A (en) | Force sensor element and force sensor device | |
JPH1038913A (en) | Piezoelectric oscillator | |
JPH09257830A (en) | Vibration type acceleration sensor | |
JP2001074569A (en) | Planar capacitance type twist strain sensor | |
JP2002533683A (en) | Capacitive magnetic field sensor | |
CN222635654U (en) | Piezoelectric resonant pressure sensor and compensation system | |
KR100195437B1 (en) | High Precision Silicon Acceleration Measurement Apparatus and Method Using LC Resonance Circuit | |
CN113218540B (en) | Micro-electromechanical resonance type pressure sensitive structure and pressure measuring method | |
JPH07244069A (en) | Acceleration sensor | |
JPH06102123A (en) | Pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060703 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090924 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091015 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4394212 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121023 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121023 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131023 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131023 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |