JP2001083086A - Gas concentration measuring method and gas concentration measuring device - Google Patents
Gas concentration measuring method and gas concentration measuring deviceInfo
- Publication number
- JP2001083086A JP2001083086A JP26162999A JP26162999A JP2001083086A JP 2001083086 A JP2001083086 A JP 2001083086A JP 26162999 A JP26162999 A JP 26162999A JP 26162999 A JP26162999 A JP 26162999A JP 2001083086 A JP2001083086 A JP 2001083086A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- infrared
- cell
- gas
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
(57)【要約】
【課題】 暖機運転や基準ガスによる校正をすることな
く即座に高精度な赤外線吸収式のガス濃度計測を可能と
することである。
【解決手段】 試料ガスが導入され光源41から赤外線
が照射される計測セル11Aにより得られる検出赤外線
量と試料ガスが導入され赤外線非照射の計測セル11B
により得られる検出赤外線量との差をとり各部からの輻
射成分を含まない試料ガスを透過した赤外線の成分を得
るとともに、比較ガスが導入され光源42から赤外線が
照射される補償セル12Aにより得られる検出赤外線量
と比較ガスが導入され赤外線非照射の補償セル12Bに
より得られる検出赤外線量との差をとり透過窓21A,
22Aの吸収特性を示す赤外線の成分を得、両赤外線成
分からガス濃度を求めることで、ガスや装置各部の温度
の影響を回避する。
(57) [Problem] To provide a high-accuracy infrared absorption-type gas concentration measurement immediately without performing warm-up operation or calibration using a reference gas. SOLUTION: The amount of detected infrared rays obtained by a measuring cell 11A to which a sample gas is introduced and irradiated from a light source 41 with infrared rays, and the measuring cell 11B to which the sample gas is introduced and not irradiated with infrared rays
By taking the difference from the detected infrared ray amount obtained by the above, the infrared ray component transmitted through the sample gas not including the radiation component from each part is obtained, and the compensation gas is obtained by the compensation cell 12A in which the comparison gas is introduced and the light source 42 emits the infrared ray. The difference between the detected infrared ray amount and the detected infrared ray amount obtained by the compensation cell 12B into which the comparison gas is introduced and not irradiated with the infrared ray is taken, and the transmission window 21A,
The influence of the gas and the temperature of each part of the apparatus is avoided by obtaining an infrared component exhibiting the absorption characteristic of 22A and calculating the gas concentration from both infrared components.
Description
【0001】[0001]
【発明の属する技術分野】本発明はガス濃度計測方法お
よびガス濃度計測装置に関する。The present invention relates to a gas concentration measuring method and a gas concentration measuring device.
【0002】[0002]
【従来の技術】赤外線吸収式のガス濃度計測技術は、ガ
ス分子固有の赤外線吸収効果を利用して試料ガス中の特
定の成分ガス(検出ガス)の濃度を連続的に測定するも
ので、ガス濃度計測装置は、筒状のセルを透過窓で閉鎖
し、セル内に試料ガスを導入した状態でセル内に光源か
ら赤外線を照射し、他方の光透過窓から出射した透過赤
外線を出射側の透過窓の後方に配置した検出器で受ける
ようになっている。検出赤外線量は上記検出ガスの濃度
に応じて小さくなり、濃度Cの検出ガスを含んだ試料ガ
ス中を初期光量i0 の光が距離L通過した後の透過光量
iを表す一般式は式(1)で表される。式中、Kは検出
ガスに固有の吸収係数である。 i=i0 ・exp(−K・C・L)・・・(1)2. Description of the Related Art Infrared absorption type gas concentration measurement technology is to continuously measure the concentration of a specific component gas (detection gas) in a sample gas using an infrared absorption effect inherent to gas molecules. The concentration measuring device closes the cylindrical cell with a transmission window, irradiates infrared light from the light source into the cell with the sample gas introduced into the cell, and transmits the transmitted infrared light emitted from the other light transmission window on the emission side. The light is received by a detector arranged behind the transmission window. The amount of detected infrared light decreases in accordance with the concentration of the detection gas, and the general expression representing the transmitted light amount i after the light having the initial light amount i 0 has passed through the distance L in the sample gas containing the detection gas having the concentration C is represented by the following equation ( It is represented by 1). In the equation, K is an absorption coefficient specific to the detection gas. i = i 0 · exp (-K · C · L) ··· (1)
【0003】センサ工学(1982年)271頁記載の
赤外線ガス分析計では、試料ガスが導入されるセル(計
測セル)と同等のセル(補償セル)を備え、これに赤外
線吸収のない比較ガスである不活性ガス(N2 等)を充
填しておき、補償セルについても赤外線量を検出し、検
出ガスの濃度を、計測セルによる検出赤外線量と補償セ
ルによる検出赤外線量との差をとり求めている。The infrared gas analyzer described on page 271 of Sensor Engineering (1982) has a cell (compensation cell) equivalent to a cell (measurement cell) into which a sample gas is introduced, and a comparative gas having no infrared absorption. A certain inert gas (N 2, etc.) is charged, and the amount of infrared rays is also detected for the compensation cell, and the concentration of the detected gas is determined by calculating the difference between the amount of infrared rays detected by the measurement cell and the amount of infrared rays detected by the compensation cell. ing.
【0004】図6は上記赤外線ガス分析計の構成を示す
模式図で、補償セル91Bでは、セル91Bから輻射さ
れる赤外線、透過窓92Bから輻射される赤外線の影響
を受け、計測セル91Aでは、セル91Aから輻射され
る赤外線、透過窓92Aから輻射される赤外線、試料ガ
スから輻射される赤外線、干渉ガスから輻射される赤外
線の影響を受け、補償セルの検出赤外線量IA 、計測セ
ルの検出赤外線量IBは次式(2)、(3)により表さ
れる。なお、図および式中、I0 は光源94A,94B
から輻射される赤外線量、I1 はセル91A,91Bか
ら輻射される赤外線量、I2 は透過窓92A,92Bか
ら輻射される赤外線量、I3 は検出ガスから輻射される
赤外線量、I4 は干渉ガスから輻射される赤外線量、α
は透過窓92A,92Bの吸収係数、L1 はセル91
A,91Bの長さ、L2 は透過窓92A,92Bの厚
さ、μ1 は検出ガスの吸収係数、C1 は検出ガスの濃
度、μ2は干渉ガスの吸収係数、C2 は干渉ガスの濃度
を表している。 IA ={I0 +I1 }・exp(−α・L2 )+I2 ・・・(2) IB =[I0 ・exp{−(μ1 ・C1 +μ2 ・C2 )・L1 }+I1 +C1 ・ I3 +C2 ・I4 ]・exp(−α・L2 )+I2 ・・・(3)FIG. 6 is a schematic diagram showing the structure of the infrared gas analyzer. The compensation cell 91B is affected by infrared rays radiated from the cell 91B and infrared rays radiated from the transmission window 92B. infrared rays radiated from the cell 91A, infrared rays radiated from the transmission window 92A, infrared rays radiated from the sample gas, the influence of infrared rays radiated from the interference gas, detected amount of infrared rays I a of the compensation cell, the detection of the measuring cell infrared quantity I B by the following equation (2) is represented by (3). In the figures and equations , I 0 is the light source 94A, 94B
Amount of infrared radiated from, I 1 is the cell 91A, the amount of infrared rays radiated from 91B, I 2 is the transmission window 92A, the amount of infrared rays radiated from 92B, I 3 infrared quantity radiated from the detector gas, I 4 Is the amount of infrared radiation radiated from the interference gas, α
The transmission window 92A, the absorption coefficient of 92B, L 1 is the cell 91
A, the length of 91B, L 2 is the transmission window 92A, the thickness of the 92B, the absorption coefficient of mu 1 is detected gas, C 1 is the concentration of the detection gas, mu 2 is an absorption coefficient of the interference gas, C 2 is the interference gas Represents the concentration of I A = {I 0 + I 1} · exp (-α · L 2) + I 2 ··· (2) I B = [I 0 · exp {- (μ 1 · C 1 + μ 2 · C 2) · L 1 } + I 1 + C 1 · I 3 + C 2 · I 4 ] · exp (−α · L 2 ) + I 2 (3)
【0005】計測セル91Aと補償セル91Bとの検出
赤外線量の差IB −IA は次式となる。 IB −IA =[I0 ・exp{−(μ1 ・C1 +μ2 ・C2 )・L1 }−I0 ] +(C1 ・I3 +C2 ・I4 )]・exp(−α・L2 )・・・(4)[0005] The difference I B -I A detection amount of infrared rays and measuring the cell 91A and the compensation cell 91B becomes the following equation. I B -I A = [I 0 · exp {- (μ 1 · C 1 + μ 2 · C 2) · L 1} -I 0] + (C 1 · I 3 + C 2 · I 4)] · exp ( −α · L 2 ) (4)
【0006】式(4)において検出ガスの濃度C1 を求
めるには、光源94A,94Bから照射される赤外線量
I0 を一定とするとともに、透過窓92A,92Bの温
度、試料ガスの温度と圧力を一定に保ち式中の各輻射量
等を一定とする必要があるので、所定の暖機運転をした
後、濃度既知の基準ガスで校正を行い、IA ,IB の計
測を行う。なお干渉ガスの影響(μ2 ・C2 、C2 ・I
4 )についてはフィルタにより排除可能である。In order to determine the concentration C 1 of the detected gas in the equation (4), the amount of infrared light I 0 radiated from the light sources 94A and 94B is fixed, and the temperatures of the transmission windows 92A and 92B, the temperature of the sample gas and it is necessary to be constant each radiation amount of the formula keeping the pressure constant, after a predetermined warm-up operation, to perform calibration with a known concentration of the reference gas, to measure the I a, I B. The influence of interference gas (μ 2 · C 2 , C 2 · I
4 ) can be eliminated by a filter.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記赤
外線ガス分析計は暖機運転や校正に時間を要するので計
測の効率が必ずしもよくない。また用途によっては、例
えば暖機運転や校正に時間をとることができない車載セ
ンサとしては適用は困難である。However, the infrared gas analyzer requires a long time for warm-up operation and calibration, so that the measurement efficiency is not always good. In addition, depending on the application, it is difficult to apply, for example, as an in-vehicle sensor that does not require time for warm-up operation and calibration.
【0008】本発明は上記実情に鑑みなされたもので、
暖機運転や校正の不要な赤外線吸収式のガス濃度計測方
法およびガス濃度計測装置を提供することを目的とす
る。[0008] The present invention has been made in view of the above circumstances,
An object of the present invention is to provide an infrared absorption type gas concentration measurement method and a gas concentration measurement device that do not require warm-up operation or calibration.
【0009】[0009]
【課題を解決するための手段】請求項1記載の発明で
は、ガス濃度計測方法は、光源からの照射赤外線量が大
なる状態で導入ガスの異なる2種類のセルのうち試料ガ
スが導入される計測セルにおける検出赤外線量を得る第
1の検出手順と、光源からの照射赤外線量が小なる状態
で計測セルにおける検出赤外線量を得る第2の検出手順
とを行い、光源からの照射赤外線量が大なる状態で上記
2種類のセルのうち比較ガスが導入される補償セルにお
ける検出赤外線量を得る第3の検出手順と、光源からの
照射赤外線量が小なる状態で補償セルにおける検出赤外
線量を得る第4の検出手順とを行う。次いで第1の検出
手順の検出赤外線量と第2の検出手順の検出赤外線量と
の差および第3の検出手順の検出赤外線量と第4の検出
手順の検出赤外線量との差をとり、計測セルと補償セル
とのそれぞれについて光源からの赤外線の透過成分のみ
を得る。次いで、両透過成分に基づいて上記成分ガスの
濃度を算出する。According to the first aspect of the present invention, in the gas concentration measuring method, a sample gas is introduced from two types of cells having different introduced gases in a state where the amount of infrared radiation emitted from a light source is large. A first detection procedure for obtaining the amount of infrared light detected by the measurement cell and a second detection procedure for obtaining the amount of infrared light detected by the measurement cell in a state where the amount of infrared light emitted from the light source is small are performed. A third detection procedure for obtaining the amount of infrared rays detected in the compensation cell into which the comparison gas is introduced out of the above two types of cells in a large state, and the detection infrared ray amount in the compensation cell in a state where the amount of infrared rays emitted from the light source is small And a fourth detection procedure to obtain. Next, the difference between the detected infrared ray amount in the first detection procedure and the detected infrared ray quantity in the second detection procedure and the difference between the detected infrared ray quantity in the third detection procedure and the detected infrared ray quantity in the fourth detection procedure are measured. For each of the cell and the compensation cell, only the transmitted component of infrared light from the light source is obtained. Next, the concentration of the component gas is calculated based on the two transmission components.
【0010】照射赤外線量が大のときと小のときとの検
出赤外線量の差をとることで各部からの輻射成分が相殺
されて、光源からの赤外線の透過成分が得られる。この
光源からの赤外線の透過成分は、試料ガスについてのも
のと比較ガスについてのものとが得られ、両者ではセル
内の導入ガスにおける赤外線吸収量のみが異なるから、
光源の照射赤外線量の変動および透過窓における赤外線
吸収の変動の影響を受けることなく検出ガス濃度を得る
ことができる。By taking the difference between the detected infrared ray amount when the irradiation infrared ray amount is large and the detection infrared ray amount when the irradiation infrared ray amount is small, the radiation component from each part is canceled out, and the transmission component of the infrared ray from the light source is obtained. The transmitted component of infrared light from this light source is obtained for the sample gas and for the comparative gas, and the only difference is the amount of infrared absorption in the gas introduced into the cell.
The detection gas concentration can be obtained without being affected by the fluctuation of the irradiation infrared ray amount of the light source and the fluctuation of the infrared absorption in the transmission window.
【0011】請求項2記載の発明では、上記ガス濃度計
測方法に用いるガス濃度計測装置を次のように構成す
る。上記計測セルとして第1、第2の計測セルを具備せ
しめるとともに、上記補償セルとして第1、第2の補償
セルを具備せしめる。上記光源を、第1の計測セルの方
に第2の計測セルよりも強く赤外線を照射するととも
に、第1の補償セルの方に第2の補償セルよりも強く赤
外線を照射する構成とする。上記第1の検出手順におけ
る検出赤外線量を第1の計測セルにより得、上記第2の
検出手順における検出赤外線量を第2の計測セルにより
得、上記第3の検出手順における検出赤外線量を第1の
補償セルにより得、上記第4の検出手順における検出赤
外線量を第2の補償セルにより得る。According to the second aspect of the present invention, the gas concentration measuring device used in the gas concentration measuring method is configured as follows. First and second measurement cells are provided as the measurement cells, and first and second compensation cells are provided as the compensation cells. The light source is configured to irradiate infrared light more strongly to the first measurement cell than to the second measurement cell, and to irradiate infrared light more strongly to the first compensation cell than to the second compensation cell. The amount of infrared light detected in the first detection procedure is obtained by a first measurement cell, the amount of infrared light detected in the second detection procedure is obtained by a second measurement cell, and the amount of infrared light detected in the third detection procedure is obtained by a second measurement cell. One compensation cell is used, and the amount of infrared rays detected in the fourth detection procedure is obtained by the second compensation cell.
【0012】4つのセルを設けて上記第1〜第4の検出
手順における検出赤外線量を即座に得られるようにする
ことで、セルからの輻射量等の変動の影響を殆ど受けな
いようにすることができるとともに計測に要する時間が
短くて済む。By providing four cells so that the amount of infrared rays detected in the first to fourth detection procedures can be obtained immediately, it is hardly affected by fluctuations in the amount of radiation from the cells. And the time required for measurement can be shortened.
【0013】請求項3記載の発明では、上記光源を、上
記第1の計測セル用の光源と第1の補償セル用の光源と
のみで構成する。According to the third aspect of the present invention, the light source comprises only the light source for the first measurement cell and the light source for the first compensation cell.
【0014】第2の計測セルおよび第2の補償セルには
赤外線を非照射とすることで第1の計測セルおよび第1
の補償セルと第2の計測セルおよび第2の補償セルとの
間で照射赤外線量を違えるので、各セルごとに光源を設
ける必要がなく構成を簡単にできる。The second measurement cell and the second compensation cell are not irradiated with infrared rays, so that the first measurement cell and the first compensation cell are not irradiated.
Since the irradiation infrared ray amount is different between the compensation cell described above and the second measurement cell and the second compensation cell, it is not necessary to provide a light source for each cell, and the configuration can be simplified.
【0015】請求項4記載の発明では、上記ガス濃度計
測方法に用いるガス濃度計測装置を次のように構成す
る。上記計測セルおよび上記補償セルをそれぞれ1つず
つ備える。上記光源を、照射赤外線量を大小切り換え自
在に構成する。かつ、上記照射赤外線量の切り換えに同
期して上記検出器の検出出力を取り込む取り込み手段を
具備せしめる。上記第1の検出手順における検出赤外線
量を照射赤外線量が大のときの計測セルによる検出出力
とし、上記第2の検出手順における検出赤外線量を照射
赤外線量が小のときの計測セルによる検出出力とし、上
記第3の検出手順における検出赤外線量を照射赤外線量
が大のときの補償セルによる検出出力とし、上記第4の
検出手順における検出赤外線量を照射赤外線量が小のと
きの補償セルによる検出出力とする。According to a fourth aspect of the present invention, a gas concentration measuring device used in the gas concentration measuring method is configured as follows. The measurement cell and the compensation cell are provided one by one. The light source is configured so that the amount of irradiation infrared light can be freely switched. In addition, a capturing means for capturing the detection output of the detector in synchronization with the switching of the irradiation infrared ray amount is provided. The amount of infrared rays detected in the first detection procedure is set as a detection output by the measurement cell when the amount of irradiation infrared rays is large, and the amount of infrared rays detected in the second detection procedure is detected by the measurement cell when the amount of irradiation infrared rays is small. The amount of infrared rays detected in the third detection procedure is used as the detection output by the compensation cell when the amount of irradiation infrared rays is large, and the amount of infrared rays detected in the fourth detection procedure is calculated by the compensation cell when the amount of irradiation infrared rays is small. This is the detection output.
【0016】光源の照射赤外線量の切り換えに同期して
上記検出器の検出出力を取り込むようにしたので、単一
の計測セルにより第1、第2の検出手順の検出赤外線量
が得られ、単一の補償セルにより第3、第4の検出手順
の検出赤外線量が得られ、装置をコンパクトにできる。Since the detection output of the detector is taken in synchronism with the switching of the irradiation infrared ray amount of the light source, the detection infrared ray quantity of the first and second detection procedures can be obtained by a single measuring cell. The amount of infrared rays detected in the third and fourth detection procedures can be obtained by one compensation cell, and the apparatus can be made compact.
【0017】[0017]
【発明の実施の形態】(第1実施形態)第1図に、本発
明の第1実施形態を説明するためのガス濃度計測装置の
構成を示す。赤外線吸収式ガス濃度計測装置は4つの実
質的に同形状の円筒状のセル11A,11B,12A,
12Bが並列配置され、各セル11A〜12Bは、一端
が検出ガスの吸収波長域の赤外線を透過可能な透過窓2
1A,21B,22A,22Bにより閉鎖画成されてい
る。セル11A〜12Bの周壁111A,111B,1
21A,121Bは例えば内周面を研磨したステンレス
スティールにより構成され、透過窓21A〜22Bは例
えばフッ化カルシウムで構成される。各セル11A〜1
2Bには上記透過窓21A〜22Bの背後にセル11A
〜12Bの軸線上に透過窓21A〜22Bから出射する
赤外線を検出する検出器たる光センサ31A,31B,
32A,32Bが設けてある。光センサ31A〜32B
としてはサーモパイルセンサ等種々のものが用いられ
得、応答性等、用途を考慮して選択するのがよい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 shows a configuration of a gas concentration measuring device for explaining a first embodiment of the present invention. The infrared absorption type gas concentration measuring device comprises four substantially identical cylindrical cells 11A, 11B, 12A,
12B are arranged in parallel, and one end of each of the cells 11A to 12B has a transmission window 2 that can transmit infrared rays in the absorption wavelength range of the detection gas.
It is closed by 1A, 21B, 22A, 22B. Peripheral walls 111A, 111B, 1 of cells 11A to 12B
21A and 121B are made of, for example, stainless steel whose inner peripheral surface is polished, and the transmission windows 21A to 22B are made of, for example, calcium fluoride. Each cell 11A-1
2B, a cell 11A is provided behind the transmission windows 21A to 22B.
Optical sensors 31A, 31B, which are detectors for detecting infrared rays emitted from the transmission windows 21A to 22B on the axis of the light beams 12A to 12B.
32A and 32B are provided. Optical sensors 31A-32B
Various types such as a thermopile sensor can be used, and it is preferable to select the type in consideration of the application such as responsiveness.
【0018】セル11A〜12Bの長さ方向の2か所に
均等に、セル11A〜12Bと交差する方向に共通のヒ
ータブロック61,62が配置され、これにより各セル
11A〜12Bを保温するようになっている。ヒータブ
ロック61,62によりセル温度を例えば80°Cに保
つ。Common heater blocks 61 and 62 are arranged evenly at two locations in the longitudinal direction of the cells 11A to 12B in a direction intersecting the cells 11A to 12B so that the cells 11A to 12B are kept warm. It has become. The cell temperature is maintained at, for example, 80 ° C. by the heater blocks 61 and 62.
【0019】4つのセル11A〜12Bのうち2つのセ
ル(以下、適宜、計測セルという)11A,11Bに
は、計測用の試料ガスがガス予備加熱路100を通り導
入されるようになっている。ガス予備加熱路100は上
記ヒータブロック61,62により保温されており、計
測セル11A,11Bに導入される試料ガスを予熱し、
低温の試料ガスの流入によりセル壁の結露等が発生しな
いようになっている。計測セル11A,11Bに導入さ
れる試料ガスの温度はガス温度センサ71によりチェッ
クされる。A sample gas for measurement is introduced into two cells (hereinafter, referred to as measurement cells) 11A and 11B of the four cells 11A to 12B through a gas preheating passage 100. . The gas preheating path 100 is kept warm by the heater blocks 61 and 62, and preheats the sample gas introduced into the measurement cells 11A and 11B.
The inflow of the low-temperature sample gas prevents dew condensation on the cell walls and the like. The temperature of the sample gas introduced into the measurement cells 11A and 11B is checked by the gas temperature sensor 71.
【0020】残りの2つのセル(以下、適宜、補償セル
という)12A,12Bには赤外線吸収のない不活性ガ
ス(N2 等)が充填してある。The remaining two cells (hereinafter referred to as compensation cells as appropriate) 12A and 12B are filled with an inert gas (such as N 2 ) having no infrared absorption.
【0021】計測セル11A,11Bのうちの一方(第
1の計測セル)11Aと補償セルのうちの一方(第2の
補償セル)11Bとはそれぞれ、その他端側が上記透過
窓21A〜22Bと同様の透過窓23,24により閉鎖
画成され、各透過窓23,24の背後には、それぞれ光
源41,42が設けられている。光源41,42からは
赤外線がセル11A,11B内を通り上記光センサ31
A,31Bに向けて照射されるようになっている。One of the measuring cells 11A and 11B (first measuring cell) 11A and one of the compensating cells (second compensating cell) 11B have the other ends similar to the transmission windows 21A to 22B. Are closed by transmission windows 23 and 24, and light sources 41 and 42 are provided behind the transmission windows 23 and 24, respectively. Infrared rays from the light sources 41 and 42 pass through the cells 11A and 11B, and
A and 31B are irradiated.
【0022】光源41,42の赤外線照射方向前方には
ガスフィルタ5が設けてある。ガスフィルタ5は検出ガ
スに対して赤外線吸収波長が近似する干渉ガス(例えば
CO検出におけるCO2 )が封入されたもので、光源4
1,42から照射された赤外線から予め干渉ガスの吸収
波長の赤外線を除去しておくようになっている。A gas filter 5 is provided in front of the light sources 41 and 42 in the infrared irradiation direction. The gas filter 5 is filled with an interference gas (for example, CO 2 in CO detection) whose infrared absorption wavelength is close to the detection gas.
The infrared rays having the absorption wavelength of the interference gas are previously removed from the infrared rays emitted from the light sources 1 and 42.
【0023】本ガス濃度計測装置は、かかる構成によ
り、第1の計測セル11Aおよび第1の補償セル12A
では光源41,42からの赤外線照射のある状態での赤
外線量が得られ、計測セルの他方(第2の計測セル)1
1Bおよび補償セルの他方(第2の補償セル)12Bで
は光源41,42からの赤外線照射のない状態での赤外
線量が得られる。すなわち4つの異なる条件での赤外線
検出手順として、第1の計測セル11Aにおいて光源4
1からの赤外線照射がある状態で行う第1の赤外線検出
手順、第2の計測セル11Bにおいて光源41からの赤
外線照射がない状態で行う第2の赤外線検出手順、第1
の補償セル12Aにおいて光源42からの赤外線照射が
ある状態で行う第3の赤外線検出手順、第2の補償セル
12Bにおいて光源42からの赤外線照射がない状態で
行う第4の赤外線検出手順を同時に行うことができる。With this configuration, the present gas concentration measuring apparatus has a first measuring cell 11A and a first compensating cell 12A.
In this way, the amount of infrared light in a state where infrared light is radiated from the light sources 41 and 42 is obtained, and the other of the measurement cells (the second measurement cell) 1
In 1B and the other (second compensation cell) 12B of the compensation cell, the amount of infrared rays without irradiation of infrared rays from the light sources 41 and 42 can be obtained. That is, as the infrared detection procedure under the four different conditions, the light source 4 in the first measurement cell 11A is used.
A first infrared detection procedure performed in a state where there is infrared irradiation from the first, a second infrared detection procedure performed in a state where there is no infrared irradiation from the light source 41 in the second measurement cell 11B,
A third infrared detection procedure performed in the state where there is no infrared radiation from the light source 42 in the compensation cell 12A, and a fourth infrared detection procedure performed in the absence of infrared radiation from the light source 42 in the second compensation cell 12B are performed simultaneously. be able to.
【0024】図2は光源からの赤外線照射および各部か
らの輻射を示すもので、各セル11A〜12Bについて
各光センサ31A〜32Bで検出される赤外線量は次の
ようになる。なお、図および式中、検出ガスからの輻射
量を示す記号等は式(2),(3)と同様に定義されて
いる。 (a)第1の計測セル11Aの検出赤外線量: Ia ={I0 ・exp(−μ1 ・C1 ・L1 )+I1 ・C1 ・I3 +C2 ・I4 }・exp(−α・L2 )+I2 ・・・(5) (b)第2の計測セル11Bの検出赤外線量: Ib =(I1 +C1 ・I3 +C2 ・I4 )・exp(−α・L2 )+I2 ・・・(6) (c)第1の補償セル12Aの検出赤外線量: Ic ={I0 +I1 }・exp(−α・L2 )+I2 ・・・(7) (d)第2の補償セル12Bの検出赤外線量: Id =I1 ・exp(−α・L2 )+I2 ・・・(8) なお、式中、干渉ガスの吸収の項exp(−μ2 ・
C2 )が入っていないが、これはガスフィルタ5により
除去されるためである。FIG. 2 shows the irradiation of infrared rays from the light source and the radiation from each section. The infrared rays detected by the optical sensors 31A to 32B for the cells 11A to 12B are as follows. In the figures and equations, symbols and the like indicating the amount of radiation from the detection gas are defined in the same manner as in equations (2) and (3). (A) detecting the amount of infrared radiation of the first measurement cell 11A: I a = {I 0 · exp (-μ 1 · C 1 · L 1) + I 1 · C 1 · I 3 + C 2 · I 4} · exp ( −α · L 2 ) + I 2 (5) (b) Infrared ray amount detected by the second measurement cell 11B: I b = (I 1 + C 1 · I 3 + C 2 · I 4 ) · exp (−α) L 2 ) + I 2 (6) (c) Detected infrared ray amount of first compensation cell 12A: I c = {I 0 + I 1 } · exp (−α · L 2 ) + I 2. 7) (d) Infrared ray amount detected by the second compensation cell 12B: I d = I 1 · exp (−α · L 2 ) + I 2 (8) In the equation, the term exp of the absorption of the interference gas is expressed. (−μ 2・
C 2 ) is not included, because it is removed by the gas filter 5.
【0025】次に計測セル11A,11B、補償セル1
2A,12Bのそれぞれについて、光源41,42から
の赤外線照射があるセル11A(12A)とないセル1
1B(12B)との検出赤外線量の差(式(5)−式
(6)、式(7)−式(8))をとる。これにより、セ
ル11A〜11B壁からの輻射、透過窓21A〜21B
からの輻射、検出ガスからの輻射の影響が除去され、第
1の計測セル11Aにおける、光源41からの照射赤外
線のうちの、計測セル11A内の試料ガスおよび透過窓
21Aを透過した成分(式(9))、および第1の補償
セル12Aにおける、光源42からの照射赤外線のうち
の、補償セル12A内の不活性ガスおよび透過窓22A
を透過した成分(式(10))を得る。 Ia −Ib =I0 ・exp(−μ1 ・C1 ・L1 )exp(−α・L2 ) ・・・(9) Ic −Id =I0 ・exp(−α・L2 )・・・(10)Next, the measurement cells 11A and 11B and the compensation cell 1
Cells 1A (12A) with and without infrared irradiation from light sources 41 and 42 for each of 2A and 12B
The difference between the detected infrared ray amount and 1B (12B) (Equation (5) -Equation (6), Equation (7) -Equation (8)) is obtained. Thereby, the radiation from the walls of the cells 11A to 11B and the transmission windows 21A to 21B
Of the infrared rays emitted from the light source 41 in the first measurement cell 11A, the component of the infrared rays emitted from the light source 41 and transmitted through the sample gas in the measurement cell 11A and the transmission window 21A (formula (1)). (9)) and, among the infrared rays emitted from the light source 42 in the first compensation cell 12A, the inert gas in the compensation cell 12A and the transmission window 22A.
Is obtained (Equation (10)). I a -I b = I 0 · exp (-μ 1 · C 1 · L 1) exp (-α · L 2) ··· (9) I c -I d = I 0 · exp (-α · L 2 ) ・ ・ ・ (10)
【0026】最後に式(9)と式(10)との比をとり
検出ガスの濃度C1 を得る。 C1 =(μ1 ・L1 )-1ln{(Ic −Id )/(Ia −Ib )} ・・・(11)Finally, the ratio of the expression (9) to the expression (10) is obtained to obtain the concentration C 1 of the detected gas. C 1 = (μ 1 · L 1 ) -1 ln {(I c −I d ) / (I a −I b )} (11)
【0027】このように、4つのセル11A〜11Bに
より得た検出赤外線量Ia 〜Id を式(11)に代入す
れば試料ガス中の検出ガス濃度が得られる。式(11)
より知られるように、光源41,42から輻射される赤
外線量の変化、試料ガスの温度、圧力変化に伴う試料ガ
スからの赤外線輻射量の変化、透過窓21A〜22Bの
温度変化に伴う赤外線の吸収量、輻射量の影響を相殺し
て、十分な暖機や校正を行うことなく即座に高精度な濃
度計測が可能となる。[0027] Thus, the detection gas concentration in the sample gas by substituting detected amount of infrared rays I a ~I d obtained by four cells 11A~11B the equation (11) is obtained. Equation (11)
As is better known, changes in the amount of infrared radiation radiated from the light sources 41 and 42, changes in the amount of infrared radiation from the sample gas due to changes in the temperature and pressure of the sample gas, and changes in the amount of infrared light due to changes in the temperatures of the transmission windows 21A to 22B. By canceling out the influence of the absorption amount and the radiation amount, high-accuracy concentration measurement can be immediately performed without sufficient warm-up or calibration.
【0028】なお、式(11)は吸収係数μ1 を含むの
で、濃度C1 算出時には、試料ガスの温度、圧力を計測
し、計測温度および圧力に基づいて吸収係数μ1 を補正
しておく。Since the equation (11) includes the absorption coefficient μ 1 , when calculating the concentration C 1 , the temperature and pressure of the sample gas are measured, and the absorption coefficient μ 1 is corrected based on the measured temperature and pressure. .
【0029】本装置を用いて試料ガスとして窒素をキャ
リアガスとするCOガス100ppmを計測したとこ
ろ、装置の起動直後から±10%の精度を得た。When 100 ppm of CO gas using nitrogen as a carrier gas was measured as a sample gas using this apparatus, an accuracy of ± 10% was obtained immediately after the apparatus was started.
【0030】また、本装置を車両等に搭載し計測された
ガス濃度を車両の制御に用いる場合、吸収係数μ1 の補
正および式(11)の演算は、マイクロコンピュータ等
の演算手段により行う構成とするのがよい。Further, operations in the case of using mounted measured gas concentration of this device on a vehicle or the like to control the vehicle, the correction and Formula absorption coefficient μ 1 (11) is configured to perform the operation means such as a microcomputer It is good to do.
【0031】(第2実施形態)図3に本発明の第2実施
形態を説明するためのガス濃度計測装置の構成を示す。
ガス濃度計測装置は実質的に第1実施形態の構成から光
源からの赤外線照射のないセルを省略した構成を備えて
おり、第1実施形態と実質的に同じ作動をする部分には
同じ番号を付して第1実施形態との相違点を中心に説明
する。本ガス濃度計測装置は、円筒状の周壁111C,
121Cを有する2つの実質的に同形状のセル11C,
12Cが並列配置され、セル11C,12Cの両端はそ
れぞれ透過窓21Cおよび23C、22Cおよび24C
が閉鎖画成している。(Second Embodiment) FIG. 3 shows a configuration of a gas concentration measuring device for explaining a second embodiment of the present invention.
The gas concentration measuring device has a configuration in which cells without infrared irradiation from the light source are substantially omitted from the configuration of the first embodiment, and portions that operate substantially the same as in the first embodiment have the same numbers. A description will be given with a focus on differences from the first embodiment. The present gas concentration measuring device has a cylindrical peripheral wall 111C,
Two substantially identically shaped cells 11C having 121C,
12C are arranged in parallel, and both ends of the cells 11C and 12C are respectively provided with transmission windows 21C and 23C, 22C and 24C.
Has been closed.
【0032】2つのセル11C,12Cのうち一方のセ
ル(計測セル)11Cには、計測用の試料ガスがガス予
備加熱路100を通り導入されるようになっている。A sample gas for measurement is introduced into one of the two cells 11C and 12C (measurement cell) 11C through the gas preheating passage 100.
【0033】他方のセル(補償セル)12Cには赤外線
吸収のない不活性ガス(N2 等)が充填してある。The other cell (compensation cell) 12C is filled with an inert gas (such as N 2 ) having no infrared absorption.
【0034】計測セル11Cと補償セル12Cとには、
それぞれ一端側に光センサ31C,32Cが、他端側に
光源41,42が設けられており、光源41,42から
の赤外線がそれぞれセル11C,12C内を上記光セン
サ31C,32Cに向けて照射されるようになってい
る。光源41,42は照射赤外線量が切り換え自在に構
成され、制御部72からの制御信号により例えば数十H
z の周波数で照射赤外線量が大小の二値を繰り返すよう
になっている。The measurement cell 11C and the compensation cell 12C include:
Optical sensors 31C and 32C are provided at one end, and light sources 41 and 42 are provided at the other end. Infrared rays from the light sources 41 and 42 irradiate the cells 11C and 12C toward the optical sensors 31C and 32C, respectively. It is supposed to be. The light sources 41 and 42 are configured to be capable of switching the amount of infrared radiation to be irradiated.
At the frequency of z, the amount of irradiated infrared rays repeats large and small.
【0035】取り込み手段たる制御部72は一般的なマ
イクロコンピュータ等で構成され、各光源41,42の
制御信号に同期して光センサ31C,32Cの検出出力
を取り込むようになっており、図4に示すように、計測
セル11Cと補償セル12Cとのそれぞれについて、照
射赤外線量が大のときの検出赤外線量および照射赤外線
量が小のときの検出赤外線量とが出力され、得られるよ
うになっている。The control section 72, which is a capturing means, is constituted by a general microcomputer or the like, and captures the detection outputs of the optical sensors 31C and 32C in synchronization with the control signals of the light sources 41 and 42. As shown in FIG. 8, the detected infrared ray amount when the irradiation infrared ray amount is large and the detected infrared ray amount when the irradiation infrared ray amount is small are output and obtained for each of the measurement cell 11C and the compensation cell 12C. ing.
【0036】本ガス濃度計測装置は、かかる構成によ
り、計測セル11Cでは、光源41からの赤外線照射量
が大なる状態での赤外線量および赤外線照射量が小なる
状態での赤外線量が得られ、補償セル12Cでは、光源
42からの赤外線照射量が大なる状態での赤外線量およ
び赤外線照射量が小なる状態での赤外線量が得られる。
すなわち4つの異なる条件での赤外線検出として、計測
セル11Cにおいて光源41からの赤外線照射がある状
態で行う第1の赤外線検出手順、計測セル11Cにおい
て光源42からの赤外線照射がない状態で行う第2の赤
外線検出手順、補償セル12Cにおいて光源42からの
赤外線照射がある状態で行う第3の赤外線検出手順、補
償セル12Cにおいて光源42からの赤外線照射がない
状態で行う第4の赤外線検出手順を実質的に同時に行う
ことができる。According to the present gas concentration measuring device, the measuring cell 11C can obtain the amount of infrared light when the amount of infrared light from the light source 41 is large and the amount of infrared light when the amount of infrared light from the light source 41 is small. In the compensation cell 12C, the amount of infrared light when the amount of infrared radiation from the light source 42 is large and the amount of infrared light when the amount of infrared radiation is small are obtained.
That is, as the infrared detection under the four different conditions, a first infrared detection procedure performed in the measurement cell 11C in a state where infrared light is emitted from the light source 41, and a second infrared detection procedure performed in the measurement cell 11C without infrared light from the light source 42 The third infrared detection procedure performed in a state where infrared light from the light source 42 is irradiated in the compensation cell 12C, and the fourth infrared detection procedure performed in a state where no infrared light is irradiated from the light source 42 in the compensation cell 12C. Can be performed simultaneously.
【0037】図5は光源からの赤外線照射および各部か
らの輻射を示すもので、各セル11C,12Cについて
各光センサ31C,32Cで検出される赤外線量は次の
ようになる。なお、図および式中、検出ガスからの輻射
量を示す記号等は式(2),(3)と同様に定義されて
いる。また、光源41,42の照射赤外線量は、大のと
きをI01、小のときをI02としてある。 (a)光源出力が大のときの計測セル11Cの検出赤外
線量: Ia'={I01・exp(−μ1 ・C1 ・L1 )+I1 +C1 ・I3 +C2 ・I4 }・exp(−α・L2 )+I2 ・・・(12) (b)光源出力が小のときの計測セル11Cの検出赤外
線量: Ib'={I02・exp(−μ1 ・C1 ・L1 )+I1 +C1 ・I3 +C2 ・I4 }・exp(−α・L2 )+I2 ・・・(13) (c)光源出力が大のときの補償セル12Cの検出赤外
線量: Ic'={I01+I1 }・exp(−α・L2 )+I2 ・・・(14) (d)光源出力が小のときの補償セル12Cの検出赤外
線量: Id'={I02+I1 }・exp(−α・L2 )+I2 ・・・(15)FIG. 5 shows the irradiation of infrared rays from the light source and the radiation from each part. The amount of infrared rays detected by the optical sensors 31C and 32C for the cells 11C and 12C is as follows. In the figures and equations, symbols and the like indicating the amount of radiation from the detection gas are defined in the same manner as in equations (2) and (3). The amount of infrared radiation emitted from the light sources 41 and 42 is defined as I 01 when it is large, and I 02 when it is small. (A) detecting the amount of infrared rays measurement cell 11C when the light source output is greater: I a '= {I 01 · exp (-μ 1 · C 1 · L 1) + I 1 + C 1 · I 3 + C 2 · I 4 } · Exp (−α · L 2 ) + I 2 (12) (b) Detected infrared ray amount of measurement cell 11C when light source output is small: I b ′ = {I 02 · exp (−μ 1 · C 1 · L 1) + I 1 + C 1 · I 3 + C 2 · I 4} · exp (-α · L 2) + I 2 ··· (13) (c) of the compensation cell 12C when the light source output is greater Detected infrared light amount: I c ′ = {I 01 + I 1 } · exp (−α · L 2 ) + I 2 (14) (d) Detected infrared light amount of compensation cell 12C when light source output is small: I d ′ = {I 02 + I 1 } · exp (−α · L 2 ) + I 2 (15)
【0038】次に計測セル11C、補償セル12Cのそ
れぞれについて、光源41,42からの照射赤外線量が
大のときと小のときとの検出赤外線量の差(式(12)
−式(13)、式(14)−式(15))をとる。これ
により、セル11C,12Cからの輻射、透過窓21
C,22Cからの輻射、検出ガスからの輻射の影響が除
去され、計測セル11Cにおける、光源41からの照射
赤外線のうちの、計測セル11C内の試料ガスおよび透
過窓21Cを透過した成分(式(16))、および補償
セル12Cにおける、光源42からの照射赤外線のうち
の、補償セル12C内の不活性ガスおよび透過窓22C
を透過した成分(式(17))を得る。 Ia'−Ib'=(I01−I02)・exp(−μ1 ・C1 ・L1 )exp(−α・L 2 )・・・(16) Ic'−Id'=(I01−I02)・exp(−α・L2 )・・・(17)Next, the measuring cell 11C and the compensating cell 12C
In each case, the amount of infrared radiation emitted from the light sources 41 and 42 is
Difference in detected infrared light amount between large and small (Equation (12)
-Expression (13), Expression (14)-Expression (15)). this
Radiation from the cells 11C and 12C and the transmission window 21
Eliminates the effects of radiation from C and 22C and radiation from detected gas
From the light source 41 in the measurement cell 11C
The sample gas in the measurement cell 11C and the transmission
Component (Equation (16)) transmitted through overwindow 21C, and compensation
In the infrared rays emitted from the light source 42 in the cell 12C,
Of inert gas and permeation window 22C in compensation cell 12C
Is obtained (Equation (17)). Ia '-Ib '= (I01-I02) · Exp (−μ1・ C1・ L1) Exp (-α · L Two ) ... (16) Ic '-Id '= (I01-I02) · Exp (-α · LTwo) ・ ・ ・ (17)
【0039】最後に式(16)と式(17)との比をと
り検出ガスの濃度C1 を得る。 C1 =(μ1 ・L1 )-1ln{(Ic'−Id')/(Ia'−Ib')} ・・・(18)Finally, the ratio of the expression (16) to the expression (17) is obtained to obtain the concentration C 1 of the detected gas. C 1 = (μ 1 · L 1 ) -1 ln {(I c ′ −I d ′ ) / (I a ′ −I b ′ )} (18)
【0040】このように、2つのセル11C,12Cか
ら得た赤外線量Ia'〜Id'を式(18)に代入すれば試
料ガス中の検出ガス濃度が得られる。[0040] Thus, two cells 11C, the amount of infrared I a '~I d' obtained from 12C to detect gas concentration in the sample gas by substituting the equation (18) is obtained.
【0041】本実施形態によれば、第1実施形態と同様
に、十分な暖機や校正を行うことなく即座に高精度な濃
度計測が可能となる、しかも、セル数が2つで済むので
コンパクトである。According to the present embodiment, similarly to the first embodiment, high-precision concentration measurement can be performed immediately without sufficient warming-up and calibration, and only two cells are required. It is compact.
【0042】本装置を用いて試料ガスとして窒素をキャ
リアガスとするCOガス100ppmを計測したとこ
ろ、装置の起動直後から±10%の精度を得た。When this apparatus was used to measure 100 ppm of CO gas using nitrogen as a carrier gas as a sample gas, an accuracy of ± 10% was obtained immediately after the apparatus was started.
【0043】なお、本装置を車両等に搭載し計測された
ガス濃度を車両の制御に用いる場合、吸収係数μ1 の補
正および式(18)の演算は、上記マイクロコンピュー
タのソフトウェア上で行う構成とするのがよい。[0043] In the case of using a mounted measured gas concentration of this device on a vehicle or the like to control the vehicle, the calculation of the correction and Formula absorption coefficient μ 1 (18) is configured to perform in software of the microcomputer It is good to do.
【0044】なお、上記第1実施形態において、第2の
計測セル11B、第2の補償セル12Bには光源が設け
られていないが、上記セル11B,12Bにも光源から
赤外線を照射する構成とすることもできる。この場合、
第1の計測セル11A、第1の補償セル12A用の光源
と、第2の計測セル11B、第2の補償セル12B用の
光源とで照射赤外線量が異なるように設定する。すなわ
ち、第1の計測セル11A、第1の補償セル12A用の
光源の照射赤外線量をI01、第2の計測セル11B、第
2の補償セル12B用の光源の照射赤外線量をI02とす
れば第2実施形態の式(12)〜(18)と同じになる
ので、濃度の算出式として式(18)を用いることがで
きる。In the first embodiment, the second measurement cell 11B and the second compensation cell 12B are not provided with a light source, but the cells 11B and 12B are also configured to irradiate infrared rays from the light source. You can also. in this case,
The irradiation light amount is set to be different between the light source for the first measurement cell 11A and the first compensation cell 12A and the light source for the second measurement cell 11B and the second compensation cell 12B. That is, the amount of irradiation infrared light from the light source for the first measurement cell 11A and the first compensation cell 12A is I 01 , and the amount of irradiation infrared light from the light source for the second measurement cell 11B and the second compensation cell 12B is I 02 . Then, the equations become the same as the equations (12) to (18) of the second embodiment, so that the equation (18) can be used as the equation for calculating the density.
【0045】また、本発明のガス濃度計測方法は上記赤
外線ガス分析計(図6)によっても光源のオフ時とオン
時とにおける検出出力を得ることにより実施することが
でき、使用する装置の構成は本発明の趣旨に反しない限
り任意である。The gas concentration measuring method of the present invention can also be carried out by obtaining detection outputs when the light source is off and on by the infrared gas analyzer (FIG. 6). Is arbitrary as long as it does not contradict the purpose of the present invention.
【図1】本発明のガス濃度計測方法に用いる本発明のガ
ス濃度計測装置の構成図である。FIG. 1 is a configuration diagram of a gas concentration measuring device of the present invention used in a gas concentration measuring method of the present invention.
【図2】上記ガス濃度計測装置の作動を説明する図であ
る。FIG. 2 is a diagram illustrating the operation of the gas concentration measuring device.
【図3】本発明のガス濃度計測方法に用いる本発明の別
のガス濃度計測装置の構成図である。FIG. 3 is a configuration diagram of another gas concentration measuring device of the present invention used in the gas concentration measuring method of the present invention.
【図4】上記ガス濃度計測装置の作動を説明するタイム
チャートである。FIG. 4 is a time chart for explaining the operation of the gas concentration measuring device.
【図5】上記ガス濃度計測装置の作動を説明する図であ
る。FIG. 5 is a diagram illustrating the operation of the gas concentration measuring device.
【図6】従来のガス濃度計測方法に用いるガス濃度計測
装置の構成図である。FIG. 6 is a configuration diagram of a gas concentration measurement device used in a conventional gas concentration measurement method.
11A,11B,11C 計測セル 12A,12B,12C 補償セル 21A,21B,22A,22B,21C,22C,2
3,24,23C,24C 透過窓 31A,31B,32A,32B,31C,32C 光
センサ(検出器) 41,42 光源 5 フィルタ 61,62 ヒータブロック 72 制御部(取り込み手段)11A, 11B, 11C Measurement cells 12A, 12B, 12C Compensation cells 21A, 21B, 22A, 22B, 21C, 22C, 2
3, 24, 23C, 24C Transmission window 31A, 31B, 32A, 32B, 31C, 32C Optical sensor (detector) 41, 42 Light source 5 Filter 61, 62 Heater block 72 Controller (capturing means)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 新田 高弘 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 橋川 淳 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 河津 成之 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 2G059 AA01 BB01 DD12 EE01 FF08 HH01 JJ02 KK03 MM01 MM14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takahiro Nitta 14 Iwatani, Shimowakaku-cho, Nishio-shi, Aichi Japan (72) Inventor Jun Atsushi Hashikawa 14 Iwatani, Shimowakaku-cho, Nishio-shi, Aichi (72) Inventor Naruyuki Kawazu 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 2G059 AA01 BB01 DD12 EE01 FF08 HH01 JJ02 KK03 MM01 MM14
Claims (4)
補償セルに所定の比較ガスを導入し、これら導入ガスの
異なる2種類のセル内に光源から赤外線を照射し、各セ
ルの出射側の透過窓の後方に配置した検出器により透過
窓から出射した赤外線量を検出し、両セルの検出赤外線
量から試料ガス中の検出しようとする成分ガスの濃度を
計測するガス濃度計測方法において、光源からの照射赤
外線量が大なる状態で計測セルにおける検出赤外線量を
得る第1の検出手順と、光源からの照射赤外線量が小な
る状態で計測セルにおける検出赤外線量を得る第2の検
出手順とを行い、光源からの照射赤外線量が大なる状態
で補償セルにおける検出赤外線量を得る第3の検出手順
と、光源からの照射赤外線量が小なる状態で補償セルに
おける検出赤外線量を得る第4の検出手順とを行い、次
いで第1の検出手順の検出赤外線量と第2の検出手順の
検出赤外線量との差および第3の検出手順の検出赤外線
量と第4の検出手順の検出赤外線量との差をとり、計測
セルと補償セルとのそれぞれについて光源からの赤外線
の透過成分のみを得、次いで、両透過成分に基づいて上
記成分ガスの濃度を算出することを特徴とするガス濃度
計測方法。1. A sample gas is introduced into a measurement cell, a predetermined comparison gas is introduced into a compensation cell, and infrared rays are irradiated from a light source into two types of cells having different introduced gases. In the gas concentration measurement method of detecting the amount of infrared light emitted from the transmission window by the detector arranged behind the window and measuring the concentration of the component gas to be detected in the sample gas from the detected amount of infrared light in both cells, A first detection procedure for obtaining a detection infrared ray amount in the measurement cell in a state where the irradiation infrared ray amount is large, and a second detection procedure for obtaining a detection infrared ray amount in the measurement cell in a state where the irradiation infrared ray amount from the light source is small. A third detection procedure for obtaining the amount of infrared radiation detected in the compensation cell when the amount of infrared radiation emitted from the light source is large; and detecting the amount of infrared radiation in the compensation cell when the amount of infrared radiation emitted from the light source is small. And then the difference between the amount of infrared radiation detected in the first detection procedure and the amount of infrared radiation detected in the second detection procedure, and the amount of infrared radiation detected in the third detection procedure and the fourth detection procedure Taking the difference from the detected amount of infrared light, obtaining only the transmitted component of infrared light from the light source for each of the measurement cell and the compensation cell, and then calculating the concentration of the component gas based on both transmitted components. Gas concentration measurement method.
るガス濃度計測装置であって、上記計測セルとして第
1、第2の計測セルを具備せしめるとともに、上記補償
セルとして第1、第2の補償セルを具備せしめ、上記光
源を、第1の計測セルの方に第2の計測セルよりも強く
赤外線を照射するとともに、第1の補償セルの方に第2
の補償セルよりも強く赤外線を照射する構成とし、上記
第1の検出手順における検出赤外線量を第1の計測セル
により得、上記第2の検出手順における検出赤外線量を
第2の計測セルにより得、上記第3の検出手順における
検出赤外線量を第1の補償セルにより得、上記第4の検
出手順における検出赤外線量を第2の補償セルにより得
るようにしたことを特徴とするガス濃度計測装置。2. A gas concentration measuring apparatus used in the gas concentration measuring method according to claim 1, wherein said measuring cell includes first and second measuring cells, and said compensating cell includes first and second measuring cells. Irradiating the first light source with infrared light more strongly than the second measurement cell, and applying the second light source toward the first compensation cell.
Irradiates infrared light more strongly than the compensation cell of the above. The amount of infrared light detected in the first detection procedure is obtained by the first measurement cell, and the amount of infrared light detected in the second detection procedure is obtained by the second measurement cell. A gas concentration measuring device, wherein the amount of infrared rays detected in the third detection procedure is obtained by a first compensation cell, and the amount of infrared rays detected in the fourth detection procedure is obtained by a second compensation cell. .
て、上記光源を、上記第1の計測セル用の光源と第1の
補償セル用の光源とのみで構成したガス濃度計測装置。3. The gas concentration measuring device according to claim 2, wherein the light source is constituted only by the light source for the first measurement cell and the light source for the first compensation cell.
るガス濃度計測装置であって、上記計測セルおよび上記
補償セルをそれぞれ1つずつ備え、上記光源を、照射赤
外線量を大小切り換え自在に構成し、かつ、上記照射赤
外線量の切り換えに同期して上記検出器の検出出力を取
り込む取り込み手段を具備せしめ、上記第1の検出手順
における検出赤外線量を照射赤外線量が大のときの計測
セルによる検出出力とし、上記第2の検出手順における
検出赤外線量を照射赤外線量が小のときの計測セルによ
る検出出力とし、上記第3の検出手順における検出赤外
線量を照射赤外線量が大のときの補償セルによる検出出
力とし、上記第4の検出手順における検出赤外線量を照
射赤外線量が小のときの補償セルによる検出出力とした
ことを特徴とするガス濃度計測装置。4. A gas concentration measuring device used in the gas concentration measuring method according to claim 1, comprising one each of said measuring cell and said compensating cell, and wherein said light source is capable of switching the amount of irradiated infrared light freely. And measuring means for detecting the amount of infrared radiation detected in the first detection procedure when the amount of irradiated infrared radiation is large. , The amount of infrared rays detected in the second detection procedure is set as the detection output by the measuring cell when the amount of irradiation infrared rays is small, and the amount of infrared rays detected in the third detection procedure is used as the detection output when the amount of irradiation infrared rays is large. The detection output by the compensation cell is used as the detection output by the compensation cell when the irradiation infrared ray amount is small in the fourth detection procedure. Concentration measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26162999A JP2001083086A (en) | 1999-09-16 | 1999-09-16 | Gas concentration measuring method and gas concentration measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26162999A JP2001083086A (en) | 1999-09-16 | 1999-09-16 | Gas concentration measuring method and gas concentration measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001083086A true JP2001083086A (en) | 2001-03-30 |
Family
ID=17364559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26162999A Withdrawn JP2001083086A (en) | 1999-09-16 | 1999-09-16 | Gas concentration measuring method and gas concentration measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001083086A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008116368A (en) * | 2006-11-06 | 2008-05-22 | Toyota Motor Corp | Gas analyzer and gas analysis method |
CN113567384A (en) * | 2021-07-08 | 2021-10-29 | 浙江焜腾红外科技有限公司 | Long-distance infrared gas sensor |
CN113567385A (en) * | 2021-07-08 | 2021-10-29 | 浙江焜腾红外科技有限公司 | Laser Infrared Gas Sensor |
-
1999
- 1999-09-16 JP JP26162999A patent/JP2001083086A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008116368A (en) * | 2006-11-06 | 2008-05-22 | Toyota Motor Corp | Gas analyzer and gas analysis method |
CN113567384A (en) * | 2021-07-08 | 2021-10-29 | 浙江焜腾红外科技有限公司 | Long-distance infrared gas sensor |
CN113567385A (en) * | 2021-07-08 | 2021-10-29 | 浙江焜腾红外科技有限公司 | Laser Infrared Gas Sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3306833B2 (en) | Calibration method for gas concentration measurement | |
CA1045847A (en) | Vehicle exhaust gas analysis system | |
US5184017A (en) | Method and apparatus for detecting a component gas in a sample | |
JP2759054B2 (en) | How to measure a body fluid sample | |
JPH03107744A (en) | Non-scattering type infrared gas analysis system and apparatus | |
JPH08304282A (en) | Gas analyzer | |
JPH08271415A (en) | Method and device for calibrating measuring device of nondispersion type infrared ray | |
FI67625B (en) | FOERFARANDE FOER ELIMINERING AV MAETNINGSFEL VID FOTOMETERANALYS | |
WO2012166585A2 (en) | Re-calibration of ab ndir gas sensors | |
ATE112852T1 (en) | CALIBRATION DEVICE FOR A NON-DISPERSIVE INFRARED PHOTOMETER. | |
JP2020085467A (en) | Physical property inspection device | |
JP2001083086A (en) | Gas concentration measuring method and gas concentration measuring device | |
IE43516B1 (en) | Infrared gas analysis system | |
CN1971247B (en) | Method for cross interference correction for correlation spectroscopy | |
GB2419666A (en) | Infrared gas analyzer | |
US6218665B1 (en) | Infrared detector and gas analyzer | |
JPH06201585A (en) | Chemical emission detector and temperature correcting method at chemical emission reaction | |
JP4176535B2 (en) | Infrared analyzer | |
JP2004085252A (en) | Gas analyzer | |
JP4906477B2 (en) | Gas analyzer and gas analysis method | |
US7268352B2 (en) | Apparatus and method for determining the proportion of a substance in a gas sample using an infrared measuring instrument | |
JPH10339669A (en) | Method for calibrating ndir spectrometer | |
JPS6073347A (en) | Bonded state inspection method and inspection device | |
JPH0565023B2 (en) | ||
KR20010077451A (en) | Apparatus for detecting the concentration of gas using aerometric chamber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061205 |