JP2001082255A - Air supply pipe structure for multi-cylinder gas engine - Google Patents
Air supply pipe structure for multi-cylinder gas engineInfo
- Publication number
- JP2001082255A JP2001082255A JP26545199A JP26545199A JP2001082255A JP 2001082255 A JP2001082255 A JP 2001082255A JP 26545199 A JP26545199 A JP 26545199A JP 26545199 A JP26545199 A JP 26545199A JP 2001082255 A JP2001082255 A JP 2001082255A
- Authority
- JP
- Japan
- Prior art keywords
- air supply
- branch pipe
- cylinder
- supply
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 claims abstract description 50
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 239000007789 gas Substances 0.000 description 48
- 239000000203 mixture Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Landscapes
- Fuel-Injection Apparatus (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本願発明は、各気筒の給気ポ
ートの入口端を、それぞれ給気枝管を介して給気集合管
に接続し、各給気枝管にそれぞれガス燃料供給用のイン
ジェクターを設けている多気筒ガス機関の給気管構造に
関する。BACKGROUND OF THE INVENTION The present invention relates to a fuel supply system for connecting a gas supply port of each cylinder to a supply manifold via a supply branch pipe. The present invention relates to an intake pipe structure of a multi-cylinder gas engine provided with an injector.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】多気筒
ガス機関には、上記のように各給気枝管にそれぞれガス
燃料供給用のインジェクターを備えたいわゆるマルチポ
イントインジェクション方式と、給気集合管の入口に単
一のインジェクターを備え、給気とガス燃料を混合した
後、混合気を給気集合管から各給気枝管に分配する方式
がある。2. Description of the Related Art A multi-cylinder gas engine is provided with a so-called multipoint injection system having an injector for supplying gas fuel to each supply branch pipe as described above, There is a method in which a single injector is provided at the inlet of the pipe, and after mixing the supply air and the gas fuel, the mixture is distributed from the supply manifold to each supply branch pipe.
【0003】マルチポイント方式の多気筒ガス機関で
は、各気筒毎にガス燃料を噴出するため、理論上は各気
筒毎に均一な混合気を供給することが可能になる。とこ
ろが、給気枝管の容積、長さあるいは形状又はインジェ
クターの取付位置あるいは燃料噴出方向等、各種条件の
変化によって、1つの気筒の給気枝管内に噴出されたガ
ス燃料の一部が、給気集合管を通って他の気筒の給気枝
管内へと流れ出すことがある。In a multi-point multi-cylinder gas engine, gas fuel is injected into each cylinder, so that a theoretically uniform mixture can be supplied to each cylinder. However, due to changes in various conditions such as the volume, length, or shape of the air supply branch pipe, the mounting position of the injector, or the fuel injection direction, a part of the gas fuel injected into the air supply branch pipe of one cylinder is supplied. It may flow out through the air collecting pipe into the air supply branch pipe of another cylinder.
【0004】たとえば、図6に示すように給気集合管1
01と各気筒の給気ポート115の入口端を、短い給気
枝管112を介して接続し、かつ、インジェクター11
3を給気枝管112に配置している給気管構造では、給
気集合管101と給気枝管112との境目P1から給気
弁120に至るまでの容積が狭いことと、インジェクタ
ー113の位置が給気集合管1に接近していることか
ら、インジェクター113から給気枝管112内へ噴出
されたガス燃料の一部が、直接給気集合管101内へと
流れ込んだり、あるいは給気集合管101から給気枝管
112内へと一旦供給された給気の一部が給気集合管1
01へと押し戻されことに伴ってガス燃料の一部も給気
集合管101へと流れ込んだりすることがある。[0004] For example, as shown in FIG.
01 and the inlet end of the air supply port 115 of each cylinder are connected via a short air supply branch pipe 112, and the injector 11
In the air supply pipe structure in which 3 is disposed in the air supply branch pipe 112, the volume from the boundary P 1 between the air supply manifold 101 and the air supply branch pipe 112 to the air supply valve 120 is small, and Since the position is close to the air supply manifold 1, part of the gas fuel ejected from the injector 113 into the air supply branch pipe 112 flows directly into the air supply manifold 101, or A part of the air supplied once from the collecting pipe 101 into the air supply branch pipe 112 is supplied to the air supply collecting pipe 1.
When the fuel gas is pushed back to 01, a part of the gas fuel may flow into the air supply manifold 101.
【0005】このように、ある気筒の給気枝管112に
噴出されたガス燃料の一部が、給気集合管101内へと
流れ出すと、流れ出したガス燃料は他の気筒用の給気枝
管112に流入し、それにより気筒間でガス燃料供給量
にばらつきが生じ、燃料過多となった気筒では、異常燃
焼が生じ、ノッキング現象が起こることがある。As described above, when a part of the gas fuel injected into the supply branch pipe 112 of a certain cylinder flows out into the supply manifold 101, the gas fuel that has flowed out is supplied to the supply branch for another cylinder. After flowing into the pipe 112, the gas fuel supply amount varies among the cylinders, and abnormal combustion occurs in a cylinder having an excessive amount of fuel, and a knocking phenomenon may occur.
【0006】特に、特開平9−158785号公報に記
載されたガス機関のように、ガス燃料と給気との混合を
均一混合するために、給気動圧の影響を受ける噴出方向
に多くのガス燃料を噴出し、ガス燃料の多くを給気に対
向して衝突させる構造を採用していると、上記のように
給気枝管から給気集合管へとガス燃料の一部が流れ出す
可能性が大きくなり、気筒間でのガス燃料供給量のばら
つきが大きくなることがある。[0006] In particular, as in the gas engine described in Japanese Patent Application Laid-Open No. 9-158785, in order to uniformly mix the gas fuel and the supply air, a large number of injection directions are affected by the supply air pressure. By adopting a structure in which gas fuel is injected and most of the gas fuel collides against the air supply, part of the gas fuel can flow out from the air supply branch pipe to the air supply manifold as described above. And the variation of the gas fuel supply amount between the cylinders may increase.
【0007】[0007]
【発明の目的】本願発明の目的は、給気枝管の構造を工
夫することにより、気筒間でのガス燃料の交錯を無く
し、各気筒に燃料を均一に供給できるようにすることで
ある。また、各気筒のスワール流を、均一なものにする
ことも目的としている。SUMMARY OF THE INVENTION An object of the present invention is to improve the structure of the air supply branch pipe so as to prevent gas fuel from intersecting between the cylinders and to uniformly supply fuel to each cylinder. Another object is to make the swirl flow of each cylinder uniform.
【0008】[0008]
【課題を解決するための手段】本願請求項1記載の発明
は、各気筒の給気ポートの入口端を、それぞれ給気枝管
を介して給気集合管に接続し、各給気枝管にそれぞれガ
ス燃料供給用のインジェクターを設けている多気筒ガス
機関の給気管構造において、各気筒における給気枝管と
給気ポートとの合計容積に対し、インジェクターから噴
出される1回分のガス燃料の容積が概ね1/2以下とな
るように、給気枝管の長さを長くしていることを特徴と
している。According to a first aspect of the present invention, an inlet end of an air supply port of each cylinder is connected to an air supply manifold via an air supply branch pipe. In a supply pipe structure of a multi-cylinder gas engine in which a gas fuel supply injector is provided for each of the cylinders, a single fuel injection from the injector with respect to a total volume of a supply branch pipe and a supply port in each cylinder is performed. Is characterized in that the length of the air supply branch pipe is increased so that the volume of the air supply branch is approximately 1/2 or less.
【0009】請求項2記載の発明は、請求項1記載の多
気筒ガス機関における給気管構造において、給気集合管
から給気枝管内に一回で吹き出される給気の容積領域よ
り、給気下流側の給気枝管部分にインジェクターを配置
していることを特徴としている。According to a second aspect of the present invention, in the air supply pipe structure of the multi-cylinder gas engine according to the first aspect, the supply air is blown out from the air supply manifold into the air supply branch pipe at one time. It is characterized in that an injector is arranged in the air supply branch pipe portion on the air downstream side.
【0010】[0010]
【発明の実施の形態】図1は本願発明を適用した6気筒
ガス機関の正面部分図であり、給気集合管1は、シリン
ダヘッド2の正面上側にクランク軸と平行に取り付けら
れており、給気集合管1の長さ方向の一端部はスロット
ル弁3介してインタークーラ5に接続し、インタークー
ラ5は図示しない過給機を介してエアクリーナ等の空気
取入装置に接続し、給気集合管1の他端部は蓋6により
閉じられている。スロットル弁3はモータ等の回転アク
チュエータ8に連結し、アクチュエータ8は制御装置に
接続して、スロットル開度を調節できるようになってい
る。FIG. 1 is a partial front view of a six-cylinder gas engine to which the present invention is applied. An intake manifold 1 is mounted on the front upper side of a cylinder head 2 in parallel with a crankshaft. One end of the supply air collecting pipe 1 in the longitudinal direction is connected to an intercooler 5 via a throttle valve 3, and the intercooler 5 is connected to an air intake device such as an air cleaner via a supercharger (not shown). The other end of the collecting pipe 1 is closed by a lid 6. The throttle valve 3 is connected to a rotary actuator 8 such as a motor, and the actuator 8 is connected to a control device so that the throttle opening can be adjusted.
【0011】給気集合管1には、長さ方向に等間隔をお
いた位置に、それぞれ下向きに突出する分岐管10が一
体に形成されており、各分岐管10の下端には、シリン
ダヘッド2側へと湾曲する延長管11がそれぞれ接続さ
れ、上記分岐管10と延長管11により給気枝管12を
構成している。上記延長管11にはそれぞれガス燃料を
噴出するためのインジェクター13が取り付けられてい
る。The air supply manifold 1 is integrally formed with branch pipes 10 protruding downward at equally spaced positions in the longitudinal direction, and a cylinder head is provided at the lower end of each branch pipe 10. The extension pipes 11 that curve to the two sides are connected to each other, and the branch pipe 10 and the extension pipe 11 constitute an air supply branch pipe 12. An injector 13 for ejecting gaseous fuel is attached to each of the extension pipes 11.
【0012】図2は給気集合管1の平面図であり、各延
長管11は各気筒(1つのみ図示)Cの給気ポート15
の入口端に接続している。また、各気筒Cの排気口17
にはそれぞれ排気温度センサー18が配置されている。FIG. 2 is a plan view of the air supply manifold 1. Each extension pipe 11 is provided with an air supply port 15 of each cylinder (only one is shown).
Connected to the entrance end of the The exhaust port 17 of each cylinder C
Are each provided with an exhaust gas temperature sensor 18.
【0013】図3は図1のIII-III断面拡大図であり、
インジェクター13は、その軸芯線O1が、延長管11
の湾曲部の二等分線状にくるように配置されている。具
体的には分岐管中心線O2に対し45°の角度をもっ
て、斜め下方から延長管11に取り付けられており、延
長管11内にはインジェクター13のノズル管20が斜
め上方に向いて突入している。FIG. 3 is an enlarged cross-sectional view taken along the line III-III of FIG.
The injector 13 is configured such that its axis O1
Are arranged so as to form a bisector of the curved portion. Specifically, it is attached to the extension pipe 11 from an obliquely lower direction at an angle of 45 ° with respect to the branch pipe center line O2, into which the nozzle pipe 20 of the injector 13 projects obliquely upward. I have.
【0014】延長管11は、給気枝管12全体の容積を
増加し、かつ、給気枝管12全体の長さを長くするため
に、分岐管11と給気ポート15との間に介在させたも
のであり、延長管11を介在させることによって、給気
枝管12の容積については、給気枝管12の容積(分岐
管10と延長管11の合計容積)V1と給気ポート15
の容積V2との合計容積V3に対し、インジェクター1
3から一回の作動で噴出されるガス燃料容積V4が略1
/2以下の容積率となるように構成されている。好まし
くは、上記給気枝管12の合計容積V3に対してガス燃
料容積V4が35%以下となるように、延長管11の長
さ(容積)を設定している。このように設定される容積
率は、出力の増減にかかわらず常に略一定となる。すな
わち、ガス燃料供給量は出力に比例して増大するが、給
気枝管12内の圧力も出力に比例して増大するものであ
るから、給気枝管12内に占めるガス燃料の容積は、出
力の増減にかかわらず略一定に保たれる。The extension pipe 11 is interposed between the branch pipe 11 and the air supply port 15 in order to increase the volume of the entire air supply branch pipe 12 and lengthen the entire length of the air supply branch pipe 12. With the extension pipe 11 interposed, the volume of the air supply branch pipe 12 is determined by the volume V1 of the air supply branch pipe 12 (total volume of the branch pipe 10 and the extension pipe 11) V1 and the air supply port 15
The total volume V3 with the volume V2 of the
The gas fuel volume V4 ejected in one operation from 3 is approximately 1
/ 2 or less. Preferably, the length (volume) of the extension pipe 11 is set so that the gas fuel volume V4 is 35% or less of the total volume V3 of the supply branch pipe 12. The volume ratio set in this way is always substantially constant irrespective of an increase or decrease in output. That is, the gas fuel supply amount increases in proportion to the output, but the pressure in the air supply branch pipe 12 also increases in proportion to the output. , And is kept substantially constant irrespective of the increase or decrease in output.
【0015】上記インジェクター13の取付位置は、1
回の給気行程で給気集合管1から給気枝管12内へと吹
き込まれる給気量の容積、すなわち図3で2点鎖線の斜
線で示す領域よりも、給気下流側(給気ポート側)にノ
ズル管20が位置するように設定されている。いいかえ
れば、給気集合管1と分岐管10との接続部P1からノ
ズル管20までの距離D2が、上記2点鎖線領域の長さ
D1よりも長くなるように設定されている。The mounting position of the injector 13 is 1
The volume of the amount of air blown into the air supply branch pipe 12 from the air supply manifold 1 during the first air supply stroke, that is, the area downstream of the air supply from the area indicated by the two-dot chain line in FIG. It is set so that the nozzle tube 20 is located at the port side). In other words, the distance D2 from the connection portion P1 between the air supply collecting pipe 1 and the branch pipe 10 to the nozzle pipe 20 is set to be longer than the length D1 of the two-dot chain line region.
【0016】また、インジェクター13の取付位置は、
上記接続部P1からノズル管20に至るまでの給気枝管
12内の容積(距離D2に対応する容積)が、1回の作動
で噴出されるガス燃料容積V4よりも大きくなるように
も設定されている。The mounting position of the injector 13 is as follows.
The volume (volume corresponding to the distance D2) in the air supply branch pipe 12 from the connection point P1 to the nozzle pipe 20 is set so as to be larger than the gas fuel volume V4 ejected in one operation. Have been.
【0017】図4は図3のIV-IV断面図であり、ノズル
管20には、ノズル軸芯O1から全包囲に向けて放射状
にガス燃料を噴出するように複数の噴口30が形成され
ており、噴口30の分布は、給気上流側(給気集合管
側)に多く配置されており、これにより給気流に対向し
て多くのガス燃料が噴出され、ガス燃料と給気との均一
な混合が行なえるようにしてある。FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 3. The nozzle pipe 20 has a plurality of injection ports 30 formed so as to radiate gas fuel radially from the nozzle axis O1 toward the entire surroundings. In addition, the distribution of the nozzles 30 is arranged more on the upstream side of the air supply (on the side of the air supply collecting pipe), whereby a large amount of gas fuel is ejected in opposition to the air supply flow, so that the gas fuel and the air supply are uniform. It is possible to perform a proper mixing.
【0018】図5は、各気筒間の排気温度偏温(°C)
と、前記容積率(ガス燃料噴射容積V4/給気枝管と給
気ポートの合計容積V3)との関係を示す図である。こ
こで、排気温度偏温とは、前記図2で示す各気筒の排気
温度センサー18により検出した各気筒の排気温度Tを
比較し、排気温度が最も高くなった気筒の排気温度Tma
xと、排気温度が最も低い気筒の排気温度Tminとの差を
算出したものであり、排気温度偏温(Tmax−Tmin)が
小さければ小さい程、各気筒間の燃焼格差が少なく、各
気筒に均一な燃料供給が行なわれていることを示してい
ることになる。FIG. 5 shows the exhaust gas temperature deviation between the cylinders (° C.).
FIG. 7 is a diagram showing a relationship between the volume ratio (gas fuel injection volume V4 / total volume V3 of the air supply branch pipe and the air supply port). Here, the exhaust temperature deviation temperature is a comparison between the exhaust temperature T of each cylinder detected by the exhaust temperature sensor 18 of each cylinder shown in FIG. 2 and the exhaust temperature Tma of the cylinder having the highest exhaust temperature.
The difference between x and the exhaust temperature Tmin of the cylinder having the lowest exhaust temperature is calculated. The smaller the exhaust temperature deviation temperature (Tmax-Tmin) is, the smaller the combustion disparity between the cylinders is. This indicates that uniform fuel supply is being performed.
【0019】実験によると、排気温度偏温(Tmax−Tm
in)が20°C以下の場合に、各気筒間の燃料供給の均
一性が最も良好に保たれ、排気温度偏温が35°C〜4
0°C付近は、ノッキングが発生しない程度に運転でき
る状態である。図5のグラフからすると、上記20°以
下の排気温度偏温を確保するためには、前記容積率V4
/V3が概ね35%以下であることが必要であり、ま
た、上記35°C〜40°程度以下の排気温度偏温を確
保するためには、容積率が概ね50%以下であることが
必要であることが分かる。According to experiments, the exhaust gas temperature deviation (Tmax-Tm)
In) is equal to or lower than 20 ° C., the uniformity of fuel supply between the cylinders is best maintained, and the exhaust temperature deviation is 35 ° C. to 4 ° C.
In the vicinity of 0 ° C., the operation can be performed to the extent that knocking does not occur. According to the graph of FIG. 5, in order to secure the exhaust gas temperature unevenness of 20 ° or less, the volume ratio V4
/ V3 needs to be about 35% or less, and the volume ratio needs to be about 50% or less in order to secure the exhaust gas temperature unevenness of about 35 ° C. to about 40 ° or less. It turns out that it is.
【0020】[0020]
【作用】給気枝管12内には、インジェクター13から
所定量のガス燃料が噴出され、また、給気集合管1から
は、図3に示すように各給気枝管12内に所定量の給気
が吹き込まれる。A predetermined amount of gaseous fuel is injected from the injector 13 into the air supply branch pipe 12, and a predetermined amount of gas fuel is injected from the air supply manifold 1 into each air supply branch pipe 12 as shown in FIG. Is supplied.
【0021】給気枝管12内において、ガス燃料と給気
が混合して混合気となり、給気ポート15を介して燃焼
室21内へと供給される。In the air supply branch 12, the gas fuel and the air supply are mixed to form an air-fuel mixture, which is supplied into the combustion chamber 21 through the air supply port 15.
【0022】インジェクター13から一回の噴出動作で
給気枝管12内に噴出されるガス燃料の容積V4は、本
実施の形態では前記給気枝管12と給気ポート15の合
計容積V3の35%以下であり、したがって給気枝管1
2の容積不足による給気集合管1へのガス燃料の流出は
略完全に防止され、総ての気筒において、噴出された所
定のガス燃料供給量を対応する気筒へと供給することが
できる。In the present embodiment, the volume V4 of the gas fuel injected into the air supply branch pipe 12 by one injection operation from the injector 13 is equal to the total volume V3 of the air supply branch pipe 12 and the air supply port 15. 35% or less and therefore the air supply branch 1
Outflow of gaseous fuel to the supply manifold 1 due to the lack of volume 2 is almost completely prevented, and in all cylinders, a predetermined amount of injected gaseous fuel can be supplied to the corresponding cylinder.
【0023】また、混合気は、湾曲状の延長管11を通
る過程において整流作用を受け、燃焼室には均一性のあ
るスワール流を発生させることができる。Further, the air-fuel mixture is subjected to a rectifying action in the process of passing through the curved extension pipe 11, and a uniform swirl flow can be generated in the combustion chamber.
【0024】[0024]
【その他の実施の形態】(1)図示の実施の形態は、過
給機を備えた多気筒ガス機関に適用した例であうるが、
過給機を備えていない多気筒ガス機関にも適用すること
はできる。[Other Embodiments] (1) The illustrated embodiment may be an example applied to a multi-cylinder gas engine provided with a supercharger.
The present invention can also be applied to a multi-cylinder gas engine without a supercharger.
【0025】[0025]
【発明の効果】以上説明したように本願発明によると、 (1)各気筒用の給気枝管12毎にインジェクターを備
えた多気筒ガス機関において、給気枝管12を長くして
その容積を増大させることにより、インジェクター13
から噴出されるガス燃料が給気集合管1を通って他の気
筒へ流出するのを防いでいるので、各気筒のガス燃料供
給量の均一化及びそれによる混合気の均一化を達成で
き、気筒間の燃焼格差によるノッキング等を防ぐことが
できる。As described above, according to the present invention, (1) In a multi-cylinder gas engine provided with an injector for each of the supply branch pipes 12 for each cylinder, the length of the supply branch pipe 12 is increased. By increasing the injector 13
The gas fuel ejected from the cylinder is prevented from flowing out to other cylinders through the air supply manifold 1, so that the gas fuel supply amount of each cylinder can be made uniform and the mixture can be made uniform thereby. Knocking or the like due to a combustion difference between cylinders can be prevented.
【0026】(2)給気枝管12の長さを長くすること
により、給気の助走区間を長くすることができ、それに
より、各気筒に流入する混合気の整流効果が向上し、各
気筒に均一なスワール流を発生させることができる。(2) By increasing the length of the air supply branch pipe 12, it is possible to lengthen the section for supplying air, thereby improving the rectifying effect of the air-fuel mixture flowing into each cylinder. A uniform swirl flow can be generated in the cylinder.
【0027】(3)給気集合管1から給気枝管12内に
一回で吹き出される給気の容積領域より、給気下流側に
インジェクター13を配置していると、上記給気枝管1
2の長さを長くすることと相俟って、ガス燃料が給気集
合管1に流出するのを一層確実に防ぐことができると共
に、給気枝管12内におけるガス燃料と給気との混合の
均一性も向上し、これによっても機関性能が向上する。(3) If the injector 13 is arranged on the downstream side of the supply air from the supply air volume blown out from the air supply manifold 1 into the air supply branch pipe 12 at one time, Tube 1
In combination with the lengthening of the length 2, the gas fuel can be more reliably prevented from flowing out to the air supply manifold 1. Mixing uniformity is also improved, which also improves engine performance.
【図面の簡単な説明】[Brief description of the drawings]
【図1】 本願発明を適用した多気筒ガス機関の正面図
である。FIG. 1 is a front view of a multi-cylinder gas engine to which the present invention is applied.
【図2】 図1の平面図である。FIG. 2 is a plan view of FIG.
【図3】 図1のIII-III断面拡大図である。FIG. 3 is an enlarged cross-sectional view taken along the line III-III of FIG. 1;
【図4】 図3のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 3;
【図5】 ガス燃料の容積と、給気ポート及び給気枝管
の合計容積との容積率と、排気温度偏温との関係を示す
図である。FIG. 5 is a diagram showing a relationship between a volume ratio of a gas fuel, a volume ratio of a total volume of an air supply port and an air supply branch pipe, and an exhaust temperature uneven temperature.
【図6】 従来の給気枝管の1例を示す縦断面図であ
る。FIG. 6 is a longitudinal sectional view showing an example of a conventional air supply branch pipe.
1 給気集合管 2 シリンダヘッド 10 分岐管 11 延長管 12 給気枝管 13 インジェクター 15 給気ポート 20 ノズル管 DESCRIPTION OF SYMBOLS 1 Air supply collecting pipe 2 Cylinder head 10 Branch pipe 11 Extension pipe 12 Air supply branch pipe 13 Injector 15 Air supply port 20 Nozzle pipe
Claims (2)
れ給気枝管を介して給気集合管に接続し、各給気枝管に
それぞれガス燃料供給用のインジェクターを設けている
多気筒ガス機関の給気管構造において、 各気筒における給気枝管と給気ポートとの合計容積に対
し、インジェクターから噴出される1回分のガス燃料の
容積が概ね1/2以下となるように、給気枝管の長さを
長くしていることを特徴とする多気筒ガス機関の給気管
構造。An inlet end of a supply port of each cylinder is connected to a supply manifold via a supply branch pipe, and each supply branch pipe is provided with a gas fuel supply injector. In the supply pipe structure of a cylinder gas engine, the volume of gas fuel for one injection from the injector is approximately 以下 or less of the total volume of the supply branch pipe and the supply port in each cylinder. An air supply pipe structure for a multi-cylinder gas engine, wherein the length of the air supply branch pipe is increased.
出される給気の容積領域より、給気下流側の給気枝管部
分にインジェクターを配置していることを特徴とする請
求項1記載の多気筒ガス機関の給気管構造。2. An injector is disposed in a portion of a supply branch pipe downstream of the supply air from a volume area of the supply air blown out from the supply manifold into the supply branch pipe at one time. An air supply pipe structure for a multi-cylinder gas engine according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26545199A JP2001082255A (en) | 1999-09-20 | 1999-09-20 | Air supply pipe structure for multi-cylinder gas engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26545199A JP2001082255A (en) | 1999-09-20 | 1999-09-20 | Air supply pipe structure for multi-cylinder gas engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001082255A true JP2001082255A (en) | 2001-03-27 |
Family
ID=17417353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26545199A Pending JP2001082255A (en) | 1999-09-20 | 1999-09-20 | Air supply pipe structure for multi-cylinder gas engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001082255A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008138565A (en) * | 2006-11-30 | 2008-06-19 | Mitsubishi Heavy Ind Ltd | Fuel gas feeder for gas engine |
-
1999
- 1999-09-20 JP JP26545199A patent/JP2001082255A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008138565A (en) * | 2006-11-30 | 2008-06-19 | Mitsubishi Heavy Ind Ltd | Fuel gas feeder for gas engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4615535B2 (en) | Fuel injection control device | |
EP0691470B1 (en) | Internal combustion engine and method for forming the combustion charge thereof | |
US20080011279A1 (en) | Spark ignition type multi-cylinder engine | |
US10731607B2 (en) | Air intake apparatus for internal combustion engine | |
US4438743A (en) | Internal combustion engine | |
US3461850A (en) | Installation for reducing the noxious exhaust gas emission of internal combustion engines | |
JP2010281333A (en) | Fuel injection control device | |
JP2001132549A (en) | Fuel mixing device for gas engine | |
KR0173355B1 (en) | Intake manifold device of internal combustion engine | |
JP2001082255A (en) | Air supply pipe structure for multi-cylinder gas engine | |
JP4244082B2 (en) | Intake manifold structure | |
JP2000054909A (en) | Cylinder head | |
JPH08232702A (en) | Operationg control device for fuel injection type two cycle engine | |
KR100302105B1 (en) | Fuel supply device and fuel supply method of internal combustion engine | |
US20190128217A1 (en) | Mounting structure of water injection device of internal combustion engine | |
JPH10115269A (en) | Fuel injection device for engine | |
JP3143687B2 (en) | Multi-cylinder engine intake manifold | |
JP2001295712A (en) | Intake system structure of internal combustion engine with EGR device | |
CN107642425A (en) | The fuel supply control system of the cylinder general purpose engine of V-type 2 | |
JPH10252577A (en) | Egr distributing device of internal combustion engine | |
JPH109050A (en) | Direct fuel cylinder injection type spark ignition engine | |
EP0953761A2 (en) | Internal combustion engine with auxiliary intake passage | |
JP3799857B2 (en) | Fuel injection valve injection hole structure | |
JP2510100Y2 (en) | Internal combustion engine intake system | |
JPS60224965A (en) | Intake unit for multi-cylinder engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070925 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071101 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080108 |