[go: up one dir, main page]

JP2001079583A - Excess sludge control method - Google Patents

Excess sludge control method

Info

Publication number
JP2001079583A
JP2001079583A JP25841399A JP25841399A JP2001079583A JP 2001079583 A JP2001079583 A JP 2001079583A JP 25841399 A JP25841399 A JP 25841399A JP 25841399 A JP25841399 A JP 25841399A JP 2001079583 A JP2001079583 A JP 2001079583A
Authority
JP
Japan
Prior art keywords
amount
sludge
sewage
excess
surplus sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25841399A
Other languages
Japanese (ja)
Inventor
Naoki Hara
直樹 原
Shoji Watanabe
昭二 渡辺
Ichiro Enbutsu
伊智朗 圓佛
Fumitomo Kimura
文智 木村
Masakazu Nakanishi
正和 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25841399A priority Critical patent/JP2001079583A/en
Publication of JP2001079583A publication Critical patent/JP2001079583A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably remove the organic matter of effluent by controlling an excess sludge pump according to the preset amount of the amount of excess sludge and controlling the excess sludge so as to increase the same in a time zone where the amount of inflow water is little in an activated sludge process for biologically treating municipal sewage, etc. SOLUTION: The inflow sewage 10 is subjected to settlement and removal of bulky dust, sand, etc., in an initial settling basin 15 and is then introduced to an aeration tank 20 where the sewage is agitated and mixed with the activated sludge withdrawn from a final settling basin 30 by a return sludge pump 60. The liquid mixture composed of the activated sludge and the sewage is introduced to the final settling basin 30 where the activated sludge is gravity settled. The return rate of the amount of the return sludge is set 300 and the amount of the return sludge is computed 310 from the product of the inflow sewage flow rate measured by a flow meter 201 and the return rate. An excess sludge pump 90 is driven at the previously stored withdrawal start time by an excess sludge management means 400 and at this time, the preset amount of the excess sludge is so controlled as to be increased in the time zone when the amount of the inflow sewage is little.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市下水や産業排
水、あるいは水道水原水を生物学的に処理する方法に係
わり、特に、余剰汚泥量を制御することにより流入水の
汚濁物質を安定に除去できる余剰汚泥量制御方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biologically treating municipal sewage, industrial effluent, or tap water raw water, and more particularly to controlling the amount of excess sludge to stably reduce pollutants in influent water. The present invention relates to a method for controlling excess sludge that can be removed.

【0002】[0002]

【従来の技術】下水処理場の活性汚泥プロセスでは、流
入下水の有機物などの汚濁物質を活性汚泥と呼ばれる微
生物に摂取除去させ、沈殿池で微生物を沈降させて上澄
液を放流している。有機物は溶存酸素(DO)による酸
化分解、微生物増殖の有機源として消費などによって除
去されている。活性汚泥は最終沈殿池から引抜かれてエ
アレーションタンクに返送汚泥として供給されている。
一方、エアレーションタンクにおいて増殖した微生物を
系外へ排出するため、活性汚泥の一部は余剰汚泥として
最終沈殿池からプロセス外に引抜かれている。返送汚泥
量、送気量、余剰汚泥量によってエアレーションタンク
内の有機物と微生物のバランスを適切にコントロールし
ないと安定な放流水質を得ることができない。特に、エ
アレーションタンク内の有機物と活性汚泥が適切な割合
で保たれていることが重要である。しかし、汚泥濃度計
の信頼性は低く、かつ、有機物濃度の計測は手分析に依
存しているので、有機物と活性汚泥の比を自動制御する
ことはできない。返送汚泥の汚泥量と濃度の両方を計測
して、エアレーションタンクへの流入汚泥固形物量を制
御する方式も提案されているが、濃度の計測手段には信
頼性がない現状では実現不可能である。そのため、下水
処理場の返送汚泥量、余剰汚泥量の制御は信頼性の高い
流量計測値に基づいて運用されている。
2. Description of the Related Art In an activated sludge process at a sewage treatment plant, microorganisms called activated sludge take up and remove pollutants such as organic matter from inflowing sewage, and sediment the microorganisms in a sedimentation basin to discharge the supernatant. Organic matter has been removed by oxidative decomposition with dissolved oxygen (DO) and consumption as an organic source for the growth of microorganisms. The activated sludge is withdrawn from the final sedimentation basin and supplied to the aeration tank as return sludge.
On the other hand, in order to discharge the microorganisms grown in the aeration tank to the outside of the system, a part of the activated sludge is drawn out of the final sedimentation basin as surplus sludge outside the process. Unless the balance between organic matter and microorganisms in the aeration tank is properly controlled by the amount of returned sludge, the amount of air sent, and the amount of excess sludge, stable effluent quality cannot be obtained. In particular, it is important that the organic matter and the activated sludge in the aeration tank are maintained at an appropriate ratio. However, the reliability of the sludge densitometer is low, and the measurement of the organic matter concentration relies on manual analysis, so that the ratio of organic matter to activated sludge cannot be automatically controlled. A method has been proposed in which both the sludge amount and concentration of returned sludge are measured to control the amount of sludge solids flowing into the aeration tank, but this is not feasible at present because the concentration measurement means is not reliable. . Therefore, the control of the amount of returned sludge and the amount of excess sludge in the sewage treatment plant are operated based on highly reliable flow measurement values.

【0003】下水処理場への流入下水量は人間の生活や
自然現象に左右されており、人為的に制御することはで
きない点に運転の難しさがある。通常、返送汚泥量は流
入下水量に対して一定の比率になるように制御されてい
る。流入下水量に対する返送汚泥量の比を返送率と呼
ぶ。流入下水の流量と水質は人間の生活パターンに依存
し24時間周期で大きな変動を示すので、返送率一定制
御を実施すると返送汚泥量も流入下水量に比例して大き
く変化する。一方、返送汚泥は一旦、最終沈殿池に沈殿
した後に引き抜かれるので、返送汚泥の濃度は最終沈殿
池の構造、掻き寄せ装置、引抜き装置などに依存し、一
定の値は示さない。
[0003] The amount of sewage flowing into a sewage treatment plant depends on human life and natural phenomena, and there is difficulty in operation in that it cannot be controlled artificially. Usually, the amount of returned sludge is controlled so as to have a constant ratio to the amount of inflow sewage. The ratio of the amount of returned sludge to the amount of inflow sewage is called the return rate. Since the flow rate and the water quality of the inflowing sewage depend on human life patterns and show large fluctuations in a 24-hour cycle, the return sludge amount also greatly changes in proportion to the inflowing sewage amount when the return rate constant control is performed. On the other hand, since the returned sludge is once settled in the final sedimentation basin and then withdrawn, the concentration of the returned sludge depends on the structure of the final sedimentation basin, the scraping device, the drawing device and the like, and does not show a constant value.

【0004】余剰汚泥量は一般に流入下水量の1%程度
とされている。余剰汚泥量制御方式にはタイマなどで一
定引抜き量(プリセット量)を断続的に引抜く方式が広
く普及している。
The amount of surplus sludge is generally about 1% of the amount of inflow sewage. As a surplus sludge amount control method, a method of intermittently withdrawing a constant withdrawal amount (preset amount) using a timer or the like is widely used.

【0005】[0005]

【発明が解決しようとする課題】エアレーションタンク
内の活性汚泥濃度(MLSS)は出来るだけ安定に保つことが
望ましい。なぜなら、MLSSの変動は有機物と微生物のバ
ランスを崩すため、有機物除去性能を不安定にし処理水
質を悪化させるからである。また、MLSSの変動によって
生物の呼吸に必要な溶存酸素量も変動するため、常に適
切な溶存酸素を維持するための送気量の制御が複雑にな
ってしまい、送気設備の維持管理にかかるコストが増大
する。従って、MLSSは一定に制御できないまでも、極端
な上昇や下降を抑制し、できるだけ安定に維持すること
が下水処理プラントにおいて非常に重要である。
It is desirable to keep the activated sludge concentration (MLSS) in the aeration tank as stable as possible. This is because fluctuations in MLSS disrupt the balance between organic matter and microorganisms, destabilizing organic matter removal performance and deteriorating treated water quality. In addition, the amount of dissolved oxygen required for respiration of living organisms also fluctuates due to fluctuations in MLSS, which complicates the control of the amount of air supply to always maintain appropriate dissolved oxygen, and requires maintenance of air supply equipment. The cost increases. Therefore, it is very important in a sewage treatment plant to suppress extreme rise and fall and maintain as stable as possible, even if MLSS cannot be controlled to be constant.

【0006】MLSSは返送汚泥量と余剰汚泥量を調節する
ことによってある程度調節可能である。現在一般的にな
っている返送率一定制御の条件では、余剰汚泥量の制御
によってMLSSを調節するしかない。MLSSを一定に維持す
るように余剰汚泥量を調節するには、返送汚泥量と返送
汚泥濃度を把握し、返送汚泥濃度が高いときには余剰汚
泥量を増やし、汚泥濃度が低いときには余剰汚泥量を低
減し、エアレーションタンクに返送される汚泥量を調節
しなければならない。具体的には、返送汚泥濃度に基づ
いて余剰汚泥のプリセット量と引抜き時刻タイマーを適
切に設定することにある。従来より余剰汚泥量のプリセ
ット量とタイマーの設定は、経験的に決定されている。
例えば、1日に発生する余剰汚泥量の総量を想定し、総
量を24分割してプリセット量とし、タイマーを1時間
間隔とする方法である。MLSSのダイナミックな変動に対
応するには返送汚泥濃度の変動を余剰汚泥量制御に反映
しなければならないが、返送汚泥濃度の自動計測値は信
頼性に乏しく、手分析によって1日1回の頻度でしか計
測できない現状では制御は困難である。
The MLSS can be adjusted to some extent by adjusting the amount of returned sludge and the amount of excess sludge. Under the condition of constant return rate control that is now common, the only option is to control the MLSS by controlling the amount of excess sludge. To adjust the amount of excess sludge so that the MLSS is maintained at a constant level, grasp the amount of returned sludge and the concentration of returned sludge, increase the amount of excess sludge when the concentration of returned sludge is high, and reduce the amount of excess sludge when the concentration of sludge is low. And the amount of sludge returned to the aeration tank must be adjusted. Specifically, the present invention is to appropriately set the preset amount of the excess sludge and the extraction time timer based on the returned sludge concentration. Conventionally, the preset amount of the excess sludge amount and the setting of the timer are empirically determined.
For example, there is a method in which the total amount of excess sludge generated in one day is assumed, the total amount is divided into 24, the preset amount is set, and the timer is set to one hour interval. To cope with the dynamic fluctuation of MLSS, the fluctuation of returned sludge concentration must be reflected in the control of excess sludge, but the automatic measurement value of returned sludge concentration is poor in reliability, and the frequency of once a day is calculated by hand analysis. Control is difficult under the current situation where measurement can only be performed by a computer.

【0007】以上述べたように、活性汚泥プロセスの運
用に当たっては、返送汚泥濃度を反映し余剰汚泥量のプ
リセット量やタイマーを適切に管理しなければならない
が、設定の基準や管理については経験的に運用されてい
るのが実状である。ましてや、自動計測値によってMLSS
の変動を安定化させるための制御はなされていない。
As described above, in the operation of the activated sludge process, it is necessary to appropriately control the preset amount and the timer of the excess sludge amount by reflecting the returned sludge concentration. The fact is that it is operated in Even better, MLSS is based on automated measurements.
No control is performed to stabilize the fluctuations of.

【0008】本発明は、上記従来技術に対処してなされ
たもので、その目的とするところは信頼性のある流量計
測値を用いて返送汚泥濃度を予測することで、エアレー
ションタンク内のMLSSを安定にし、放流水の有機物を安
定に除去できる余剰汚泥量制御方法を提供することにあ
る。
The present invention has been made in view of the above-mentioned prior art, and has as its object to predict MLSS in an aeration tank by predicting return sludge concentration using a reliable flow measurement value. An object of the present invention is to provide a surplus sludge amount control method capable of stabilizing and removing organic matter of discharged water stably.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、余剰汚泥量プリセット量と引抜き時刻を
管理する余剰汚泥管理手段と、該管理手段に従い余剰汚
泥ポンプを制御する手段から構成される。
In order to achieve the above object, the present invention is directed to a surplus sludge managing means for managing a preset amount of surplus sludge and a withdrawal time, and a means for controlling a surplus sludge pump in accordance with the managing means. Be composed.

【0010】また、返送汚泥量を計測する手段と、余剰
汚泥量プリセット量と引抜き時刻の管理手段と、該管理
手段に従い余剰汚泥ポンプを制御する手段から構成して
もよい。
Further, it may be constituted by a means for measuring the amount of returned sludge, a means for managing a preset amount of excess sludge and a withdrawal time, and a means for controlling the excess sludge pump according to the management means.

【0011】また、流入下水量の計測手段と返送率一定
制御を実施する手段を設け、余剰汚泥量プリセット量と
引抜き時刻の管理手段と、該管理手段に従い余剰汚泥ポ
ンプを制御する手段から構成してもよい。
Further, there is provided a means for measuring the amount of inflowed sewage and a means for carrying out constant return rate control. The means comprises a means for managing a preset amount of excess sludge and a removal time, and a means for controlling the excess sludge pump in accordance with the management means. You may.

【0012】本発明者らは、流入下水流量の日間変動が
大きい下水処理場において、MLSSが急激に変化するため
処理水質が安定しないという課題に直面し、その原因を
調査したところ、最終沈殿池から引抜かれる汚泥量が少
ないときに引抜き汚泥濃度が高くなるという現象が要因
であった。さらに、流入した活性汚泥を重力沈降させ、
掻き寄せて引き抜く構造を有する沈殿池の場合、引き抜
き量が少ないと汚泥濃度は高くなり、引き抜き量が多い
と汚泥濃度は低くなることを沈殿池モデルの数値解析と
実験データから見出した。返送汚泥濃度は返送汚泥流量
が極端に小さくなる時間帯に非常に高くなり、その影響
でエアレーションタンクのMLSSも高くなることがわか
り、本発明に至った。すなわち、沈殿池から引き抜かれ
る返送汚泥量を計測し、この返送汚泥量が小さくなる時
間帯に余剰汚泥量を多く引き抜く制御を実施すればMLSS
の上昇を抑制し、MLSS変動幅を小さい状態で維持でき
る。
The present inventors faced the problem that the treated water quality was not stable due to rapid change of the MLSS in the sewage treatment plant where the daily fluctuation of the inflow sewage flow rate was large. This is due to the phenomenon that the concentration of the extracted sludge increases when the amount of the sludge extracted from the wastewater is small. Furthermore, the activated sludge that has flowed in is settled by gravity,
In the case of a sedimentation basin with a structure that can be pulled up by pulling, the sludge concentration increases when the extraction amount is small, and the sludge concentration decreases when the extraction amount is large, based on numerical analysis of the sedimentation tank model and experimental data. The return sludge concentration was extremely high during the period when the return sludge flow rate was extremely small, and it was found that the MLSS of the aeration tank also became high due to the effect, leading to the present invention. In other words, the amount of returned sludge extracted from the sedimentation basin is measured, and if the amount of excess sludge is extracted during the period when the amount of returned sludge is small, MLSS
MLSS fluctuation can be kept small.

【0013】返送汚泥量が少なくなる時間帯に余剰汚泥
量を増加させるように、プリセット量設定手段と時刻設
定手段によって余剰汚泥管理手段に余剰汚泥量引抜きス
ケジュールを設定する。余剰汚泥管理手段は設定された
時刻になると余剰汚泥ポンプ制御装置に引抜き開始指令
と余剰汚泥プリセット量を送信する。余剰汚泥ポンプ制
御装置は余剰汚泥ポンプを起動し余剰汚泥プリセット量
分の汚泥を引抜いた後に余剰汚泥ポンプを停止する。
A preset amount setting means and a time setting means set a surplus sludge withdrawal schedule in the surplus sludge management means so as to increase the surplus sludge during a time period in which the amount of returned sludge decreases. When the set time comes, the surplus sludge management means transmits a pull-out start command and a surplus sludge preset amount to the surplus sludge pump control device. The surplus sludge pump control device starts the surplus sludge pump, stops the surplus sludge pump after extracting a predetermined amount of the sludge, and then stops the surplus sludge pump.

【0014】余剰汚泥量引抜きスケジュールは、予め設
定してもよいし、返送汚泥流量の計測値から自動設定し
てもよい。
The excess sludge removal schedule may be set in advance, or may be automatically set from the measured value of the returned sludge flow rate.

【0015】また、返送汚泥量制御が流入下水流量比率
制御の場合は、流入下水流量から余剰汚泥量引抜きスケ
ジュールを自動設定させてもよい。
[0015] When the return sludge amount control is the inflow sewage flow rate ratio control, a schedule for extracting the excess sludge amount from the inflow sewage flow rate may be automatically set.

【0016】余剰汚泥の引抜き量の増減の方法は、余剰
汚泥プリセット量を変更してもよいし、プリセット量は
一定の条件で引き抜き頻度を多くしてもよい。
As a method of increasing or decreasing the amount of excess sludge withdrawn, the preset amount of excess sludge may be changed, or the frequency of withdrawal of the preset amount may be increased under certain conditions.

【0017】[0017]

【発明の実施の形態】以下、本発明の一実施例を図1に
より説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.

【0018】図1は最初沈殿池、エアレーションタン
ク、最終沈殿池からなる下水処理プラントへの一適用例
である。10は流入下水、15は最初沈殿池、20はエ
アレーションタンク、30は最終沈殿池、60は返送汚
泥ポンプ、90は余剰汚泥ポンプ、110は送風用ブロ
ワ、201は流量計である。家庭や工場から排出された
流入下水10は最初沈殿池15で粗大なゴミ、砂などの
異物を沈降除去する。最初沈殿池15から流出した下水
はエアレーションタンク20に導かれる。エアレーショ
ンタンク20には、最終沈殿池30から返送汚泥ポンプ
60にて引抜かれた活性汚泥と称す微生物群である返送
汚泥が汚泥返送管70を介して供給される。
FIG. 1 shows an example of application to a sewage treatment plant including a first settling tank, an aeration tank, and a final settling tank. 10 is an inflow sewage, 15 is a first settling tank, 20 is an aeration tank, 30 is a final settling tank, 60 is a return sludge pump, 90 is an excess sludge pump, 110 is a blower for blowing air, and 201 is a flow meter. The inflow sewage 10 discharged from homes and factories first settles and removes foreign matters such as coarse dust and sand in the sedimentation basin 15. The sewage that first flows out of the sedimentation basin 15 is guided to the aeration tank 20. Returned sludge, which is a group of microorganisms called activated sludge drawn out from the final sedimentation tank 30 by the returned sludge pump 60, is supplied to the aeration tank 20 through a sludge return pipe 70.

【0019】流入下水と返送汚泥はエアレーションタン
ク20で撹拌混合される。エアレーションタンク20の
底部には散気装置40が設置されており、ブロワ110
から空気管130を介して送気された空気が散気装置4
0によってエアレーションタンク20内に散気し、エア
レーションタンク20内の下水と活性汚泥からなる混合
液を撹拌するとともに酸素を供給する。エアレーション
タンク20内に溶け込んだ溶存酸素は溶存酸素計202
にて計測される。返送汚泥すなわち活性汚泥は、微生物
の凝集した粒径0.1〜1.0mm前後の塊(フロック)で、
数十種の微生物を含む。エアレーションタンク20内の
混合液の汚濁物質は、酸素供給により活発化した活性汚
泥の働きにより処理される。例えば、活性汚泥は有機物
を吸着し、供給された空気による溶存酸素を吸収して有
機物を酸化分解して炭酸ガスと水にする。また、アンモ
ニア性窒素(NH4-N)は硝酸性(NO3-N)あるいは亜硝酸
性窒素(NO2-N)に酸化される。なお、これら有機物、
アンモニア性窒素などの汚濁物質の一部は活性汚泥の増
殖にも利用される。活性汚泥と下水の混合液は最終沈殿
池30に導かれ、ここで活性汚泥が重力沈降する。最終
沈殿池30の上澄液は通常塩素殺菌処理した後に、河川
や海に放流される。一方、最終沈殿池30内に沈殿した
高濃度の活性汚泥は、掻き寄せ機31により最終沈殿池
の入り口底部に集められ、返送汚泥ポンプ60や余剰汚
泥ポンプ90によって引抜かれる。引抜かれた汚泥の大
部分は汚泥返送ポンプ60により返送汚泥としてエアレ
ーションタンク20に返送され、微生物増殖分に相当す
る一部の活性汚泥は汚泥排出管80から余剰汚泥として
余剰汚泥ポンプ90で系外に排出し、脱水や焼却等の汚
泥処理工程を経て処理される。この活性汚泥プロセスに
おいて最終沈殿池30からの放流水は、放流水域の溶存
酸素を消費することがなく、また汚染を進行させない水
質であることを目的としており、この水質確保のために
は有機汚濁物質を除去することが重要である。
The inflow sewage and the returned sludge are stirred and mixed in the aeration tank 20. An air diffuser 40 is provided at the bottom of the aeration tank 20, and a blower 110 is provided.
From the air through the air pipe 130
The air is diffused into the aeration tank 20 by 0, agitating the mixed liquid composed of sewage and activated sludge in the aeration tank 20 and supplying oxygen. The dissolved oxygen dissolved in the aeration tank 20 is measured by a dissolved oxygen meter 202.
It is measured by. Returned sludge, that is, activated sludge, is a lump (floc) having a particle size of about 0.1 to 1.0 mm in which microorganisms are aggregated.
Contains dozens of microorganisms. The pollutants of the mixed liquid in the aeration tank 20 are treated by activated sludge activated by oxygen supply. For example, activated sludge adsorbs organic matter, absorbs dissolved oxygen from the supplied air, and oxidizes and decomposes the organic matter to carbon dioxide and water. In addition, ammonia nitrogen (NH4-N) is oxidized to nitrate (NO3-N) or nitrite nitrogen (NO2-N). In addition, these organic substances,
Some of the pollutants such as ammonia nitrogen are also used for growing activated sludge. The mixture of the activated sludge and the sewage is guided to the final sedimentation basin 30, where the activated sludge settles by gravity. The supernatant of the final sedimentation basin 30 is usually subjected to chlorine sterilization treatment and then discharged into a river or sea. On the other hand, high-concentration activated sludge settled in the final sedimentation basin 30 is collected at the bottom of the entrance of the final sedimentation basin by the scraper 31, and is pulled out by the return sludge pump 60 or the excess sludge pump 90. Most of the extracted sludge is returned to the aeration tank 20 as return sludge by the sludge return pump 60, and a part of the activated sludge corresponding to the microbial growth is discharged from the sludge discharge pipe 80 as excess sludge by the excess sludge pump 90 outside the system. And treated through sludge treatment processes such as dehydration and incineration. In this activated sludge process, the effluent from the final sedimentation basin 30 is intended to have a water quality that does not consume dissolved oxygen in the effluent water area and does not cause pollution. It is important to remove the material.

【0020】返送率設定手段300は、流入下水量に対
する返送汚泥量の比率(返送率)を設定する。返送汚泥
量演算手段310は例えば流量計200にて計測した流
入下水流量と返送率の積から返送汚泥量を演算する。返
送汚泥ポンプ制御装置320は返送汚泥量演算手段31
0から出力された返送汚泥量を最終沈殿池30から引抜
くように返送汚泥ポンプ60の台数や回転数を制御す
る。エアレーションタンク20への流入下水量と返送汚
泥量の比率は常に設定した返送率一定に制御される。
The return rate setting means 300 sets the ratio of the amount of returned sludge to the amount of inflow sewage (return rate). The returned sludge amount calculating means 310 calculates the returned sludge amount from the product of the inflow sewage flow rate measured by the flow meter 200 and the return rate, for example. The returned sludge pump control device 320 is provided with the returned sludge amount calculating means 31.
The number and the number of rotations of the returned sludge pump 60 are controlled so that the returned sludge amount output from 0 is withdrawn from the final sedimentation basin 30. The ratio between the amount of sewage flowing into the aeration tank 20 and the amount of returned sludge is constantly controlled to the set return rate.

【0021】余剰汚泥管理手段400には余剰汚泥の引
抜きスケジュールとして余剰汚泥引抜き開始時刻と引抜
き量(プリセット量)が記憶されている。時刻設定手段
401は余剰汚泥引抜き開始時刻を、プリセット量設定
手段402は引抜き開始時刻に対応したプリセット量を
余剰汚泥管理手段400に設定できる。余剰汚泥管理手
段400は引抜き開始時刻になると余剰汚泥ポンプ制御
装置410に余剰汚泥ポンプ90を起動指令を送る。余
剰汚泥ポンプ制御装置410は、最終沈殿池30から余
剰汚泥プリセット量分の汚泥を引抜いた後に余剰汚泥ポ
ンプ90を停止する。
The surplus sludge management means 400 stores a surplus sludge withdrawal start time and a withdrawal amount (preset amount) as a surplus sludge withdrawal schedule. The time setting unit 401 can set the surplus sludge withdrawal start time and the preset amount setting unit 402 can set the preset amount corresponding to the withdrawal start time with the surplus sludge management unit 400. The surplus sludge management means 400 sends a start command of the surplus sludge pump 90 to the surplus sludge pump control device 410 at the time of starting the drawing. The surplus sludge pump control device 410 stops the surplus sludge pump 90 after extracting a predetermined amount of surplus sludge from the final sedimentation basin 30.

【0022】図2は流入下水量の変動例を示す図であ
る。図2に示すように、流入下水の流量と水質は人間の
生活パターンに依存し24時間周期で大きな変動を示
す。通常、都市下水を対象とした下水処理場の流入流量
は、3時から6時頃に低下のピークになり、家庭からの
排水が増える10時頃と21時頃に上昇のピークが訪れ
る。 流入流量の最大値は、最低値の比は数倍に及ぶこ
ともある。
FIG. 2 is a diagram showing an example of fluctuation of the amount of inflow sewage. As shown in FIG. 2, the flow rate and water quality of the inflowing sewage vary greatly in a 24-hour cycle depending on human life patterns. Normally, the inflow flow rate of the sewage treatment plant for municipal sewage reaches a peak at around 3:00 to 6:00, and peaks at around 10:00 and around 21:00 when wastewater from homes increases. The ratio of the maximum value of the inflow rate to the minimum value may be several times.

【0023】図3はエアレーションに流入するMLSSの変
動を示す図である。図3のMLSS500は、返送汚泥量演
算手段310で返送率一定制御とし、余剰汚泥管理手段
400の設定は、引抜き開始時刻を0:00から23:
00まで1時間毎の24回/日、余剰汚泥プリセット量
を24回とも同じ量とした場合の変動例を示している。
返送汚泥量は流入下水量の一定比率で最終沈殿池から
引抜かれるので、流入下水量が最低の3時から6時の時
間帯に最低になる。最終沈殿池30からの引抜き量が小
さいと沈殿している高濃度の汚泥を引抜くため、返送汚
泥濃度は非常に高くなり、その結果、流入下水量の小さ
い3時から6時にかけて、エアレーションタンク20入
口におけるMLSS500も高い値を示している。一方、図
3のMLSS501は、本発明により余剰汚泥量を制御した
場合の変動を示す。図3のMLSS501は返送汚泥量演算
手段310で返送率一定制御とし、余剰汚泥管理手段4
00の設定は、引抜き開始時刻を0:00から23:0
0まで1時間毎の24回/日、余剰汚泥プリセット量は
3:00から6:00にかけて他の時間帯よりも高く設
定した場合のMLSS変動を示している。返送汚泥量の少な
い3時から6時の時間帯でもMLSSの上昇を抑制でき、ML
SSを1日を通じて変動幅を小さく維持できている。 図
4に余剰汚泥管理手段400の実施例を示す。図4は返
送率一定制御で運用されている下水処理プラントにおい
て、余剰汚泥管理手段400に設定されている余剰汚泥
スケジュールの一実施例を示す。引抜き開始時刻は時刻
設定手段401によって、また、余剰汚泥プリセット量
はプリセット量設定手段402によって設定される。流
入下水流量が低くなる3時から6時の余剰汚泥流量を最
大40まで増加させ、その他の時間は10一定としてい
る。このように流入下水流量の変動に対応して余剰汚泥
プロセット量を変化させている。
FIG. 3 is a diagram showing the fluctuation of the MLSS flowing into the aeration. In the MLSS 500 of FIG. 3, the return sludge amount calculation means 310 performs the return rate constant control, and the setting of the surplus sludge management means 400 sets the pulling start time from 0:00 to 23:
An example of variation when the excess sludge preset amount is set to the same amount for 24 times is shown 24 times / day every hour until 00.
The amount of returned sludge is withdrawn from the final sedimentation basin at a constant ratio of the amount of inflow sewage, so that the amount of inflow sewage becomes the lowest during the minimum time of 3:00 to 6:00. If the withdrawal amount from the final sedimentation basin 30 is small, the sludge with a high concentration that has settled out is withdrawn, so that the concentration of returned sludge becomes very high. The MLSS 500 at the entrance 20 also shows a high value. On the other hand, the MLSS 501 in FIG. 3 shows the fluctuation when the amount of excess sludge is controlled according to the present invention. In the MLSS 501 of FIG. 3, the return sludge amount calculation means 310 performs return rate constant control, and the excess sludge management means 4
The setting of 00 sets the extraction start time from 0:00 to 23:00.
MLSS fluctuations when the excess sludge preset amount is set higher than other time zones from 3:00 to 6:00 from 24 times / day every hour until 0. The MLSS rise can be suppressed even during the period of 3 to 6 o'clock when the amount of returned sludge is small.
SS has kept the fluctuation range small throughout the day. FIG. 4 shows an embodiment of the surplus sludge management means 400. FIG. 4 shows an embodiment of a surplus sludge schedule set in the surplus sludge management means 400 in a sewage treatment plant operated under constant return rate control. The drawing start time is set by the time setting means 401, and the surplus sludge preset amount is set by the preset amount setting means 402. The excess sludge flow from 3 o'clock to 6 o'clock when the inflow sewage flow becomes low is increased to a maximum of 40, and the remaining time is kept at 10 constant. As described above, the excess sludge preset amount is changed in response to the fluctuation of the inflow sewage flow rate.

【0024】図5に最終沈殿池30から引抜かれる汚泥
量と濃度の関係の一例を示す。最終沈殿池30からの引
抜き量には汚泥と処理水とが混合している。引抜き量が
小さいと沈殿している高濃度の汚泥の割合が大きいた
め、返送汚泥濃度は高くなる。
FIG. 5 shows an example of the relationship between the amount of sludge extracted from the final sedimentation tank 30 and the concentration. Sludge and treated water are mixed in the amount withdrawn from the final sedimentation basin 30. When the amount of withdrawal is small, the ratio of the sludge of high concentration that has settled is large, and therefore, the concentration of returned sludge is high.

【0025】図6は下水処理プラントへの一適用例であ
る。202は返送汚泥量を計測する流量計である。余剰
汚泥管理手段400は、流量計202からの返送汚泥流
量データに基づいて、予め設定してある引抜き開始時刻
や余剰汚泥プリセット量を変更する。これによって返送
汚泥流量パターンが変化しても、余剰汚泥引抜きスケジ
ュールを自動的に修正できる。
FIG. 6 shows an example of application to a sewage treatment plant. 202 is a flow meter for measuring the amount of returned sludge. The surplus sludge management means 400 changes a preset pulling start time and a preset surplus sludge amount based on the returned sludge flow rate data from the flow meter 202. Thus, even if the return sludge flow rate pattern changes, the excess sludge withdrawal schedule can be automatically corrected.

【0026】[0026]

【発明の効果】本発明によればエアレーションタンク内
のMLSSの変動幅を小さくできるので、処理水質を安定に
維持できる効果がある。
According to the present invention, since the fluctuation range of the MLSS in the aeration tank can be reduced, there is an effect that the quality of treated water can be maintained stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す下水処理プラントの概
略構成図。
FIG. 1 is a schematic configuration diagram of a sewage treatment plant showing one embodiment of the present invention.

【図2】流入下水量の変動を示す図。FIG. 2 is a diagram showing a change in the amount of inflow sewage.

【図3】エアレーションに流入するMLSSの変動示す図。FIG. 3 is a diagram showing a change in MLSS flowing into aeration.

【図4】余剰汚泥管理手段の一実施例を示す図。FIG. 4 is a diagram showing an embodiment of surplus sludge management means.

【図5】返送汚泥量と濃度の関係を示す図。FIG. 5 is a diagram showing the relationship between the amount of returned sludge and the concentration.

【図6】本発明の一実施例を示す下水処理プラントの概
略構成図。
FIG. 6 is a schematic configuration diagram of a sewage treatment plant showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…流入下水、15…最初沈殿池、20…エアレーシ
ョンタンク、30…最終沈殿池、31…掻き寄せ機、4
0…散気装置、60…返送汚泥ポンプ、70…汚泥返送
管、80…汚泥排出管、90…余剰汚泥ポンプ、110
…ブロワ、130…空気管、120…風量調節弁、20
1…流量計、202…溶存酸素計、300…返送率設定
手段、310…返送汚泥量演算手段、320…返送汚泥
ポンプ制御手段、400…余剰汚泥管理手段、401…
時刻設定手段、402…プリセット量設定手段、410
…余剰汚泥ポンプ制御手段。
10 ... inflow sewage, 15 ... first sedimentation basin, 20 ... aeration tank, 30 ... final sedimentation basin, 31 ... scraper, 4
0: diffuser, 60: return sludge pump, 70: sludge return pipe, 80: sludge discharge pipe, 90: excess sludge pump, 110
... blower, 130 ... air pipe, 120 ... air volume control valve, 20
DESCRIPTION OF SYMBOLS 1 ... Flow meter, 202 ... Dissolved oxygen meter, 300 ... Return rate setting means, 310 ... Return sludge amount calculation means, 320 ... Return sludge pump control means, 400 ... Surplus sludge management means, 401 ...
Time setting means, 402... Preset amount setting means, 410
... Excess sludge pump control means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 圓佛 伊智朗 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 木村 文智 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか事業所内 (72)発明者 中西 正和 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか事業所内 Fターム(参考) 4D028 BC18 BD16 CA11 CA12 CB02 CB03 CB08 CC01 CC07 CC12 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ichiro Enbutsu 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Fumichi Kimura 5-chome, Omika-cho, Hitachi City, Ibaraki Prefecture No. 2 in Hitachi, Ltd. Omika Works (72) Inventor Masakazu Nakanishi 5-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi, Ltd. Omika Works F-term (reference) 4D028 BC18 BD16 CA11 CA12 CB02 CB03 CB08 CC01 CC07 CC12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 生物学的水処理プロセスにおいて、余剰
汚泥量プリセット量と引抜き時刻を管理する余剰汚泥管
理手段と、該管理手段からのプリセット量に従い余剰汚
泥ポンプを制御する手段を具備し、前記余剰汚泥量管理
手段に設定する余剰汚泥プリセット量は、流入水量の少
ない時間帯に増加させることを特徴とする余剰汚泥量制
御方法。
1. A biological water treatment process comprising: a surplus sludge managing means for managing a preset amount of surplus sludge and a withdrawal time; and a means for controlling a surplus sludge pump in accordance with a preset amount from the managing means. A surplus sludge amount control method characterized in that the surplus sludge preset amount set in the surplus sludge amount management means is increased during a time period when the amount of inflow water is small.
【請求項2】 生物学的水処理プロセスにおいて、余剰
汚泥量プリセット量と引抜き時刻を管理する余剰汚泥管
理手段と、該管理手段からのプリセット量に従い余剰汚
泥ポンプを制御する手段を具備し、前記余剰汚泥量管理
手段に設定する引抜き頻度は、流入水量の少ない時間帯
に増加させることを特徴とする余剰汚泥量制御方法。
2. A biological water treatment process comprising: a surplus sludge managing means for managing a preset amount of surplus sludge and a withdrawal time; and a means for controlling a surplus sludge pump in accordance with a preset amount from the managing means. A surplus sludge amount control method, wherein the frequency of withdrawal set in the surplus sludge amount management means is increased during a time period when the amount of inflow water is small.
【請求項3】 生物学的水処理プロセスにおいて、返送
汚泥量を計測する手段と、余剰汚泥量プリセット量と引
抜き時刻の管理手段と、該管理手段からのプリセット量
に従い余剰汚泥ポンプを制御する手段を具備し、前記余
剰汚泥量プリセット量の管理手段は、返送汚泥量が少な
い時間帯に余剰汚泥量プリセット量を増加させることを
特徴とする余剰汚泥量制御方法。
3. A means for measuring the amount of returned sludge in the biological water treatment process, a means for managing a preset amount of excess sludge and a withdrawal time, and a means for controlling an excess sludge pump according to the preset amount from the management means. Wherein the means for managing the preset amount of excess sludge increases the preset amount of excess sludge during a time period when the amount of returned sludge is small.
【請求項4】 請求項3において、前記余剰汚泥量プリ
セット量の管理手段は、返送汚泥量が少ない時間帯に余
剰汚泥量引抜き頻度を増加させることを特徴とする余剰
汚泥量制御方法。
4. The surplus sludge amount control method according to claim 3, wherein the surplus sludge amount preset amount management means increases the surplus sludge amount withdrawal frequency during a time period when the returned sludge amount is small.
【請求項5】 生物学的水処理プロセスにおいて、流入
下水量の計測手段と、余剰汚泥量プリセット量と引抜き
時刻の管理手段と、該管理手段からのプリセット量に従
い余剰汚泥ポンプを制御する手段を具備し、前記余剰汚
泥量プリセット量の管理手段は、流入下水量が少ない時
間帯に余剰汚泥量プリセット量を増加させることを特徴
とする余剰汚泥量制御方法。
5. A biological water treatment process, comprising: means for measuring the amount of inflow sewage; means for managing a preset amount of excess sludge and withdrawal time; and means for controlling the excess sludge pump in accordance with the preset amount from the management means. A surplus sludge amount control method, wherein the surplus sludge amount preset amount managing means increases the excess sludge amount preset amount during a time period when the inflow sewage amount is small.
【請求項6】 請求項5において、前記余剰汚泥量プリ
セット量の管理手段は、流入下水量が少ない時間帯に余
剰汚泥量引抜き頻度を増加させることを特徴とする余剰
汚泥量制御方法。
6. The surplus sludge amount control method according to claim 5, wherein said surplus sludge amount preset amount management means increases the surplus sludge amount withdrawal frequency during a time period when the inflow sewage amount is small.
JP25841399A 1999-09-13 1999-09-13 Excess sludge control method Pending JP2001079583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25841399A JP2001079583A (en) 1999-09-13 1999-09-13 Excess sludge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25841399A JP2001079583A (en) 1999-09-13 1999-09-13 Excess sludge control method

Publications (1)

Publication Number Publication Date
JP2001079583A true JP2001079583A (en) 2001-03-27

Family

ID=17319893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25841399A Pending JP2001079583A (en) 1999-09-13 1999-09-13 Excess sludge control method

Country Status (1)

Country Link
JP (1) JP2001079583A (en)

Similar Documents

Publication Publication Date Title
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
KR101125165B1 (en) Method and installation for the biological treatment of water using activated sludge and comprising aeration regulation
JP4334317B2 (en) Sewage treatment system
KR100945458B1 (en) Nitrogen and phosphorus removal rate device in sewage / wastewater treatment plant
Sorensen et al. Optimization of a nitrogen‐removing biological wastewater treatment plant using on‐line measurements
BR112019024532B1 (en) Process for controlling the rate of aeration during the aerobic phase of a wastewater treatment process and process for treating wastewater
JP2002126779A (en) Sludge treatment method and apparatus used therefor
CN110540293A (en) Sewage treatment device and treatment method suitable for large fluctuations in water volume
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP3384951B2 (en) Biological water treatment method and equipment
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
JP2001079583A (en) Excess sludge control method
JPH0938683A (en) Biological water treatment equipment
JP4900556B2 (en) Wastewater treatment plant operation management method
JP2759308B2 (en) Method and apparatus for treating organic wastewater
JP2003266096A (en) Wastewater treatment apparatus
Zubir et al. Effect of aeration rate on specific oxygen uptake rate (SOUR) in treating chemical oxygen demand (COD) in domestic wastewater
EP0070592B1 (en) Process for the biological purification of waste water
JP3303475B2 (en) Operation control method of activated sludge circulation method
Kayser Activated sludge process
JP2006007132A (en) Apparatus for treating sewage
JP3708752B2 (en) Nitrate nitrogen biological treatment method and apparatus
AU731879B2 (en) Method for controlling and managing the biomass store of biological installations treating waste water
JP6883992B2 (en) Wastewater treatment method and wastewater treatment equipment