JP2001076706A - Polymer electrolyte battery - Google Patents
Polymer electrolyte batteryInfo
- Publication number
- JP2001076706A JP2001076706A JP25371799A JP25371799A JP2001076706A JP 2001076706 A JP2001076706 A JP 2001076706A JP 25371799 A JP25371799 A JP 25371799A JP 25371799 A JP25371799 A JP 25371799A JP 2001076706 A JP2001076706 A JP 2001076706A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- aluminum
- polymer electrolyte
- negative electrode
- clad material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
(57)【要約】
【課題】 正極のリード部と正極端子との接続強度を高
め、電池性能の信頼性の高いポリマー電解質電池を提供
する。
【解決手段】 アルミニウム製の集電体の少なくとも一
方の面に正極合剤層を形成してなる正極と銅製の集電体
の少なくとも一方の面に負極合剤層を形成してなる負極
とをポリマー電解質を介して積層し、その正極、負極お
よびポリマー電解質からなる電極群を外装材で密封して
なるポリマー電解質電池において、正極端子として、ア
ルミニウムとニッケルまたはステンレス鋼とのクラッド
材であって、かつ上記正極のアルミニウム製のリード部
の厚さの2倍以上の厚さを有するクラッド材を用い、上
記正極端子の一方の端部のアルミニウム部分を正極のリ
ード部と接続し、正極端子の他方の端部を外装材の封止
部分より外側に引き出してポリマー電解質電池を構成す
る。
(57) [Problem] To provide a polymer electrolyte battery having high connection performance between a lead portion of a positive electrode and a positive electrode terminal and having high reliability of battery performance. SOLUTION: A positive electrode having a positive electrode mixture layer formed on at least one surface of an aluminum current collector and a negative electrode having a negative electrode mixture layer formed on at least one surface of a copper current collector are provided. Laminated via a polymer electrolyte, the positive electrode, a negative electrode and a polymer electrolyte battery obtained by sealing an electrode group consisting of the polymer electrolyte with an exterior material, as a positive electrode terminal, a clad material of aluminum and nickel or stainless steel, And, using a clad material having a thickness of at least twice the thickness of the aluminum lead portion of the positive electrode, the aluminum portion at one end of the positive electrode terminal is connected to the lead portion of the positive electrode, and the other of the positive electrode terminal is connected. Is pulled out from the sealing portion of the exterior material to form a polymer electrolyte battery.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポリマー電解質電
池に関し、さらに詳しくは、シート状の正極とシート状
の負極とをポリマー電解質を介して積層した電極群を有
し、特にパソコン、携帯電話などの携帯用機器などの電
源として使用するのに適したポリマー電解質電池に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte battery, and more particularly, to a polymer electrolyte battery having an electrode group in which a sheet-shaped positive electrode and a sheet-shaped negative electrode are laminated with a polymer electrolyte interposed therebetween. And a polymer electrolyte battery suitable for use as a power source for portable equipment.
【0002】[0002]
【従来の技術】ポリマー電解質電池では、電解質をシー
ト状にすることができ、そのシート状の電解質を用いる
ことによって、A4版、B5版などの大面積でしかも薄
形の電池の作製が可能になり、各種薄形製品への適用が
可能になって、電池の使用範囲が大きく広がっている。
このポリマー電解質を用いた電池は、耐漏液性を含めた
安全性、貯蔵性が優れており、しかも薄く、フレキシブ
ルであることから、機器の形状に合わせた電池を設計で
きるという、今までの電池にない特徴を持っている。2. Description of the Related Art In a polymer electrolyte battery, the electrolyte can be formed into a sheet. By using the sheet electrolyte, a battery having a large area and a thin shape such as an A4 plate or a B5 plate can be manufactured. As a result, application to various thin products has become possible, and the range of use of batteries has been greatly expanded.
Batteries using this polymer electrolyte have excellent safety and storage properties, including leakage resistance, and are thin and flexible, so batteries can be designed according to the shape of equipment. Has features not found in
【0003】このポリマー電解質電池は、通常、アルミ
ニウムフィルムを芯材にしたラミネートフィルムを外装
体に用い、薄いシート状の電極とシート状のポリマー電
解質層とを積層し、それを上記ラミネートフィルムから
なる外装材で外装して密封することによって、薄形電池
に仕上げられる。[0003] This polymer electrolyte battery usually uses a laminate film having an aluminum film as a core material as an outer package, laminates a thin sheet-like electrode and a sheet-like polymer electrolyte layer, and forms the laminate with the above-mentioned laminate film. A thin battery can be completed by sealing with an exterior material.
【0004】このポリマー電解質電池では、電極を薄形
にするため、通常、金属箔を集電体に用いていて、正極
の集電体にはアルミニウム箔を用い、負極の集電体には
銅箔を用いている。そして、電池の外部端子、つまり、
電池使用機器との接続に用いる正極端子や負極端子とし
ては、電池使用機器との接続の容易さなどから、通常、
ニッケルの箔またはリボンが用いられている。In this polymer electrolyte battery, in order to make the electrodes thin, a metal foil is usually used as a current collector, an aluminum foil is used as a positive electrode current collector, and a copper is used as a negative electrode current collector. Uses foil. And the external terminals of the battery,
As the positive terminal and the negative terminal used for connection with the battery-powered device, usually, because of the ease of connection with the battery-powered device, etc.
Nickel foil or ribbon is used.
【0005】これら電極と外部端子との電気的接続は、
通常、正極側では正極作製時にアルミニウム箔の一部に
正極合剤層を形成せずにアルミニウム箔の露出部を残
し、そこを正極端子との接続のためのリード部にし、負
極側では負極作製時に銅箔の一部に負極合剤層を形成せ
ずに銅箔の露出部を残し、そこを負極端子との接続のた
めのリード部にしている。The electrical connection between these electrodes and external terminals is
Usually, on the positive electrode side, an exposed portion of the aluminum foil is left without forming a positive electrode mixture layer on a part of the aluminum foil during the production of the positive electrode, and this is used as a lead portion for connection with the positive electrode terminal. Occasionally, an exposed portion of the copper foil is left without forming a negative electrode mixture layer on a part of the copper foil, and this is used as a lead portion for connection with a negative electrode terminal.
【0006】しかしながら、上記アルミニウム製のリー
ド部や銅製のリード部は厚みが薄いこともあって強度が
低く、また、それらと正極端子や負極端子との接続部分
の強度も低いという問題があった。However, the aluminum lead and the copper lead have a low strength due to their small thickness, and also have a problem that the strength of the connection between them and the positive electrode terminal or the negative electrode terminal is low. .
【0007】すなわち、それらと正極端子や負極端子と
の接続は、通常、抵抗溶接、超音波溶接などで行われて
いるが、異種金属間の溶接になるため、いずれも、その
溶接強度が低く、特に正極側におけるアルミニウムとニ
ッケルとの溶接は、非常に難しく、その溶接強度が非常
に低いという問題があった。That is, the connection between the positive electrode terminal and the negative electrode terminal is usually performed by resistance welding, ultrasonic welding, or the like. However, since welding is performed between dissimilar metals, their welding strength is low. In particular, welding of aluminum and nickel on the positive electrode side is very difficult, and there is a problem that the welding strength is very low.
【0008】また、電池使用機器から高電圧または高容
量が要求される場合、このポリマー電解質電池では、電
極やポリマー電解質を薄いシート状にすることができる
という特徴を生かしつつ、複数枚のシート状の正極と複
数枚のシート状の負極とをそれぞれの間にポリマー電解
質を介在させて積層して多層構造の積層電極群とし、そ
れらの電極を直列または並列に接続することによって、
電池使用機器が要求する高電圧または高容量に対応でき
るようにしてきた。Further, when a high voltage or a high capacity is demanded from a battery-using device, this polymer electrolyte battery takes advantage of the feature that the electrodes and the polymer electrolyte can be made into a thin sheet shape while utilizing a plurality of sheet shapes. By stacking a positive electrode and a plurality of sheet-shaped negative electrodes with a polymer electrolyte interposed therebetween to form a multilayer electrode group having a multilayer structure, and connecting these electrodes in series or in parallel,
It has become possible to cope with high voltage or high capacity required by battery-powered equipment.
【0009】しかしながら、上記のような多層構造の積
層電極群を有する場合には、その多層構造の積層電極群
を構成する複数枚の正極のアルミニウム製のリード部や
複数枚の負極の銅製のリード部を積層して正極端子や負
極端子と接続する必要があり、その接続がさらに難しく
なるという問題があり、特に正極側では、上記のように
アルミニウムとニッケルとの溶接が非常に難しく、溶接
強度が低いことに加えて、アルミニウムとニッケルとで
はその間に電解液が介在すると局部電池を形成してアル
ミニウムの腐食が生じるため、その接続を外装材の封止
部分のところで行わなければならず、正極のリード部が
複数枚であって、厚みが厚くなることもあり、その接続
がさらに困難になるという問題があった。However, when the above-mentioned multilayer electrode group having a multilayer structure is provided, a plurality of positive electrode aluminum leads and a plurality of negative electrode copper leads constituting the multilayer electrode group are provided. It is necessary to laminate the parts and connect them to the positive terminal and the negative terminal, and there is a problem that the connection becomes more difficult. Especially on the positive electrode side, welding of aluminum and nickel is extremely difficult as described above, In addition to the fact that the electrolyte is interposed between aluminum and nickel, a local battery is formed and corrosion of aluminum occurs when aluminum and nickel are interposed therebetween. However, there is a problem that the thickness of the lead portion may be increased due to a plurality of lead portions, and the connection becomes more difficult.
【0010】そのため、上記正極のリード部の積層体を
アルミニウム製のリード体の一方の端部に接続し、その
リード体の他方の端部を外装材の封止部分のところで外
部端子と接続することが提案されているが、溶接回数が
増える上に、電池の実効内容積を減少させるという問題
があった。[0010] Therefore, the laminated body of the lead portion of the positive electrode is connected to one end of an aluminum lead body, and the other end of the lead body is connected to an external terminal at a sealing portion of the exterior material. However, there has been a problem that the number of times of welding increases and the effective internal volume of the battery decreases.
【0011】[0011]
【発明が解決しようとする課題】本発明は、上記のよう
な従来技術における問題点を解決し、特にポリマー電解
質電池における正極のリード部と正極端子との接続強度
を高め、電池性能の信頼性の高いポリマー電解質電池を
提供することを目的とする。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and in particular, increases the connection strength between the positive electrode lead portion and the positive electrode terminal in a polymer electrolyte battery to improve the reliability of battery performance. It is an object of the present invention to provide a polymer electrolyte battery having a high density.
【0012】[0012]
【課題を解決するための手段】本発明は、アルミニウム
製の集電体の少なくとも一方の面に正極合剤層を形成し
てなる正極と銅製の集電体の少なくとも一方の面に負極
合剤層を形成してなる負極とをポリマー電解質を介して
積層し、その正極、負極およびポリマー電解質からなる
電極群を外装材で密封してなるポリマー電解質電池にお
いて、正極端子として、アルミニウムとニッケルまたは
ステンレス鋼とのクラッド材であって、かつ上記正極の
アルミニウム製のリード部の厚さの2倍以上の厚さを有
するクラッド材の一方の端部のアルミニウム部分を上記
正極のリード部と接続し、上記正極端子を構成するクラ
ッド材の他方の端部を外装材の封止部分より外部側に引
き出すことによって、上記課題を解決したものである。SUMMARY OF THE INVENTION The present invention provides a positive electrode comprising a positive electrode mixture layer formed on at least one surface of an aluminum current collector and a negative electrode mixture on at least one surface of a copper current collector. In a polymer electrolyte battery in which a negative electrode formed with a layer is laminated via a polymer electrolyte, and the positive electrode, the negative electrode, and an electrode group composed of the polymer electrolyte are sealed with an exterior material, aluminum and nickel or stainless steel are used as a positive electrode terminal. A clad material with steel, and an aluminum portion at one end of the clad material having a thickness of at least twice the thickness of the aluminum lead portion of the positive electrode is connected to the lead portion of the positive electrode, The object has been achieved by pulling out the other end of the clad material constituting the positive electrode terminal from the sealing portion of the exterior material to the outside.
【0013】すなわち、上記の構成にすることにより、
正極のリード部と正極端子との接続をアルミニウム製の
リード部と正極端子を構成するクラッド材のアルミニウ
ム部分とのアルミニウム同士で行うことになるので、そ
の接続強度を高めることができ、電池に落下、震動など
の機械的力が加わっても接続部分の破損が抑制され、安
定した電池性能を得ることができ、電池性能の信頼性が
高いポリマー電解質電池を得ることができる。That is, by adopting the above configuration,
Since the connection between the lead portion of the positive electrode and the positive electrode terminal is made by aluminum between the aluminum lead portion and the aluminum portion of the clad material constituting the positive electrode terminal, the connection strength can be increased and the battery can be dropped. Even if a mechanical force such as vibration is applied, breakage of the connection portion is suppressed, stable battery performance can be obtained, and a polymer electrolyte battery having high reliability in battery performance can be obtained.
【0014】[0014]
【発明の実施の形態】本発明において、正極の集電体と
しては、アルミニウム製の箔、パンチドメタル、網、エ
キスパンドメタルなどを用い得るが、通常、アルミニウ
ム箔が用いられる。この正極の集電体は、正極の厚みを
薄くする関係上、厚みが20μm以下のものが好まし
く、本発明では、そのような厚みの薄いものであって
も、その露出部で構成されるリード部が電池外部に出る
ことがないので、破損するおそれがない。ただし、あま
りにも薄すぎると、正極の作製にあたって、正極合剤含
有ペーストを塗布した際に皺が発生したり、引っ張りに
より破れが生じるおそれがあるので、その厚みは上記の
ように20μm以下であって10μm以上が好ましい。
なお、本明細書においては、主として正極について説明
するが、負極についても考え方は同じである。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as a current collector of a positive electrode, aluminum foil, punched metal, mesh, expanded metal, and the like can be used. Usually, aluminum foil is used. The current collector of the positive electrode preferably has a thickness of 20 μm or less in view of reducing the thickness of the positive electrode. In the present invention, even if the current collector has such a small thickness, the lead constituted by the exposed portion is used. Since the part does not come out of the battery, there is no possibility of damage. However, if the thickness is too small, wrinkles may occur when the positive electrode mixture-containing paste is applied in producing the positive electrode, or the film may be broken by pulling, so the thickness is 20 μm or less as described above. Is preferably 10 μm or more.
In this specification, the description will be made mainly for the positive electrode, but the concept is the same for the negative electrode.
【0015】正極側のリード部は、通常、正極作製時に
アルミニウム製の集電体の一部に正極合剤層を形成せず
に集電体の露出部を残し、そこをリード部とすることに
よって設けられる。ただし、リード部は必ずしも当初か
ら集電体と一体化されたものであることは要求されず、
集電体にアルミニウム製の箔などを後から接続すること
によって設けてもよい。In the lead portion on the positive electrode side, the exposed portion of the current collector is usually left without forming a positive electrode mixture layer on a part of the current collector made of aluminum when the positive electrode is manufactured, and the lead portion is used as the lead portion. Provided by However, the lead portion is not necessarily required to be integrated with the current collector from the beginning,
The current collector may be provided by connecting an aluminum foil or the like later.
【0016】本発明においては、正極端子としては、そ
の一方の端部を上記正極のリード部と接続し、他方の端
部を外装材の封止部分より外部側に引き出して正極側の
外部端子とするものをいうが、その正極端子を構成する
クラッド材としては、アルミニウムとニッケルまたはス
テンレス鋼とのクラッド材であって、その厚さが正極の
リード部の厚さの2倍以上のものが用いられる。In the present invention, as the positive electrode terminal, one end is connected to the lead of the positive electrode, and the other end is pulled out from the sealing portion of the exterior material to the outside, and the positive terminal is connected to the external terminal. The clad material constituting the positive electrode terminal is a clad material of aluminum and nickel or stainless steel, the thickness of which is twice or more the thickness of the lead portion of the positive electrode. Used.
【0017】上記正極端子を構成するクラッド材におい
て、一方の成分をアルミニウムにしているのは、正極の
リード部がアルミニウム製であることに基づくものであ
り、他方の成分をニッケルまたはステンレス鋼にしてい
るのは、電池使用機器との接続を容易にするためであ
る。In the clad material constituting the positive electrode terminal, one component is made of aluminum because the lead portion of the positive electrode is made of aluminum and the other component is made of nickel or stainless steel. This is to facilitate connection with battery-powered equipment.
【0018】この正極端子を構成するクラッド材は、使
用にあたって箔やリボンなどの形態にすることが好まし
く、その厚みは30〜300μm、特に40〜150μ
mが好ましい。すなわち、上記クラッド材の厚みを30
μm以上にすることによって、正極のリード部との溶接
時の切断の防止、引っ張り、折り曲げによる断裂の防止
を図ることができ、また、厚みを300μm以下にする
ことによって、外装材の封止部分に隙間が生じるのを防
止することができる。また、上記クラッド材は正極のリ
ード部の厚さを2倍以上の厚さを有することを要する
が、これは、上記のように正極のリード部との溶接時の
切断の防止、引っ張り、折り曲げによる断裂の防止を図
るという理由によるものである。The clad material constituting the positive electrode terminal is preferably in the form of a foil or a ribbon when used, and has a thickness of 30 to 300 μm, particularly 40 to 150 μm.
m is preferred. That is, the thickness of the clad material is 30
By setting the thickness to at least μm, it is possible to prevent breakage during welding with the lead portion of the positive electrode and to prevent tearing due to pulling and bending. Can be prevented from forming a gap. Further, the clad material is required to have a thickness of at least twice the thickness of the lead portion of the positive electrode. This is to prevent cutting, welding, and bending at the time of welding with the lead portion of the positive electrode as described above. This is to prevent the rupture due to the above.
【0019】上記クラッド材は、全体にわたってアルミ
ニウム層とニッケル層またはステンレス鋼層とが存在す
るクラッド材であってもよいが、本発明においては、部
分的にアルミニウム層とニッケル層またはステンレス鋼
層とが存在するいわゆる部分クラッド材である方が好ま
しい。すなわち、電解液の影響を受けることがない外装
材の封止部分に当たるところや電池外部ではアルミニウ
ム層とニッケル層またはステンレス鋼層との両方が存在
していてもいいが、電解液と接触する電池内部、つま
り、外装材の封止部分より内側ではアルミニウム単独で
あることが好ましい。そして、電池外部、つまり、外装
材の封止部分より外側では、少なくともニッケルまたは
ステンレス鋼が存在している必要がある。The clad material may be a clad material in which an aluminum layer and a nickel layer or a stainless steel layer are present entirely, but in the present invention, the clad material is partially formed of an aluminum layer and a nickel layer or a stainless steel layer. Is preferably a so-called partial cladding material in which That is, both the aluminum layer and the nickel layer or the stainless steel layer may be present at the sealing portion of the exterior material that is not affected by the electrolytic solution or outside the battery, but the battery contacting the electrolytic solution may be present. It is preferable that aluminum alone is used inside, that is, inside the sealing portion of the exterior material. At least nickel or stainless steel needs to be present outside the battery, that is, outside the sealed portion of the exterior material.
【0020】上記クラッド材のアルミニウム部分と正極
のリード部との接続方法としては、例えば、抵抗溶接、
超音波溶接、レーザー溶接、ハンダ、カシメ、導電性接
着剤による方法など、各種の接続方法を採用することが
できるが、特に溶接が適している。The connection method between the aluminum part of the clad material and the lead part of the positive electrode includes, for example, resistance welding,
Various connection methods such as ultrasonic welding, laser welding, soldering, caulking, and a method using a conductive adhesive can be adopted, but welding is particularly suitable.
【0021】負極の集電体としては、銅製の箔、パンチ
ドメタル、網、エキスパンドメタルなどを用い得るが、
通常、銅箔が用いられる。この負極の集電体の厚みとし
ては、前記の正極の集電体の場合と同様の理由により、
5〜20μmが好ましく、また、負極側のリード部も、
通常、負極作製時に銅製の集電体の一部に負極合剤層を
形成せずに集電体の露出部を残し、そこをリード部とす
ることによって設けられる。ただし、この負極側のリー
ド部も必ずしも当初から集電体と一体化されたものであ
ることは要求されず、集電体に銅製の箔などを後から接
続することによって設けてもよい。As the current collector of the negative electrode, copper foil, punched metal, net, expanded metal, etc. can be used.
Usually, copper foil is used. As the thickness of the current collector of the negative electrode, for the same reason as in the case of the current collector of the positive electrode,
5 to 20 μm is preferable, and the lead portion on the negative electrode side also has
Usually, it is provided by leaving an exposed portion of the current collector without forming the negative electrode mixture layer on a part of the copper current collector at the time of manufacturing the negative electrode and using the current collector as a lead portion. However, the lead portion on the negative electrode side is not necessarily required to be integrated with the current collector from the beginning, and may be provided by connecting a copper foil or the like to the current collector later.
【0022】この負極のリード部は銅で構成されてい
て、銅とニッケルとの溶接は、前記正極におけるアルミ
ニウムとニッケルとの溶接ほど難しくないので、負極の
リード部とニッケルなどで構成される負極端子とを直接
接続することも可能であるが、ここでも負極端子として
銅とニッケルまたはステンレス鋼とのクラッド材を用
い、上記負極端子を構成するクラッド材の一方の端部の
銅部分を負極の銅製のリード部と接続し、他方の端部を
外装材の封止部分より外側に引き出すようにするのが好
ましい。The lead of the negative electrode is made of copper, and the welding of copper and nickel is not as difficult as the welding of aluminum and nickel in the positive electrode. Although it is also possible to directly connect the terminal, here also a clad material of copper and nickel or stainless steel is used as the negative electrode terminal, and the copper part at one end of the clad material constituting the negative electrode terminal is used as the negative electrode. It is preferable to connect to a copper lead part and to pull out the other end outside the sealing part of the exterior material.
【0023】すなわち、銅とニッケルとの溶接より銅同
士の溶接の方が容易であり、かつ高い溶接強度が得られ
るので、負極のリード部と外部端子との接続強度が高く
なり、より電池性能の高いポリマー電解質電池が得られ
るようになる。That is, the welding of copper is easier than the welding of copper and nickel, and a higher welding strength is obtained, so that the connection strength between the lead portion of the negative electrode and the external terminal is higher, and the battery performance is higher. , A polymer electrolyte battery having a high density can be obtained.
【0024】本明細書において、負極端子とは、一方の
端部を負極のリード部と接続し、その端部を外装材の封
止部分より外部側に引き出すものをいうが、この負極端
子を構成するクラッド材も、その使用にあたり形態とし
ては、箔やリボンなどが好ましく、その厚さは、前記正
極側で用いるクラッド材の場合と同様に、30〜300
μm、特に40〜150μmが好ましい。また、この負
極端子として用いるクラッド材も、負極のリード部の厚
さの2倍以上の厚さであることが好ましい。In the present specification, the term "negative electrode terminal" refers to a terminal having one end connected to a lead portion of the negative electrode and having the end drawn out from the sealing portion of the exterior material. The constituting clad material is also preferably in the form of a foil or a ribbon when used, and has a thickness of 30 to 300 as in the case of the clad material used on the positive electrode side.
μm, particularly preferably 40 to 150 μm. Also, the thickness of the clad material used as the negative electrode terminal is preferably at least twice the thickness of the lead portion of the negative electrode.
【0025】この負極を構成するクラッド材の銅部分と
負極のリード部との接続方法としては、例えば、抵抗溶
接、超音波溶接、レーザー溶接、ハンダ、カシメ、導電
性接着剤による方法など、各種の方法を採用することが
できるが、特に溶接が適している。As a method for connecting the copper portion of the clad material constituting the negative electrode and the lead portion of the negative electrode, there are various methods such as resistance welding, ultrasonic welding, laser welding, soldering, caulking, and a method using a conductive adhesive. Can be adopted, but welding is particularly suitable.
【0026】外装材としては、例えば、ナイロンフィル
ムまたはポリエステルフィルム−アルミニウムフィルム
−変性ポリオレフィンフィルムからなる三層構造のラミ
ネートフィルムなどが用いられ、その封止部分の幅は、
広いほど強度面からは有利であるが、外装材の封止部分
の幅を広くすると、外装材が大きくなり、電池の体積や
重量が増加して、小型化への妨げとなり、また、外装材
の大きさを変えずに封止部分の幅を広くすると、それに
あわせて電極を小さくしなければならず、高容量化への
妨げとなるので、封止部分の幅は溶接などの接続部分の
中心から両側にそれぞれ1mm以上で5mm程度(すな
わち、封止部分の幅として2〜10mm程度)にするの
が好ましい。As the exterior material, for example, a laminated film having a three-layer structure composed of a nylon film or a polyester film-aluminum film-modified polyolefin film is used.
A larger width is advantageous in terms of strength, but if the width of the sealing portion of the outer material is increased, the outer material becomes larger, which increases the volume and weight of the battery, hindering miniaturization, and If the width of the sealing part is increased without changing the size of the electrode, the electrode must be reduced accordingly, which hinders the increase in capacity. It is preferable that the width is 1 mm or more and about 5 mm on both sides from the center (that is, about 2 to 10 mm as the width of the sealed portion).
【0027】前記のように、アルミニウムとニッケルと
ではその間に電解液が存在すると、局部電池を形成して
アルミニウムの腐食が生じるという問題があるが、正極
端子として用いるクラッド材を部分クラッド材にして、
電池内部側の部分、つまり、外装材の封止部分より内側
の部分をアルミニウムのみにし、アルミニウム層とニッ
ケル層とが併存する部分を外装材の封止部分に配置して
電解液の影響を受けないようにすればアルミニウムの腐
食を防止することができる。As described above, if an electrolytic solution exists between aluminum and nickel, there is a problem that a local battery is formed and corrosion of aluminum occurs, but the clad material used as the positive electrode terminal is changed to a partial clad material. ,
The portion inside the battery, that is, the portion inside the sealing portion of the exterior material is made only of aluminum, and the portion where the aluminum layer and the nickel layer coexist is arranged in the sealing portion of the exterior material and is affected by the electrolytic solution. If not, corrosion of aluminum can be prevented.
【0028】[0028]
【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下の実施例や比較例で
共通して用いる正極、負極およびポリマー電解質の作製
について実施例などの説明に先立って説明する。Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. The preparation of the positive electrode, the negative electrode, and the polymer electrolyte commonly used in the following Examples and Comparative Examples will be described prior to the description of the Examples and the like.
【0029】正極の作製:正極活物質であるLiCoO
2 90重量部、電導助剤であるカーボンブラック5重量
部、バインダーであるポリフッ化ビニリデン5重量部を
N−メチルピロリドンを溶媒として均一になるように混
合し、正極合剤含有ペーストを調製した。Preparation of positive electrode: LiCoO as positive electrode active material
2 90 parts by weight, 5 parts by weight of carbon black is a conductive aid, polyvinylidene fluoride 5 parts by weight of a binder mixture of N- methylpyrrolidone to be uniform as a solvent, to prepare a positive electrode mixture-containing paste.
【0030】この正極合剤含有ペーストを厚さ20μm
のアルミニウム箔からなる正極集電体の両面に片面の正
極合剤量が20mg/cm2 (ただし、乾燥後の正極合
剤量)になるように均一に塗布し、乾燥させて正極合剤
層を形成した後、カレンダー処理を行い、片面の正極合
剤層の厚さを65μmに調整した。それを70mm×4
0mmの寸法に切断して正極とした。ただし、上記正極
の作製にあたっては、正極集電体を構成するアルミニウ
ム箔の一部に正極合剤含有ペーストを塗布せず、アルミ
ニウム箔の露出部を残し、その露出部をアルミニウムと
ニッケルとのクラッド材からなる正極端子との接続のた
めのリード部とした。The paste containing the positive electrode mixture was coated to a thickness of 20 μm.
Is uniformly coated on both sides of the positive electrode current collector made of aluminum foil such that the amount of the positive electrode mixture on one side is 20 mg / cm 2 (however, the amount of the positive electrode mixture after drying), and then dried to form a positive electrode mixture layer. Was formed, calendering was performed, and the thickness of the positive electrode mixture layer on one side was adjusted to 65 μm. 70mm x 4
The positive electrode was cut to a size of 0 mm. However, when producing the above-mentioned positive electrode, the paste containing the positive electrode mixture was not applied to a part of the aluminum foil constituting the positive electrode current collector, leaving an exposed portion of the aluminum foil, and the exposed portion was clad with aluminum and nickel. A lead portion for connection with a positive electrode terminal made of a material was used.
【0031】負極の作製:負極活物質である黒鉛77重
量部およびカーボトロンP〔商品名、呉羽化学工業
(株)製、平均粒径22μmの低結晶カーボン〕8重量
部、バインダーであるポリフッ化ビニリデン15重量部
をN−メチルピロリドンを溶媒として均一になるように
混合し、負極合剤含有ペーストを調製した。Preparation of negative electrode: 77 parts by weight of graphite as the negative electrode active material, 8 parts by weight of CARBOTRON P (trade name, low crystalline carbon having an average particle size of 22 μm, manufactured by Kureha Chemical Industry Co., Ltd.), and polyvinylidene fluoride as a binder 15 parts by weight were uniformly mixed using N-methylpyrrolidone as a solvent to prepare a negative electrode mixture-containing paste.
【0032】この負極合剤合剤ペーストを厚さ10μm
の銅箔からなる負極集電体の両面に片面の負極合剤量が
12mg/cm2 (ただし、乾燥後の負極合剤量)にな
るように均一に塗布し、乾燥して負極合剤層を形成した
後、カレンダー処理を行い、片面の負極合剤層の厚さを
65μmに調整した。これを72mm×42mmの寸法
に切断して負極とした。ただし、上記負極の作製にあた
っては、負極集電体を構成する銅箔の一部に負極合剤含
有ペーストを塗布せず、銅箔の露出部を残し、その露出
部を銅とニッケルとのクラッド材からなる負極端子との
接続のためのリード部とした。This negative electrode mixture mixture paste is 10 μm thick.
The negative electrode current collector made of copper foil is uniformly coated on both surfaces such that the amount of the negative electrode material mixture on one surface is 12 mg / cm 2 (however, the amount of the negative electrode material mixture after drying), and dried to form a negative electrode material mixture layer. Was formed, calendering was performed to adjust the thickness of the negative electrode mixture layer on one side to 65 μm. This was cut into a size of 72 mm × 42 mm to obtain a negative electrode. However, in producing the negative electrode, the negative electrode mixture-containing paste was not applied to part of the copper foil constituting the negative electrode current collector, leaving an exposed portion of the copper foil, and the exposed portion was clad with copper and nickel. A lead portion for connection with a negative electrode terminal made of a material was used.
【0033】正極ユニットの作製:上記のようにして作
製した正極のリード部の正極端子と接続部分の近傍に、
厚さ50μm、幅3mmのポリイミドテープをその両側
から貼着し、該部分の短絡の防止および強度保持を図っ
た。また、正極端子との接続部分となるリード部の表面
を、熱により接着面の粘着性が失われる熱剥離テープで
被覆した。そして、この正極をゲル状ポリマー電解質の
保持体となる厚さ30μm、坪量12g/m 2 のポリブ
チレンテレフタレート不織布〔NKK社製、MB123
0(商品名)〕で包んだ。Production of positive electrode unit:
In the vicinity of the positive terminal and connection part of the lead part of the manufactured positive electrode,
50μm thick, 3mm wide polyimide tape on both sides
To prevent short circuit and maintain strength
Was. In addition, the surface of the lead portion that will be connected to the positive terminal
With a heat-peeling tape that loses the adhesiveness of the adhesive surface due to heat
Coated. Then, this positive electrode is made of a gel polymer electrolyte.
30 μm thickness and 12 g / m basis weight TwoPolyb
Tylene terephthalate non-woven fabric [manufactured by NKK, MB123
0 (product name)].
【0034】負極ユニットの作製:負極のリード部の負
極端子との接続部分の近傍に、厚さ50μm、幅3mm
のイミドテープをその両面から貼着し、該部分の短絡の
防止および強度保持を図った。また、負極端子との接続
部分となるリード部の表面を、熱により接着面の粘着性
が失われる熱剥離テープで被覆した。そして、この負極
をゲル状ポリマー電解質の保持体となる厚さ30μm、
坪量12g/m2 のポリブチレンテレフタレート不織布
〔NKK社製、MB1230(商品名)〕で包んだ。Preparation of the negative electrode unit: Near the connecting portion of the negative electrode lead portion with the negative electrode terminal, a thickness of 50 μm and a width of 3 mm
The imide tape was adhered from both sides to prevent short-circuiting and maintain strength of the portion. In addition, the surface of the lead portion, which is to be connected to the negative electrode terminal, was covered with a heat-peeling tape from which the adhesiveness of the adhesive surface was lost by heat. Then, the negative electrode is formed into a thickness of 30 μm serving as a support for the gel polymer electrolyte,
It was wrapped with a polybutylene terephthalate nonwoven fabric having a basis weight of 12 g / m 2 [manufactured by NKK, MB1230 (trade name)].
【0035】ゲル化成分含有電解液の調製:プロピレン
カーボネートとエチレンカーボネートとの体積比1:1
の混合溶媒にLiPF6 を1.22mol/l溶解させ
ることによって調製した電解液に重合開始剤として2,
4,6−トリメチルベンゾイルジフェニルフォスフィン
オキサイド〔ルシリンTPO(商品名)、ビーエーエス
エフジャパン(株)製〕をあらかじめモノマー成分に対
して2重量%加えて溶解しておき、そこにジペンタエリ
スリトールヘキサアクリレートを使用開始10分前に濃
度が6重量%になるように加えて混合し、ゲル化成分を
含有する電解液を調製した。このゲル化成分を含有する
電解液を以下においては上記標題のように「ゲル化成分
含有電解液」と簡略化して表現する。Preparation of electrolytic solution containing gelling component: volume ratio of propylene carbonate to ethylene carbonate 1: 1
As a polymerization initiator, an electrolyte prepared by dissolving 1.22 mol / l of LiPF 6 in a mixed solvent of
4,6-Trimethylbenzoyldiphenylphosphine oxide (Lucillin TPO (trade name), manufactured by BSF Japan Co., Ltd.) was previously added and dissolved in the monomer component at 2% by weight, and dipentaerythritol hexaacrylate was added thereto. Was added 10 minutes before the start of use so that the concentration became 6% by weight, and mixed to prepare an electrolytic solution containing a gelling component. Hereinafter, the electrolyte containing the gelling component is simply referred to as a “gelling component-containing electrolyte” as described above.
【0036】このゲル化成分含有電解液を上記正極ユニ
ットと負極ユニットにそれぞれ減圧下で吸収させ、この
ゲル化成分含有電解液を含浸させた正極ユニットおよび
負極ユニットをポリエチレン製の袋に入れて、袋を密封
した。The gelled component-containing electrolytic solution is absorbed by the positive electrode unit and the negative electrode unit under reduced pressure, respectively. The positive electrode unit and the negative electrode unit impregnated with the gelled component-containing electrolytic solution are put into a polyethylene bag. The bag was sealed.
【0037】このゲル化成分含有電解液を含浸した正極
ユニット入りの袋および負極ユニット入りの袋にその両
面から、フュージョンUVシステムズ・ジャパン(株)
製の紫外線照射装置を用いて、紫外線を1W/cm2 の
照度で10秒間照射し、正極および負極の周囲に支持体
を内蔵したゲル状ポリマー電解質を形成した。From both sides of a bag containing a positive electrode unit and a bag containing a negative electrode unit impregnated with the gelling component-containing electrolyte, Fusion UV Systems Japan Co., Ltd.
UV light was applied for 10 seconds at an illuminance of 1 W / cm 2 using a UV light irradiating device manufactured by Co., Ltd. to form a gel polymer electrolyte having a built-in support around the positive and negative electrodes.
【0038】上記のように周囲にゲル状ポリマー電解質
を形成した正極および負極をそれぞれ袋から取り出し、
そのリード部に150℃の熱風を吹付けることによっ
て、熱剥離テープをリード部から剥がした後、上記負極
5枚と正極4枚とを交互に積層して多層構造(すなわ
ち、正極や負極がそれぞれ複数枚ある)の積層電極群を
作製した。以下、実施例および比較例で述べる方法で外
部端子との接続を行い、上記積層電極群を密封する外装
体としてナイロンフィルム−アルミニウムフィルム−変
性ポリオレフィンフィルムからなる三層構造のラミネー
トフィルムを準備した。The positive electrode and the negative electrode having the gel polymer electrolyte formed around them as described above are respectively taken out of the bag,
After the thermal release tape was peeled off from the lead portion by blowing hot air at 150 ° C. onto the lead portion, the five negative electrodes and four positive electrodes were alternately laminated to form a multilayer structure (that is, each of the positive electrode and the negative electrode was (A plurality of stacked electrode groups). Hereinafter, connection with an external terminal was performed by the method described in Examples and Comparative Examples, and a laminate film having a three-layer structure including a nylon film, an aluminum film, and a modified polyolefin film was prepared as an outer package for sealing the above-mentioned laminated electrode group.
【0039】実施例1 まず、外装材の封止部分より外側の部分が外部端子とし
て機能する正極端子を構成するクラッド材として、アル
ミニウムとニッケルとのクラッド材(以下、このクラッ
ド材を「アルミニウム/ニッケルクラッド材」で表す)
であって、厚さ80μmでリボン状のクラッド材を準備
した。このクラッド材におけるアルミニウムの厚さは6
0μmで、ニッケルの厚さは、20μmであった。ま
た、外装材の封止部分より外側の部分が外部端子として
機能する負極端子を構成するクラッド材として、銅とニ
ッケルとのクラッド材(以下、このクラッド材を「銅/
ニッケルクラッド材」で表す)であって、厚さ80μm
でリボン状のクラッド材を準備した。このクラッド材の
銅の厚さは60μmで、ニッケルの厚さは20μmであ
った。Example 1 First, a clad material of aluminum and nickel (hereinafter, this clad material is referred to as “aluminum / Nickel clad material)
A ribbon-shaped clad material having a thickness of 80 μm was prepared. The aluminum thickness in this clad material is 6
At 0 μm, the thickness of the nickel was 20 μm. In addition, a clad material of copper and nickel (hereinafter, referred to as “copper / nickel”) is used as a clad material constituting a negative electrode terminal in which a portion outside the sealing portion of the exterior material functions as an external terminal.
Nickel clad material ") and a thickness of 80 μm
To prepare a ribbon-shaped clad material. The thickness of the clad material was 60 μm, and the thickness of nickel was 20 μm.
【0040】そして、超音波溶接機を用い、上記積層電
極群中の正極のリード部積層体(4枚のアルミニウム箔
の露出部で構成される4枚のリード部の積層体)と上記
アルミニウム/ニッケルクラッド材の一方の端部のアル
ミニウムとを溶接時間75msec、圧力2kg/c
m、アンプリチュード60%の条件下で超音波溶接して
接続した。また、負極のリード部積層体と上記銅/ニッ
ケルクラッド材の一方の端部の銅部分とを溶接時間12
0msec、圧力2kg/cm、アンプリチュード60
%の条件下で超音波溶接して接続した。その後、外装材
で上記積層電極群を外装するとともに密封して積層形の
ポリマー電解質電池を作製した。Then, using an ultrasonic welding machine, the positive electrode lead laminate (a laminate of four lead portions composed of four exposed aluminum foil portions) in the above-mentioned laminated electrode group and the aluminum / metal / laminate were used. A welding time of 75 msec, pressure of 2 kg / c with aluminum at one end of nickel clad material
m, and connected by ultrasonic welding under the conditions of amplitude of 60%. Further, the lead portion laminate of the negative electrode and the copper portion at one end of the copper / nickel clad material were welded for 12 hours.
0 msec, pressure 2 kg / cm, amplitude 60
% And connected by ultrasonic welding. Thereafter, the above-mentioned laminated electrode group was packaged with a package material and sealed to produce a laminated polymer electrolyte battery.
【0041】上記正極端子を構成するアルミニウム/ニ
ッケルクラッド材のアルミニウム部分と正極のリード部
積層体との溶接幅は2mmであり、また、負極端子を構
成する銅/ニッケルクラッド材の銅部分と負極のリード
部積層体との溶接幅は2mmであり、外装材の封止部分
の幅は4mmであった。The welding width between the aluminum portion of the aluminum / nickel clad material constituting the positive electrode terminal and the lead portion laminate of the positive electrode was 2 mm, and the copper portion of the copper / nickel clad material constituting the negative electrode terminal was connected to the negative electrode. Was 2 mm and the width of the sealed portion of the exterior material was 4 mm.
【0042】このポリマー電解質電池の構造を説明する
にあたり、前記のように周囲にポリマー電解質を形成し
た正極ユニット(以下、これを「ポリマー電解質保持正
極」という)および周囲にポリマー電解質を形成した負
極ユニット(以下、これを「ポリマー電解質保持負極」
という)について説明しておくと、図1に示すように、
ポリマー電解質保持正極10は正極1の周囲に支持体3
aを内蔵するゲル状のポリマー電解質3を形成すること
によって構成されている。In describing the structure of the polymer electrolyte battery, a positive electrode unit having a polymer electrolyte formed thereon as described above (hereinafter referred to as a “polymer electrolyte holding positive electrode”) and a negative electrode unit having a polymer electrolyte formed therearound (Hereinafter, this is referred to as “Polymer
That is, as shown in FIG. 1,
The polymer electrolyte-carrying positive electrode 10 has a support 3 around the positive electrode 1.
It is constituted by forming a gel-like polymer electrolyte 3 containing a.
【0043】また、図2に示すように、ポリマー電解質
保持負極20は負極2の周囲に支持体3aを内蔵するゲ
ル状のポリマー電解質3を形成することによって構成さ
れている。As shown in FIG. 2, the polymer electrolyte holding negative electrode 20 is formed by forming a gel polymer electrolyte 3 having a support 3a built in around the negative electrode 2.
【0044】そして、上記ポリマー電解質保持正極10
が4枚とポリマー電解質保持負極20が5枚積層され、
図3に示すように多層構造の積層電極群が構成される。
つまり、1枚目のポリマー電解質保持負極20と5枚目
のポリマー電解質保持負極20とがそれぞれ最外層に配
置され、その間にポリマー電解質保持正極10が4枚と
ポリマー電解質保持負極20が3枚交互に配置して積層
されている。そして、そのポリマー電解質保持正極10
とポリマー電解質保持負極20との間では、図4に示す
ように、正極1と負極2との間に正極1の周囲に形成さ
れたポリマー電解質3と負極2の周囲に形成されたポリ
マー電解質3とがあわさって、それらで充分な厚みのポ
リマー電解質層を形成し、それによって、正極1と負極
2とが充分に隔離されている。Then, the polymer electrolyte holding positive electrode 10
Are laminated with five sheets of the polymer electrolyte holding negative electrode 20,
As shown in FIG. 3, a stacked electrode group having a multilayer structure is configured.
That is, the first polymer electrolyte-holding negative electrode 20 and the fifth polymer electrolyte-holding negative electrode 20 are respectively disposed in the outermost layers, and between them, four polymer electrolyte-holding positive electrodes 10 and three polymer electrolyte-holding negative electrodes 20 are alternately arranged. And stacked. Then, the polymer electrolyte holding positive electrode 10
As shown in FIG. 4, between the positive electrode 1 and the negative electrode 2, the polymer electrolyte 3 formed around the positive electrode 1 and the polymer electrolyte 3 formed around the negative electrode 2 And they form a sufficiently thick polymer electrolyte layer, whereby the positive electrode 1 and the negative electrode 2 are sufficiently isolated.
【0045】電池は、上記のような積層電極群を、図3
に示すように、ナイロンフィルム−アルミニウムフィル
ム−変性ポリオレフィンフィルムの三層構造のラミネー
トフィルムからなる外装材4で外装して密封することに
よって構成されている。そして、この電池において、上
記正極端子5はアルミニウム/ニッケルクラッド材を構
成され、上記負極端子6は銅/アルミニウムクラッド材
で構成されている。In the battery, the laminated electrode group as described above is
As shown in the figure, the package is formed by packaging and sealing with a packaging material 4 composed of a laminated film having a three-layer structure of a nylon film-aluminum film-modified polyolefin film. In this battery, the positive electrode terminal 5 is made of an aluminum / nickel clad material, and the negative electrode terminal 6 is made of a copper / aluminum clad material.
【0046】図5は上記図3に示す電池の正極1のアル
ミニウム製のリード部1cの積層体と正極端子5との接
続部分およびその近傍を模式的に示すものである。外装
材4は2枚用いられていて、その封止は外装材4として
用いられているラミネートフィルムの変性ポリオレフィ
ンフィルムの熱融着によって行われ、4aは上記外装材
4の封止部分であり、4bは外装材4の最内層の変性ポ
リオレフィンフィルムが加熱により溶融して形成した封
止層であり、この封止層4bは外装材4の封止部分4a
に対応しており、また、この封止層4bによって電池内
部の密閉性が保たれている。そして、正極端子5はアル
ミニウム5aとニッケル5bとのクラッド材で構成さ
れ、そのアルミニウム5aの部分が正極1のリード部1
cの積層体と溶接により接続されている。FIG. 5 schematically shows a connection portion between the laminate of the aluminum lead portions 1c of the positive electrode 1 of the battery shown in FIG. 3 and the positive electrode terminal 5 and the vicinity thereof. Two exterior materials 4 are used, and the sealing is performed by heat fusion of a modified polyolefin film of a laminate film used as the exterior material 4. 4 a is a sealing portion of the exterior material 4, Reference numeral 4b denotes a sealing layer formed by melting the innermost modified polyolefin film of the exterior material 4 by heating, and the sealing layer 4b is a sealing portion 4a of the exterior material 4.
In addition, the sealing property of the inside of the battery is maintained by the sealing layer 4b. The positive electrode terminal 5 is made of a clad material of aluminum 5a and nickel 5b.
and c by welding.
【0047】なお、図4に示すように、正極1はアルミ
ニウムからなる集電体1aの両面に正極合剤層1bを形
成してなり、その正極1の周囲にポリマー電解質3が形
成されている。また、負極2は銅箔からなる集電体2a
の両面に負極合剤層2bを形成してなり、その負極2の
周囲にポリマー電解質3が形成されている。さらに、こ
の負極2に関しても、図5には図示していないが、前記
正極1の場合と同様に、リード部を積層し、そのリード
部の積層体を銅/ニッケルクラッド材の銅部分と溶接に
より接続している。なお、図1〜5や後に説明する図6
〜8のいずれも模式的に示したものであり、各構成部分
の寸法比は必ずしも正確ではない。また、図1〜2で
は、集電体やリード部の図示を省略している。As shown in FIG. 4, the positive electrode 1 is formed by forming a positive electrode mixture layer 1b on both surfaces of a current collector 1a made of aluminum, and a polymer electrolyte 3 is formed around the positive electrode 1. . The negative electrode 2 is a current collector 2a made of copper foil.
, A negative electrode mixture layer 2b is formed on both surfaces thereof, and a polymer electrolyte 3 is formed around the negative electrode 2. Although not shown in FIG. 5, the negative electrode 2 is also provided with a lead portion laminated as in the case of the positive electrode 1, and the laminate of the lead portion is welded to the copper portion of the copper / nickel clad material. Connected by 1 to 5 and FIG.
8 are schematically shown, and the dimensional ratio of each component is not always accurate. 1 and 2, the illustration of the current collector and the lead portion is omitted.
【0048】実施例2 正極端子となるクラッド材として、いわゆる部分クラッ
ド材を用いた以外は、実施例1と同様に積層形のポリマ
ー電解質電池を作製した。Example 2 A laminated polymer electrolyte battery was manufactured in the same manner as in Example 1 except that a so-called partial clad material was used as a clad material to be a positive electrode terminal.
【0049】図6はこの実施例2の電池の正極1のアル
ミニウム製のリード部1cの積層体と正極端子5との接
続部分およびその近傍を模式的に示すものである。図6
に示すように、正極端子5を構成するクラッド材は、電
池内部側の部分、つまり、外装材4の封止部分4aより
内側の部分はアルミニウム5aのみで構成され、そのア
ルミニウムのみの部分は外装材4の封止部分4aの電池
内部側の端面から1mm入ったところまで続き、そこか
ら電池外部側に向けてアルミニウム5aとニッケル5b
とで構成され、また、電池外部側ではニッケル5bのみ
で構成されている。そして、アルミニウム5aとニッケ
ル5bが併存しているところでのアルミニウム5aの厚
みは40μmで、ニッケル5bの厚みは40μmであ
る。FIG. 6 schematically shows a connection portion between the laminate of the aluminum lead portions 1c of the positive electrode 1 of the battery of the second embodiment and the positive electrode terminal 5 and the vicinity thereof. FIG.
As shown in the figure, the clad material constituting the positive electrode terminal 5 is such that the portion inside the battery, that is, the portion inside the sealing portion 4a of the exterior material 4 is composed of only aluminum 5a, and the portion of only aluminum is exterior 1 mm from the end face of the sealing portion 4a of the material 4 on the inside of the battery, and from there, aluminum 5a and nickel 5b toward the outside of the battery.
, And on the outside of the battery, only nickel 5b. The thickness of aluminum 5a where aluminum 5a and nickel 5b coexist is 40 μm, and the thickness of nickel 5b is 40 μm.
【0050】実施例3 正極端子となるクラッド材として、実施例2とは異なる
形態の部分クラッド材を用いた以外は、実施例1と同様
に積層形のポリマー電解質電池を作製した。Example 3 A laminated polymer electrolyte battery was manufactured in the same manner as in Example 1 except that a partial clad material having a different form from that of Example 2 was used as a clad material to be a positive electrode terminal.
【0051】図7はこの実施例3の電池の正極1のアル
ミニウム製のリード部1cの積層体と正極端子5との接
続部分およびその近傍を模式的に示すものである。図7
に示すように、正極端子5を構成するクラッド材は、電
池内部側の部分、つまり、外装材4の封止部分4aより
内側の部分はアルミニウム5aのみで構成され、そのア
ルミニウムのみの部分は外装材4の封止部分4aの電池
内部側の端面から1mm入ったところまで続き、そこか
ら電池外部側に向けてアルミニウム5aとニッケル5b
とで構成されている。そして、アルミニウム5aとニッ
ケル5bが併存しているところでのアルミニウム5aの
厚みは50μmで、ニッケル5bの厚みは30μmであ
る。FIG. 7 schematically shows a connection portion between the laminate of the aluminum lead portions 1c of the positive electrode 1 of the battery of the third embodiment and the positive electrode terminal 5 and the vicinity thereof. FIG.
As shown in the figure, the clad material constituting the positive electrode terminal 5 is such that the portion inside the battery, that is, the portion inside the sealing portion 4a of the exterior material 4 is composed of only aluminum 5a, and the portion of only aluminum is exterior 1 mm from the end face of the sealing portion 4a of the material 4 on the inside of the battery, and from there, aluminum 5a and nickel 5b toward the outside of the battery.
It is composed of The thickness of aluminum 5a where aluminum 5a and nickel 5b coexist is 50 μm, and the thickness of nickel 5b is 30 μm.
【0052】比較例1 上記多層構造の積層電極群中の正極のリード部積層体
(4枚のアルミニウム箔の露出部で構成される4枚のリ
ード部の積層体)を、厚さ100μm、幅3mmでアル
ミニウム製の2枚の補強板で挟み、さらに正極端子とし
て厚さ40μmのニッケルリボン1枚を重ね、超音波溶
接機を用いて、溶接時間75msec、圧力2kg/c
m2 、アンプリチュード60%の条件下で溶接した。こ
の溶接部分の位置は、積層電極群を外装材で密封する際
の封止部分に一致するようにした。また、上記と同様
に、積層電極群中の負極のリード部積層体(5枚の銅箔
の露出部で構成される5枚のリード部の積層体)を、厚
さ100μm、幅3mmの銅製の2枚の補強板で挟み、
さらに、負極端子として厚さ40μmのニッケルリボン
1枚を重ね、上記と同様の溶接機を用いて、溶接時間1
20msec、圧力2kg/cm2 、アンプリチュード
60%の条件下で溶接した。この溶接部分の位置も、積
層電極群を外装材で密封する際の封止部分に一致するよ
うにした。その後、外装材で積層電極群を外装するとと
もに密封することにより、積層形のポリマー電解質電池
を作製した。COMPARATIVE EXAMPLE 1 A positive electrode lead portion laminate (a laminate of four lead portions composed of exposed portions of four aluminum foils) in the above-mentioned laminated electrode group having a multilayer structure was prepared with a thickness of 100 μm and a width of 100 μm. 3 mm, sandwiched between two reinforcing plates made of aluminum, and one 40 μm-thick nickel ribbon as a positive electrode terminal was stacked thereon. Using an ultrasonic welding machine, welding time was 75 msec, pressure was 2 kg / c.
Welding was performed under conditions of m 2 and 60% amplitude. The position of this welded portion was made to coincide with the sealed portion when the laminated electrode group was sealed with the exterior material. In the same manner as described above, a negative electrode lead portion laminate (a laminate of five lead portions composed of five exposed portions of copper foil) in the laminated electrode group was made of copper having a thickness of 100 μm and a width of 3 mm. Between the two reinforcing plates,
Further, one nickel ribbon having a thickness of 40 μm was stacked as a negative electrode terminal, and the welding time was set to 1 using a welding machine similar to the above.
Welding was performed under the conditions of 20 msec, a pressure of 2 kg / cm 2 and an amplitude of 60%. The position of the welded portion was also set to match the sealed portion when the stacked electrode group was sealed with the exterior material. Thereafter, the laminated electrode group was packaged with a package material and sealed, thereby producing a laminated polymer electrolyte battery.
【0053】上記の溶接部分の幅は正極側、負極側とも
2mmであり、外装材の封止部分の幅はいずれの場合も
4mmであった。The width of the above welded portion was 2 mm on both the positive electrode side and the negative electrode side, and the width of the sealing portion of the exterior material was 4 mm in each case.
【0054】図8はこの比較例1の電池の正極1のアル
ミニウム製のリード部1cの積層体と正極端子5との接
続部分およびその近傍を概略的に示すもので、正極1の
リード部1cの積層体と正極端子5との接続はリード部
1cの積層体を補強板7で補強し、その補強板7に正極
端子5を溶接することによって行われ、その溶接は上記
外装材4の封止部分4aで行われている。FIG. 8 schematically shows the connection between the laminate of the aluminum lead portions 1c of the positive electrode 1 of the battery of Comparative Example 1 and the positive electrode terminal 5 and the vicinity thereof. Is connected to the positive electrode terminal 5 by reinforcing the laminate of the lead portion 1c with a reinforcing plate 7 and welding the positive electrode terminal 5 to the reinforcing plate 7. The welding is performed by sealing the exterior material 4. This is performed at the stop portion 4a.
【0055】比較例2 厚さ40μmのニッケルリボンを正極端子として用い、
この正極端子の一方の端部を正極のアルミニウム製のリ
ード部の積層体と溶接して接続し、また厚さ40μmの
ニッケルリボンを負極端子として用い、この負極端子の
一方の端部を負極の銅製のリード部の積層体と溶接によ
り接続した以外は、実施例1と同様に積層形のポリマー
電解質電池を作製した。Comparative Example 2 A nickel ribbon having a thickness of 40 μm was used as a positive electrode terminal.
One end of this positive electrode terminal was welded and connected to the aluminum lead laminate of the positive electrode, and a nickel ribbon having a thickness of 40 μm was used as a negative electrode terminal. One end of this negative electrode terminal was connected to the negative electrode. A laminated polymer electrolyte battery was produced in the same manner as in Example 1 except that the laminate was connected to the copper lead laminate by welding.
【0056】上記実施例1〜3および比較例1〜2の電
池のエネルギー密度と落下テストによる正極のアルミニ
ウム製のリード部と正極端子との接続部分(溶接部分)
および負極の銅製のリード部と負極端子との接続部分
(溶接部分)の剥離の有無を調べ、さらに60℃で20
日間貯蔵後の貯蔵劣化を調べた。その結果を表1に示
す。上記エネルギー密度は電池を4.2V、0.2Cの
定電流定電圧で8時間充電し、0.2Cで2.75Vま
で放電した時の放電容量と平均作動電圧とから計算する
ことによって求めた。上記落下テストは電池を180c
mの高さからコンクリートに落下させて正極のリード部
と正極端子との溶接部分および負極のリード部と負極端
子との溶接部分の剥離の有無を調べた。この落下テスト
はいずれの電池も10個ずつについて行い、表1にはテ
ストに供した電池個数を分母に表記し、溶接部分の剥離
を生じた電池個数を分子に表記する態様で示す。また、
貯蔵劣化は貯蔵前に上記条件下で測定した放電容量と貯
蔵後に上記条件下で測定した放電容量とから下記の式に
より求めたものである。 The connection parts (welded parts) between the positive electrode aluminum lead and the positive electrode terminal by the energy density and the drop test of the batteries of Examples 1 to 3 and Comparative Examples 1 and 2 above.
Then, the presence or absence of peeling of the connection portion (welded portion) between the copper lead portion of the negative electrode and the negative electrode terminal was examined.
The storage deterioration after storage for one day was investigated. Table 1 shows the results. The above energy density was obtained by charging the battery at a constant current and constant voltage of 4.2 V and 0.2 C for 8 hours, and calculating from the discharge capacity and the average operating voltage when discharging the battery to 0.275 V at 0.2 C. . In the drop test above, the battery was 180c
m was dropped on concrete from a height of m, and the presence or absence of peeling of the welded portion between the positive electrode lead and the positive electrode terminal and the welded portion between the negative electrode lead and the negative electrode terminal was examined. This drop test was performed on each of the ten batteries, and Table 1 shows the number of batteries subjected to the test in a denominator, and the number of batteries that caused peeling of the welded portion in a numerator. Also,
The storage deterioration is determined by the following formula from the discharge capacity measured under the above conditions before storage and the discharge capacity measured under the above conditions after storage.
【0057】[0057]
【表1】 [Table 1]
【0058】表1に示す結果から明らかなように、実施
例1〜3では、落下テストでの接続部分(溶接部分)の
剥離がなく、電極のリード部と正極端子や負極端子など
の電極端子とが充分な接続強度(溶接強度)を有してい
た。また、実施例1〜3は貯蔵劣化も5〜6%と低かっ
た。なお、実施例1では、正極端子を構成するクラッド
材のニッケルが電解液と接触しているためニッケルが電
解液と接触しない実施例2〜3に比べて貯蔵劣化が若干
高くなっているが、それでもクラッド材でないニッケル
リボンそのものを正極端子として用いた比較例2に比べ
ると貯蔵劣化が少なく、実用上支障のない範囲になって
いた。これはアルミニウムの腐食はアルミニウムとニッ
ケルとの溶接部分を中心に進行することと、クラッド材
にしているとニッケルが電解液に接触していても反応面
積が小さいことによるものと考えられる。As is clear from the results shown in Table 1, in Examples 1 to 3, there was no peeling of the connection portions (welded portions) in the drop test, and the lead portions of the electrodes and the electrode terminals such as the positive electrode terminal and the negative electrode terminal. Had sufficient connection strength (welding strength). In Examples 1 to 3, storage deterioration was as low as 5 to 6%. In Example 1, since the nickel of the cladding material constituting the positive electrode terminal is in contact with the electrolytic solution, the storage deterioration is slightly higher than in Examples 2 and 3 in which nickel does not contact the electrolytic solution. Nevertheless, compared with Comparative Example 2 in which the nickel ribbon itself, which is not a clad material, was used as the positive electrode terminal, storage deterioration was small, and the range was within a range that would not hinder practical use. This is considered to be due to the fact that the corrosion of aluminum proceeds mainly at the welded portion of aluminum and nickel, and that the clad material has a small reaction area even when nickel is in contact with the electrolytic solution.
【0059】これに対して、電極のリード部の積層体を
補強板で補強した比較例1は、落下テストによる剥離が
なく、漏液発生率も低かったが、補強板を用いたぶん、
エネルギー密度が低くなった。また、ニッケルリボンか
らなる正極端子を正極のアルミニウム製のリード部の積
層体に直接溶接した比較例2では、落下テストでの接続
部分の剥離が生じた上に、貯蔵劣化が大きかった。On the other hand, in Comparative Example 1 in which the laminate of the lead portions of the electrodes was reinforced with the reinforcing plate, no peeling was caused by the drop test and the leakage rate was low.
Energy density decreased. In Comparative Example 2 in which the positive electrode terminal made of a nickel ribbon was directly welded to the aluminum lead laminate of the positive electrode, the connection portion was peeled off in the drop test, and the storage deterioration was large.
【0060】上記実施例では、クラッド材の一方の成分
としてニッケルを用いたクラッド材の例を説明したが、
ニッケルに代えてステンレス鋼をクラッド材の一方の成
分として用いたクラッド材であってもよく、このステン
レス鋼を用いた場合は、ニッケルに比べて抵抗が若干高
いため、負荷特性が若干低下するが、それ以外はほぼ同
等の特性が得られた。In the above embodiment, an example of a clad material using nickel as one component of the clad material has been described.
Instead of nickel, a clad material using stainless steel as one component of the clad material may be used. When this stainless steel is used, the resistance is slightly higher than that of nickel, so that the load characteristics are slightly reduced. Otherwise, almost the same characteristics were obtained.
【0061】また、ポリマー電解質のゲル化に際して
も、上記実施例で示した以外に、例えば、ポリマーがゲ
ル化するものや、ラジカル重合型の不飽和ポリエステ
ル、ラジカル重合型のアクリル系エポキシアクリレー
ト、ウレタンアクリレート、ポリエステルアクリレー
ト、アルキッドアクリレート、シリコンアクリレートな
どの光硬化性樹脂を紫外線または電子線を用いてゲル化
させるものであってもよい。When the polymer electrolyte is gelled, in addition to those shown in the above Examples, for example, those which gel the polymer, radically polymerizable unsaturated polyester, radically polymerizable acrylic epoxy acrylate, urethane Photocurable resins such as acrylates, polyester acrylates, alkyd acrylates, and silicon acrylates may be gelled using ultraviolet rays or electron beams.
【0062】[0062]
【発明の効果】以上説明したように、本発明では、電極
のリード部と電極端子との接続強度を高め、電池性能の
信頼性の高いポリマー電解質電池を提供することができ
た。As described above, according to the present invention, the connection strength between the lead portion of the electrode and the electrode terminal can be increased, and a polymer electrolyte battery having high reliability in battery performance can be provided.
【図1】実施例1のポリマー電解質電池で用いたポリマ
ー電解質保持正極を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a polymer electrolyte holding positive electrode used in a polymer electrolyte battery of Example 1.
【図2】実施例1のポリマー電解質電池で用いたポリマ
ー電解質保持負極を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a polymer electrolyte holding negative electrode used in the polymer electrolyte battery of Example 1.
【図3】実施例1のポリマー電解質電池の一例を模式的
に示す断面図である。FIG. 3 is a cross-sectional view schematically showing one example of a polymer electrolyte battery of Example 1.
【図4】図3に示す実施例1のポリマー電解質電池中の
積層電極群の要部拡大図である。FIG. 4 is an enlarged view of a main part of a stacked electrode group in the polymer electrolyte battery of Example 1 shown in FIG.
【図5】図3に示す実施例1のポリマー電解質電池の正
極のリード部と正極端子との接続部分およびその近傍を
模式的に示す断面図である。5 is a cross-sectional view schematically showing a connection portion between a lead portion of a positive electrode and a positive electrode terminal of the polymer electrolyte battery of Example 1 shown in FIG. 3 and the vicinity thereof.
【図6】実施例2のポリマー電解質電池の正極のリード
部と正極端子との接続部分およびその近傍を模式的に示
す断面図である。FIG. 6 is a cross-sectional view schematically showing a connection portion between a lead portion of a positive electrode and a positive electrode terminal of a polymer electrolyte battery of Example 2 and the vicinity thereof.
【図7】実施例3のポリマー電解質電池の正極のリード
部と正極端子との接続部分およびその近傍を模式的に示
す断面図である。FIG. 7 is a cross-sectional view schematically showing a connection portion between a lead portion of a positive electrode and a positive electrode terminal of a polymer electrolyte battery of Example 3 and the vicinity thereof.
【図8】比較例1のポリマー電解質電池の正極のリード
体と正極端子との接続部分およびその近傍を模式的に示
す断面図である。FIG. 8 is a cross-sectional view schematically showing a connecting portion between a lead body of a positive electrode and a positive electrode terminal of a polymer electrolyte battery of Comparative Example 1 and the vicinity thereof.
1 正極 1a アルミニウム箔 1b 正極合剤層 1c リード部 2 負極 2a 銅箔 2b 負極合剤層 2c リード部 3 ポリマー電解質 4 外装材 4a 封止部分 5 正極端子 5a アルミニウム 5b ニッケル 6 負極端子 10 ポリマー電解質保持正極 20 ポリマー電解質保持負極 DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Aluminum foil 1b Positive electrode mixture layer 1c Lead part 2 Negative electrode 2a Copper foil 2b Negative electrode mixture layer 2c Lead part 3 Polymer electrolyte 4 Exterior material 4a Sealing part 5 Positive terminal 5a Aluminum 5b Nickel 6 Negative terminal 10 Polymer electrolyte holding Positive electrode 20 Polymer electrolyte holding negative electrode
フロントページの続き Fターム(参考) 5H022 AA09 AA19 BB11 CC02 CC08 CC12 CC22 EE01 EE03 EE04 5H029 AJ11 AJ13 AK03 AL07 AM00 AM03 AM05 AM07 AM16 BJ04 DJ02 DJ03 DJ05 DJ07 DJ12 EJ01 EJ12 HJ04 Continued on the front page F term (reference) 5H022 AA09 AA19 BB11 CC02 CC08 CC12 CC22 EE01 EE03 EE04 5H029 AJ11 AJ13 AK03 AL07 AM00 AM03 AM05 AM07 AM16 BJ04 DJ02 DJ03 DJ05 DJ07 DJ12 EJ01 EJ12 HJ04
Claims (6)
方の面に正極合剤層を形成してなるシート状の正極と銅
製の集電体の少なくとも一方の面に負極合剤層を形成し
てなるシート状の負極とをポリマー電解質を介して積層
し、その正極、負極およびポリマー電解質からなる電極
群を外装材で密封してなるポリマー電解質電池におい
て、正極端子として、アルミニウムとニッケルまたはス
テンレス鋼とのクラッド材であって、かつ上記正極のア
ルミニウム製のリード部の厚さの2倍以上の厚さを有す
るクラッド材を用い、上記クラッド材からなる正極端子
の一方の端部のアルミニウム部分を正極のリード部と接
続し、上記クラッド材からなる正極端子の他方の端部を
外装材の封止部分より外側に引き出してなることを特徴
とするポリマー電解質電池。1. A sheet-like positive electrode having a positive electrode mixture layer formed on at least one surface of an aluminum current collector and a negative electrode mixture layer formed on at least one surface of a copper current collector. In a polymer electrolyte battery in which a sheet-shaped negative electrode is laminated with a polymer electrolyte therebetween, and the positive electrode, the negative electrode and an electrode group composed of the polymer electrolyte are sealed with an exterior material, aluminum and nickel or stainless steel are used as a positive electrode terminal. A clad material having a thickness of at least twice the thickness of the aluminum lead portion of the positive electrode, and the aluminum portion at one end of the positive electrode terminal made of the clad material is used as a positive electrode. And the other end of the positive electrode terminal made of the clad material is drawn out from the sealing portion of the exterior material. battery.
て、電極群がその複数枚の正極と複数枚の負極とをそれ
ぞれの間にポリマー電解質を介して積層した積層電極群
である請求項1記載のポリマー電解質電池。2. The method according to claim 1, wherein each of the plurality of positive electrodes and the plurality of negative electrodes is a stacked electrode group in which the plurality of positive electrodes and the plurality of negative electrodes are stacked with a polymer electrolyte interposed therebetween. The polymer electrolyte battery according to the above.
ラッド材であって、少なくとも外装材の封止部分より内
側がアルミニウムを主材とし、外装材の封止部分に配置
する部分の少なくとも一部がアルミニウムとニッケルま
たはステンレス鋼とのクラッド材である請求項1または
2記載のポリマー電解質電池。3. A clad material constituting a positive electrode terminal is a partial clad material, at least a part of which is mainly composed of aluminum inside the sealed portion of the exterior material and which is disposed in the sealed portion of the exterior material. 3. The polymer electrolyte battery according to claim 1, wherein is a clad material of aluminum and nickel or stainless steel.
0〜20μmのアルミニウム箔からなり、正極端子を構
成するアルミニウムとニッケルまたはステンレス鋼との
クラッド材の厚さが30〜300μmである請求項1〜
3のいずれかに記載のポリマー電解質電池。4. The current collector made of aluminum for the positive electrode having a thickness of 1
The thickness of the clad material of aluminum and nickel or stainless steel which comprises an aluminum foil of 0 to 20 μm and constitutes the positive electrode terminal is 30 to 300 μm.
4. The polymer electrolyte battery according to any one of 3.
テンレス鋼とのクラッド材であって、かつ負極の銅製の
リード部の厚さの2倍以上の厚さを存するクラッド材を
用い、上記クラッド材からなる負極端子の一方の端部の
銅部分を負極のリード部と接続し、上記クラッド材から
なる負極端子の他方の端部を外装材の封止部分より外側
に引き出した請求項1〜4のいずれかに記載のポリマー
電解質電池。5. A negative electrode terminal comprising: a clad material of copper and nickel or stainless steel, wherein the clad material has a thickness of at least twice the thickness of a copper lead of the negative electrode. The copper portion at one end of the negative electrode terminal comprising a lead connected to the negative electrode, and the other end of the negative electrode terminal comprising the clad material is drawn out of the sealing portion of the exterior material. The polymer electrolyte battery according to any one of the above.
からなり、負極端子を構成する銅とニッケルまたはステ
ンレス鋼とのクラッド材の厚さが30〜300μmであ
る請求項5記載のポリマー電解質電池。6. The negative electrode current collector comprises a copper foil having a thickness of 5 to 20 μm, and a thickness of a clad material of copper and nickel or stainless steel constituting a negative electrode terminal is 30 to 300 μm. Polymer electrolyte battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25371799A JP4162175B2 (en) | 1999-09-08 | 1999-09-08 | Polymer electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25371799A JP4162175B2 (en) | 1999-09-08 | 1999-09-08 | Polymer electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001076706A true JP2001076706A (en) | 2001-03-23 |
JP4162175B2 JP4162175B2 (en) | 2008-10-08 |
Family
ID=17255177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25371799A Expired - Fee Related JP4162175B2 (en) | 1999-09-08 | 1999-09-08 | Polymer electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4162175B2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004020191A1 (en) * | 2002-08-29 | 2004-03-11 | Sumitomo Special Metals C0., Ltd. | Aluminum/nickel clad material and method for manufacture thereof, and exterior terminal for electric cell |
JP2004106059A (en) * | 2002-08-29 | 2004-04-08 | Sumitomo Special Metals Co Ltd | Aluminum-nickel clad member, manufacturing method thereof, and external terminal for battery |
JP2006324143A (en) * | 2005-05-19 | 2006-11-30 | Nissan Motor Co Ltd | Secondary battery |
JP2007087744A (en) * | 2005-09-21 | 2007-04-05 | Toyo Seikan Kaisha Ltd | Dye-sensitized solar cell |
US7351496B2 (en) | 2002-08-05 | 2008-04-01 | Sanyo Electric Co., Ltd. | Battery |
JP2009076268A (en) * | 2007-09-19 | 2009-04-09 | Sanyo Electric Co Ltd | Packed battery and peel-off inspection method of lead plate of packed battery |
US20090104518A1 (en) * | 2004-10-06 | 2009-04-23 | Luc Nedelec | Battery module comprising an energy storing element whereof the contact is activated by mutual layer tightening |
WO2010073827A1 (en) * | 2008-12-22 | 2010-07-01 | 昭和電工株式会社 | Positive electrode tab lead, negative electrode tab lead, and battery |
KR100990778B1 (en) | 2002-03-15 | 2010-10-29 | 산요덴키가부시키가이샤 | Sealed battery |
JP2011222905A (en) * | 2010-04-14 | 2011-11-04 | Tdk Corp | Electrochemical device, method of manufacturing the same, circuit boad, and storage array |
JP2012525664A (en) * | 2009-04-30 | 2012-10-22 | ビーワイディー カンパニー リミテッド | Single cell and power battery pack including the single cell |
JP2013033665A (en) * | 2011-08-02 | 2013-02-14 | Gs Yuasa Corp | Battery |
US8426060B2 (en) | 2002-08-26 | 2013-04-23 | Nissan Motor Co., Ltd. | Laminate cell, assembled battery, battery module and electric vehicle |
CN103703589A (en) * | 2011-06-24 | 2014-04-02 | Sk新技术株式会社 | Battery |
JP2014060004A (en) * | 2012-09-14 | 2014-04-03 | Toshiba Corp | Battery |
US8760840B2 (en) | 2010-04-14 | 2014-06-24 | Tdk Corporation | Electrochemical device and manufacturing method thereof, circuit board and housing tray |
JP2016004731A (en) * | 2014-06-19 | 2016-01-12 | オートモーティブエナジーサプライ株式会社 | Negative electrode terminal for battery |
JP2017041299A (en) * | 2015-08-17 | 2017-02-23 | 日立金属株式会社 | Terminal for battery and manufacturing method of terminal for battery |
WO2017073164A1 (en) * | 2015-10-30 | 2017-05-04 | ブラザー工業株式会社 | Electrode unit, battery and method for producing electrode unit |
KR20170114404A (en) * | 2016-04-04 | 2017-10-16 | 삼성에스디아이 주식회사 | Secondary battery |
JP2020166973A (en) * | 2019-03-28 | 2020-10-08 | Fdk株式会社 | Power storage device and manufacturing method of power storage device |
EP3859814A1 (en) * | 2020-02-03 | 2021-08-04 | A.F.W. Co., Ltd. | Pouch type battery cell and manufacturing method thereof |
-
1999
- 1999-09-08 JP JP25371799A patent/JP4162175B2/en not_active Expired - Fee Related
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100990778B1 (en) | 2002-03-15 | 2010-10-29 | 산요덴키가부시키가이샤 | Sealed battery |
US7351496B2 (en) | 2002-08-05 | 2008-04-01 | Sanyo Electric Co., Ltd. | Battery |
US8426060B2 (en) | 2002-08-26 | 2013-04-23 | Nissan Motor Co., Ltd. | Laminate cell, assembled battery, battery module and electric vehicle |
KR101012530B1 (en) * | 2002-08-29 | 2011-02-07 | 가부시키가이샤 네오맥스 마테리아르 | Aluminum / Nickel Clad Material, Manufacturing Method and External Terminal for Battery |
JP2004106059A (en) * | 2002-08-29 | 2004-04-08 | Sumitomo Special Metals Co Ltd | Aluminum-nickel clad member, manufacturing method thereof, and external terminal for battery |
CN100398312C (en) * | 2002-08-29 | 2008-07-02 | 株式会社新王材料 | Aluminum/nickel clad member, manufacturing method thereof, and external terminal for battery |
WO2004020191A1 (en) * | 2002-08-29 | 2004-03-11 | Sumitomo Special Metals C0., Ltd. | Aluminum/nickel clad material and method for manufacture thereof, and exterior terminal for electric cell |
US20090104518A1 (en) * | 2004-10-06 | 2009-04-23 | Luc Nedelec | Battery module comprising an energy storing element whereof the contact is activated by mutual layer tightening |
KR101313300B1 (en) | 2004-10-06 | 2013-09-30 | 밧츠캅 | Battery module comprising an energy storing element whereof the contact is activated by mutual layer tightening |
JP2006324143A (en) * | 2005-05-19 | 2006-11-30 | Nissan Motor Co Ltd | Secondary battery |
JP2007087744A (en) * | 2005-09-21 | 2007-04-05 | Toyo Seikan Kaisha Ltd | Dye-sensitized solar cell |
JP2009076268A (en) * | 2007-09-19 | 2009-04-09 | Sanyo Electric Co Ltd | Packed battery and peel-off inspection method of lead plate of packed battery |
US9070919B2 (en) | 2008-12-22 | 2015-06-30 | Showa Denko Packaging Co., Ltd. | Positive electrode tab lead, negative electrode tab lead, and battery |
JP2010170979A (en) * | 2008-12-22 | 2010-08-05 | Showa Denko Kk | Positive electrode tab lead, negative electrode tab lead, and battery |
WO2010073827A1 (en) * | 2008-12-22 | 2010-07-01 | 昭和電工株式会社 | Positive electrode tab lead, negative electrode tab lead, and battery |
JP2012525664A (en) * | 2009-04-30 | 2012-10-22 | ビーワイディー カンパニー リミテッド | Single cell and power battery pack including the single cell |
US8760840B2 (en) | 2010-04-14 | 2014-06-24 | Tdk Corporation | Electrochemical device and manufacturing method thereof, circuit board and housing tray |
JP2011222905A (en) * | 2010-04-14 | 2011-11-04 | Tdk Corp | Electrochemical device, method of manufacturing the same, circuit boad, and storage array |
EP2725637A4 (en) * | 2011-06-24 | 2015-03-04 | Sk Innovation Co Ltd | DRUMS |
JP2014517495A (en) * | 2011-06-24 | 2014-07-17 | エスケー イノベーション カンパニー リミテッド | battery |
CN103703589A (en) * | 2011-06-24 | 2014-04-02 | Sk新技术株式会社 | Battery |
US9543561B2 (en) | 2011-06-24 | 2017-01-10 | Sk Innovation Co., Ltd. | Battery |
US9966577B2 (en) | 2011-08-02 | 2018-05-08 | Gs Yuasa International Ltd. | Battery |
JP2013033665A (en) * | 2011-08-02 | 2013-02-14 | Gs Yuasa Corp | Battery |
US10770695B2 (en) | 2011-08-02 | 2020-09-08 | Gs Yuasa International Ltd. | Battery |
US9466841B2 (en) | 2011-08-02 | 2016-10-11 | Gs Yuasa International Ltd. | Battery |
JP2014060004A (en) * | 2012-09-14 | 2014-04-03 | Toshiba Corp | Battery |
US9614194B2 (en) | 2012-09-14 | 2017-04-04 | Kabushiki Kaisha Toshiba | Battery |
JP2016004731A (en) * | 2014-06-19 | 2016-01-12 | オートモーティブエナジーサプライ株式会社 | Negative electrode terminal for battery |
JP2017041299A (en) * | 2015-08-17 | 2017-02-23 | 日立金属株式会社 | Terminal for battery and manufacturing method of terminal for battery |
WO2017073164A1 (en) * | 2015-10-30 | 2017-05-04 | ブラザー工業株式会社 | Electrode unit, battery and method for producing electrode unit |
KR20170114404A (en) * | 2016-04-04 | 2017-10-16 | 삼성에스디아이 주식회사 | Secondary battery |
KR102669086B1 (en) * | 2016-04-04 | 2024-05-24 | 삼성에스디아이 주식회사 | Secondary battery |
JP2020166973A (en) * | 2019-03-28 | 2020-10-08 | Fdk株式会社 | Power storage device and manufacturing method of power storage device |
EP3859814A1 (en) * | 2020-02-03 | 2021-08-04 | A.F.W. Co., Ltd. | Pouch type battery cell and manufacturing method thereof |
CN113285109A (en) * | 2020-02-03 | 2021-08-20 | 阿发屋株式会社 | Pouch-shaped battery cell and method for manufacturing same |
CN113285109B (en) * | 2020-02-03 | 2025-01-24 | 阿发屋株式会社 | Pouch-shaped battery cell and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4162175B2 (en) | 2008-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4162175B2 (en) | Polymer electrolyte battery | |
KR100826494B1 (en) | Stack-type lithium-ion polymer battery | |
JP3680744B2 (en) | Lithium ion polymer secondary battery | |
CN1612402B (en) | Lithium ion secondary battery and manufacturing method thereof | |
WO2011002064A1 (en) | Laminated battery | |
JP2000235850A (en) | Stacked polymer electrolyte battery | |
JP2007012598A (en) | Nonaqueous electrolyte secondary battery and battery module | |
WO1999031748A1 (en) | Lithium ion secondary battery | |
JP2001068156A (en) | Stacked polymer electrolyte battery | |
JP3428452B2 (en) | Battery with spiral electrode body and method of manufacturing the same | |
JP2010244930A (en) | Manufacturing method of laminated battery | |
JP2000030742A (en) | Lithium-ion secondary battery element | |
JPH10284055A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP2001283927A (en) | Nonaqueous secondary battery and its manufacturing method | |
JP3821465B2 (en) | Polymer electrolyte battery | |
JP2001155779A (en) | Nonaqueous electrolyte battery | |
JP3992261B2 (en) | Stacked polymer electrolyte battery | |
JP4070367B2 (en) | Laminated polymer electrolyte battery and sheet battery manufacturing method | |
JP2001126678A (en) | Stacked polymer electrolyte battery | |
JP4010521B2 (en) | Stacked battery | |
JP2000215879A (en) | Polymer electrolyte battery | |
JP3775633B2 (en) | Stacked polymer electrolyte battery | |
JP3966602B2 (en) | Polymer electrolyte battery | |
JP2000243374A (en) | Polymer electrolyte battery | |
JP2001052681A (en) | Polymer electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080718 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080718 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |