JP2001074761A - Flow velocity measuring device - Google Patents
Flow velocity measuring deviceInfo
- Publication number
- JP2001074761A JP2001074761A JP25509699A JP25509699A JP2001074761A JP 2001074761 A JP2001074761 A JP 2001074761A JP 25509699 A JP25509699 A JP 25509699A JP 25509699 A JP25509699 A JP 25509699A JP 2001074761 A JP2001074761 A JP 2001074761A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- voltage
- amplifier
- flow velocity
- terminal voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 60
- 230000003321 amplification Effects 0.000 claims abstract description 11
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 11
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 10
- 239000003990 capacitor Substances 0.000 abstract description 23
- 238000005259 measurement Methods 0.000 description 34
- 238000009529 body temperature measurement Methods 0.000 description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、ガス流量計、フ
ローメーターなどに利用され、流体による抵抗の温度変
化により流速を測定する感熱式の流速測定装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermo-sensitive flow velocity measuring device which is used in a gas flow meter, a flow meter, etc., and measures a flow velocity by a temperature change of a resistance caused by a fluid.
【0002】[0002]
【従来の技術】このような流速測定装置は、例えば、特
開平10−206205号公報に開示されている。2. Description of the Related Art Such a flow velocity measuring device is disclosed, for example, in Japanese Patent Application Laid-Open No. 10-206205.
【0003】[0003]
【発明が解決しようとする課題】図3に流量測定装置の
一つの構成例を示す。この流量測定装置は、概略的に
は、センサ駆動部1と差電圧検出部2と増幅部3とによ
り構成されている。センサ駆動部1にあっては、流路中
に配設されるセンサ基板(図示せず)上に実装された第
1の感温抵抗体RS1と第2の感温抵抗体RS2が設け
られている。これらの第1及び第2の感温抵抗体RS
1,RS2も流体中に晒されるが、ここでは、第1の感
温抵抗体RS1が上流側、第2の感温抵抗体RS2が下
流側となるように位置関係が設定されているものとす
る。また、これらの第1及び第2の感温抵抗体RS1,
RS2は抵抗値が等しく、かつ、高抵抗温度係数を持つ
ものが用いられている。これらの第1及び第2の感温抵
抗体RS1,RS2は加熱装置として作用する電流源4
とともに直列に接続されている。即ち、電流源4は電流
I1を流して抵抗体自身にジュール熱を発生させること
で流体温度よりも高い温度となるようにこれらの第1及
び第2の感温抵抗体RS1,RS2を等しく熱する(も
っとも、加熱装置としては別個の熱源によりこれらの第
1及び第2の感温抵抗体RS1,RS2を加熱するもの
であってもよい)。また、センサ駆動部1において、第
2の感温抵抗体RS2の両端b,c点がフィードバック
ループ中に接続されたオペアンプ5と、電流源4と第1
の感温抵抗体RS1との接続点aの出力側に接続された
オペアンプ6とが設けられている。FIG. 3 shows an example of the configuration of a flow measuring device. This flow rate measuring device is roughly composed of a sensor driving unit 1, a difference voltage detecting unit 2, and an amplifying unit 3. In the sensor driving section 1, a first temperature-sensitive resistor RS1 and a second temperature-sensitive resistor RS2 mounted on a sensor substrate (not shown) provided in a flow path are provided. I have. These first and second temperature-sensitive resistors RS
1 and RS2 are also exposed to the fluid. Here, it is assumed that the positional relationship is set such that the first temperature-sensitive resistor RS1 is on the upstream side and the second temperature-sensitive resistor RS2 is on the downstream side. I do. In addition, these first and second temperature-sensitive resistors RS1,
RS2 having the same resistance value and a high resistance temperature coefficient is used. These first and second temperature-sensitive resistors RS1 and RS2 are connected to a current source 4 acting as a heating device.
And are connected in series. That is, the current source 4 causes the first and second temperature-sensitive resistors RS1 and RS2 to be equally heated so that the current I1 flows to generate Joule heat in the resistor itself so that the temperature becomes higher than the fluid temperature. (However, the first and second temperature-sensitive resistors RS1 and RS2 may be heated by separate heat sources as a heating device.) Also, in the sensor driving section 1, both ends b and c of the second temperature-sensitive resistor RS2 are connected in a feedback loop, the current source 4 and the first
And an operational amplifier 6 connected to the output side of a connection point a with the temperature-sensitive resistor RS1.
【0004】差電圧検出部2は検出装置として作用する
もので、オペアンプ6からd点に出力される第1の感温
抵抗体RS1の端子電圧(=f点の出力)とオペアンプ
5からc点(=e点)に出力される第2の感温抵抗体R
S2の端子電圧(=h点の出力)との差電圧をg点に出
力する加算器7を備えている。The differential voltage detecting section 2 functions as a detecting device. The terminal voltage (= output at point f) of the first temperature-sensitive resistor RS1 output from the operational amplifier 6 to the point d and the point c from the operational amplifier 5 to the point c. (= Point e) the second temperature-sensitive resistor R output
An adder 7 is provided which outputs a difference voltage from the terminal voltage of S2 (= output at point h) to point g.
【0005】増幅部3は、第1の感温抵抗体RS1の端
子電圧、第2の感温抵抗体RS2の端子電圧、及び、差
電圧(g点出力)を各々増幅する増幅器8,9,10を
備えている。The amplifier 3 amplifies the terminal voltage of the first temperature-sensitive resistor RS1, the terminal voltage of the second temperature-sensitive resistor RS2, and the differential voltage (g-point output), respectively. 10 is provided.
【0006】このような構成において、第1及び第2の
感温抵抗体RS1,RS2の熱は流体の流れにより奪わ
れる。奪われる熱量は、流体の流れと関係している。例
えば、流体に流れがなければ、第1及び第2の感温抵抗
体RS1,RS2の温度はほぼ等しくなるため、抵抗値
もほぼ等しい。よって、第1の感温抵抗体RS1の端子
電圧と第2の感温抵抗体RS2の端子電圧とはほぼ等し
く、差電圧検出部2のg点の出力もほぼ0となる。一
方、流体に流れがある場合には下流側よりも上流側の第
1の感温抵抗体RS1の熱が多く奪われるため、第1及
び第2の感温抵抗体RS1,RS2の温度が異なること
となり、この上流側の第1の感温抵抗体RS1の抵抗値
が下流側よりも小さくなる。よって、第1の感温抵抗体
RS1の端子電圧は第2の感温抵抗体RS2の端子電圧
よりも小さくなる。この端子電圧の差が流速に関係した
電圧値として現れる。この結果、差電圧検出部2のg点
の出力の大きさを測定することで流体の流速を知ること
ができるといえる。なお、これらの端子電圧、差電圧等
を測定するのにA/Dコンバータ等を用いる場合、A/
Dコンバータ等に合せた電圧信号に変換する必要がある
ため、後段に増幅部3が設けられている。In such a configuration, the heat of the first and second temperature-sensitive resistors RS1 and RS2 is removed by the flow of the fluid. The amount of heat deprived is related to the flow of the fluid. For example, if there is no flow in the fluid, the temperatures of the first and second temperature-sensitive resistors RS1 and RS2 are substantially equal, and the resistance values are also substantially equal. Therefore, the terminal voltage of the first temperature-sensitive resistor RS1 is substantially equal to the terminal voltage of the second temperature-sensitive resistor RS2, and the output at the point g of the differential voltage detecting unit 2 is also substantially zero. On the other hand, when there is a flow in the fluid, the heat of the first temperature-sensitive resistor RS1 on the upstream side is removed more than on the downstream side, so that the temperatures of the first and second temperature-sensitive resistors RS1 and RS2 are different. That is, the resistance value of the first temperature-sensitive resistor RS1 on the upstream side becomes smaller than that on the downstream side. Therefore, the terminal voltage of the first temperature-sensitive resistor RS1 becomes lower than the terminal voltage of the second temperature-sensitive resistor RS2. The difference between the terminal voltages appears as a voltage value related to the flow velocity. As a result, it can be said that the flow velocity of the fluid can be known by measuring the magnitude of the output at the point g of the difference voltage detecting unit 2. When an A / D converter or the like is used to measure these terminal voltages, difference voltages, etc.
Since it is necessary to convert the signal into a voltage signal suitable for a D converter or the like, the amplifying unit 3 is provided at a subsequent stage.
【0007】しかしながら、図3に示す前記の装置で
は、複数のオペアンプを用いているため電力の消費が多
く、電池で長時間駆動させることができないという不具
合がある。However, the device shown in FIG. 3 uses a plurality of operational amplifiers, consumes a large amount of power, and cannot be driven for a long time by a battery.
【0008】この発明の目的は、消費電力を抑えること
により電池電源での駆動に好適な流量測定装置を提供す
ることにある。An object of the present invention is to provide a flow measuring device suitable for driving with a battery power supply by suppressing power consumption.
【0009】この発明の別の目的は、流体の流速の温度
補償の情報をより正確に得ることができるようにするこ
とである。Another object of the present invention is to enable more accurate information on temperature compensation of the flow velocity of a fluid to be obtained.
【0010】この発明の別の目的は、連続した流速情報
を出力することができるようにすることである。Another object of the present invention is to enable continuous flow rate information to be output.
【0011】この発明の別の目的は、流体の温度情報を
適時出力することができるようにすることである。Another object of the present invention is to enable timely output of fluid temperature information.
【0012】[0012]
【課題を解決するための手段】請求項1に記載の発明
は、流体中の上流側と下流側にそれぞれ配置されて加熱
する2つの感温抵抗体の端子電圧差から前記流体の流速
を測定する流速測定装置において、前記各感温抵抗体の
端子電圧に追従して当該電圧を保持する2つの電圧保持
装置と、増幅器と、前記感温抵抗体の一方の端子電圧を
前記増幅器により増幅できるようにも前記両電圧保持装
置がそれぞれ保持している電圧の差を前記増幅器により
増幅できるようにもラインの接続状態を切り替え可能で
ある第1のスイッチとを備えていることを特徴とする流
速測定装置である。According to a first aspect of the present invention, a flow rate of the fluid is measured from a terminal voltage difference between two temperature-sensitive resistors which are respectively disposed on the upstream side and the downstream side of the fluid and heats. In the flow velocity measuring device, the two voltage holding devices that follow the terminal voltage of each of the temperature sensitive resistors and hold the voltages, an amplifier, and one terminal voltage of the temperature sensitive resistor can be amplified by the amplifier. And a first switch capable of switching a line connection state so that a difference between voltages held by the two voltage holding devices can be amplified by the amplifier. It is a measuring device.
【0013】したがって、両電圧保持装置が保持する電
圧を、共通の電位、例えばGNDを基準とした電圧にし
て、両電圧保持装置がそれぞれ保持している電圧の差を
増幅器により増幅すれば、流体の流速を測定することが
できる。本装置は、単一の増幅器のみを用いる回路構成
であるため、省電力化を図ることができて、電池電源で
の駆動に好適である。また、電圧保持装置の一方の保持
している電圧を増幅器により増幅することにより流体の
温度を検出して、流体の流速の温度補償の情報を得るこ
とができる。Therefore, if the voltage held by the two voltage holding devices is set to a common potential, for example, a voltage with reference to GND, and the difference between the voltages held by the two voltage holding devices is amplified by the amplifier, the fluid Can be measured. Since the present device has a circuit configuration using only a single amplifier, power can be saved, and the device is suitable for driving with a battery power supply. Further, by amplifying the voltage held by one of the voltage holding devices by an amplifier, the temperature of the fluid can be detected, and information on temperature compensation of the flow velocity of the fluid can be obtained.
【0014】請求項2に記載の発明は、流体中の上流側
と下流側にそれぞれ配置されて加熱する2つの感温抵抗
体の端子電圧差から前記流体の流速を測定する流速測定
装置において、前記各感温抵抗体の端子電圧に追従して
当該電圧を保持する2つの電圧保持装置と、増幅器と、
前記流体の温度を測定する測温抵抗体と、前記測温抵抗
体の端子間電圧を前記増幅器により増幅できるようにも
前記両電圧保持装置がそれぞれ保持している電圧の差を
前記増幅器により増幅できるようにもラインの接続状態
を切り替え可能である第1のスイッチとを備えているこ
とを特徴とする流速測定装置である。According to a second aspect of the present invention, there is provided a flow velocity measuring apparatus for measuring a flow velocity of a fluid from a terminal voltage difference between two temperature-sensitive resistors arranged and heated on an upstream side and a downstream side of the fluid, respectively. Two voltage holding devices that follow the terminal voltage of each of the temperature-sensitive resistors and hold the voltages, an amplifier,
A temperature measuring resistor for measuring the temperature of the fluid, and the difference between voltages held by the two voltage holding devices is also amplified by the amplifier so that the voltage between terminals of the temperature measuring resistor can be amplified by the amplifier. And a first switch capable of switching the connection state of the line as much as possible.
【0015】したがって、両電圧保持装置が保持する電
圧を、共通の電位、例えばGNDを基準とした電圧にし
て、両電圧保持装置がそれぞれ保持している電圧の差を
増幅器により増幅すれば、流体の流速を測定することが
できる。本装置は、単一の増幅器のみを用いる回路構成
であるため、省電力化を図ることができて、電池電源で
の駆動に好適である。また、測温抵抗体の端子間電圧を
増幅器により増幅することにより流体の温度を検出し
て、流体の流速の温度補償の情報をより正確に得ること
ができる。Accordingly, if the voltage held by the two voltage holding devices is set to a common potential, for example, a voltage with reference to GND, and the difference between the voltages held by the two voltage holding devices is amplified by the amplifier, the fluid Can be measured. Since the present device has a circuit configuration using only a single amplifier, power can be saved, and the device is suitable for driving with a battery power supply. In addition, the temperature of the fluid is detected by amplifying the voltage between the terminals of the resistance temperature detector by the amplifier, and the information of temperature compensation of the flow velocity of the fluid can be obtained more accurately.
【0016】請求項3に記載の発明は、請求項1または
2に記載の流量測定装置において、本装置の回路へ電力
を供給するラインを開閉する第2のスイッチを備えてい
ることを特徴とする。According to a third aspect of the present invention, in the flow rate measuring device according to the first or second aspect, a second switch for opening and closing a line for supplying power to a circuit of the device is provided. I do.
【0017】したがって、流速測定の必要がないときに
は回路への電力供給を停止することができるので、電池
電源での駆動が容易となる。Therefore, when it is not necessary to measure the flow velocity, the power supply to the circuit can be stopped, so that the driving with the battery power supply becomes easy.
【0018】請求項4に記載の発明は、請求項1〜3の
いずれかの一に記載の流量測定装置において、前記増幅
器は増幅率を可変できることを特徴とする。According to a fourth aspect of the present invention, in the flow rate measuring apparatus according to any one of the first to third aspects, the amplifier can change an amplification factor.
【0019】したがって、両感温抵抗体の電圧差の増幅
および感温抵抗体の端子電圧の増幅または測温抵抗体の
端子電圧の増幅を同一の増幅器で行うことが可能とな
り、増幅器を増やすこと無く流速測定と温度測定が行
え、電力の消費も抑えられる。Therefore, it is possible to amplify the voltage difference between the two temperature-sensitive resistors and to amplify the terminal voltage of the temperature-sensitive resistor or the terminal voltage of the temperature-measuring resistor using the same amplifier. Flow velocity measurement and temperature measurement can be performed without any power consumption.
【0020】請求項5に記載の発明は、請求項1〜4の
いずれかの一に記載の流速測定装置において、前記電圧
保持装置が前記各感温抵抗体の端子電圧に追従して当該
電圧を保持できるようにも前記電圧保持装置に保持した
電圧を前記増幅器に印加できるようにもラインの接続状
態を切り替え可能である第3のスイッチとを備えている
ことを特徴とする。According to a fifth aspect of the present invention, in the flow velocity measuring apparatus according to any one of the first to fourth aspects, the voltage holding device follows the terminal voltage of each of the temperature-sensitive resistors to follow the voltage. And a third switch capable of switching a line connection state so that the voltage held by the voltage holding device can be applied to the amplifier.
【0021】したがって、各感温抵抗体の端子電圧の測
定と流体の流速の測定とを交互に繰り返すことを可能と
し、連続した流速情報を出力することができる。Therefore, the measurement of the terminal voltage of each temperature sensing resistor and the measurement of the flow velocity of the fluid can be alternately repeated, and continuous flow velocity information can be output.
【0022】請求項6に記載の発明は、請求項1〜5の
いずれかの一に記載の流速測定装置において、前記感温
抵抗体に電流を供給する電流源を備え、この電流源は前
記電流を停止または低減することができることを特徴と
する。According to a sixth aspect of the present invention, in the flow velocity measuring device according to any one of the first to fifth aspects, a current source for supplying a current to the temperature-sensitive resistor is provided, and It is characterized in that the current can be stopped or reduced.
【0023】したがって、流速測定の必要がないときの
消費電力を抑えて、電池電源での駆動が容易となる。Therefore, power consumption when there is no need to measure the flow velocity is suppressed, and driving with a battery power source is facilitated.
【0024】請求項7に記載の発明は、請求項6に記載
の流速測定装置において、前記第1のスイッチの切り替
えにより前記両電圧保持装置がそれぞれ保持している電
圧の差を前記増幅器により増幅できるようにしていると
きは、前記電流源が前記感温抵抗体に供給する電流を停
止または低減する電流制御手段を備えていることを特徴
とする。According to a seventh aspect of the present invention, in the flow velocity measuring device according to the sixth aspect, the difference between the voltages held by the two voltage holding devices is amplified by the amplifier by switching the first switch. When the current source is enabled, a current control means for stopping or reducing the current supplied from the current source to the temperature-sensitive resistor is provided.
【0025】したがって、流速測定を行っていないとき
の消費電力を抑えて、電池電源での駆動が容易となる。Therefore, power consumption when the flow velocity measurement is not performed is suppressed, and driving with a battery power source is facilitated.
【0026】請求項8に記載の発明は、請求項1〜7の
いずれかの一に記載の流速測定装置において、前記第1
のスイッチを適時切り替えて前記感温抵抗体の一方の端
子電圧または前記測温抵抗体の端子電圧を前記増幅器に
より増幅できるようにする温度測定手段を備えているこ
とを特徴とする。According to an eighth aspect of the present invention, there is provided the flow velocity measuring device according to any one of the first to seventh aspects, wherein the first
A temperature measuring means for switching one of the switches as appropriate to enable the amplifier to amplify one terminal voltage of the temperature sensing resistor or the terminal voltage of the temperature measuring resistor.
【0027】したがって、流体の温度情報を適時出力す
ることが可能となる。Therefore, it is possible to output the temperature information of the fluid in a timely manner.
【0028】請求項9に記載の発明は、請求項3に記載
の流速測定装置において、前記両電圧保持装置を前記各
感温抵抗体の端子電圧に追従させて当該電圧を保持させ
る動作、前記第1のスイッチを切り替えて前記感温抵抗
体の一方の端子電圧または前記測温抵抗体の端子電圧を
前記増幅器により増幅する動作、および、前記両電圧保
持装置がそれぞれ保持している電圧の差を前記増幅器に
より増幅する動作と、前記第2のスイッチを切り替えて
前記本装置の回路へ電力を供給するラインを開くように
する動作とを適宜切り替える休止手段を備えていること
を特徴とする。According to a ninth aspect of the present invention, in the flow velocity measuring apparatus according to the third aspect, the two voltage holding devices follow the terminal voltages of the respective temperature-sensitive resistors to hold the voltages. An operation of switching a first switch to amplify one terminal voltage of the temperature-sensitive resistor or the terminal voltage of the temperature-measuring resistor by the amplifier, and a difference between voltages held by the two voltage holding devices. And an operation of switching the second switch to open a line for supplying power to the circuit of the device as appropriate.
【0029】したがって、間欠的な流速測定を行うこと
ができ、流速測定の必要がない期間の消費電力を抑え
て、電池電源での駆動が容易となる。Therefore, intermittent flow velocity measurement can be performed, power consumption during a period in which flow velocity measurement is not required is suppressed, and driving with a battery power source is facilitated.
【0030】請求項10に記載の発明は、請求項1また
は2に記載の流速測定装置において、前記両電圧保持装
置を前記各感温抵抗体の端子電圧に追従させて当該電圧
を保持させる動作と、前記第1のスイッチを切り替えて
前記感温抵抗体の一方の端子電圧または前記測温抵抗体
の端子電圧を前記増幅器により増幅する動作とを同時に
行う同時実行手段を備えていることを特徴とする。According to a tenth aspect of the present invention, in the flow velocity measuring device according to the first or second aspect, the operation of causing the two voltage holding devices to follow the terminal voltages of the respective temperature sensitive resistors and hold the voltages. And a simultaneous execution means for simultaneously switching the first switch and amplifying one terminal voltage of the temperature-sensitive resistor or the terminal voltage of the temperature-sensitive resistor by the amplifier. And
【0031】したがって、流速の測定と流体温度の測定
を同時に行って、これらに要する時間を短縮して消費電
力を抑えて、電池電源での駆動が容易となる。Therefore, the measurement of the flow velocity and the measurement of the fluid temperature are performed at the same time, the time required for these measurements is reduced, the power consumption is suppressed, and the driving with the battery power source becomes easy.
【0032】[0032]
【発明の実施の形態】[発明の実施の形態1]図1は、
この発明の実施の形態1である流速測定装置の回路図で
ある。図1に示すように、この流速測定装置は、感温抵
抗体Ru,Rdを備えている。感温抵抗体Ru,Rdは流
体中に設置され、感温抵抗体Ruは上流側に感温抵抗体
Rdは下流側に設置される。この感温抵抗体Ru,Rd
は白金など高い抵抗温度係数を持つもので、抵抗値、抵
抗温度係数が等しく、形状を同様にして放熱などの熱的
な特性が同じになるようにしており、いずれも電力によ
り発熱する。[First Embodiment of the Invention] FIG.
1 is a circuit diagram of a flow velocity measuring device according to a first embodiment of the present invention. As shown in FIG. 1, the flow velocity measuring device includes temperature-sensitive resistors Ru and Rd. The temperature-sensitive resistors Ru and Rd are installed in the fluid, the temperature-sensitive resistor Ru is installed on the upstream side, and the temperature-sensitive resistor Rd is installed on the downstream side. These temperature sensitive resistors Ru, Rd
Has a high temperature coefficient of resistance such as platinum, has the same resistance value and temperature coefficient of resistance, has the same shape, and has the same thermal characteristics such as heat radiation.
【0033】電流源Ihは、直列に接続された感温抵抗
体RuおよびRdに電流を供給する。電流源IhはA節
で感温抵抗体Rdの一端と接続される。感温抵抗体Rd
の他端はB節で感温抵抗体Ruの一端に接続される。感
温抵抗体Ruの他端は接地される。The current source Ih supplies a current to the temperature-sensitive resistors Ru and Rd connected in series. The current source Ih is connected to one end of the temperature-sensitive resistor Rd at the node A. Temperature sensitive resistor Rd
Is connected to one end of the temperature-sensitive resistor Ru at a node B. The other end of the temperature-sensitive resistor Ru is grounded.
【0034】符号C1,C2は電圧保持装置であるコン
デンサである。符号U1は増幅器である差動増幅器であ
る。符号SW1,SW2,SW3,SW4,SW5およびS
W6はスイッチであり、半導体スイッチなど電気信号で
開閉を制御できるものを用いている。スイッチSW5お
よびSW6は、第1のスイッチを構成する。スイッチS
W1,SW2,SW3およびSW4は、第3のスイッチを
構成する。Symbols C1 and C2 are capacitors which are voltage holding devices. The symbol U1 is a differential amplifier which is an amplifier. Symbols SW1, SW2, SW3, SW4, SW5 and S
W6 is a switch, such as a semiconductor switch, whose opening and closing can be controlled by an electric signal. Switches SW5 and SW6 constitute a first switch. Switch S
W1, SW2, SW3, and SW4 constitute a third switch.
【0035】制御信号S1はスイッチSW1,SW2,S
W3およびSW4の開閉を制御する信号である。制御信
号S2はスイッチSW5、SW6の開閉を制御する信号
である。スイッチSW3は差動増幅器U1の増幅率を切
り替える信号である。制御信号S4は電流源Ihの電流
値を制御する信号である。制御信号S5は図1の回路へ
の電力を供給するラインを開閉する信号である。この制
御信号S1,S2,S3,S4およびS5は、この流速
測定装置を駆動する図示しないマイコンより出力され
る。The control signal S1 includes switches SW1, SW2, S
This is a signal for controlling the opening and closing of W3 and SW4. The control signal S2 is a signal for controlling the opening and closing of the switches SW5 and SW6. The switch SW3 is a signal for switching the amplification factor of the differential amplifier U1. The control signal S4 is a signal for controlling the current value of the current source Ih. The control signal S5 is a signal for opening and closing a line for supplying power to the circuit of FIG. The control signals S1, S2, S3, S4 and S5 are output from a microcomputer (not shown) that drives the flow velocity measuring device.
【0036】制御信号S1は追従状態と保持状態の2種
類の状態を切り替える信号である。追従状態では、スイ
ッチSW1はコンデンサC1の一端のD節と感温抵抗体
Rdの一端のA節を接続し、スイッチSW2はコンデン
サC1の他端のE節と感温抵抗体Rdの他端のB節を接
続する。また、スイッチSW3はコンデンサC2の一端
のF節と感温抵抗体Ruの一端のB節を接続し、スイッ
チSW4はコンデンサC2の他端のG節と感温抵抗体R
uの他端のC節を接続する。保持状態では、スイッチS
W1はコンデンサC1の一端のD節とH節を接続し、ス
イッチSW2はコンデンサC1の他端のE節とI節を接
続する。また、スイッチSW3はコンデンサC2の一端
のF節とJ節を接続し、スイッチSW4はコンデンサC
2の他端のG節とI節を接続する。制御信号S2は温度
測定状態と流速測定状態の2種類の状態を切り替える信
号である。温度測定状態では、スイッチSW5は感温抵
抗体Rdの一端のA節と差動増幅器U1の非反転入力端
子とを接続し、スイッチSW6は感温抵抗体Rdの他端
のB節と差動増幅器U1の反転入力端子とを接続する。
流速測定状態では、スイッチSW5はH節と差動増幅器
U1の非反転入力端子を接続し、スイッチSW6はJ節
と差動増幅器U1の反転入力端子を接続する。The control signal S1 is a signal for switching between two types of states, a following state and a holding state. In the following state, the switch SW1 connects the node D at one end of the capacitor C1 to the node A at one end of the temperature sensitive resistor Rd, and the switch SW2 connects the node E at the other end of the capacitor C1 and the other end of the temperature sensitive resistor Rd. Connect section B. The switch SW3 connects the node F at one end of the capacitor C2 to the node B at one end of the temperature-sensitive resistor Ru, and the switch SW4 connects the node G at the other end of the capacitor C2 to the temperature-sensitive resistor R
Connect the C node at the other end of u. In the holding state, the switch S
W1 connects the D node and the H node at one end of the capacitor C1, and the switch SW2 connects the E node and the I node at the other end of the capacitor C1. The switch SW3 connects the F node and the J node at one end of the capacitor C2, and the switch SW4 connects the capacitor C2.
Connect the G and I nodes at the other end of 2. The control signal S2 is a signal for switching between two types of states, a temperature measurement state and a flow velocity measurement state. In the temperature measurement state, the switch SW5 connects the node A at one end of the temperature-sensitive resistor Rd to the non-inverting input terminal of the differential amplifier U1, and the switch SW6 is connected to the node B at the other end of the temperature-sensitive resistor Rd. Connect to the inverting input terminal of amplifier U1.
In the flow velocity measurement state, the switch SW5 connects the node H to the non-inverting input terminal of the differential amplifier U1, and the switch SW6 connects the node J to the inverting input terminal of the differential amplifier U1.
【0037】制御信号S4は発熱状態と待機状態を切り
替える信号である。発熱状態では、電流源Ihは感温抵
抗体RuおよびRdを発熱させる電流を供給する。待機
状態では、電流源Ihは感温抵抗体RuおよびRdが発
熱しないように、電流源Ihを停止しまたは電流値を低
減する。The control signal S4 is a signal for switching between a heating state and a standby state. In the heating state, the current source Ih supplies a current that causes the temperature-sensitive resistors Ru and Rd to generate heat. In the standby state, the current source Ih stops the current source Ih or reduces the current value so that the temperature-sensitive resistors Ru and Rd do not generate heat.
【0038】制御信号S3は通電電圧状態と微小電圧状
態を切り替える信号である。通常電圧状態では、差動増
幅器U1の増幅率を小さく、例えば1倍にする。微小電
圧状態では、差動増幅器U1の増幅率を大きく、例えば
40倍にする。The control signal S3 is a signal for switching between the energized voltage state and the minute voltage state. In the normal voltage state, the gain of the differential amplifier U1 is reduced, for example, to one. In the minute voltage state, the amplification factor of the differential amplifier U1 is large, for example, 40 times.
【0039】制御信号S5は、図1の回路への電力をO
N/OFFする信号である。ON状態では、図1の回路
へ電力を供給するラインを開閉する第2のスイッチであ
る図示しないスイッチを閉じる。OFF状態では図1の
回路へ電力を供給するラインを開閉する前記スイッチを
開き電力を遮断する。The control signal S5 controls the power to the circuit of FIG.
N / OFF signal. In the ON state, a switch (not shown) which is a second switch for opening and closing a line for supplying power to the circuit in FIG. 1 is closed. In the OFF state, the switch for opening and closing the line for supplying power to the circuit of FIG. 1 is opened to cut off the power.
【0040】次に、以上のような構成の流速測定装置の
動作を説明する。制御信号S5により図1の回路がOF
F状態にあるとき、回路は電力を断たれているため動作
しない。これを以下では休止期間と呼ぶ。この休止期間
のとき、電源からの図1の回路への電力の供給は最低と
なる。Next, the operation of the flow velocity measuring device having the above configuration will be described. The circuit of FIG. 1 is turned off by the control signal S5.
When in the F state, the circuit does not operate because it has been powered down. This is hereinafter referred to as a pause period. During this idle period, the supply of power from the power supply to the circuit of FIG. 1 is at a minimum.
【0041】次に、制御信号S5をON状態、制御信号
S1を追従状態、制御信号S4を発熱状態、制御信号S
2,S3信号は任意の状態にする。これを以下では流速
測定期間と呼ぶ。電力を供給されて図1の回路は動作可
能な状態となり、電流源Ihは電流を感温抵抗素体R
u,Rdへ供給する。電流源Ihの供給する電流によ
り、感温抵抗体Ru,Rdは発熱する。感温抵抗体Ru
およびRdに生じる端子電圧はスイッチSW1,SW2,
SW3およびSW4を通り、それぞれコンデンサC1お
よびC2に貯えられる。これにより、感温抵抗体Ruの
端子電圧とコンデンサC1の端子電圧、感温抵抗体Rd
の端子電圧とコンデンサC2の端子電圧はそれぞれ等し
くなる。Next, the control signal S5 is turned on, the control signal S1 is followed, the control signal S4 is heated, and the control signal S5 is turned on.
The 2 and S3 signals are set to an arbitrary state. This is hereinafter referred to as a flow velocity measurement period. When the power is supplied, the circuit of FIG. 1 becomes operable, and the current source Ih supplies the current to the temperature-sensitive resistor element R.
u, Rd. The temperature-sensitive resistors Ru and Rd generate heat by the current supplied by the current source Ih. Temperature sensitive resistor Ru
And the terminal voltage generated at Rd are switches SW1, SW2,
After passing through SW3 and SW4, they are stored in capacitors C1 and C2, respectively. Thereby, the terminal voltage of the temperature-sensitive resistor Ru, the terminal voltage of the capacitor C1, the temperature-sensitive resistor Rd
Is equal to the terminal voltage of the capacitor C2.
【0042】感温抵抗体Ru,Rdが発熱するに十分な
時間が経過した後、制御信号S1を保持状態、制御信号
S2を流速測定状態、制御信号S3を微小電圧状態にす
る。これを以下では流速出力期間と呼ぶ。差動増幅器U
1の入力インピーダンスは高いためコンデンサC1とC
2には感温抵抗体RdとRuの端子電圧がそれぞれ保持
される。コンデンサC1のE節側とコンデンサC2のG
節側がスイッチSW2,SW4を介して接地されるた
め、H節には接地点を基準とした感温抵抗体Rdの電圧
値が現れ、J節には接地点を基準とした感温抵抗体Ru
の電圧値が現れる。スイッチSW2は流速測定状態であ
るから、差動増幅器U1の非反転入力端子にはRdの端
子電圧が、反転入力端子にはRuの端子電圧が入力され
ることになる。よって、差動増幅器U1の出力側のO節
にはH節とJ節の電圧の差、つまり感温抵抗体Rdの端
子電圧から感温抵抗体Ruの端子電圧を引いた値が増幅
され出力される。After a lapse of time sufficient for the temperature-sensitive resistors Ru and Rd to generate heat, the control signal S1 is held, the control signal S2 is set to the flow velocity measurement state, and the control signal S3 is set to the minute voltage state. This is hereinafter referred to as a flow velocity output period. Differential amplifier U
1 has a high input impedance, the capacitors C1 and C
2 holds the terminal voltages of the temperature-sensitive resistors Rd and Ru, respectively. E side of capacitor C1 and G of capacitor C2
Since the node side is grounded via the switches SW2 and SW4, the voltage value of the temperature-sensitive resistor Rd based on the ground point appears in the node H, and the temperature-sensitive resistor Ru based on the ground point appears in the node J.
Voltage value appears. Since the switch SW2 is in the flow velocity measurement state, the terminal voltage of Rd is input to the non-inverting input terminal of the differential amplifier U1, and the terminal voltage of Ru is input to the inverting input terminal. Therefore, the difference between the voltages of the nodes H and J, that is, the value obtained by subtracting the terminal voltage of the temperature-sensitive resistor Ru from the terminal voltage of the temperature-sensitive resistor Rd is amplified and output to the node O on the output side of the differential amplifier U1. Is done.
【0043】また、制御信号S5がON状態、制御信号
S4が発熱状態にあるとき、制御信号S2を温度測定状
態にし、制御信号S3を通常電圧状態とすると、差動増
幅器U1の出力には感温抵抗体Rdの端子電圧が出力さ
れる。これにより温度測定手段が実現される。これを以
下では温度出力期間と呼ぶ。When the control signal S5 is in the ON state and the control signal S4 is in the heating state, the control signal S2 is set to the temperature measurement state, and the control signal S3 is set to the normal voltage state. The terminal voltage of the thermal resistor Rd is output. This implements a temperature measuring means. This is hereinafter referred to as a temperature output period.
【0044】流速測定期間において、感温抵抗体Ruと
Rdは電流源Ihからの電流により発熱し、流速の測定
が行われる。感温抵抗体RuとRdは同じ特性を持つた
め抵抗値が等しい。流体に流れが無い場合、発熱した状
態であっても感温抵抗体RuとRdへは同じ電流が流れ
同じように発熱するため、抵抗値が等しい。つまり、感
温抵抗体RuとRdの端子電圧は等しい。この電圧はそ
れぞれコンデンサC1とC2に貯えられる。次に流速出
力期間に移行する。コンデンサC1とC2の端子電圧は
等しいため、差動増幅器U1の非反転入力端子と反転入
力端子の電圧値は等しい。つまり、差動増幅器U1には
差電圧0が入力される。よって、差動増幅器U1の出力
はゼロとなる。During the flow velocity measurement period, the temperature sensitive resistors Ru and Rd generate heat by the current from the current source Ih, and the flow velocity is measured. Since the temperature sensitive resistors Ru and Rd have the same characteristics, the resistance values are equal. When there is no flow in the fluid, the same current flows through the temperature-sensitive resistors Ru and Rd and generates heat in the same manner even in the state of heat generation, so that the resistance values are equal. That is, the terminal voltages of the temperature sensitive resistors Ru and Rd are equal. This voltage is stored in capacitors C1 and C2, respectively. Next, the process proceeds to the flow velocity output period. Since the terminal voltages of the capacitors C1 and C2 are equal, the voltage values of the non-inverting input terminal and the inverting input terminal of the differential amplifier U1 are equal. That is, the difference voltage 0 is input to the differential amplifier U1. Therefore, the output of the differential amplifier U1 becomes zero.
【0045】流体に流れがある場合、流速測定期間にお
いて感温抵抗体RuとRdの発熱した熱は流体により奪
い去られる。しかし、感温抵抗体Rdは感温抵抗体Ru
の下流側に設置されているため感温抵抗体Ruから奪わ
れた熱が感温抵抗体Rdに運ばれる。よって、感温抵抗
体Rdは感温抵抗体Ruに比べ熱の奪われ方が少ない。
熱が奪われると感温抵抗体Ru、Rdの抵抗値は下が
る。感温抵抗体Rdの抵抗値の低下は感温抵抗体Ruの
抵抗値の低下より小さい。つまり、感温抵抗体Ruの端
子電圧値は感温抵抗体Rdの端子電圧値より小さくな
る。この電圧の差は流体の流速と関係し流速が速いほど
大きくなる。また、この電圧はコンデンサC1及びC2
に貯えられる。次に流速出力期間に移行する。コンデン
サC1の電圧は差動増幅器U1の非反転入力端子へ、C
2の電圧は差動増幅器U1の反転入力端子へ与えられ
る。コンデンサC1とC2の電圧の差は差動増幅器U1
により増幅され出力に現れる。つまり出力には流速に関
係した出力が得られる。When there is a flow in the fluid, the heat generated by the temperature sensitive resistors Ru and Rd is removed by the fluid during the flow velocity measurement period. However, the temperature-sensitive resistor Rd is different from the temperature-sensitive resistor Ru.
The heat taken from the temperature-sensitive resistor Ru is transferred to the temperature-sensitive resistor Rd. Therefore, the temperature sensitive resistor Rd loses less heat than the temperature sensitive resistor Ru.
When the heat is removed, the resistance values of the temperature-sensitive resistors Ru and Rd decrease. The decrease in the resistance value of the temperature-sensitive resistor Rd is smaller than the decrease in the resistance value of the temperature-sensitive resistor Ru. That is, the terminal voltage value of the temperature-sensitive resistor Ru becomes smaller than the terminal voltage value of the temperature-sensitive resistor Rd. This difference in voltage is related to the flow rate of the fluid, and increases as the flow rate increases. This voltage is applied to the capacitors C1 and C2.
Stored in Next, the process proceeds to the flow velocity output period. The voltage of the capacitor C1 is applied to the non-inverting input terminal of the differential amplifier U1.
The voltage of 2 is applied to the inverting input terminal of the differential amplifier U1. The difference between the voltages of capacitors C1 and C2 is determined by differential amplifier U1.
And appear at the output. That is, an output related to the flow velocity is obtained.
【0046】流体が逆流している場合は、感温抵抗体R
uの熱の奪われ方が感温抵抗体Rdに比べ少なくなる。
感温抵抗体RuとRdの関係が上下流逆になったと考え
ればよい。つまり、正流の時とは逆符号で流速出力期間
の出力に現れる。よって、流速出力期間の出力信号の符
号で流体の正流と逆流の判断ができる。そして、流速測
定期間と流速出力期間を交互に繰り返すことで、連続し
た流速測定を行える。When the fluid is flowing backward, the temperature-sensitive resistor R
u loses less heat than the temperature sensitive resistor Rd.
It may be considered that the relationship between the temperature-sensitive resistors Ru and Rd is reversed in the upstream and downstream directions. In other words, it appears in the output during the flow velocity output period with a sign opposite to that of the normal flow. Therefore, the sign of the output signal during the flow velocity output period can be used to determine whether the fluid flows forward or backward. Then, by alternately repeating the flow velocity measurement period and the flow velocity output period, continuous flow velocity measurement can be performed.
【0047】温度測定期間では、感温抵抗体Rdの端子
電圧が差動増幅器U1の差動入力に与えられる。よっ
て、感温抵抗体Rdの端子電圧が増幅されて出力され
る。感温抵抗体Rdは流体の温度により抵抗値を変え
る。つまり、感温抵抗体Rdの端子電圧は流体の温度と
関係した値となっている。温度測定期間の差動増幅器U
1の出力により流体の温度を知ることができる。この値
により流速測定での温度依存性を補正することが可能と
なる。During the temperature measurement period, the terminal voltage of the temperature sensitive resistor Rd is applied to the differential input of the differential amplifier U1. Therefore, the terminal voltage of the temperature sensitive resistor Rd is amplified and output. The resistance value of the temperature-sensitive resistor Rd changes according to the temperature of the fluid. That is, the terminal voltage of the temperature-sensitive resistor Rd has a value related to the temperature of the fluid. Differential amplifier U during temperature measurement
The output of 1 makes it possible to know the temperature of the fluid. This value makes it possible to correct the temperature dependency in the flow velocity measurement.
【0048】以上より、流速測定期間、流速出力期間お
よび温度測定期間を適時切り替えることで、連続した流
速測定を行うことができる。As described above, continuous flow velocity measurement can be performed by appropriately switching the flow velocity measurement period, the flow velocity output period, and the temperature measurement period.
【0049】また、制御信号S5をON状態、制御信号
S1を追従状態、制御信号S4を発熱状態、制御信号S
2を温度測定状態、制御信号S3を通常電圧状態にす
る。すると、感温抵抗体RuとRdには電流が供給され
発熱し、端子電圧がコンデンサC1とC2に伝えられる
と同時に、感温抵抗体Rdの端子電圧が差動増幅器U1
の差動入力端子へ伝えられ、O節には増幅された感温抵
抗体Rdの端子電圧が出力される。つまり、流速測定期
間と温度測定期間とを同時に行うことになる。これによ
り同時実行手段を実現している。流速測定期間に温度測
定を行えるために、温度測定期間に必要な時間を省くこ
とができ、短時間に流速測定と流体の温度測定が行え、
消費電力を抑えることができる。流速測定の必要が無い
場合は、休止期間とすることで消費電力を抑えることが
できる。これにより休止手段が実現される。なお、流速
出力期間には、制御信号S4により電流源Ihを停止し
または電流値を低減する。これにより電流制御手段を実
現している。The control signal S5 is turned on, the control signal S1 is followed, the control signal S4 is heated, and the control signal S5 is turned on.
2 is set to a temperature measurement state, and the control signal S3 is set to a normal voltage state. Then, current is supplied to the temperature-sensitive resistors Ru and Rd to generate heat, and the terminal voltage is transmitted to the capacitors C1 and C2. At the same time, the terminal voltage of the temperature-sensitive resistor Rd is changed to the differential amplifier U1.
And the amplified terminal voltage of the temperature-sensitive resistor Rd is output to the node O. That is, the flow velocity measurement period and the temperature measurement period are performed simultaneously. This implements a simultaneous execution means. Since the temperature measurement can be performed during the flow velocity measurement period, the time required for the temperature measurement period can be omitted, and the flow velocity measurement and the fluid temperature measurement can be performed in a short time.
Power consumption can be reduced. When it is not necessary to measure the flow velocity, the power consumption can be suppressed by setting the idle period. As a result, a pause unit is realized. During the flow speed output period, the current source Ih is stopped or the current value is reduced by the control signal S4. This implements current control means.
【0050】ここで例えば、感温抵抗体Ru、Rdを特
開平10-206205号公報にあるようなシリコン基板上に形
成されたマイクロブリッジセンサにより作成すれば、マ
イクロブリッジセンサは微小な構造なため、少ない電力
で流速測定が可能なまでに発熱するため、省電力な流速
センサとなる。Here, for example, if the temperature-sensitive resistors Ru and Rd are formed by a micro-bridge sensor formed on a silicon substrate as disclosed in JP-A-10-206205, the micro-bridge sensor has a minute structure. Since the heat is generated until the flow velocity can be measured with a small amount of electric power, the flow rate sensor can save power.
【0051】マイクロブリッジによる感温抵抗体Ruと
Rdを例えば室温で500Ω程度にする。これに電流源
Ihとして例えば1.75mAを流すと感温抵抗体Ru
とRdは100℃ほどに発熱する。このとき感温抵抗体
RuとRdの端子電圧は1.2V程度となる。流体に流
れが生じると感温抵抗体RuとRdの端子電圧には微妙
に差が生じる。その差は最大で60mVほど生じる。流
速の流れが速すぎると感温抵抗体RuとRdの奪われる
熱に差が現れなくなってくるため、流速による感温抵抗
体RuとRdの端子電圧の差は流速が増加すると共に増
加するがだんだんと飽和しさらにはその差がなくなって
いく。流速測定には流速に関連し端子電圧差が増加する
部分を使用する。本装置を電池などで駆動する場合、出
力は0〜3Vほどの値となることが望まれる。温度測定
期間においては感温抵抗体Rdの端子電圧約1.2Vを
増幅し出力するので、差動増幅器U1の増幅率は1〜2
倍にすればよい。流速出力期間においては感温抵抗体R
uとRdの電圧差の60mVほどを増幅するので、差動
増幅器U1の増幅率は50倍程度とすればよい。単電源
で逆流を測定したい場合は、差動増幅器U1の出力のオ
フセットを正電圧方向にずらすことで行える。The temperature sensitive resistors Ru and Rd by the microbridge are set to, for example, about 500Ω at room temperature. When a current of, for example, 1.75 mA is passed as the current source Ih, the temperature-sensitive resistor Ru
And Rd generate heat at about 100 ° C. At this time, the terminal voltages of the temperature sensitive resistors Ru and Rd are about 1.2V. When a flow occurs in the fluid, a slight difference occurs between the terminal voltages of the temperature-sensitive resistors Ru and Rd. The difference occurs up to about 60 mV. If the flow of the flow velocity is too fast, no difference appears between the heat taken by the temperature-sensitive resistors Ru and Rd. Therefore, the difference between the terminal voltages of the temperature-sensitive resistors Ru and Rd due to the flow velocity increases as the flow velocity increases. It gradually saturates and the difference disappears. For the flow velocity measurement, a portion where the terminal voltage difference increases in relation to the flow velocity is used. When this device is driven by a battery or the like, the output is desired to have a value of about 0 to 3V. During the temperature measurement period, the terminal voltage of the temperature-sensitive resistor Rd is amplified and output at about 1.2 V, so that the amplification factor of the differential amplifier U1 is 1-2.
You can double it. In the flow velocity output period, the temperature-sensitive resistor R
Since the voltage difference between u and Rd is amplified by about 60 mV, the amplification factor of the differential amplifier U1 may be about 50 times. When it is desired to measure the reverse current with a single power supply, the offset can be shifted by shifting the output offset of the differential amplifier U1 in the positive voltage direction.
【0052】[発明の実施の形態2]図2は、この発明
の実施の形態2である流速測定装置の回路図である。図
2において、発明の実施の形態1の場合と同様の回路要
素などには図1と同一の符号を付し、詳細な説明は省略
する。[Embodiment 2] FIG. 2 is a circuit diagram of a flow velocity measuring apparatus according to Embodiment 2 of the present invention. 2, the same reference numerals as those in FIG. 1 denote the same circuit elements and the like as in the first embodiment of the invention, and a detailed description thereof will be omitted.
【0053】発明の実施の形態1では、温度測定期間に
感温抵抗体Rdの端子電圧を出力し流体の温度信号とし
た。この発明の実施の形態2は、感温抵抗体Rdが流速
の影響を受けその電圧を変化させるので、より正確な温
度測定を行うため流体の温度測定用の測温抵抗体Rfを
感温抵抗体Ru,Rdと別に設けた例である。In the first embodiment of the present invention, the terminal voltage of the temperature-sensitive resistor Rd is output during the temperature measurement period to obtain a fluid temperature signal. According to the second embodiment of the present invention, since the temperature-sensitive resistor Rd changes its voltage under the influence of the flow velocity, the temperature-measuring resistor Rf for measuring the temperature of the fluid is changed to the temperature-sensitive resistor in order to perform more accurate temperature measurement. This is an example provided separately from the bodies Ru and Rd.
【0054】測温抵抗体Rfは、例えば白金など大きな
抵抗温度係数を持つ抵抗体とする。測温抵抗体Rfは流
体中の感温抵抗体Ru,Rdの発熱の影響を受けない位
置に設置する。測温抵抗体Rfは電流源Ifと接続され
る。The temperature measuring resistor Rf is a resistor having a large temperature coefficient of resistance, such as platinum. The temperature measuring resistor Rf is installed at a position which is not affected by the heat generated by the temperature sensing resistors Ru and Rd in the fluid. The resistance temperature detector Rf is connected to the current source If.
【0055】発明の実施の形態1の温度測定状態におい
ては、スイッチSW5,SW6は感温抵抗体Rdの端子
電圧を差動増幅器U1へ差動入力するように切り替えた
のに代えて、この発明の実施の形態2では測温抵抗体R
fの端子電圧を差動増幅器U1に差動入力するようにす
る。これにより流速の影響を受けずに流体の温度測定が
可能となり、より正確な温度補正の為の情報が得られ
る。In the temperature measurement state according to the first embodiment of the present invention, the switches SW5 and SW6 are switched so that the terminal voltage of the temperature sensitive resistor Rd is differentially input to the differential amplifier U1. In the second embodiment, the resistance thermometer R
The terminal voltage of f is differentially input to the differential amplifier U1. As a result, the temperature of the fluid can be measured without being affected by the flow velocity, and information for more accurate temperature correction can be obtained.
【0056】測温抵抗体Rfも特開平10-206205号公報
にあるようなシリコン基板上の白金薄膜として形成する
と、熱容量が小さく流体の温度を正確に得ることができ
る。測温抵抗体Rfの抵抗値は室温で例えば5kΩほど
にし、電流源Ifから100μA程度の電流を流す。す
ると測温抵抗体Rfの端子電圧は0.5V程度となる。
この電圧は流体の温度と関係し変化する。この時、温度
測定期間での差動増幅器U1の増幅率は1〜3倍ほどに
すればよい。When the temperature measuring resistor Rf is also formed as a platinum thin film on a silicon substrate as disclosed in JP-A-10-206205, the heat capacity is small and the temperature of the fluid can be accurately obtained. The resistance value of the resistance bulb Rf is set to, for example, about 5 kΩ at room temperature, and a current of about 100 μA flows from the current source If. Then, the terminal voltage of the resistance bulb Rf becomes about 0.5V.
This voltage varies in relation to the temperature of the fluid. At this time, the amplification factor of the differential amplifier U1 during the temperature measurement period may be about 1 to 3 times.
【0057】なお、本発明の各実施の形態で示した抵抗
値や増幅率は一つの例であり、他の値でもちろんかまわ
ない。これらは、利用可能な電源電圧や感温抵抗体、測
温抵抗体の特性、被測定流体の特性に合せて設計するこ
ととなる。Note that the resistance value and the amplification factor shown in each embodiment of the present invention are merely examples, and other values may be used. These are designed in accordance with the available power supply voltage, the characteristics of the temperature sensing resistor, the characteristics of the temperature measuring resistor, and the characteristics of the fluid to be measured.
【0058】[0058]
【発明の効果】請求項1に記載の発明は、両電圧保持装
置が保持する電圧を、共通の電位、例えばGNDを基準
とした電圧にして、両電圧保持装置がそれぞれ保持して
いる電圧の差を増幅器により増幅すれば、流体の流速を
測定することができる。本装置は、単一の増幅器のみを
用いる回路構成であるため、省電力化を図ることができ
て、電池電源での駆動に好適である。また、電圧保持装
置の一方の保持している電圧を増幅器により増幅するこ
とにより流体の温度を検出して、流体の流速の温度補償
の情報を得ることができる。According to the first aspect of the present invention, the voltages held by the two voltage holding devices are set to a common potential, for example, a voltage based on GND, and the voltages held by the two voltage holding devices are respectively set. If the difference is amplified by an amplifier, the flow velocity of the fluid can be measured. Since the present device has a circuit configuration using only a single amplifier, power can be saved, and the device is suitable for driving with a battery power supply. Further, by amplifying the voltage held by one of the voltage holding devices by an amplifier, the temperature of the fluid can be detected, and information on temperature compensation of the flow velocity of the fluid can be obtained.
【0059】請求項2に記載の発明は、両電圧保持装置
が保持する電圧を、共通の電位、例えばGNDを基準と
した電圧にして、両電圧保持装置がそれぞれ保持してい
る電圧の差を増幅器により増幅すれば、流体の流速を測
定することができる。本装置は、単一の増幅器のみを用
いる回路構成であるため、省電力化を図ることができ
て、電池電源での駆動に好適である。また、測温抵抗体
の端子間電圧を増幅器により増幅することにより流体の
温度を検出して、流体の流速の温度補償の情報をより正
確に得ることができる。According to a second aspect of the present invention, the voltages held by the two voltage holding devices are set to a common potential, for example, a voltage with reference to GND, and the difference between the voltages held by the two voltage holding devices is determined. If amplified by an amplifier, the flow velocity of the fluid can be measured. Since the present device has a circuit configuration using only a single amplifier, power can be saved, and the device is suitable for driving with a battery power supply. In addition, the temperature of the fluid is detected by amplifying the voltage between the terminals of the resistance temperature detector by the amplifier, and the information of temperature compensation of the flow velocity of the fluid can be obtained more accurately.
【0060】請求項3に記載の発明は、請求項1または
2に記載の流量測定装置において、流速測定の必要がな
いときには回路への電力供給を停止することができるの
で、電池電源での駆動が容易となる。According to a third aspect of the present invention, in the flow rate measuring device according to the first or second aspect, the power supply to the circuit can be stopped when it is not necessary to measure the flow velocity, so that the apparatus is driven by a battery power supply. Becomes easier.
【0061】請求項4に記載の発明は、請求項1〜3の
いずれかの一に記載の流量測定装置において、両感温抵
抗体の電圧差の増幅および感温抵抗体の端子電圧の増幅
または測温抵抗体の端子電圧の増幅を同一の増幅器で行
うことが可能となり、増幅器を増やすこと無く流速測定
と温度測定が行え、電力の消費も抑えられる。According to a fourth aspect of the present invention, there is provided the flow rate measuring device according to any one of the first to third aspects, wherein the amplification of the voltage difference between the two thermosensitive resistors and the amplification of the terminal voltage of the thermosensitive resistors are performed. Alternatively, the terminal voltage of the resistance bulb can be amplified by the same amplifier, so that the flow velocity measurement and the temperature measurement can be performed without increasing the number of amplifiers, and power consumption can be suppressed.
【0062】請求項5に記載の発明は、請求項1〜4の
いずれかの一に記載の流速測定装置において、各感温抵
抗体の端子電圧の測定と流体の流速の測定とを交互に繰
り返すことを可能とし、連続した流速情報を出力するこ
とができる。According to a fifth aspect of the present invention, in the flow velocity measuring device according to any one of the first to fourth aspects, the measurement of the terminal voltage of each temperature sensitive resistor and the measurement of the flow velocity of the fluid are alternately performed. It is possible to repeat and output continuous flow rate information.
【0063】請求項6に記載の発明は、請求項1〜5の
いずれかの一に記載の流速測定装置において、流速測定
の必要がないときの消費電力を抑えて、電池電源での駆
動が容易となる。According to a sixth aspect of the present invention, in the flow velocity measuring device according to any one of the first to fifth aspects, power consumption when flow velocity measurement is not required is suppressed, and driving with a battery power supply is performed. It will be easier.
【0064】請求項7に記載の発明は、請求項6に記載
の流速測定装置において、流速測定を行っていないとき
の消費電力を抑えて、電池電源での駆動が容易となる。According to a seventh aspect of the present invention, in the flow velocity measuring device according to the sixth aspect, power consumption when the flow velocity is not measured is suppressed, and driving with a battery power source is facilitated.
【0065】請求項8に記載の発明は、請求項1〜7の
いずれかの一に記載の流速測定装置において、流体の温
度情報を適時出力することが可能となる。According to an eighth aspect of the present invention, in the flow velocity measuring apparatus according to any one of the first to seventh aspects, it is possible to output timely fluid temperature information.
【0066】請求項9に記載の発明は、請求項3に記載
の流速測定装置において、間欠的な流速測定を行うこと
ができ、流速測定の必要がない期間の消費電力を抑え
て、電池電源での駆動が容易となる。According to a ninth aspect of the present invention, in the flow velocity measuring device according to the third aspect, the intermittent flow velocity measurement can be performed, and the power consumption during the period in which the flow velocity measurement is not required can be suppressed. Driving becomes easier.
【0067】請求項10に記載の発明は、請求項1また
は2に記載の流速測定装置において、流速の測定と流体
温度の測定を同時に行って、これらに要する時間を短縮
して消費電力を抑えて、電池電源での駆動が容易とな
る。According to a tenth aspect of the present invention, in the flow velocity measuring device according to the first or second aspect, the measurement of the flow velocity and the measurement of the fluid temperature are simultaneously performed to reduce the time required for the measurement and the power consumption. Thus, driving with a battery power source is facilitated.
【図1】この発明の実施の形態1である流速測定装置の
回路図である。FIG. 1 is a circuit diagram of a flow velocity measuring device according to a first embodiment of the present invention.
【図2】この発明の実施の形態2である流速測定装置の
回路図である。FIG. 2 is a circuit diagram of a flow velocity measuring device according to a second embodiment of the present invention.
【図3】従来の流速測定装置の回路図である。FIG. 3 is a circuit diagram of a conventional flow velocity measuring device.
Ru,Rd 感温抵抗体 Ih 電流源 C1,C2 電圧保持装置 U1 増幅器 SW1〜SW4 第3のスイッチ SW5,SW6 第1のスイッチ Rf 測温抵抗体 Ru, Rd Temperature sensing resistor Ih Current source C1, C2 Voltage holding device U1 Amplifier SW1 to SW4 Third switch SW5, SW6 First switch Rf Resistance thermometer
Claims (10)
されて加熱する2つの感温抵抗体の端子電圧差から前記
流体の流速を測定する流速測定装置において、 前記各感温抵抗体の端子電圧に追従して当該電圧を保持
する2つの電圧保持装置と、 増幅器と、 前記感温抵抗体の一方の端子電圧を前記増幅器により増
幅できるようにも前記両電圧保持装置がそれぞれ保持し
ている電圧の差を前記増幅器により増幅できるようにも
ラインの接続状態を切り替え可能である第1のスイッチ
とを備えていることを特徴とする流速測定装置。1. A flow rate measuring device for measuring a flow rate of a fluid from a terminal voltage difference between two temperature sensitive resistors which are respectively arranged on an upstream side and a downstream side of a fluid and heats the fluid, Two voltage holding devices that follow the terminal voltage and hold the voltage; an amplifier; and the two voltage holding devices respectively hold so that one terminal voltage of the temperature-sensitive resistor can be amplified by the amplifier. And a first switch capable of switching the connection state of the line so that the difference between the voltages can be amplified by the amplifier.
されて加熱する2つの感温抵抗体の端子電圧差から前記
流体の流速を測定する流速測定装置において、 前記各感温抵抗体の端子電圧に追従して当該電圧を保持
する2つの電圧保持装置と、 増幅器と、 前記流体の温度を測定する測温抵抗体と、 前記測温抵抗体の端子電圧を前記増幅器により増幅でき
るようにも前記両電圧保持装置がそれぞれ保持している
電圧の差を前記増幅器により増幅できるようにもライン
の接続状態を切り替え可能である第1のスイッチとを備
えていることを特徴とする流速測定装置。2. A flow rate measuring device for measuring a flow rate of a fluid from a terminal voltage difference between two temperature sensitive resistors which are respectively arranged on an upstream side and a downstream side of a fluid and heats the fluid, Two voltage holding devices that follow the terminal voltage and hold the voltage, an amplifier, a temperature measuring resistor that measures the temperature of the fluid, and a terminal voltage of the temperature measuring resistor that can be amplified by the amplifier. And a first switch capable of switching a connection state of a line so that a difference between voltages held by the two voltage holding devices can be amplified by the amplifier. .
開閉する第2のスイッチを備えていることを特徴とする
請求項1または2に記載の流量測定装置。3. The flow measuring device according to claim 1, further comprising a second switch for opening and closing a line for supplying power to a circuit of the device.
特徴とする請求項1〜3のいずれかの一に記載の流量測
定装置。4. The flow measuring device according to claim 1, wherein the amplifier can change an amplification factor.
端子電圧に追従して当該電圧を保持できるようにも前記
電圧保持装置に保持した電圧を前記増幅器に印加できる
ようにもラインの接続状態を切り替え可能である第3の
スイッチとを備えていることを特徴とする請求項1〜4
のいずれかの一に記載の流速測定装置。5. A line for allowing the voltage holding device to follow the terminal voltage of each of the temperature-sensitive resistors and hold the voltage, or apply the voltage held by the voltage holding device to the amplifier. A third switch capable of switching a connection state is provided.
The flow velocity measuring device according to any one of the above.
を備え、この電流源は前記電流を停止または低減するこ
とができることを特徴とする請求項1〜5のいずれかの
一に記載の流速測定装置。6. The device according to claim 1, further comprising a current source for supplying a current to the temperature-sensitive resistor, wherein the current source can stop or reduce the current. Flow velocity measuring device.
記両電圧保持装置がそれぞれ保持している電圧の差を前
記増幅器により増幅できるようにしているときは、前記
電流源が前記感温抵抗体に供給する電流を停止または低
減する電流制御手段を備えていることを特徴とする請求
項6に記載の流速測定装置。7. When the difference between the voltages held by the two voltage holding devices can be amplified by the amplifier by switching the first switch, the current source is connected to the temperature-sensitive resistor. 7. The flow velocity measuring device according to claim 6, further comprising current control means for stopping or reducing the supplied current.
記感温抵抗体の一方の端子電圧または前記測温抵抗体の
端子電圧を前記増幅器により増幅できるようにする温度
測定手段を備えていることを特徴とする請求項1〜7の
いずれかの一に記載の流速測定装置。8. A temperature measuring means for switching the first switch as appropriate to enable one terminal voltage of the temperature sensitive resistor or the terminal voltage of the temperature measuring resistor to be amplified by the amplifier. The flow velocity measuring device according to any one of claims 1 to 7, characterized in that:
の端子電圧に追従させて当該電圧を保持させる動作、前
記第1のスイッチを切り替えて前記感温抵抗体の一方の
端子電圧または前記測温抵抗体の端子電圧を前記増幅器
により増幅する動作、および、前記両電圧保持装置がそ
れぞれ保持している電圧の差を前記増幅器により増幅す
る動作と、前記第2のスイッチを切り替えて前記本装置
の回路へ電力を供給するラインを開くようにする動作と
を適宜切り替える休止手段を備えていることを特徴とす
る請求項3に記載の流速測定装置。9. An operation in which the voltage holding devices follow the terminal voltage of each of the temperature-sensitive resistors to hold the voltage, and the first switch is switched to switch one terminal voltage of the temperature-sensitive resistor. The operation of amplifying the terminal voltage of the resistance temperature detector by the amplifier, the operation of amplifying the difference between the voltages held by the two voltage holding devices by the amplifier, and the second switch, The flow velocity measuring apparatus according to claim 3, further comprising a pause unit for appropriately switching between an operation of opening a line for supplying power to a circuit of the apparatus and an operation of opening the line.
体の端子電圧に追従させて当該電圧を保持させる動作
と、前記第1のスイッチを切り替えて前記感温抵抗体の
一方の端子電圧または前記測温抵抗体の端子電圧を前記
増幅器により増幅する動作とを同時に行う同時実行手段
を備えていることを特徴とする請求項1または2に記載
の流速測定装置。10. An operation of causing the voltage holding devices to follow a terminal voltage of each of the temperature-sensitive resistors and holding the voltage, and a voltage of one terminal of the temperature-sensitive resistor by switching the first switch. 3. The flow velocity measuring device according to claim 1, further comprising a simultaneous execution unit that simultaneously performs an operation of amplifying a terminal voltage of the resistance temperature detector by the amplifier. 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25509699A JP3819185B2 (en) | 1999-09-09 | 1999-09-09 | Flow velocity measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25509699A JP3819185B2 (en) | 1999-09-09 | 1999-09-09 | Flow velocity measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001074761A true JP2001074761A (en) | 2001-03-23 |
JP3819185B2 JP3819185B2 (en) | 2006-09-06 |
Family
ID=17274068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25509699A Expired - Fee Related JP3819185B2 (en) | 1999-09-09 | 1999-09-09 | Flow velocity measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3819185B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09306637A (en) * | 1996-05-10 | 1997-11-28 | Ricoh Co Ltd | Heater control device |
JPH10206204A (en) * | 1997-01-20 | 1998-08-07 | Yamatake Honeywell Co Ltd | Thermal flow sensor |
JPH1194617A (en) * | 1997-09-16 | 1999-04-09 | Ricoh Co Ltd | Flow sensor |
-
1999
- 1999-09-09 JP JP25509699A patent/JP3819185B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09306637A (en) * | 1996-05-10 | 1997-11-28 | Ricoh Co Ltd | Heater control device |
JPH10206204A (en) * | 1997-01-20 | 1998-08-07 | Yamatake Honeywell Co Ltd | Thermal flow sensor |
JPH1194617A (en) * | 1997-09-16 | 1999-04-09 | Ricoh Co Ltd | Flow sensor |
Also Published As
Publication number | Publication date |
---|---|
JP3819185B2 (en) | 2006-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5753815A (en) | Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas | |
JP5209232B2 (en) | Thermal flow meter | |
JP5153996B2 (en) | Thermal flow meter | |
WO2019031329A1 (en) | Wind speed measurement device and air flow measurement device | |
JPH0625684B2 (en) | Fluid flow rate detection sensor | |
JP3726261B2 (en) | Thermal flow meter | |
JP3819185B2 (en) | Flow velocity measuring device | |
JP3256658B2 (en) | Flow velocity detector | |
JP3381831B2 (en) | Flow velocity sensor and flow velocity measurement method | |
JP3537595B2 (en) | Temperature control circuit of thermal humidity sensor | |
JP3153787B2 (en) | Heat conduction parameter sensing method and sensor circuit using resistor | |
JP3267513B2 (en) | Flow velocity detector | |
JP3706283B2 (en) | Flow sensor circuit | |
JP4809837B2 (en) | How to operate a heat loss pressure sensor with resistance | |
JPH02120620A (en) | Heater temperature control circuit | |
JPH1172457A (en) | Sensor circuit using resistor sensor as element | |
JP4641359B2 (en) | Flow sensor abnormality determination device | |
JP4820017B2 (en) | Flow measurement device using flow sensor | |
JP3771069B2 (en) | Flow measuring device | |
JPH10142249A (en) | Flow sensor | |
JP3563982B2 (en) | Flow measurement device and method | |
JPH0718729B2 (en) | Heater temperature control circuit | |
JPH11241962A (en) | pressure sensor | |
JP4904008B2 (en) | Thermal flow meter | |
JPH08247814A (en) | Heat-sensitive flow rate sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050128 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050620 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060614 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |