[go: up one dir, main page]

JP2001070763A - Membrane cleaning method - Google Patents

Membrane cleaning method

Info

Publication number
JP2001070763A
JP2001070763A JP25454499A JP25454499A JP2001070763A JP 2001070763 A JP2001070763 A JP 2001070763A JP 25454499 A JP25454499 A JP 25454499A JP 25454499 A JP25454499 A JP 25454499A JP 2001070763 A JP2001070763 A JP 2001070763A
Authority
JP
Japan
Prior art keywords
water
membrane
backwashing
filtration
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25454499A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mori
吉彦 森
Masatoshi Hashino
昌年 橋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP25454499A priority Critical patent/JP2001070763A/en
Publication of JP2001070763A publication Critical patent/JP2001070763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

(57)【要約】 【課題】 本発明は、河川水、湖沼水、地下水、貯水、
下水二次処理水、工場排水、下水等を原水として多孔膜
で濾過する際、効果的に洗浄を行い、高い濾過流速を維
持することを目的とする。 【解決手段】 多孔膜の洗浄方法において、濾過方向と
は逆の方向に、酸を含有する水で逆流洗浄し、続いて酸
化剤を含有する水で逆流洗浄する。あるいは濾過方向と
は逆の方向に、酸化剤を含有する水で逆流洗浄し、続い
て酸を含有する水で逆流洗浄する。さらには上記の逆流
洗浄と同時に、原水側に気泡を導入して膜を揺動させ
る。
(57) [Summary] [PROBLEMS] The present invention relates to river water, lake water, groundwater, storage water,
It is an object of the present invention to effectively perform washing and maintain a high filtration flow rate when a secondary treatment water, factory wastewater, sewage, or the like is used as raw water and filtered through a porous membrane. SOLUTION: In the method for cleaning a porous membrane, backwashing is performed with water containing an acid in the direction opposite to the filtration direction, and then backwashing with water containing an oxidizing agent. Alternatively, in the opposite direction to the filtration direction, backwashing is performed with water containing an oxidizing agent, followed by backwashing with water containing an acid. Further, at the same time as the backwashing, bubbles are introduced into the raw water to oscillate the membrane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、上水道やその水
源や工業用水の水源の濾過処理、あるいは下水二次処理
水の濾過処理、および下水、排水の濾過処理に用いられ
る膜の洗浄方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for filtering a water supply system, a water source thereof, a water source for industrial water, a filtration process for sewage secondary treatment water, and a filtration process for sewage and drainage water. It is.

【0002】[0002]

【従来の技術】種々の原水の濾過に用いられる濾過膜
は、濾過精度に優れること、設置スペースが少なくて済
むこと、運転管理が容易であることなどの理由から、各
種の濾過装置に用いられている。しかし、濾過の継続に
伴い原水中の有機物等の除去対象物質が膜面に付着し、
表面の孔を閉塞するため徐々に濾過性能が低下し、つい
には濾過できなくなってしまう。
2. Description of the Related Art Filtration membranes used for filtration of various raw waters are used in various filtration devices because of their excellent filtration accuracy, small installation space, and easy operation management. ing. However, with the continuation of filtration, substances to be removed such as organic substances in raw water adhere to the membrane surface,
Since the pores on the surface are closed, the filtration performance gradually decreases, and eventually filtration becomes impossible.

【0003】そこで、濾過性能を維持するための膜の洗
浄方法として膜の濾過方向とは逆方向から濾水あるいは
清澄水を噴出させて膜の濾過面の付着物を除去する逆流
洗浄が用いられている。あるいは、よりその効果を高め
るため逆流洗浄水に次亜塩素酸ソーダを添加したり、特
開平4−310220号公報に示されているように、オ
ゾン水を用いて逆流洗浄する方法や特開昭60−582
22号公報に開示されているオゾン化加圧空気で逆洗す
る方法が知られている。さらには空気を原水側に気泡と
して導入する方法や、特開昭63−42703号公報に
開示されているように、オゾン化空気を中空糸膜の原水
側に気泡として注入する方法が知られている。
[0003] Therefore, as a method of cleaning the membrane to maintain the filtration performance, backwashing is used, in which filtered water or clarified water is jetted from the direction opposite to the filtration direction of the membrane to remove deposits on the filtration surface of the membrane. ing. Alternatively, sodium hypochlorite is added to the backwash water to further enhance its effect, or a backwash method using ozone water as disclosed in Japanese Patent Application Laid-Open No. 4-310220 is disclosed. 60-582
A method of backwashing with ozonized pressurized air disclosed in Japanese Patent Publication No. 22 is known. Furthermore, a method of introducing air into the raw water side as air bubbles and a method of injecting ozonized air as air bubbles into the raw water side of the hollow fiber membrane as disclosed in JP-A-63-42703 are known. I have.

【0004】[0004]

【発明が解決しようとする課題】一般的に自然水や排水
を膜濾過した際に膜に目詰まりする物質は、有機物と無
機物からなる。従来から知られている次亜塩素酸ソーダ
添加水やオゾン水による逆流洗浄では、有機物を酸化す
ることにより目詰まりを除く、即ち有機物に対しては洗
浄効果が見られるが、溶解できない無機物に対しては洗
浄効果はなく、従って長期にわたって使用すると濾過水
量は次第に低下するという問題があった。
Generally, substances that clog the membrane when natural water or waste water is subjected to membrane filtration are composed of organic substances and inorganic substances. Backwashing with conventionally known sodium hypochlorite added water or ozone water removes clogging by oxidizing organic substances, that is, it has a cleaning effect on organic substances, but removes inorganic substances that cannot be dissolved. Thus, there is no washing effect, so that there is a problem that the amount of filtered water gradually decreases when used for a long time.

【0005】一方、原水側に気泡を導入する方法(エア
ーバブリング)は、導入された気泡によりモジュール内
の水や膜が揺動すること、及び膜同士が触れ合うことに
より膜表面の付着物質が掻き落とされることにより洗浄
が行われるため、洗浄効果は高い。しかし、逆に膜同士
のこすれによってむしろ付着物質が膜孔内に押し込ま
れ、かえって孔の閉塞が生じたり、あるいは膜表面がこ
すられる結果、孔が押しつぶされてしまい、かえって濾
過性能が低下するという問題があった。
On the other hand, the method of introducing air bubbles into the raw water side (air bubbling) is based on the fact that water and films in the module are oscillated by the introduced air bubbles, and substances adhering to the film surface are scraped by the films coming into contact with each other. Since the cleaning is performed by being dropped, the cleaning effect is high. However, on the contrary, the adhered substance is pushed into the pores of the membrane by rubbing between the membranes, and the pores are rather closed or the membrane surface is rubbed, so that the pores are crushed, and the filtration performance is reduced. There was a problem.

【0006】しかし、これらの洗浄を行っても長期間に
わたって濾過を続けると、ついには濾過できなくなる
為、定期的に膜を取り外した上で、長い時間をかけて薬
品を用いて洗浄操作を行う必要があった。この間、予備
の膜濾過装置が必要となり経済的にも不利であった。即
ち、効果的に多孔膜の洗浄を行い、高い濾過流束を維持
する方法は未だ見いだされていない。
However, if filtration is continued for a long period of time even after performing these washings, the filtration eventually becomes impossible. Therefore, the membrane is periodically removed, and the washing operation is performed using chemicals for a long time. Needed. During this time, a spare membrane filtration device is required, which is economically disadvantageous. That is, a method for effectively cleaning the porous membrane and maintaining a high filtration flux has not been found yet.

【0007】[0007]

【課題を解決するための手段】本発明者らは、膜の洗浄
方法について鋭意検討した結果、以下の発明を完成する
に至った。すなわち本発明は、(1)多孔膜の洗浄方法
において、濾過方向とは逆の方向に、酸を含有する水で
逆流洗浄し、続いて酸化剤を含有する水で逆流洗浄する
ことを特徴とする膜洗浄方法、(2)多孔膜の洗浄方法
において、濾過方向とは逆の方向に、酸化剤を含有する
水で逆流洗浄し、続いて酸を含有する水で逆流洗浄する
ことを特徴とする膜洗浄方法、(3)逆流洗浄と同時
に、膜の原水側に気泡を導入して、膜を揺動させること
を特徴とする上記(1)または(2)記載の膜洗浄方
法、(4)多孔膜として中空糸濾過膜を用いることを特
徴とする上記(1)〜(3)記載の膜洗浄方法、に関す
る。
Means for Solving the Problems As a result of intensive studies on a method for cleaning a film, the present inventors have completed the following invention. That is, the present invention is characterized in that (1) in the method for cleaning a porous membrane, in the direction opposite to the filtration direction, backwashing with water containing an acid, followed by backwashing with water containing an oxidizing agent. (2) The method for cleaning a porous membrane, wherein the backwashing is performed with water containing an oxidizing agent in the direction opposite to the filtration direction, and then the backwashing is performed with water containing an acid. (3) The membrane cleaning method according to the above (1) or (2), wherein bubbles are introduced into the raw water side of the membrane at the same time as the backwashing to swing the membrane. The present invention relates to the membrane washing method according to any one of (1) to (3), wherein a hollow fiber filtration membrane is used as the porous membrane.

【0008】以下に本発明の詳細を述べる。本発明の対
象となる原水は、河川水、湖沼水、地下水、貯水、下水
二次処理水、工場排水、下水などである。従来、上記の
様な原水を膜で濾過すると、該原水中に含まれる懸濁物
質や使用する膜の孔径以上の大きさの物質は膜で阻止さ
れ、いわゆる濃度分極やケーク層を形成すると同時に、
該原水中の粒子は膜を目詰まりさせたり、あるいは膜内
部の網状組織に吸着する。その結果、原水を濾過した際
の膜の濾過流束は、清澄水を濾過した際のそれに比べて
数分の1から数十分の1にまで低下してしまい又、濾過
の継続に従って濾過流束は徐々に低下していく。
The details of the present invention will be described below. The raw water that is an object of the present invention is river water, lake water, groundwater, storage water, sewage secondary treatment water, industrial wastewater, sewage, and the like. Conventionally, when raw water as described above is filtered through a membrane, suspended substances contained in the raw water and substances having a size larger than the pore diameter of the membrane to be used are blocked by the membrane, so-called concentration polarization and a cake layer are formed. ,
The particles in the raw water clog the membrane or adsorb to the network inside the membrane. As a result, the filtration flux of the membrane when filtering the raw water is reduced from a fraction to several tenths of that when the clear water is filtered. The bundle gradually decreases.

【0009】これらの膜を閉塞する物質は、一般に無機
物粒子の周りを有機物が覆った状態で原水中に存在し、
表面の有機物による付着力で膜表面に強固に付着する。
このため通常行われる膜濾水や清澄水を用いた水圧を利
用した逆流洗浄では、強固に付着した物を剥離できず、
その洗浄回復効果は小さい。これに対し、次亜塩素酸ソ
ーダやオゾンなどの酸化剤含有水で逆流洗浄を行うと、
その酸化力により、膜に付着した物質表面の有機物が酸
化分解あるいは変性され、膜表面から剥離し易くなる。
しかし、酸化剤含有水による逆流洗浄のみでは、前述し
たように、鉄やマンガンあるいはカルシウム等の無機物
由来の付着物を完全に取り除くことができず、長期間に
わたり高い透水量を維持することはできない。
[0009] Substances that block these films generally exist in raw water in a state where organic substances cover inorganic particles,
It adheres firmly to the film surface by the adhesive force of the organic matter on the surface.
For this reason, backflow washing using water pressure using membrane filtration water or clarified water that is usually performed cannot remove strongly adhered substances,
Its cleaning recovery effect is small. In contrast, backwashing with water containing oxidizing agents such as sodium hypochlorite and ozone,
Due to the oxidizing power, organic substances on the surface of the substance attached to the film are oxidatively decomposed or denatured, and are easily separated from the film surface.
However, backwashing only with oxidizing agent-containing water cannot completely remove deposits derived from inorganic substances such as iron, manganese, and calcium, as described above, and cannot maintain high water permeability for a long period of time. .

【0010】本発明は、酸化剤含有水による逆流洗浄に
加えて、無機物を溶解することのできる酸を添加した逆
流洗浄水を用いた逆流洗浄を行う方法である。これによ
り、無機物由来の付着物を除去することを可能とした。
又、通常原水側に気泡を導入して洗浄を行うと、膜同士
が擦れ合い洗浄効果は高いものの、同時に膜表面に傷が
付き、かえって透過流束が低下する場合がある。このよ
うな場合は、逆流洗浄と同時に、膜の原水側に気泡を導
入するのが好ましい。逆流洗浄水による水流により膜同
士の距離が離れるため、過度にこすり合わされるのを防
ぐことができると同時に、膜と膜の間に詰まり易い、膜
表面から脱落した付着物質も排出されやすくなる。
The present invention is a method for performing backwashing using backwash water to which an acid capable of dissolving inorganic substances has been added, in addition to backwash using water containing an oxidizing agent. This has made it possible to remove deposits derived from inorganic substances.
In addition, when washing is usually performed by introducing air bubbles into the raw water, the membranes are rubbed against each other and the washing effect is high, but at the same time, the membrane surface may be damaged and the permeation flux may be reduced. In such a case, it is preferable to introduce air bubbles into the raw water side of the membrane simultaneously with the backwashing. Since the distance between the membranes is increased by the water flow of the backwash water, it is possible to prevent excessive rubbing, and at the same time, it is easy to discharge adhered substances which are easily clogged between the membranes and fall off from the membrane surface.

【0011】以上のように、酸化剤による逆流洗浄と、
酸による逆流洗浄を、濾過方向とは逆の方向に行うこと
により、膜面付着物を効果的に除去することができ、ま
た逆流洗浄と同時に原水側に気泡を導入することによ
り、膜の傷つきを起こさずに効果的に洗浄する事が可能
になる。これにより、従来定期的に膜を取り外して行っ
ていた薬品洗浄が実質的に不要になる。なお、濾過方向
とは逆の方向に、とは、膜の濾液側から原液側への方向
のことである。また、本発明の洗浄方法は、いわゆる外
圧濾過を行う膜の洗浄に好ましく適用される。
As described above, backwashing with an oxidizing agent,
By carrying out backwashing with acid in the direction opposite to the filtration direction, it is possible to effectively remove deposits on the membrane surface, and by introducing bubbles to the raw water side simultaneously with backwashing, the membrane may be damaged. It is possible to effectively clean without causing a problem. This substantially eliminates the need for chemical cleaning, which is conventionally performed by periodically removing the membrane. The direction opposite to the filtration direction is the direction from the filtrate side to the stock solution side of the membrane. Further, the cleaning method of the present invention is preferably applied to cleaning of a membrane for performing external pressure filtration.

【0012】以下各々詳細に述べる。多孔膜としては、
酸及び酸化剤により劣化しない濾過膜なら特に限定され
ないが、例えば、ポリエチレン、ポリプロピレン、ポリ
ブテン等のポリオレフィン;テトラフルオロエチレン−
パーフルオロアルキルビニルエーテル共重合体(PF
A)、テトラフルオロエチレン−ヘキサフルオロプロピ
レン共重合体(FEP)、テトラフルオロエチレン−ヘ
キサフルオロプロピレン−パーフルオロアルキルビニル
エーテル共重合体(EPE)、テトラフルオロエチレン
−エチレン共重合体(ETFE)、ポリクロロトリフル
オロエチレン(PCTFE)、クロロトリフルオロエチ
レン−エチレン共重合体(ECTFE)、ポリフッ化ビ
ニリデン(PVDF)等のフッ素系樹脂;ポリスルホ
ン、ポリエーテルスルホン、ポリエーテルケトン、ポリ
エーテルエーテルケトン、ポリフェニレンスルフィド等
のスーパーエンジニアリングプラスチック;酢酸セルロ
ース、エチルセルロース等のセルロース類;ポリアクリ
ロニトリル;ポリビニルアルコールの単独及びこれらの
混合物が挙げられる。
Hereinafter, each will be described in detail. As a porous membrane,
The filtration membrane is not particularly limited as long as it is not deteriorated by an acid and an oxidizing agent. For example, polyolefins such as polyethylene, polypropylene and polybutene;
Perfluoroalkyl vinyl ether copolymer (PF
A), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-hexafluoropropylene-perfluoroalkylvinyl ether copolymer (EPE), tetrafluoroethylene-ethylene copolymer (ETFE), polychloro Fluorinated resins such as trifluoroethylene (PCTFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE) and polyvinylidene fluoride (PVDF); polysulfone, polyether sulfone, polyether ketone, polyether ether ketone, polyphenylene sulfide, etc. Super engineering plastics; celluloses such as cellulose acetate and ethyl cellulose; polyacrylonitrile; polyvinyl alcohol alone and mixtures thereof.

【0013】さらにオゾン等の強力な酸化剤を併用する
場合は、セラミック等の無機膜、ポリフッ化ビニリデン
(PVDF)膜、ポリ4フッ化エチレン(PTFE)
膜、エチレン−テトラフルオロエチレン共重合体(ET
FE)膜、ポリフルオロアクリレート(PFA)膜等の
フッ素系樹脂膜等の有機膜を適用することが出来る。特
にポリフッ化ビニリデン(PVDF)膜を使用すれば好
ましい。このような多孔膜のうち、その孔径領域が限外
濾過(UF)膜から精密濾過(MF)膜であるものが使
用し得るが、基本的に高い濾過流量を有する精密濾過
(MF)膜を使用するのが好ましい。例えば、平均孔径
が0.001〜1μmの膜が好ましく、平均孔径0.0
5〜1μmの膜がさらに好ましい。
Further, when a strong oxidizing agent such as ozone is used together, an inorganic film such as ceramic, a polyvinylidene fluoride (PVDF) film, a polytetrafluoroethylene (PTFE)
Membrane, ethylene-tetrafluoroethylene copolymer (ET
An organic film such as a fluororesin film such as a FE) film and a polyfluoroacrylate (PFA) film can be used. It is particularly preferable to use a polyvinylidene fluoride (PVDF) film. Among such porous membranes, those whose pore size region is from an ultrafiltration (UF) membrane to a microfiltration (MF) membrane can be used, but a microfiltration (MF) membrane having a basically high filtration flow rate can be used. It is preferred to use. For example, a membrane having an average pore size of 0.001 to 1 μm is preferable, and an average pore size of 0.01 μm.
Films of 5 to 1 μm are more preferred.

【0014】多孔膜の形状としては、中空糸状、ウェー
ブをつけた中空糸状、平膜状、プリーツ状、スパイラル
状、チューブラー状など任意の形状を用いることができ
るが、単位体積当たりの膜面積が大きくとれる中空糸状
が好ましい。一般に、濾過は膜を収納したモジュールを
用いて行われる。濾過方式としては、全量濾過方式でも
クロスフロー濾過方式でもよい。また、加圧濾過方式で
も陰圧濾過方式でもよいが、加圧濾過方式がより高い濾
過流束が得られるため好ましい。また、中空糸状膜の場
合内圧濾過、外圧濾過のどちらでもよいが、濾過面積が
大きくとれる外圧濾過が好ましい。
As the shape of the porous membrane, any shape such as a hollow fiber shape, a wavy hollow fiber shape, a flat film shape, a pleated shape, a spiral shape, and a tubular shape can be used, but the membrane area per unit volume can be used. It is preferably a hollow fiber shape capable of taking a large amount. Generally, filtration is performed using a module containing a membrane. The filtration method may be a full filtration method or a cross flow filtration method. In addition, a pressure filtration method or a negative pressure filtration method may be used, but the pressure filtration method is preferable because a higher filtration flux can be obtained. In the case of a hollow fiber membrane, either internal pressure filtration or external pressure filtration may be used, but external pressure filtration, which allows a large filtration area, is preferable.

【0015】逆流洗浄水に含有させる酸の種類は、鉄、
マンガン、カルシウムあるいはこれらの酸化物等の無機
物を溶解することができれば特に限定されない。例えば
塩酸、硫酸、硝酸、リン酸、蓚酸、クエン酸、酢酸、あ
るいはこれらの混合物が挙げられる。逆流洗浄水に含有
させる酸の濃度は0.01%以上の濃度が好ましい。こ
れ以下では、無機物の溶解が十分に進まないため、洗浄
効果が十分に得られない。
The type of acid to be contained in the backwash water is iron,
There is no particular limitation as long as inorganic substances such as manganese, calcium or oxides thereof can be dissolved. For example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid, citric acid, acetic acid, or a mixture thereof can be used. The concentration of the acid contained in the backwash water is preferably 0.01% or more. Below this, the dissolution of the inorganic substance does not proceed sufficiently, so that a sufficient cleaning effect cannot be obtained.

【0016】逆流洗浄水への酸の添加方法は、固体や液
体の状態で濾水タンクなどに直接投入しても良いし、あ
るいは水溶液として、濾水タンクから多孔膜に至る配管
の途中でエジェクターやラインミキサーを用いて添加し
ても良い。逆流洗浄水に含有させる酸化剤の種類は、有
機物を酸化できるものであれば特に限定されない。例え
ば次亜塩素酸ソーダ、オゾン、二酸化塩素、過酸化水
素、苛性ソーダ、あるいはこれらの混合物が挙げられ
る。逆流洗浄水に含有させる酸化剤の濃度は次亜塩素酸
ソーダ、二酸化塩素、過酸化水素、苛性ソーダの場合は
0.05mg/リットル以上50重量%以下の濃度が好
ましく、さらには0.1mg/リットル以上20重量%
以下が好ましく、さらには10重量%以下が好ましい。
これ以下では、有機物の溶解が十分に進まないため、洗
浄効果が十分に得られず、濃度が高すぎると洗浄効果は
十分に得られるが、薬品代が高くなり経済的でない。
The acid may be added to the backwashing water in a solid or liquid state directly into a drainage tank or the like, or as an aqueous solution in the middle of a pipe from the drainage tank to the porous membrane in an ejector. Or using a line mixer. The type of the oxidizing agent contained in the backwash water is not particularly limited as long as it can oxidize organic substances. Examples include sodium hypochlorite, ozone, chlorine dioxide, hydrogen peroxide, caustic soda, and mixtures thereof. In the case of sodium hypochlorite, chlorine dioxide, hydrogen peroxide, and caustic soda, the concentration of the oxidizing agent contained in the backwash water is preferably 0.05 mg / liter to 50% by weight, more preferably 0.1 mg / liter. More than 20% by weight
Or less, more preferably 10% by weight or less.
Below this, the dissolution of organic substances does not proceed sufficiently, so that a sufficient cleaning effect cannot be obtained. If the concentration is too high, a sufficient cleaning effect can be obtained, but the cost of chemicals is high and it is not economical.

【0017】逆流洗浄時間は、濾過流量の回復性と濾過
水の回収率を勘案して適宜決めればよい。逆流洗浄水の
量は、濾水回収率と洗浄回復性の兼ね合いから、単位時
間当たりの濾過流量の0.5〜5倍の流量が好ましく、
1〜3倍の流量が特に好ましい。逆流洗浄水への酸化剤
の添加方法は、固体や液体の状態で濾水タンクなどに直
接投入しても良いし、あるいは水溶液として、濾水タン
クから多孔膜に至る配管の途中でエジェクターやライン
ミキサー等を用いて添加しても良い。オゾンや二酸化塩
素をガス状態で導入する場合は、逆洗タンクの適宜位置
に設けた散気管等を介して行えば良い。あるいはUチュ
ーブ式を用いることもできる。また、他の構成として、
多孔膜に逆流洗浄水を誘導する管の途中で、エジェクタ
ー方式またはラインミキシング方式でオゾンや二酸化塩
素を添加しても良い。
The backwash time may be appropriately determined in consideration of the recovery of the filtration flow rate and the recovery rate of the filtered water. The flow rate of the backwash water is preferably 0.5 to 5 times the filtration flow rate per unit time, from the viewpoint of a balance between filtration water recovery and washing recovery.
A flow rate of 1 to 3 times is particularly preferred. Regarding the method of adding the oxidizing agent to the backwash water, a solid or liquid state may be directly added to a drainage tank or the like, or as an aqueous solution, an ejector or a line may be provided in the middle of the piping from the drainage tank to the porous membrane. You may add using a mixer etc. When ozone or chlorine dioxide is introduced in a gaseous state, the ozone or chlorine dioxide may be introduced via a diffuser tube provided at an appropriate position in the backwash tank. Alternatively, a U-tube type can be used. Also, as another configuration,
Ozone or chlorine dioxide may be added by an ejector method or a line mixing method in the middle of a pipe for guiding backwash water to the porous membrane.

【0018】また、オゾン発生方法として放電による場
合のオゾン発生の原料は、空気でもよく、あるいは酸素
でも良い。さらには、水の電気分解によって発生したオ
ゾンでもよい。酸による逆流洗浄と酸化剤による逆流洗
浄の順番は、どちらを先に行っても良く、原水水質によ
って適宜選択できる。膜を目詰まりさせる物質が無機物
が主である場合は、通常は酸による逆流洗浄を行い、適
宜の頻度で酸による逆流洗浄を行った後酸化剤による逆
流洗浄を行えばよい。膜を目詰まりさせる物質が有機物
が主である場合は、通常は酸化剤による逆流洗浄を行
い、適宜の頻度で酸化剤による逆流洗浄を行った後、酸
による逆流洗浄を行えばよい。
The material for generating ozone in the case of discharge as an ozone generating method may be air or oxygen. Further, ozone generated by electrolysis of water may be used. The order of backwashing with an acid and backwashing with an oxidizing agent may be performed in any order, and can be appropriately selected depending on the quality of raw water. When the substance that clogs the membrane is mainly an inorganic substance, backwashing with an acid is usually performed, and then backwashing with an acid is performed at an appropriate frequency, and then backwashing with an oxidizing agent is performed. When the substance that clogs the film is mainly an organic substance, backwashing with an oxidizing agent is usually performed, backwashing with an oxidizing agent is performed at an appropriate frequency, and then backwashing with an acid may be performed.

【0019】酸による逆流洗浄に続いて酸化剤による逆
流洗浄を行う場合、あるいは酸化剤による逆流洗浄に続
いて酸による逆流洗浄を行う場合は、モジュール内で酸
と酸化剤が混合する可能性がある。モジュール内での酸
と酸化剤の混合が好ましくない場合は、逆流洗浄と逆流
洗浄の間に、リンスを行っても良い。リンスは無添加の
濾水による逆流洗浄でも良いし、原水を導入して行って
も良い。気泡の導入は、原水側の膜面に気体を送り込
み、膜面を揺動させることにより膜の洗浄を行うもので
ある。本発明においては、膜面に吸着した無機物が逆流
洗浄水に含まれる酸により溶解あるいは変性されて非吸
着性物質となるため、膜の孔を閉塞していた物質が、気
泡の導入により有効にふるい落とされ、大きな洗浄効果
が得られる。
In the case of backwashing with an oxidizing agent following backwashing with an acid, or in the case of performing backwashing with an acid following backwashing with an oxidizing agent, there is a possibility that the acid and the oxidizing agent are mixed in the module. is there. If mixing of the acid and the oxidizing agent in the module is not preferable, rinsing may be performed between backwashing. Rinsing may be carried out by backwashing with no added drainage or by introducing raw water. The introduction of bubbles is to clean the membrane by sending gas to the membrane surface on the raw water side and swinging the membrane surface. In the present invention, since the inorganic substance adsorbed on the membrane surface is dissolved or denatured by the acid contained in the backwash water to become a non-adsorbable substance, the substance that has closed the pores of the membrane is effectively removed by introducing bubbles. It is sieved and a great cleaning effect is obtained.

【0020】本発明によれば、気泡を導入する際は常に
逆流洗浄と同時に行うと洗浄効果が高いが、気泡の導入
(同時に逆流洗浄)に先立ち逆流洗浄のみを行っても良
い。あるいは気泡の導入(同時に逆流洗浄)を行った後
逆流洗浄のみを行っても良い。さらに、同時に原水を導
入しながら気泡を導入し同時に逆流洗浄しても良いし、
原水を導入せずに行っても良い。あるいは、これらを交
互に組み合わせても良い。
According to the present invention, when introducing bubbles, the washing effect is high if the washing is always performed simultaneously with the backwashing. However, only the backwashing may be performed prior to the introduction of bubbles (simultaneously, backwashing). Alternatively, only backflow cleaning may be performed after introducing bubbles (simultaneously backflow cleaning). In addition, bubbles may be introduced while simultaneously introducing raw water, and backwashing may be performed at the same time.
It may be performed without introducing raw water. Alternatively, these may be alternately combined.

【0021】気泡の種類としては、膜を揺動させるもの
であれば特に限定されず、空気などの他にオゾンガスな
ども用いることができる。気泡の導入量は、単位時間当
たりの濾過流量の0.5〜20倍の流量を供給するのが
好ましく、1〜10倍の流量であることがより好まし
い。本発明は、上述のごとく構成したので、長期間にわ
たって高い膜濾過流束を維持することができる。
The type of air bubble is not particularly limited as long as it causes the film to oscillate, and ozone gas or the like may be used in addition to air. The introduction amount of the bubbles is preferably 0.5 to 20 times the filtration flow rate per unit time, and more preferably 1 to 10 times the flow rate. Since the present invention is configured as described above, it is possible to maintain a high membrane filtration flux over a long period of time.

【0022】[0022]

【発明の実施の形態】以下に、本発明の実施例を示す。Embodiments of the present invention will be described below.

【0023】[0023]

【実施例1】原水1として、濁度が5〜20度、水温が
20℃の河川表流水を用いた。図1に示すように、原水
1は循環タンク2を経て原水供給ポンプ3により膜モジ
ュール4へ圧送され、得られた濾過水は濾水タンク5に
貯められる。逆流洗浄時に、濾水タンク5中の濾過水は
逆洗ポンプ6により膜モジュール4へ送られ逆流洗浄が
行われるが、ここで逆流洗浄ポンプ6から膜モジュール
4へ至る配管の途中に酸タンク7の酸が、酸送液ポンプ
8で逆流洗浄水に添加される。又酸化剤タンク9の酸化
剤が、酸化剤送液ポンプ10により逆流洗浄水に添加さ
れる。また、エアーバブリングは、コンプレッサー11
で圧縮した空気を、膜モジュール4の原水側へ供給して
行われる。
Example 1 As raw water 1, river surface water having a turbidity of 5 to 20 ° C. and a water temperature of 20 ° C. was used. As shown in FIG. 1, raw water 1 is pumped through a circulation tank 2 by a raw water supply pump 3 to a membrane module 4, and the obtained filtered water is stored in a filtered water tank 5. At the time of backwashing, the filtered water in the drainage tank 5 is sent to the membrane module 4 by the backwashing pump 6 to perform backwashing. Here, the acid tank 7 is provided in the middle of the pipe from the backwashing pump 6 to the membrane module 4. Is added to the backwash water by the acid feed pump 8. The oxidizing agent in the oxidizing agent tank 9 is added to the backwash water by the oxidizing agent feed pump 10. Air bubbling is performed by the compressor 11
The compressed air is supplied to the raw water side of the membrane module 4.

【0024】膜モジュール4は、特開平3−21553
5号公報に基づいて作製した内径が0.7mmφ、外径
が1.25mmφ、平均孔径0.1μmのPVDF(ポ
リフッ化ビニリデン)製中空糸状精密濾過(MF)膜を
1m長、3インチ径のPVC(ポリ塩化ビニル)ケーシ
ングに納めた外圧式モジュールである。当該モジュール
の膜面積は7.0m2 、モジュール濾過圧が50kPa
の時の清澄水濾過流束は毎時1.8m3 である。
The membrane module 4 is disclosed in Japanese Unexamined Patent Publication No.
A hollow fiber microfiltration (MF) membrane made of PVDF (polyvinylidene fluoride) having an inner diameter of 0.7 mmφ, an outer diameter of 1.25 mmφ, and an average pore diameter of 0.1 μm, which is manufactured based on No. 5, is 1 m long and 3 inches in diameter. External pressure type module housed in PVC (polyvinyl chloride) casing. The module has a membrane area of 7.0 m 2 and a module filtration pressure of 50 kPa.
The clarified water filtration flux at this time is 1.8 m 3 / h.

【0025】濾過は膜モジュール4へ原水1を一定圧力
で供給する定圧濾過とし、また、膜濾過水量と循環水量
の比を1対1としたクロスフロー方式で行った。運転条
件は、濾過を20分間行った後、5%の硝酸溶液による
逆流洗浄を15秒間行い、続いて10mg/リットル濃
度の次亜塩素酸ソーダ水溶液による逆流洗浄を20秒間
行うという操作を繰り返し、1時間毎に毎時2Nm3
空気によるエアーバブリングを2分間行った。
The filtration was a constant pressure filtration in which raw water 1 was supplied to the membrane module 4 at a constant pressure, and the filtration was carried out by a cross-flow system in which the ratio of the amount of membrane filtration water to the amount of circulation water was 1: 1. The operation conditions were as follows: after performing filtration for 20 minutes, performing backwashing with a 5% nitric acid solution for 15 seconds, and subsequently performing backwashing with a 10 mg / liter aqueous sodium hypochlorite solution for 20 seconds, Air bubbling with air of 2 Nm 3 per hour was performed for 2 minutes every hour.

【0026】上記運転条件で6ヶ月間運転した後の膜濾
過水量は、3.0m3 /m2 /日であった。また、運転
後の膜モジュールを解体し、単糸を所定の薬液で洗浄
後、純水透水量を測定したところ、未使用の膜の透水量
の92%に相当する透水量であり、電子顕微鏡により膜
面を観察した結果、膜の外表面の傷つきは軽微であっ
た。
The amount of membrane filtered water after operating for 6 months under the above operating conditions was 3.0 m 3 / m 2 / day. Further, the membrane module after the operation was disassembled, the single yarn was washed with a predetermined chemical solution, and the pure water permeability was measured. The water permeability was 92% of the water permeability of the unused membrane. As a result of observing the film surface, the outer surface of the film was slightly damaged.

【0027】[0027]

【比較例1】実施例1において、酸送液ポンプからの酸
の送液を停止し、酸化剤送液ポンプからの酸化剤の送液
を停止した以外は実施例1と同様に膜濾過運転を実施し
た。6ヶ月後の膜濾過流量は1.2m3 /m2 /日であ
った。また、運転後の膜モジュールを解体し、単糸を所
定の薬液で洗浄後、純水透水量を測定したところ、未使
用の膜の透水量の75%に相当する透水量であった。
Comparative Example 1 A membrane filtration operation was performed in the same manner as in Example 1 except that the supply of the acid from the acid supply pump was stopped and the supply of the oxidant from the oxidant supply pump was stopped. Was carried out. After 6 months, the membrane filtration flow rate was 1.2 m 3 / m 2 / day. Further, the membrane module after the operation was disassembled, the single yarn was washed with a predetermined chemical solution, and the pure water permeation amount was measured. As a result, the water permeation amount was equivalent to 75% of the water permeation amount of the unused membrane.

【0028】[0028]

【実施例2】実施例1において、運転条件を変更し、濾
過を20分間行った後、5%クエン酸溶液による逆流洗
浄を15秒間行い、続いて5mg/リットル濃度の二酸
化塩素溶液による逆流洗浄を15秒間行うという操作を
繰り返し、3回目のクエン酸による逆流洗浄時及び二酸
化塩素による逆流洗浄時には、同時にモジュール下部か
ら毎時2Nm3 の空気を導入してエアーバブリングを2
分間行うという操作を繰り返した。6ヶ月後の膜濾過流
量は3.3m3/m2/日であった。また、運転後の膜モ
ジュールを解体し、単糸を所定の薬液で洗浄後、純水透
水量を測定したところ、未使用の膜の透水量の95%に
相当する透水量であり、電子顕微鏡により膜面を観察し
た結果、膜の外表面の傷つきは軽微であった。
Example 2 In Example 1, the operating conditions were changed, filtration was performed for 20 minutes, backwashing with a 5% citric acid solution was performed for 15 seconds, and then backwashing with a 5 mg / liter concentration of chlorine dioxide solution. Is repeated for 15 seconds, and at the time of the third backwashing with citric acid and the backwashing with chlorine dioxide, air at a rate of 2 Nm 3 / h is introduced simultaneously from the lower part of the module to perform air bubbling.
This operation was repeated for minutes. After 6 months, the membrane filtration flow rate was 3.3 m 3 / m 2 / day. Further, the membrane module after the operation was disassembled, the single yarn was washed with a predetermined chemical solution, and the pure water permeability was measured. The pure water permeability was 95% of the water permeability of the unused membrane. As a result of observing the film surface, the outer surface of the film was slightly damaged.

【0029】[0029]

【実施例3】実施例1において、運転条件を変更し、濾
過を20分間行った後、10mg/リットル濃度の次亜
塩素酸ソーダ水による逆流洗浄を20秒間行い、続いて
2%濃度の蓚酸溶液による逆流洗浄を20秒間行うとい
う操作を繰り返し、3回目の次亜塩素酸ソーダによる逆
流洗浄時及び蓚酸による逆流洗浄時には、同時にモジュ
ール下部から毎時2Nm3 の空気を導入してエアーバブ
リングを2分間行うという操作を繰り返した。6ヶ月後
の膜濾過流量は3.5m3 /m2 /日であった。また、
運転後の膜モジュールを解体し、単糸を所定の薬液で洗
浄後、純水透水量を測定したところ、未使用の膜の透水
量の94%に相当する透水量であり、膜の外表面の傷つ
きは軽微であった。
Example 3 In Example 1, the operating conditions were changed, filtration was performed for 20 minutes, and then backwashing was performed with sodium hypochlorite water having a concentration of 10 mg / liter for 20 seconds, followed by oxalic acid having a concentration of 2%. The operation of performing backwashing with the solution for 20 seconds is repeated, and at the time of the third backwashing with sodium hypochlorite and the backwashing with oxalic acid, air at a rate of 2 Nm 3 / h is simultaneously introduced from the lower part of the module to perform air bubbling for 2 minutes. Was repeated. After 6 months, the membrane filtration flow rate was 3.5 m 3 / m 2 / day. Also,
After the operation, the membrane module was disassembled, the single yarn was washed with a predetermined chemical solution, and the pure water permeability was measured. The water permeability was 94% of the water permeability of the unused membrane. Was slightly injured.

【0030】[0030]

【実施例4】実施例1において、運転条件を変更し、濾
過を20分間行った後、酸素源を用いたオゾン発生機に
より発生させたオゾンを、エジェクターを用いて注入
し、溶存オゾン濃度1.5mg/リットルのオゾン含有
水による逆流洗浄を20秒間行い、続いて2%濃度のク
エン酸溶液と2%濃度の硝酸溶液の混合溶液による逆流
洗浄を20秒間行うという操作を繰り返し、1時間毎に
毎時2Nm3 の空気によるエアーバブリングを2分間行
った。6ヶ月後の膜濾過流量は4.0m3 /m2 /日で
あった。また、運転後の膜モジュールを解体し、単糸を
所定の薬液で洗浄後、純水透水量を測定したところ、未
使用の膜の透水量の96%に相当する透水量であり、膜
の外表面の傷つきは軽微であった。
Example 4 In Example 1, the operating conditions were changed and filtration was performed for 20 minutes. Then, ozone generated by an ozone generator using an oxygen source was injected using an ejector, and a dissolved ozone concentration of 1 was obtained. The operation of performing backwashing with 0.5 mg / liter ozone-containing water for 20 seconds, and then performing backwashing with a mixed solution of a 2% citric acid solution and a 2% nitric acid solution for 20 seconds is repeated every hour. Then, air bubbling with air of 2 Nm 3 / h was performed for 2 minutes. The membrane filtration flow rate after 6 months was 4.0 m 3 / m 2 / day. Further, the membrane module after operation was disassembled, the single yarn was washed with a predetermined chemical solution, and the pure water permeation amount was measured. The permeation amount was 96% of the water permeation amount of an unused membrane. The outer surface was slightly scratched.

【0031】[0031]

【発明の効果】本発明によれば、効果的に洗浄を行う事
ができ、この結果、長期間に亘って高い膜濾過流速を維
持することが可能である。
According to the present invention, washing can be performed effectively, and as a result, a high membrane filtration flow rate can be maintained for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜の洗浄方法を組み込んだ処理フロー
の一例を示したものである。
FIG. 1 shows an example of a processing flow incorporating a method for cleaning a film of the present invention.

フロントページの続き Fターム(参考) 4D006 GA07 HA19 KA43 KA63 KC02 KC03 KC14 KC16 KD01 KD11 KD12 KD14 KD15 KD16 KD21 KD22 KD24 KD30 KE01R KE03P KE05P KE06P KE07Q KE11R KE12P KE16P KE24Q KE28Q MA01 MA22 MA33 MB11 MC03 MC17 MC18 MC22 MC23 MC28 MC29X MC30 MC33 MC39 MC47 MC61 MC62 MC63 PA01 PB04 PB05 PB08Continued on front page F-term (reference) 4D006 GA07 HA19 KA43 KA63 KC02 KC03 KC14 KC16 KD01 KD11 KD12 KD14 KD15 KD16 KD21 KD22 KD24 KD30 KE01R KE03P KE05P KE06P KE07Q KE11R 29 MC22 MC23 MC33 MC39 MC47 MC61 MC62 MC63 PA01 PB04 PB05 PB08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多孔膜の洗浄方法において、濾過方向と
は逆の方向に、酸を含有する水で逆流洗浄し、続いて酸
化剤を含有する水で逆流洗浄することを特徴とする膜洗
浄方法。
1. A method for cleaning a porous membrane, comprising: backwashing with water containing an acid in a direction opposite to a filtration direction, followed by backwashing with water containing an oxidizing agent. Method.
【請求項2】 多孔膜の洗浄方法において、濾過方向と
は逆の方向に、酸化剤を含有する水で逆流洗浄し、続い
て酸を含有する水で逆流洗浄することを特徴とする膜洗
浄方法。
2. A method for cleaning a porous membrane, comprising: backwashing with water containing an oxidizing agent in a direction opposite to a filtration direction, followed by backwashing with water containing an acid. Method.
【請求項3】 逆流洗浄と同時に、膜の原水側に気泡を
導入して、膜を揺動させることを特徴とする請求項1ま
たは2記載の膜洗浄方法。
3. The method for cleaning a membrane according to claim 1, wherein bubbles are introduced into the raw water side of the membrane at the same time as the backwashing to swing the membrane.
JP25454499A 1999-09-08 1999-09-08 Membrane cleaning method Pending JP2001070763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25454499A JP2001070763A (en) 1999-09-08 1999-09-08 Membrane cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25454499A JP2001070763A (en) 1999-09-08 1999-09-08 Membrane cleaning method

Publications (1)

Publication Number Publication Date
JP2001070763A true JP2001070763A (en) 2001-03-21

Family

ID=17266524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25454499A Pending JP2001070763A (en) 1999-09-08 1999-09-08 Membrane cleaning method

Country Status (1)

Country Link
JP (1) JP2001070763A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021066A (en) * 2004-07-06 2006-01-26 Japan Organo Co Ltd Method and apparatus for cleaning submerged membrane module
JP2009006209A (en) * 2007-06-26 2009-01-15 Toray Ind Inc Cleaning method of hollow fiber membrane module
JP2009509731A (en) * 2005-09-27 2009-03-12 シーメンス・ウォーター・テクノロジーズ・コーポレイション Chemical cleaning agent and filtration membrane cleaning method
JP2013154317A (en) * 2012-01-31 2013-08-15 Metawater Co Ltd Method and apparatus for washing ceramic membrane
KR101306389B1 (en) 2010-03-30 2013-09-09 도레이 카부시키가이샤 Method for cleaning separation membrane module, and method for fresh water generation
WO2016031331A1 (en) * 2014-08-29 2016-03-03 三菱電機株式会社 Filtration membrane cleaning method and cleaning device, and water treatment system
WO2017159303A1 (en) * 2016-03-14 2017-09-21 住友電気工業株式会社 Method for treating waste water having high hardness
WO2025088933A1 (en) * 2023-10-27 2025-05-01 信越化学工業株式会社 Filtration membrane regeneration method and silica microparticle dispersion liquid

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019002A (en) * 1983-07-13 1985-01-31 Nippon Atom Ind Group Co Ltd Method for backwashing hollow yarn membrane filter
JPH01307407A (en) * 1988-06-02 1989-12-12 Nitto Denko Corp Method for sterilizing and cleaning membrane module
JPH04110023A (en) * 1990-08-31 1992-04-10 Japan Organo Co Ltd Method for scrubbing filtration tower using hollow-fiber membrane
JPH06238273A (en) * 1993-02-17 1994-08-30 Mitsubishi Rayon Eng Co Ltd Membrane separation type water purification method
JPH06262173A (en) * 1993-03-15 1994-09-20 Daicel Chem Ind Ltd Membrane purifying method for surface water with improved recovery rate and operation method of its device
JPH07313850A (en) * 1994-05-30 1995-12-05 Kubota Corp Immersion type ceramic membrane separator backwash method
JPH081158A (en) * 1994-06-16 1996-01-09 Daicel Chem Ind Ltd Method for operating water purification system and water purifier
JPH08229362A (en) * 1995-02-27 1996-09-10 Genzo Ozawa Membrane cleaning method and membrane cleaning apparatus for immersion type membrane filtration apparatus
JPH09173795A (en) * 1995-12-26 1997-07-08 Kanegafuchi Chem Ind Co Ltd Hollow fiber membrane integrated module
JPH09253647A (en) * 1996-03-26 1997-09-30 Nomura Micro Sci Co Ltd Water treatment system
JPH119973A (en) * 1997-06-26 1999-01-19 Ebara Corp Method for filtration back-washing of membrane module for turbidity removal
JPH11128699A (en) * 1997-10-29 1999-05-18 Mitsubishi Rayon Co Ltd Filtration method by separation membrane
JPH11235586A (en) * 1998-02-23 1999-08-31 Mitsubishi Rayon Co Ltd Solid-liquid separation device and solid-liquid separation method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019002A (en) * 1983-07-13 1985-01-31 Nippon Atom Ind Group Co Ltd Method for backwashing hollow yarn membrane filter
JPH01307407A (en) * 1988-06-02 1989-12-12 Nitto Denko Corp Method for sterilizing and cleaning membrane module
JPH04110023A (en) * 1990-08-31 1992-04-10 Japan Organo Co Ltd Method for scrubbing filtration tower using hollow-fiber membrane
JPH06238273A (en) * 1993-02-17 1994-08-30 Mitsubishi Rayon Eng Co Ltd Membrane separation type water purification method
JPH06262173A (en) * 1993-03-15 1994-09-20 Daicel Chem Ind Ltd Membrane purifying method for surface water with improved recovery rate and operation method of its device
JPH07313850A (en) * 1994-05-30 1995-12-05 Kubota Corp Immersion type ceramic membrane separator backwash method
JPH081158A (en) * 1994-06-16 1996-01-09 Daicel Chem Ind Ltd Method for operating water purification system and water purifier
JPH08229362A (en) * 1995-02-27 1996-09-10 Genzo Ozawa Membrane cleaning method and membrane cleaning apparatus for immersion type membrane filtration apparatus
JPH09173795A (en) * 1995-12-26 1997-07-08 Kanegafuchi Chem Ind Co Ltd Hollow fiber membrane integrated module
JPH09253647A (en) * 1996-03-26 1997-09-30 Nomura Micro Sci Co Ltd Water treatment system
JPH119973A (en) * 1997-06-26 1999-01-19 Ebara Corp Method for filtration back-washing of membrane module for turbidity removal
JPH11128699A (en) * 1997-10-29 1999-05-18 Mitsubishi Rayon Co Ltd Filtration method by separation membrane
JPH11235586A (en) * 1998-02-23 1999-08-31 Mitsubishi Rayon Co Ltd Solid-liquid separation device and solid-liquid separation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021066A (en) * 2004-07-06 2006-01-26 Japan Organo Co Ltd Method and apparatus for cleaning submerged membrane module
JP2009509731A (en) * 2005-09-27 2009-03-12 シーメンス・ウォーター・テクノロジーズ・コーポレイション Chemical cleaning agent and filtration membrane cleaning method
JP2009006209A (en) * 2007-06-26 2009-01-15 Toray Ind Inc Cleaning method of hollow fiber membrane module
KR101306389B1 (en) 2010-03-30 2013-09-09 도레이 카부시키가이샤 Method for cleaning separation membrane module, and method for fresh water generation
JP2013154317A (en) * 2012-01-31 2013-08-15 Metawater Co Ltd Method and apparatus for washing ceramic membrane
JP5933854B1 (en) * 2014-08-29 2016-06-15 三菱電機株式会社 Method and apparatus for cleaning filtration membrane of water to be treated, and water treatment system
WO2016031331A1 (en) * 2014-08-29 2016-03-03 三菱電機株式会社 Filtration membrane cleaning method and cleaning device, and water treatment system
CN106794428A (en) * 2014-08-29 2017-05-31 三菱电机株式会社 The cleaning method and cleaning device and water treatment system of filter membrane
US10576427B2 (en) 2014-08-29 2020-03-03 Mitsubishi Electric Corporation Method and apparatus for cleaning filter membrane, and water treatment system
CN115121124A (en) * 2014-08-29 2022-09-30 三菱电机株式会社 Method and apparatus for cleaning filtration membrane, and water treatment system
WO2017159303A1 (en) * 2016-03-14 2017-09-21 住友電気工業株式会社 Method for treating waste water having high hardness
JPWO2017159303A1 (en) * 2016-03-14 2019-01-17 住友電気工業株式会社 Treatment method for high hardness wastewater
WO2025088933A1 (en) * 2023-10-27 2025-05-01 信越化学工業株式会社 Filtration membrane regeneration method and silica microparticle dispersion liquid

Similar Documents

Publication Publication Date Title
JP2001079366A (en) How to clean the membrane
JP2004073950A (en) Membrane cleaning method
JP4969580B2 (en) Operation method of membrane separator
CN115121124A (en) Method and apparatus for cleaning filtration membrane, and water treatment system
WO2013111826A1 (en) Desalination method and desalination device
JP2008029906A (en) Fresh water producing method and water producing arrangement
JP2009006209A (en) Cleaning method of hollow fiber membrane module
JP2001070763A (en) Membrane cleaning method
JP2005185985A (en) Method and apparatus for producing water
JP2005034694A (en) Membrane cleaning method, and filter
JP5024158B2 (en) Membrane filtration method
JP2012086182A (en) Water treatment method and water treatment device
JP4867180B2 (en) Immersion membrane separator and chemical cleaning method therefor
JP4698274B2 (en) Filtration membrane cleaning method
JPH09299947A (en) Reverse osmotic membrane spiral element and treating system using the same
JP7120496B1 (en) Filtration membrane cleaning device, water treatment device, and filtration membrane cleaning method
JP2001070764A (en) Cleaning method
JP2006081979A (en) Membrane cleaning method
JP3194679B2 (en) Cleaning method for filtration membrane module
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP2015020081A (en) Membrane module cleaning method and membrane module cleaning apparatus
JP2001187324A (en) Cleaning method for membrane filtration device and water treatment device
JP3948593B2 (en) Membrane cleaning method
JP2004154707A (en) Cleaning method for separation membrane
JP2004130307A (en) Filtration method of hollow fiber membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070907