JP2001069688A - Independent photovoltaic power generation system and power generation method - Google Patents
Independent photovoltaic power generation system and power generation methodInfo
- Publication number
- JP2001069688A JP2001069688A JP24527699A JP24527699A JP2001069688A JP 2001069688 A JP2001069688 A JP 2001069688A JP 24527699 A JP24527699 A JP 24527699A JP 24527699 A JP24527699 A JP 24527699A JP 2001069688 A JP2001069688 A JP 2001069688A
- Authority
- JP
- Japan
- Prior art keywords
- power
- power generation
- charged
- charging
- storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Photovoltaic Devices (AREA)
- Direct Current Feeding And Distribution (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
(57)【要約】
【課題】本発明の課題は、大容量の太陽電池を用いるこ
となく、蓄電池を所望の電流・電圧で安全且つ高効率で
充電を行うとともに、充電器の小型化、低価格化も実現
する独立型太陽光発電システム及び発電方法を提供する
ことにある。
【解決手段】本発明は、太陽光により電力を発生する太
陽電池1と、太陽電池1の出力に接続されるコンバータ
2と、コンバータ2の出力に接続される電気二重層キャ
パシタ4と、コンバータ2の出力と電気二重層キャパシ
タ4に接続される複数の充電器6−1〜6−p〜6−n
と、充電器6−1〜6−p〜6−nにそれぞれ対応して
接続される複数のNi−MH蓄電池7−1〜7−q〜7
−nと、複数のNi−MH蓄電池7−1〜7−q〜7−
nの出力に接続される負荷5とを具備することを特徴と
するものである。
(57) [Problem] An object of the present invention is to charge a storage battery safely and efficiently with a desired current and voltage without using a large-capacity solar cell, and to reduce the size and cost of a charger. An object of the present invention is to provide a stand-alone photovoltaic power generation system and a power generation method that can realize price reduction. The present invention relates to a solar cell that generates electric power by sunlight, a converter connected to an output of the solar cell, an electric double layer capacitor connected to an output of the converter, and a converter. Chargers 6-1 to 6-p to 6-n connected to the output of
And a plurality of Ni-MH storage batteries 7-1 to 7-q to 7 connected to chargers 6-1 to 6-p to 6-n, respectively.
-N and a plurality of Ni-MH storage batteries 7-1 to 7-q to 7-
and a load 5 connected to the n output.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、太陽光発電装置で
発生した電力を負荷または電力変換装置等に供給する独
立型太陽光発電システム及び発電方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stand-alone photovoltaic power generation system for supplying electric power generated by a photovoltaic power generator to a load or a power converter, and a power generation method.
【0002】[0002]
【従来の技術】従来の独立型太陽光発電システムのブロ
ック構成図を図2に示す。11は太陽光発電装置、15
−1,15−2,15−3は逆流阻止ダイオード、12
は負荷または電力変換装置、14は電力蓄積装置、13
は充電器である。2. Description of the Related Art FIG. 2 shows a block diagram of a conventional stand-alone photovoltaic power generation system. 11 is a solar power generator, 15
-1, 15-2 and 15-3 are reverse current blocking diodes, 12
Is a load or power converter, 14 is a power storage device, 13
Is a charger.
【0003】太陽光発電装置11で発生した電力は、逆
流阻止ダイオード15−1、充電器13を介して電力蓄
積装置14に供給されるとともに、逆流阻止ダイオード
15−2を介して負荷または電力変換装置12に供給さ
れる。太陽光発電装置11の発電電力が負荷または電力
変換装置12の消費電力を下回った場合には、電力蓄積
装置14から逆流阻止ダイオード15−3を介して不足
分の電力を負荷または電力変換装置12に供給する。The power generated by the photovoltaic power generator 11 is supplied to a power storage device 14 via a backflow prevention diode 15-1 and a charger 13, and is also supplied to a load or power converter via a backflow prevention diode 15-2. It is supplied to the device 12. When the power generated by the photovoltaic power generation device 11 is lower than the load or the power consumption of the power conversion device 12, the shortage power is supplied from the power storage device 14 via the backflow prevention diode 15-3 to the load or the power conversion device 12. To supply.
【0004】上記の構成を用いることにより、夜間、天
候不順等により太陽光発電装置11の発電電力が、負荷
または電力変換装置12の消費電力を下回った場合に
も、負荷または電力変換装置12に電力蓄積装置14か
ら電力を供給する事が可能となり、信頼性の高い独立型
太陽光発電システムを構築することができる。[0004] By using the above configuration, even when the power generated by the photovoltaic power generator 11 falls below the power consumption of the load or the power converter 12 due to nighttime, irregular weather, or the like, the load or the power converter 12 is supplied to the load or power converter 12. Power can be supplied from the power storage device 14, and a highly reliable independent solar power generation system can be constructed.
【0005】[0005]
【発明が解決しようとする課題】独立型太陽光発電シス
テムでは、夜間もしくは長期の天候不順の場合にも負荷
または電力変換装置に安定した電力を供給するために、
大容量のバックアップ用電力蓄積装置が必要である。電
力蓄積装置の定格容量は太陽光発電装置の定格容量に比
べ大きく設計するため、例えば連続不日照補償日数を1
0日程度でシステム設計した場合、快晴時の日中におい
ても電力蓄積装置への1時間あたりの充電量は電力蓄積
装置の容量の3%程度(0.03C)と低率な電流値と
なる。電力蓄積装置として蓄電池、特にニッケル水素蓄
電池、リチウムイオン蓄電池等を用いた場合、このよう
な低率充電では充電効率が大幅に低下し、電力蓄積装置
が満充電に至らない場合があるため、システムが所望の
信頼性を発揮できないという問題が生ずる。SUMMARY OF THE INVENTION In a stand-alone photovoltaic power generation system, in order to supply a stable power to a load or a power converter even in the case of nighttime or long-term irregular weather,
A large-capacity backup power storage device is required. Since the rated capacity of the power storage device is designed to be larger than the rated capacity of the photovoltaic power generator, for example, the number of days of continuous insolation compensation is set to 1
When the system is designed in about 0 days, the amount of charge per hour for the power storage device is about 3% (0.03C) of the capacity of the power storage device, and the current value is a low rate even during the daytime when the weather is fine. . When a storage battery, particularly a nickel-metal hydride storage battery or a lithium ion storage battery, is used as the power storage device, charging efficiency at such a low rate of charging is greatly reduced, and the power storage device may not be fully charged. However, there arises a problem that desired reliability cannot be exhibited.
【0006】この問題を解決するため、太陽光発電装置
の容量を大きく設定することにより充電電力を増加させ
る方法等が考えられるが、この場合太陽光発電装置の大
容量化に伴う高価格化や、充電器を流れる電流の増大に
よる充電器を構成するスイッチング素子、リアクトル、
コンデンサ等の大型化とそれに伴う充電器の高価格化を
余儀なくされるという問題が生じる。In order to solve this problem, a method of increasing the charging power by setting the capacity of the photovoltaic power generation device to a large value can be considered. A switching element, a reactor, which constitutes a charger due to an increase in current flowing through the charger,
A problem arises in that the size of the capacitor and the like must be increased and the price of the charger must be increased accordingly.
【0007】また太陽光発電装置の発電電力は、日射量
に伴い変動するため、太陽光発電装置からの発電電力の
みで電力蓄積装置を常時安定した電流・電圧で充電する
ことは困難である。このような不安定な電流・電圧によ
って充電を行った場合、電力蓄積装置の電圧・温度が不
規則に変動し、電力蓄積装置として蓄電池を用いた場合
には満充電の検出が困難となる。その結果、過充電によ
る電力蓄積装置の劣化・破壊、さらには電力蓄積装置の
充電不足によるシステムの信頼性の低下が避けられな
い。Further, the power generated by the photovoltaic power generator fluctuates with the amount of solar radiation, and it is difficult to always charge the power storage device with a stable current and voltage using only the power generated from the photovoltaic power generator. When charging is performed using such unstable current and voltage, the voltage and temperature of the power storage device fluctuate irregularly, and it is difficult to detect full charge when a storage battery is used as the power storage device. As a result, deterioration and destruction of the power storage device due to overcharging, and a reduction in system reliability due to insufficient charging of the power storage device are inevitable.
【0008】本発明は上記の事情に鑑みてなされたもの
で、発電電力の一定しない太陽光発電装置、例えば太陽
電池の発電電力を一旦電気二重層キャパシタに蓄えるこ
とで、大容量の太陽電池を用いることなく、蓄電池を所
望の電流・電圧で安全且つ高効率で充電を行うととも
に、複数の充電器を流れる電力を低減させ、充電器の小
型化、低価格化も実現することが可能な独立型太陽光発
電システム及び発電方法を提供することを目的とする。[0008] The present invention has been made in view of the above circumstances, and a solar power generation apparatus in which the generated power is not constant, such as a solar cell having a large capacity by temporarily storing the generated power of the solar cell in an electric double layer capacitor. Without using it, it is possible to charge storage batteries safely and efficiently with desired current and voltage, reduce the power flowing through multiple chargers, and realize smaller and less expensive chargers. It is an object to provide a solar photovoltaic power generation system and a power generation method.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に本発明の独立型太陽光発電システムは、太陽光により
電力を発生する太陽光発電装置と、前記太陽光発電装置
の出力に接続される電力変換装置と、前記電力変換装置
の出力に接続される電力蓄積装置と、前記電力変換装置
の出力と前記電力蓄積装置に接続される複数の充電器
と、前記充電器にそれぞれ対応して接続される複数の蓄
電池と、前記複数の蓄電池の出力に接続される負荷とを
具備することを特徴とするものである。In order to achieve the above object, a stand-alone photovoltaic power generation system according to the present invention is connected to a photovoltaic power generator for generating electric power by sunlight and an output of the photovoltaic power generator. A power conversion device, a power storage device connected to the output of the power conversion device, a plurality of chargers connected to the output of the power conversion device and the power storage device, respectively corresponding to the charger. It is characterized by comprising a plurality of storage batteries connected, and a load connected to outputs of the plurality of storage batteries.
【0010】また本発明は、上記独立型太陽光発電シス
テムであって、負荷は複数の蓄電池の出力にスイッチを
介して接続されることを特徴とするものである。Further, the present invention is the above-mentioned independent type solar power generation system, wherein a load is connected to outputs of a plurality of storage batteries via switches.
【0011】また本発明は、上記独立型太陽光発電シス
テムであって、負荷は複数の蓄電池の出力に逆流阻止ダ
イオードを介して接続されることを特徴とするものであ
る。The present invention also relates to the above-mentioned stand-alone photovoltaic power generation system, wherein a load is connected to outputs of a plurality of storage batteries via a backflow prevention diode.
【0012】また本発明は、上記独立型太陽光発電シス
テムであって、電力変換装置が太陽光発電装置が最も効
率よく太陽光を電力に変換する条件で発電動作させる最
大電力追従制御機能を具備することを特徴とするもので
ある。The present invention also relates to the above-mentioned stand-alone type photovoltaic power generation system, wherein the power conversion device has a maximum power follow-up control function for causing the photovoltaic power generation device to perform a power generation operation under the condition that the photovoltaic power generation device converts the sunlight into power most efficiently. It is characterized by doing.
【0013】また本発明は、上記独立型太陽光発電シス
テムであって、電力変換装置は電力蓄積装置が満充電と
なった場合には、前記電力蓄積装置の過充電を防止する
手段を具備することを特徴とするものである。Further, the present invention is the above-mentioned stand-alone type photovoltaic power generation system, wherein the power converter has means for preventing overcharging of the power storage device when the power storage device is fully charged. It is characterized by the following.
【0014】また本発明は、上記独立型太陽光発電シス
テムであって、複数の蓄電池のうち、任意の個数の蓄電
池を選択し、該任意の個数の蓄電池に出力を接続した充
電器を動作させることにより充電を行う手段を具備する
ことを特徴とするものである。Further, the present invention is the above-mentioned stand-alone type photovoltaic power generation system, wherein an arbitrary number of storage batteries are selected from a plurality of storage batteries, and a charger having an output connected to the arbitrary number of storage batteries is operated. And means for charging the battery.
【0015】また本発明は、上記独立型太陽光発電シス
テムであって、任意の個数の蓄電池への充電は、太陽光
発電装置の発電量によって、選択する蓄電池の個数を変
えることを特徴とするものである。Further, the present invention is the above-mentioned stand-alone photovoltaic power generation system, wherein charging of an arbitrary number of storage batteries is performed by changing the number of storage batteries to be selected according to the amount of power generated by the photovoltaic power generation device. Things.
【0016】また本発明は、上記独立型太陽光発電シス
テムであって、任意の個数の蓄電池への充電は、充電対
象の蓄電池が満充電となった場合に順次他の蓄電池を選
択することにより、複数の蓄電池全てについて実行する
ことを特徴とするものである。Further, the present invention is the above-mentioned independent type photovoltaic power generation system, wherein charging of an arbitrary number of storage batteries is performed by sequentially selecting another storage battery when the storage battery to be charged is fully charged. , For all storage batteries.
【0017】また本発明は、上記独立型太陽光発電シス
テムであって、電力蓄積装置は電気二重層キャパシタま
たは電解コンデンサの何れかであり、複数の蓄電池はN
i−MH蓄電池またはNi−Cd蓄電池の何れかであ
り、複数の充電器は定電流充電を行う手段を具備するこ
とを特徴とするものである。Further, the present invention is the above-mentioned stand-alone photovoltaic power generation system, wherein the power storage device is either an electric double layer capacitor or an electrolytic capacitor, and the plurality of storage batteries are N
Either an i-MH storage battery or a Ni-Cd storage battery, and the plurality of chargers include means for performing constant current charging.
【0018】また本発明は、上記独立型太陽光発電シス
テムであって、電力蓄積装置は電気二重層キャパシタま
たは電解コンデンサの何れかであり、複数の蓄電池はL
iイオン蓄電池または鉛蓄電池の何れかであり、複数の
充電器は蓄電池電圧が最適充電電圧以下の場合は定電流
充電を行い、蓄電池電圧が最適充電電圧に達した場合は
定電圧充電を行う手段を具備することを特徴とするもの
である。Further, the present invention is the above-mentioned stand-alone photovoltaic power generation system, wherein the power storage device is either an electric double layer capacitor or an electrolytic capacitor, and the plurality of storage batteries are L
a means for performing constant current charging when the storage battery voltage is equal to or lower than the optimum charging voltage, and performing constant voltage charging when the storage battery voltage reaches the optimum charging voltage, which is either an i-ion storage battery or a lead storage battery; It is characterized by having.
【0019】また本発明の独立型太陽光発電方法は、太
陽光発電装置の発電電力を蓄積する電力蓄積装置が満充
電となった後、前記電力蓄積装置に蓄えられた電力量が
予め定められた放電中止電力量に達するまでの期間に、
複数の充電器は前記太陽光発電装置あるいは前記電力蓄
積装置から供給される電力によって、充電対象である任
意の個数の蓄電池を、前記蓄電池が最も効率良く充電さ
れる電流値により定電流で充電し、前記電力蓄積装置に
蓄えられた電力量が予め決められた放電中止電力量に達
した場合は、前記複数の充電器による前記充電対象であ
る任意の個数の蓄電池の充電を中止することにより、前
記電力蓄積装置の充電を行い、前記電力蓄積装置が満充
電となった場合には前記複数の充電器により、再度前記
充電対象である任意の個数の蓄電池の充電を開始するい
わゆる間欠的なパルス定電流充電を実行することを特徴
とする。Further, in the stand-alone photovoltaic power generation method of the present invention, after the power storage device for storing the power generated by the photovoltaic power generation device is fully charged, the amount of power stored in the power storage device is determined in advance. During the period until the discharge
The plurality of chargers charge an arbitrary number of storage batteries to be charged with a constant current according to a current value at which the storage batteries are most efficiently charged by the power supplied from the solar power generation device or the power storage device. If the amount of power stored in the power storage device reaches a predetermined discharge stop power amount, by stopping the charging of the arbitrary number of storage batteries to be charged by the plurality of chargers, A so-called intermittent pulse for charging the power storage device and, when the power storage device is fully charged, starting charging the arbitrary number of storage batteries to be charged again by the plurality of chargers. It is characterized by performing constant current charging.
【0020】また本発明の独立型太陽光発電方法は、太
陽光発電装置の発電電力を蓄積する電力蓄積装置が満充
電となった後、前記電力蓄積装置に蓄えられた電力量が
予め定められた放電中止電力量に達するまでの期間に、
複数の充電器は前記太陽光発電装置あるいは前記電力蓄
積装置から供給される電力によって、充電対象である任
意の個数の蓄電池を、前記蓄電池が最も効率良く充電さ
れる電圧値により定電圧で充電し、前記電力蓄積装置に
蓄えられた電力量が予め決められた放電中止電力量に達
した場合は、前記複数の充電器による前記充電対象であ
る任意の個数の蓄電池の充電を中止することにより、前
記電力蓄積装置の充電を行い、前記電力蓄積装置が満充
電となった場合には前記複数の充電器により、再度前記
充電対象である任意の個数の蓄電池の充電を開始するい
わゆる間欠的なパルス定電流充電を実行することを特徴
とする。Further, in the stand-alone photovoltaic power generation method according to the present invention, after the power storage device for storing the generated power of the photovoltaic power generation device is fully charged, the amount of power stored in the power storage device is determined in advance. During the period until the discharge
The plurality of chargers charge an arbitrary number of storage batteries to be charged at a constant voltage according to a voltage value at which the storage batteries are most efficiently charged by the power supplied from the solar power generation device or the power storage device. If the amount of power stored in the power storage device reaches a predetermined discharge stop power amount, by stopping the charging of the arbitrary number of storage batteries to be charged by the plurality of chargers, A so-called intermittent pulse for charging the power storage device and, when the power storage device is fully charged, starting charging the arbitrary number of storage batteries to be charged again by the plurality of chargers. It is characterized by performing constant current charging.
【0021】また本発明の独立型太陽光発電方法は、太
陽光発電装置の発電電力を蓄積する電力蓄積装置が満充
電となった後、前記電力蓄積装置に蓄えられた電力量が
予め定められた放電中止電力量に達するまでの期間、複
数の充電器は前記太陽光発電装置あるいは前記電力蓄積
装置から供給される電力によって、充電対象である任意
の個数の蓄電池を定電流で充電を行うステップと、前記
電力蓄積装置に蓄えられた電力量が予め決められた放電
中止電力量に達した場合は、前記複数の充電器による前
記充電対象である任意の個数の蓄電池の充電を中止し前
記電力蓄積装置の充電を行うステップと、前記電力蓄積
装置が満充電になった際には複数の充電器により充電対
象である任意の個数の蓄電池を選択し充電を開始するス
テップと、前記充電対象である任意の個数の蓄電池のう
ち満充電に達した蓄電池を充電対象から外し、充電対象
となっていなかった蓄電池のうちから新たに充電対象と
なる蓄電池を選択し充電を開始するステップとを具備す
ることを特徴とする。Further, in the stand-alone photovoltaic power generation method of the present invention, after the power storage device for storing the generated power of the photovoltaic power generation device is fully charged, the amount of power stored in the power storage device is determined in advance. A period in which the plurality of chargers charge an arbitrary number of storage batteries to be charged at a constant current by the power supplied from the photovoltaic power generation device or the power storage device until the discharge stop power amount is reached. And when the amount of power stored in the power storage device reaches a predetermined amount of power to stop discharging, the charging of the arbitrary number of storage batteries to be charged by the plurality of chargers is stopped, and the power Charging the storage device; selecting a desired number of storage batteries to be charged by a plurality of chargers when the power storage device is fully charged; and starting charging; Removing the fully charged storage batteries from the arbitrary number of storage batteries to be charged from the charging targets, selecting a new storage battery to be charged from the storage batteries that have not been charged, and starting charging. It is characterized by having.
【0022】また本発明は、上記独立型太陽光発電方法
において、負荷への給電は、充電対象である任意の個数
の蓄電池以外の蓄電池の出力側に接続されたスイッチを
オンにすることで行うことを特徴とする。According to the present invention, in the above-mentioned independent solar power generation method, power is supplied to a load by turning on a switch connected to an output side of a storage battery other than an arbitrary number of storage batteries to be charged. It is characterized by the following.
【0023】また本発明は、上記独立型太陽光発電方法
において、負荷への給電は、充電対象となっている蓄電
池が充電されている場合には前記充電対象となっている
蓄電池の出力側に接続されたスイッチをオンにすること
で行われ、前記充電対象となっている蓄電池が充電され
ていない場合には前記充電対象となっている蓄電池の出
力側に接続されたスイッチをオフとし、前記充電対象と
なっている蓄電池以外の蓄電池の出力側に接続されたス
イッチをオンにすることで行われることを特徴とする。Further, according to the present invention, in the above-mentioned independent solar power generation method, when power is supplied to the load, when the storage battery to be charged is charged, the power is supplied to the output side of the storage battery to be charged. It is performed by turning on the connected switch, and when the storage battery to be charged is not charged, the switch connected to the output side of the storage battery to be charged is turned off, It is performed by turning on a switch connected to the output side of a storage battery other than the storage battery to be charged.
【0024】[0024]
【発明の実施の形態】以下図面を参照して本発明の実施
形態例を詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0025】図1は本発明の一実施形態例である独立型
太陽光発電システムのブロック構成図であり、1は太陽
光発電装置の一例としての太陽電池、2は電力変換装置
の一例としてのコンバータ、3は電力検出器、4は電力
蓄積装置の一例としての電気二重層キャパシタ(EDL
C)、5は負荷、6−1〜6−p〜6−nは充電器、7
−1〜7−q〜7−nはNi−MH蓄電池(ニッケル水
素蓄電池)、8−1〜8−r〜8−nは逆流阻止ダイオ
ード、9−1〜9−s〜9−nはスイッチである。nは
接続される蓄電池数である。FIG. 1 is a block diagram of a stand-alone photovoltaic power generation system according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a solar cell as an example of a photovoltaic power generator, and reference numeral 2 denotes a power converter. Converter, 3 is a power detector, 4 is an electric double layer capacitor (EDL) as an example of a power storage device.
C), 5 is a load, 6-1 to 6-p to 6-n are chargers, 7
-1 to 7-q to 7-n are Ni-MH batteries (nickel-metal hydride batteries), 8-1 to 8-r to 8-n are backflow blocking diodes, and 9-1 to 9-s to 9-n are switches It is. n is the number of connected storage batteries.
【0026】すなわち、太陽電池1は太陽光により電力
を発生する。太陽電池1の出力側にはコンバータ2の入
力側が接続され、コンバータ2の出力側には電力検出器
3を介してEDLC4と充電器6−1〜6−p〜6−n
の入力側がそれぞれ並列に接続され、充電器6−1〜6
−p〜6−nの出力側にはそれぞれ対応してNi−MH
蓄電池7−1〜7−q〜7−nが接続される。前記Ni
−MH蓄電池7−1〜7−q〜7−nにはそれぞれ対応
した逆流阻止ダイオード8−1〜8−r〜8−n及びス
イッチ9−1〜9−s〜9−nを介して負荷5が共通に
接続される。That is, the solar cell 1 generates electric power by sunlight. The output side of solar cell 1 is connected to the input side of converter 2, and the output side of converter 2 is connected to EDLC 4 and chargers 6-1 to 6-p to 6-n via power detector 3.
Of the chargers 6-1 to 6 are connected in parallel, respectively.
The output sides of -p to 6-n correspond to Ni-MH, respectively.
Storage batteries 7-1 to 7-q to 7-n are connected. The Ni
-Loads are applied to the MH storage batteries 7-1 to 7-q to 7-n via the corresponding reverse current blocking diodes 8-1 to 8-r to 8-n and the switches 9-1 to 9-s to 9-n. 5 are commonly connected.
【0027】前記コンバータ2は、太陽電池1から最大
の電力を取り出せるように、電圧と電流を常時変化させ
る機能である最大電力追従制御機能を有し、太陽電池1
が最も効率よく太陽光を電力に変換する条件で発電動作
させる機能を有する。またコンバータ2は出力電圧を所
望の一定電圧とする機能も有する。The converter 2 has a maximum power follow-up control function for constantly changing the voltage and the current so that the maximum power can be obtained from the solar cell 1.
Has a function to generate electricity under the condition that converts sunlight into electric power most efficiently. Converter 2 also has a function of making the output voltage a desired constant voltage.
【0028】EDLC4が満充電になった後、EDLC
4の電圧が予め決められた放電中止電圧V1に達するま
での期間、充電器6−1〜6−p〜6−nは太陽電池1
あるいはEDLC4から供給される電力によってNi−
MH蓄電池7−1〜7−q〜7−nのうち充電対象であ
るm個(1≦m≦n)のNi−MH蓄電池を定電流もし
くは定電圧充電し、EDLC4の電圧が予め決められた
放電中止電圧V1に達した場合は充電対象であるm個の
Ni−MH蓄電池7−1〜7−q〜7−nの充電を中止
する。これによりNi−MH蓄電池7−1〜7−q〜7
−nの充電を行っていない場合には太陽電池1で発電さ
れた電力はEDLC4の充電に費やされることになり、
EDLC4が満充電になった際には充電器6−1〜6−
p〜6−nのより充電対象であるm個のNi−MH蓄電
池7−1〜7−q〜7−nの充電を再度行う、いわゆる
間欠的なパルス定電流充電を実行することを特徴とす
る。After the EDLC 4 is fully charged, the EDLC 4
During the period until the voltage of the battery 4 reaches the predetermined discharge stop voltage V1, the chargers 6-1 to 6-p to 6-n
Alternatively, Ni-
Of the MH storage batteries 7-1 to 7-q to 7-n, m (1 ≦ m ≦ n) Ni-MH storage batteries to be charged are charged at a constant current or a constant voltage, and the voltage of the EDLC 4 is predetermined. When the discharge stop voltage V1 is reached, charging of the m Ni-MH storage batteries 7-1 to 7-q to 7-n to be charged is stopped. Thereby, the Ni-MH storage batteries 7-1 to 7-q to 7
When −n is not charged, the power generated by the solar cell 1 is consumed for charging the EDLC 4,
When the EDLC 4 is fully charged, the chargers 6-1 to 6-
It is characterized by executing so-called intermittent pulsed constant-current charging, in which m m Ni-MH storage batteries 7-1 to 7-q to 7-n to be charged from p to 6-n are charged again. I do.
【0029】充電対象であるm個のNi−MH蓄電池の
うち少なくとも1つのNi−MH蓄電池が満充電に達し
た場合には充電対象から除外し、充電対象となっていな
い他のNi−MH蓄電池を順次順番通り充電を行ってい
くことを特徴とする。If at least one of the m Ni-MH storage batteries to be charged has reached a full charge, it is excluded from the charging target and another Ni-MH storage battery not to be charged. Are sequentially charged in order.
【0030】負荷5への給電は、Ni−MH蓄電池7−
1〜7−q〜7−nの充電が行われていない場合は、n
個のNi−MH蓄電池7−1〜7−q〜7−nのうち充
電対象となっていないn−m個のNi−MH蓄電池から
逆流阻止ダイオード8−1〜8−r〜8−n、スイッチ
9−1〜9−s〜9−nを介して行われ、Ni−MH蓄
電池7−1〜7−q〜7−nの充電が行われている場合
には同時に充電器6−1〜6−p〜6−nから負荷5へ
電力が供給される。The power supply to the load 5 is performed by the Ni-MH storage battery 7-
When charging of 1 to 7-q to 7-n is not performed, n
Out of the Ni-MH storage batteries 7-1 to 7-q to 7-n which are not to be charged, the reverse current blocking diodes 8-1 to 8-r to 8-n; This is performed via the switches 9-1 to 9-s to 9-n. When the Ni-MH storage batteries 7-1 to 7-q to 7-n are being charged, the chargers 6-1 to 9-n are simultaneously operated. Power is supplied to the load 5 from 6-p to 6-n.
【0031】太陽電池1の容量、充電器6−1〜6−p
〜6−n及びNi−MH蓄電池7−1〜7−q〜7−n
の個数n、個々のNi−MH蓄電池容量、一度に充電を
行うNi−MH蓄電池の個数m等は例えば以下のように
して設定する。The capacity of the solar cell 1 and the chargers 6-1 to 6-p
6-n and Ni-MH storage batteries 7-1 to 7-q to 7-n
, The number of individual Ni-MH storage batteries, the number m of Ni-MH storage batteries to be charged at one time, and the like are set as follows, for example.
【0032】負荷5の容量が例えば30Wであり終夜給
電が必要な場合、太陽電池1の容量は350W程度必要
である。連続不日照補償日数を15日間とするとNi−
MH蓄電池7−1〜7−q〜7−nの総容量は10.8
kWh(12V−900Ah)となる。充電器6−1〜
6−p〜6−nを安価で小形の部品を用いて構成できる
場合の電流値が9.0A程度で、Ni−MH蓄電池7−
1〜7−q〜7−nを最も効率よく充電できる電流量が
0.1CAである場合、個々のNi−MH蓄電池の容量
は12V−90Ahであり、n=10となる。When the capacity of the load 5 is, for example, 30 W and power supply is required all night, the capacity of the solar cell 1 needs to be about 350 W. If the number of days of continuous sunshine compensation is 15 days, Ni-
The total capacity of the MH storage batteries 7-1 to 7-q to 7-n is 10.8.
kWh (12V-900Ah). Chargers 6-1 to
When 6-p to 6-n can be formed using inexpensive and small parts, the current value is about 9.0 A, and the Ni-MH storage battery 7-
When the amount of current that can most efficiently charge 1 to 7-q to 7-n is 0.1 CA, the capacity of each Ni-MH storage battery is 12 V-90 Ah, and n = 10.
【0033】太陽電池1が定格で発電した場合、充電に
用いられる電流は負荷電力を差し引いた320Wであ
り、1つのNi−MH蓄電池(12V、90Ah)を
0.1CA充電するのに130W程度必要であるから、
余剰な発電電力を生じさせず、常に効率よく太陽電池を
利用するためには (太陽電池の発電電力)<(負荷電力、充電に必要な電
力) という条件を満たすことが必要であるので、m≧3(1
30W×3=390W)となる。When the solar cell 1 generates power at the rated power, the current used for charging is 320 W minus the load power, and about 130 W is required to charge one Ni-MH storage battery (12 V, 90 Ah) by 0.1 CA. Because
In order to always use solar cells efficiently without generating excess generated power, it is necessary to satisfy the following condition: (generated power of solar cell) <(load power, power required for charging) ≧ 3 (1
30W × 3 = 390W).
【0034】次にm=3の場合における独立型太陽光発
電システムの動作を図3と図4及び図5を用いて説明す
る。図3は本発明の一実施形態例である独立型太陽光発
電システムの太陽電池の発電量と電気二重層キャパシタ
及び蓄電池の充放電動作の関係を示す特性図であり、図
4及び図5は本発明の一実施形態例である独立型太陽光
発電システムにおけるNi−MH蓄電池とEDLCの充
放電動作を示すフローチャートである。Next, the operation of the stand-alone photovoltaic power generation system when m = 3 will be described with reference to FIG. 3, FIG. 4, and FIG. FIG. 3 is a characteristic diagram showing a relationship between a power generation amount of a solar cell and a charge / discharge operation of an electric double layer capacitor and a storage battery in a stand-alone photovoltaic power generation system according to an embodiment of the present invention. It is a flowchart which shows the charging / discharging operation | movement of Ni-MH storage battery and EDLC in the stand-alone photovoltaic power generation system which is one Example of this invention.
【0035】太陽電池1から晴天時の日中には最大35
0Wの発電電力が得られる。Ni−MH蓄電池7−1〜
7−q〜7−nはそれぞれ12V−90Ahである。N
i−MH蓄電池7−1〜7−q〜7−nの充電順位fn
を定義すると(nはNi−MH蓄電池番号)、図1での
m,nの値をそれぞれm=3,n=10とした場合、初
期状態での充電対象のNi−MH蓄電池は7−1〜7−
3であり、充電順位f n はそれぞれf1 =1,f2 =
2,f3 =3と表され、一方放電対象のNi−MH蓄電
池は7−4〜7−10であり、充電順位fn はそれぞれ
f4 =4〜f10=10と表すことができる。A maximum of 35 from the solar cell 1 during the daytime in fine weather
0W generated power is obtained. Ni-MH storage battery 7-1
7-q to 7-n are each 12V-90Ah. N
Charge order f of i-MH storage batteries 7-1 to 7-q to 7-nn
(N is the Ni-MH storage battery number),
When the values of m and n are m = 3 and n = 10, respectively,
Ni-MH batteries to be charged in the initial state are 7-1 to 7-
3, the charging order f nIs f1= 1, fTwo=
2, fThree= 3, while the Ni-MH charge to be discharged
The pond is 7-4 to 7-10, and the charging order fnAre each
fFour= 4 to fTen= 10.
【0036】充電順位fn ≧4であるNi−MH蓄電池
は7−4〜7−10に対応するスイッチ9−4〜9−1
0をオン(ON)にし(図4のステップST2)、負荷
5に給電を行う(図3の期間A)。コンバータ2を最大
電力追従制御(MPPTモード)で動作させ(ステップ
ST3)太陽電池1から電力を取り出し、一旦容量32
V−50FのEDLC4の充電を行う(図3の期間
A)。太陽電池1の出力電力Pが350W得られる場合
では、約1分間でEDLC4は満充電に達する。EDL
C4の満充電はEDLC電圧Veが最大定格電圧Vhと
等しくなったことで判断される(ステップST4)。N
i−MH蓄電池と負荷への給電に必要な電力が太陽電池
1の発電電力Pを下回り、発電電力をロスすることがな
いように発電電力Pを電力検出器3で計測し、同時に充
電を行うNi−MH蓄電池の数を判断する(ステップS
T5)。なお最大電力追従制御(MPPTモード)で動
作させるのは、太陽電池1の発電電力Pは図3に示され
るように一定ではないので、各時刻で電力を最大に取れ
るように電流や電圧を制御するためである。[0036] switch corresponding to the Ni-MH battery is 7-4~7-10 a charging order f n ≧ 4 9-4~9-1
0 is turned on (ON) (step ST2 in FIG. 4), and power is supplied to the load 5 (period A in FIG. 3). The converter 2 is operated in the maximum power follow-up control (MPPT mode) (step ST3).
The EDLC 4 of V-50F is charged (period A in FIG. 3). When the output power P of the solar cell 1 is 350 W, the EDLC 4 reaches a full charge in about one minute. EDL
Full charge of C4 is determined by the fact that the EDLC voltage Ve has become equal to the maximum rated voltage Vh (step ST4). N
The power required to supply power to the i-MH storage battery and the load falls below the power generation P of the solar cell 1, and the power detector 3 measures the generated power P so that the generated power is not lost, and performs charging at the same time. The number of Ni-MH batteries is determined (step S
T5). The operation in the maximum power follow-up control (MPPT mode) is performed because the generated power P of the solar cell 1 is not constant as shown in FIG. 3, so that the current and voltage are controlled so that the power can be maximized at each time. To do that.
【0037】ステップST5で、太陽電池1の発電電力
が負荷と2個のNi−MH蓄電池の充電に必要な電力以
上(P>310W)と判断されると、3個のNi−MH
蓄電池を同時に充電するため充電順位fn ≦3となって
いるNi−MH蓄電池に対応する充電器を動作(ON)
させ(ステップST6)、発電電力Pを負荷へ供給する
ために充電順位fn ≦3となっているNi−MH蓄電池
に対応するスイッチをオン(ON)にする(ステップS
T7)。太陽電池1あるいはEDLC4から供給される
電力によって充電順位f1 〜f3のNi−MH蓄電池7
−1 〜7−3 は定電流充電され(図3の期間B)、か
つ負荷5にも逆流阻止ダイオード8−1 〜8−3とスイ
ッチ9−1 〜9−3を通して給電される。At step ST5, the power generated by the solar cell 1
Is less than the power required to charge the load and the two Ni-MH batteries.
If it is determined to be above (P> 310W), three Ni-MH
Charge order f for charging storage batteries simultaneouslyn≦ 3
Operate the charger corresponding to the existing Ni-MH storage battery (ON)
(Step ST6), and the generated power P is supplied to the load.
Charging order fnNi-MH storage battery with ≦ 3
Is turned on (ON) (step S
T7). Supplied from solar cell 1 or EDLC4
Charge order f by electric power1~ FThreeNi-MH storage battery 7
-1 ~ 7-3 Is charged at a constant current (period B in FIG. 3),
Load 5 also has a reverse current blocking diode 8-1 8-3 and Sui
Switch 9-1 -9-3.
【0038】ステップST8で充電順位がf1 〜f3 で
あるNi−MH蓄電池7−1 〜7−3が満充電に達す
る前に、ステップST9でEDLC電圧のVeが放電中
止電圧V1以下になった場合は、充電順位が3以下のN
i−MH蓄電池に対応するスイッチをオフ(OFF)と
し(ステップST10)、充電順位が3以下のNi−M
H蓄電池に対応する充電器を停止(OFF)させる(ス
テップST11)。これにより再度EDLC4が充電さ
れ(図3の期間A)、EDLC4が満充電となった後
(ステップST4)にステップST5で再度同時に充電
を行うNi−MH蓄電池の数を判断する。In step ST8, the Ni-MH storage battery 7-1 having a charging order of f 1 to f 3 is stored. If the EDLC voltage Ve becomes equal to or lower than the discharge suspending voltage V1 in step ST9 before 〜7-3 reaches the full charge, the charging order is N or less.
The switch corresponding to the i-MH storage battery is turned off (OFF) (step ST10), and the Ni-M having a charging order of 3 or less is set.
The charger corresponding to the H storage battery is stopped (OFF) (step ST11). Thereby, the EDLC 4 is charged again (period A in FIG. 3), and after the EDLC 4 is fully charged (step ST4), the number of Ni-MH storage batteries to be simultaneously charged again is determined in step ST5.
【0039】一方、ステップST8で充電順位がf1 〜
f3 であるNi−MH蓄電池7−1〜7−3のうち少く
ともひとつが満充電となると、満充電になったNi−M
H蓄電池に対応する充電器をオフ(OFF)とし(ステ
ップST12)、満充電になったNi−MH蓄電池の充
電順位fn をfn =10とする(ステップST13)。
また満充電に至らなかった全てのNi−MH蓄電池につ
いて、充電順位fn の小さい順から再度1〜9の充電順
位を与え(ステップST14)、新たに充電順位fn =
3となったNi−MH蓄電池に対応する充電器をオン
(ON)にする(ステップST15)。このような制御
を行うことで、常に充電の対象となるNi−MH蓄電池
の数は3個と一定し、全てのNi−MH蓄電池に対して
順番通り充電と放電を行うことが可能となる。On the other hand, in step ST8, the charging order is changed from f 1 to f 1 .
If at least one of Ni-MH battery 7-1 to 7-3 is a f 3 is fully charged, Ni-M, which is fully charged
A charger that corresponds to H-acid battery and off (OFF) (step ST12), the charging rank f n of Ni-MH battery that is fully charged and f n = 10 (step ST13).
Also for all Ni-MH battery that did not reach the fully charged, it gives again 1-9 charging order from ascending order of charging rank f n (step ST14), new charging rank f n =
The charger corresponding to the Ni-MH storage battery that has become 3 is turned on (ON) (step ST15). By performing such control, the number of Ni-MH storage batteries to be charged is always fixed at three, and it is possible to charge and discharge all Ni-MH storage batteries in order.
【0040】またステップST5でP≦310Wである
と判断されるとステップST16において再度充電を行
う蓄電池数が決定され、2個の場合はステップST17
へ移行して、ステップST17〜ステップST28が上
記ステップST6〜ステップST15と同様に処理さ
れ、1個の場合はステップST29へ移行して、ステッ
プST29〜ステップST40が上記ステップST6〜
ステップST15と同様に処理される。If it is determined in step ST5 that P.ltoreq.310W, the number of rechargeable batteries to be charged again is determined in step ST16.
The process proceeds to step ST17 to step ST28 in the same manner as in step ST6 to step ST15. If the number is one, the process proceeds to step ST29, and step ST29 to step ST40 are performed in step ST6 to step ST40.
The processing is performed in the same manner as in step ST15.
【0041】上述のような繰り返し充放電制御を行うこ
とで、複数のNi−MH蓄電池7−1〜7−q〜7−n
について所望の電流・電圧により間欠充電を行うことが
可能となるため、Ni−MH蓄電池7−1〜7−q〜7
−nの満充電検出が容易になり、Ni−MH蓄電池7−
1〜7−q〜7−nの過充電・充電不足といった危険を
回避することが可能となる。またNi−MH蓄電池を分
割することで充電器を流れる電流を低減させ、充電器の
小型化、低価格化も実現することが可能となる。By performing the repetitive charge / discharge control as described above, a plurality of Ni-MH storage batteries 7-1 to 7-q to 7-n
Can be intermittently charged with a desired current and voltage, so that the Ni-MH storage batteries 7-1 to 7-q to 7
−n becomes easy to detect full charge, and the Ni-MH storage battery 7−
It is possible to avoid dangers of overcharging and insufficient charging of 1 to 7-q to 7-n. Also, by dividing the Ni-MH storage battery, the current flowing through the charger can be reduced, and the size and cost of the charger can be reduced.
【0042】以上本発明の実施形態例につき説明した
が、本発明は、必ずしも上述した手段及び手法に限定さ
れるものではなく、本発明にいう目的を達成し、本発明
にいう効果を有する範囲において適宜に変更実施するこ
とが可能なものである。Although the embodiments of the present invention have been described above, the present invention is not necessarily limited to the above-described means and methods, but a range that achieves the object of the present invention and has the effects of the present invention. Can be appropriately changed and implemented.
【0043】[0043]
【発明の効果】以上述べたように本発明によれば、太陽
光発電装置の発電電力を電気二重層キャパシタに一旦蓄
えてから複数の蓄電池の充電を行うため、大容量の太陽
光発電装置を用いることなく所望の電流・電圧によって
複数の蓄電池の充電を行うことが可能となる。そのため
満充電検出が容易になり、複数の蓄電池の過充電・充電
不足といった危険を回避することが可能となる。また蓄
電池を分割することで充電器を流れる電流を低減させ、
充電器の小型化、低価格化も実現することが可能とな
る。As described above, according to the present invention, a large-capacity photovoltaic power generator is provided because the power generated by the photovoltaic power generator is temporarily stored in the electric double layer capacitor and then a plurality of storage batteries are charged. It becomes possible to charge a plurality of storage batteries with a desired current / voltage without using them. Therefore, detection of full charge becomes easy, and dangers such as overcharging and insufficient charging of a plurality of storage batteries can be avoided. Also, dividing the storage battery reduces the current flowing through the charger,
It is also possible to reduce the size and cost of the charger.
【図1】本発明の一実施形態例に係る独立型太陽光発電
システムのブロック構成図である。FIG. 1 is a block diagram of a stand-alone photovoltaic power generation system according to an embodiment of the present invention.
【図2】従来の独立型太陽光発電システムのブロック構
成図である。FIG. 2 is a block diagram of a conventional stand-alone photovoltaic power generation system.
【図3】本発明の一実施形態例である独立型太陽光発電
システムの太陽電池の発電量と電気二重層キャパシタ及
び蓄電池の充放電動作の関係を示す特性図である。FIG. 3 is a characteristic diagram showing a relationship between a power generation amount of a solar cell and a charge / discharge operation of an electric double layer capacitor and a storage battery in a stand-alone photovoltaic power generation system according to an embodiment of the present invention.
【図4】本発明の一実施形態例である独立型太陽光発電
システムのNi−MH蓄電池と電気二重層キャパシタの
充放電動作を示すフローチャートである。FIG. 4 is a flowchart showing a charge / discharge operation of a Ni-MH storage battery and an electric double layer capacitor of the stand-alone photovoltaic power generation system according to one embodiment of the present invention.
【図5】本発明の一実施形態例である独立型太陽光発電
システムのNi−MH蓄電池と電気二重層キャパシタの
充放電動作を示すフローチャートである。FIG. 5 is a flowchart showing a charging / discharging operation of the Ni-MH storage battery and the electric double layer capacitor of the stand-alone photovoltaic power generation system according to one embodiment of the present invention.
1 太陽電池 2 コンバータ 3 電力検出器 4 電気二重層キャパシタ 5 負荷 6−1〜6−p〜6−n 充電器 7−1〜7−q〜7−n Ni−MH蓄電池 8−1〜8−r〜8−n 逆流阻止ダイオード 9−1〜9−s〜9−n スイッチ 11 太陽光発電装置 12 負荷又は電力変換装置 13 充電器 14 電力蓄積装置 15−1,15−2,15−3 逆流阻止ダイオード Reference Signs List 1 solar cell 2 converter 3 power detector 4 electric double layer capacitor 5 load 6-1 to 6-p to 6-n charger 7-1 to 7-q to 7-n Ni-MH storage battery 8-1 to 8- r ~ 8-n Backflow prevention diode 9-1 ~ 9-s ~ 9-n Switch 11 Photovoltaic power generator 12 Load or power converter 13 Charger 14 Power storage device 15-1, 15-2, 15-3 Backflow Blocking diode
フロントページの続き (72)発明者 野崎 洋介 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 谷野 賢司 東京都豊島区高田1丁目18番1号 オリジ ン電気株式会社内 (72)発明者 山本 眞 東京都豊島区高田1丁目18番1号 オリジ ン電気株式会社内 Fターム(参考) 5F051 BA11 JA07 JA17 KA03 5G003 AA06 BA04 DA05 DA18 5G065 BA06 DA07 EA03 NA06 Continuing on the front page (72) Inventor Yosuke Nozaki 2-3-1 Otemachi, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Kenji Tanino 1-1-18-1 Takada, Toshima-ku, Tokyo Origin Inside Electric Co., Ltd. (72) Inventor Makoto Yamamoto 1-18-1 Takada, Toshima-ku, Tokyo Origin Electric Co., Ltd. F-term (reference) 5F051 BA11 JA07 JA17 KA03 5G003 AA06 BA04 DA05 DA18 5G065 BA06 DA07 EA03 NA06
Claims (15)
装置と、 前記太陽光発電装置の出力に接続される電力変換装置
と、 前記電力変換装置の出力に接続される電力蓄積装置と、 前記電力変換装置の出力と前記電力蓄積装置に接続され
る複数の充電器と、 前記充電器にそれぞれ対応して接続される複数の蓄電池
と、 前記複数の蓄電池の出力に接続される負荷とを具備する
ことを特徴とする独立型太陽光発電システム。A power generation device connected to an output of the power generation device; a power storage device connected to an output of the power generation device; A plurality of chargers connected to the output of the power conversion device and the power storage device, a plurality of storage batteries respectively connected to the chargers, and a load connected to the outputs of the plurality of storage batteries. A stand-alone photovoltaic power generation system.
ムであって、負荷は複数の蓄電池の出力にスイッチを介
して接続されることを特徴とする独立型太陽光発電シス
テム。2. The stand-alone photovoltaic power generation system according to claim 1, wherein the load is connected to outputs of the plurality of storage batteries via switches.
ムであって、負荷は複数の蓄電池の出力に逆流阻止ダイ
オードを介して接続されることを特徴とする独立型太陽
光発電システム。3. The stand-alone photovoltaic power generation system according to claim 1, wherein the load is connected to outputs of the plurality of storage batteries via a backflow prevention diode.
発電システムであって、電力変換装置が太陽光発電装置
が最も効率よく太陽光を電力に変換する条件で発電動作
させる最大電力追従制御機能を具備することを特徴とす
る独立型太陽光発電システム。4. The stand-alone photovoltaic power generation system according to claim 1, wherein the power converter performs a power generation operation under a condition where the photovoltaic power generator converts sunlight into power most efficiently. An independent photovoltaic power generation system having a tracking control function.
陽光発電システムであって、電力変換装置は電力蓄積装
置が満充電となった場合には、前記電力蓄積装置の過充
電を防止する手段を具備することを特徴とする独立型太
陽光発電システム。5. The stand-alone photovoltaic power generation system according to claim 1, wherein the power converter is overcharged when the power storage device is fully charged. A stand-alone photovoltaic power generation system, comprising:
型太陽光発電システムであって、複数の蓄電池のうち、
任意の個数の蓄電池を選択し、該任意の個数の蓄電池に
出力を接続した充電器を動作させることにより充電を行
う手段を具備することを特徴とする独立型太陽光発電シ
ステム。6. The stand-alone photovoltaic power generation system according to claim 1, wherein the plurality of storage batteries are provided.
A stand-alone photovoltaic power generation system comprising means for selecting an arbitrary number of storage batteries and operating a charger having an output connected to the arbitrary number of storage batteries to perform charging.
ムであって、任意の個数の蓄電池への充電は、太陽光発
電装置の発電量によって、選択する蓄電池の個数を変え
ることを特徴とする独立型太陽光発電システム。7. The stand-alone photovoltaic power generation system according to claim 6, wherein charging of an arbitrary number of storage batteries is performed by changing the number of storage batteries to be selected according to the amount of power generated by the photovoltaic power generation device. Independent photovoltaic power generation system.
システムであって、任意の個数の蓄電池への充電は、充
電対象の蓄電池が満充電となった場合に順次他の蓄電池
を選択することにより、複数の蓄電池全てについて実行
することを特徴とする独立型太陽光発電システム。8. The stand-alone photovoltaic power generation system according to claim 6, wherein charging of an arbitrary number of storage batteries sequentially selects another storage battery when the storage battery to be charged is fully charged. A stand-alone photovoltaic power generation system characterized by being executed for all of the plurality of storage batteries.
立型太陽光発電システムであって、電力蓄積装置は電気
二重層キャパシタまたは電解コンデンサの何れかであ
り、複数の蓄電池はNi−MH蓄電池またはNi−Cd
蓄電池の何れかであり、複数の充電器は定電流充電を行
う手段を具備することを特徴とする独立型太陽光発電シ
ステム。9. The stand-alone photovoltaic power generation system according to claim 1, wherein the power storage device is one of an electric double layer capacitor and an electrolytic capacitor, and the plurality of storage batteries are Ni-MH. Storage battery or Ni-Cd
A stand-alone photovoltaic power generation system, which is any one of storage batteries, wherein the plurality of chargers include means for performing constant current charging.
独立型太陽光発電システムであって、電力蓄積装置は電
気二重層キャパシタまたは電解コンデンサの何れかであ
り、複数の蓄電池はLiイオン蓄電池または鉛蓄電池の
何れかであり、複数の充電器は蓄電池電圧が最適充電電
圧以下の場合は定電流充電を行い、蓄電池電圧が最適充
電電圧に達した場合は定電圧充電を行う手段を具備する
ことを特徴とする独立型太陽光発電システム。10. The stand-alone photovoltaic power generation system according to claim 1, wherein the power storage device is one of an electric double layer capacitor and an electrolytic capacitor, and the plurality of storage batteries are Li-ion storage batteries. Alternatively, the plurality of chargers include means for performing constant current charging when the storage battery voltage is equal to or lower than the optimum charging voltage, and performing constant voltage charging when the storage battery voltage reaches the optimum charging voltage. A stand-alone photovoltaic power generation system characterized in that:
電力蓄積装置が満充電となった後、前記電力蓄積装置に
蓄えられた電力量が予め定められた放電中止電力量に達
するまでの期間に、複数の充電器は前記太陽光発電装置
あるいは前記電力蓄積装置から供給される電力によっ
て、充電対象である任意の個数の蓄電池を、前記蓄電池
が最も効率良く充電される電流値により定電流で充電
し、前記電力蓄積装置に蓄えられた電力量が予め決めら
れた放電中止電力量に達した場合は、前記複数の充電器
による前記充電対象である任意の個数の蓄電池の充電を
中止することにより、前記電力蓄積装置の充電を行い、
前記電力蓄積装置が満充電となった場合には前記複数の
充電器により、再度前記充電対象である任意の個数の蓄
電池の充電を開始するいわゆる間欠的なパルス定電流充
電を実行することを特徴とする独立型太陽光発電方法。11. A period from when a power storage device that stores power generated by a photovoltaic power generation device is fully charged to when the amount of power stored in the power storage device reaches a predetermined discharge suspension power amount. In addition, the plurality of chargers, by the power supplied from the solar power generation device or the power storage device, a constant number of storage batteries to be charged at a constant current by the current value at which the storage battery is most efficiently charged Charging, when the amount of power stored in the power storage device reaches a predetermined discharge stop power amount, stopping charging of the arbitrary number of storage batteries to be charged by the plurality of chargers; By charging the power storage device,
When the power storage device is fully charged, the plurality of chargers execute so-called intermittent pulsed constant-current charging to start charging the arbitrary number of storage batteries to be charged again. Independent solar power generation method.
電力蓄積装置が満充電となった後、前記電力蓄積装置に
蓄えられた電力量が予め定められた放電中止電力量に達
するまでの期間に、複数の充電器は前記太陽光発電装置
あるいは前記電力蓄積装置から供給される電力によっ
て、充電対象である任意の個数の蓄電池を、前記蓄電池
が最も効率良く充電される電圧値により定電圧で充電
し、前記電力蓄積装置に蓄えられた電力量が予め決めら
れた放電中止電力量に達した場合は、前記複数の充電器
による前記充電対象である任意の個数の蓄電池の充電を
中止することにより、前記電力蓄積装置の充電を行い、
前記電力蓄積装置が満充電となった場合には前記複数の
充電器により、再度前記充電対象である任意の個数の蓄
電池の充電を開始するいわゆる間欠的なパルス定電流充
電を実行することを特徴とする独立型太陽光発電方法。12. A period from when the power storage device for storing the generated power of the photovoltaic power generation device is fully charged to when the amount of power stored in the power storage device reaches a predetermined discharge suspension power amount. In addition, a plurality of chargers, by the power supplied from the photovoltaic power generation device or the power storage device, a constant number of storage batteries to be charged at a constant voltage by the voltage value at which the storage batteries are most efficiently charged. Charging, when the amount of power stored in the power storage device reaches a predetermined discharge stop power amount, stopping charging of the arbitrary number of storage batteries to be charged by the plurality of chargers; By charging the power storage device,
When the power storage device is fully charged, the plurality of chargers execute so-called intermittent pulsed constant-current charging to start charging the arbitrary number of storage batteries to be charged again. Independent solar power generation method.
電力蓄積装置が満充電となった後、前記電力蓄積装置に
蓄えられた電力量が予め定められた放電中止電力量に達
するまでの期間、複数の充電器は前記太陽光発電装置あ
るいは前記電力蓄積装置から供給される電力によって、
充電対象である任意の個数の蓄電池を定電流で充電を行
うステップと、 前記電力蓄積装置に蓄えられた電力量が予め決められた
放電中止電力量に達した場合は、前記複数の充電器によ
る前記充電対象である任意の個数の蓄電池の充電を中止
し前記電力蓄積装置の充電を行うステップと、 前記電力蓄積装置が満充電になった際には複数の充電器
により充電対象である任意の個数の蓄電池を選択し充電
を開始するステップと、 前記充電対象である任意の個数の蓄電池のうち満充電に
達した蓄電池を充電対象から外し、充電対象となってい
なかった蓄電池のうちから新たに充電対象となる蓄電池
を選択し充電を開始するステップとを具備することを特
徴とする独立型太陽光発電方法。13. A period from when the power storage device for storing the generated power of the photovoltaic power generation device is fully charged to when the amount of power stored in the power storage device reaches a predetermined discharge stop power amount. A plurality of chargers, by the power supplied from the solar power generation device or the power storage device,
Charging an arbitrary number of storage batteries to be charged with a constant current; and, when the amount of power stored in the power storage device reaches a predetermined discharge stop power amount, the plurality of battery chargers Stopping charging of any number of storage batteries to be charged and charging the power storage device; and, when the power storage device is fully charged, any charging target by a plurality of chargers. Selecting the number of storage batteries and starting charging; removing the fully charged storage batteries from the arbitrary number of storage batteries to be charged from the charging targets, and newly selecting from the storage batteries that were not to be charged. Selecting a storage battery to be charged and starting charging.
の個数の蓄電池以外の蓄電池の出力側に接続されたスイ
ッチをオンにすることで行うことを特徴とする請求項1
1、12又は13記載の独立型太陽光発電方法。14. The power supply to a load is performed by turning on a switch connected to an output side of a storage battery other than an arbitrary number of storage batteries to be charged.
14. The independent solar power generation method according to 1, 12, or 13.
る蓄電池が充電されている場合には前記充電対象となっ
ている蓄電池の出力側に接続されたスイッチをオンにす
ることで行われ、前記充電対象となっている蓄電池が充
電されていない場合には前記充電対象となっている蓄電
池の出力側に接続されたスイッチをオフとし、前記充電
対象となっている蓄電池以外の蓄電池の出力側に接続さ
れたスイッチをオンにすることで行われることを特徴と
する請求項11、12又は13記載の独立型太陽光発電
方法。15. The power supply to the load is performed by turning on a switch connected to the output side of the storage battery to be charged when the storage battery to be charged is charged. When the storage battery to be charged is not charged, a switch connected to the output side of the storage battery to be charged is turned off, and the output of storage batteries other than the storage battery to be charged is turned off. 14. The method according to claim 11, 12 or 13, wherein the method is performed by turning on a switch connected to the side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24527699A JP3609963B2 (en) | 1999-08-31 | 1999-08-31 | Independent solar power generation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24527699A JP3609963B2 (en) | 1999-08-31 | 1999-08-31 | Independent solar power generation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001069688A true JP2001069688A (en) | 2001-03-16 |
JP3609963B2 JP3609963B2 (en) | 2005-01-12 |
Family
ID=17131279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24527699A Expired - Fee Related JP3609963B2 (en) | 1999-08-31 | 1999-08-31 | Independent solar power generation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3609963B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003111301A (en) * | 2001-09-28 | 2003-04-11 | Sanyo Electric Co Ltd | Power unit for solar battery |
CN101673018B (en) * | 2008-09-10 | 2011-08-31 | 财团法人工业技术研究院 | Solar photoelectric electrochromic device |
WO2012011440A1 (en) * | 2010-07-23 | 2012-01-26 | ソニー株式会社 | Control device and control method, power generation device and power generation method, power storage device and power storage method, and power control system |
JP2012249471A (en) * | 2011-05-30 | 2012-12-13 | Panasonic Corp | Power distribution system |
JP2013123281A (en) * | 2011-12-09 | 2013-06-20 | Ohbayashi Corp | Power generation system and method of controlling the same |
JP2013123282A (en) * | 2011-12-09 | 2013-06-20 | Ohbayashi Corp | Power storage control system and power storage control method |
JP2013240253A (en) * | 2012-05-17 | 2013-11-28 | Tateyama Kagaku Kogyo Kk | Solar cell system |
JP2014128062A (en) * | 2012-12-25 | 2014-07-07 | Taisei Corp | Dc power distribution system |
JP2014183670A (en) * | 2013-03-20 | 2014-09-29 | Denso Corp | Power system |
JP2016541229A (en) * | 2013-10-28 | 2016-12-28 | ブイ・5・システムズ・インコーポレイテッド | Portable power system |
CN109245264A (en) * | 2018-10-19 | 2019-01-18 | 北京汉能光伏投资有限公司 | Electric power storage management method, accumulating system, computer equipment and readable storage medium storing program for executing |
KR20200126723A (en) * | 2019-04-30 | 2020-11-09 | 한국알프스 주식회사 | Regulator module for solar photovoltaic |
US11764573B2 (en) | 2019-02-28 | 2023-09-19 | Tdk Corporation | DC power supply system |
-
1999
- 1999-08-31 JP JP24527699A patent/JP3609963B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003111301A (en) * | 2001-09-28 | 2003-04-11 | Sanyo Electric Co Ltd | Power unit for solar battery |
CN101673018B (en) * | 2008-09-10 | 2011-08-31 | 财团法人工业技术研究院 | Solar photoelectric electrochromic device |
US9312714B2 (en) | 2010-07-23 | 2016-04-12 | Sony Corporation | Control device and control method, power generation device and power generation method, power storage device and power storage method, and power control system |
WO2012011440A1 (en) * | 2010-07-23 | 2012-01-26 | ソニー株式会社 | Control device and control method, power generation device and power generation method, power storage device and power storage method, and power control system |
JP2012029470A (en) * | 2010-07-23 | 2012-02-09 | Sony Corp | Control device and method, power generating device and method, power storage device and method, and power control system |
CN103004053A (en) * | 2010-07-23 | 2013-03-27 | 索尼公司 | Control device and control method, power generation device and power generation method, power storage device and power storage method, and power control system |
JP2012249471A (en) * | 2011-05-30 | 2012-12-13 | Panasonic Corp | Power distribution system |
JP2013123281A (en) * | 2011-12-09 | 2013-06-20 | Ohbayashi Corp | Power generation system and method of controlling the same |
JP2013123282A (en) * | 2011-12-09 | 2013-06-20 | Ohbayashi Corp | Power storage control system and power storage control method |
JP2013240253A (en) * | 2012-05-17 | 2013-11-28 | Tateyama Kagaku Kogyo Kk | Solar cell system |
JP2014128062A (en) * | 2012-12-25 | 2014-07-07 | Taisei Corp | Dc power distribution system |
JP2014183670A (en) * | 2013-03-20 | 2014-09-29 | Denso Corp | Power system |
JP2016541229A (en) * | 2013-10-28 | 2016-12-28 | ブイ・5・システムズ・インコーポレイテッド | Portable power system |
CN109245264A (en) * | 2018-10-19 | 2019-01-18 | 北京汉能光伏投资有限公司 | Electric power storage management method, accumulating system, computer equipment and readable storage medium storing program for executing |
US11764573B2 (en) | 2019-02-28 | 2023-09-19 | Tdk Corporation | DC power supply system |
KR20200126723A (en) * | 2019-04-30 | 2020-11-09 | 한국알프스 주식회사 | Regulator module for solar photovoltaic |
KR102225389B1 (en) | 2019-04-30 | 2021-03-09 | 한국알프스 주식회사 | Regulator module for solar photovoltaic |
Also Published As
Publication number | Publication date |
---|---|
JP3609963B2 (en) | 2005-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6353304B1 (en) | Optimal management of batteries in electric systems | |
US8773076B2 (en) | Battery management system, method of removing polarization voltage of battery, and estimating state of charge of battery | |
CN101651239B (en) | Charging method of a plurality of groups of storage batteries and control system thereof | |
CN102545291B (en) | Solar power storage system and solar power supply system | |
JP3529660B2 (en) | Independent photovoltaic power generation system and power generation method | |
JP2015195674A (en) | Storage battery assembly control system | |
JP2001069688A (en) | Independent photovoltaic power generation system and power generation method | |
EP2618456A1 (en) | Electric power supply system | |
CN107872065B (en) | Method and device for controlling output of power grid energy storage system | |
US6541940B1 (en) | Load follower using batteries exhibiting memory | |
JP2002058174A (en) | Independent photovoltaic power generation system and control method thereof | |
WO2022178839A1 (en) | Energy system, and charging and discharging control method | |
CN102570557A (en) | Charging/discharging management controlling method of wind-light complementary power generation system | |
CN117595449A (en) | Charging and discharging control device, charging control method and discharging control method | |
JP2006060984A (en) | Power supply device | |
JP2002058175A (en) | Independent power supply system | |
JP2000004544A (en) | Independent photovoltaic power supply control method and system device | |
JP7300088B2 (en) | storage system | |
JPH0738130A (en) | Storage Battery Control Method for Solar Power System | |
JP2002315224A (en) | Fuel cell power supply system and method of charging a secondary battery provided in the fuel cell power supply system | |
CN104600788A (en) | Quick charging and discharging control strategy of storage battery | |
JP5312998B2 (en) | Solar cell system and charge control method | |
JP2003219578A (en) | Uninterruptible power source system | |
Reynaud et al. | New adaptive supervision unit to manage photovoltaic batteries | |
Reynaud et al. | A novel distributed photovoltaic power architecture using advanced Li-ion batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040901 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041015 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071022 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |