JP2001052696A - Alkaline secondary battery - Google Patents
Alkaline secondary batteryInfo
- Publication number
- JP2001052696A JP2001052696A JP2000222912A JP2000222912A JP2001052696A JP 2001052696 A JP2001052696 A JP 2001052696A JP 2000222912 A JP2000222912 A JP 2000222912A JP 2000222912 A JP2000222912 A JP 2000222912A JP 2001052696 A JP2001052696 A JP 2001052696A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- nickel hydroxide
- positive electrode
- hydroxide particles
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 134
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 130
- 239000010941 cobalt Substances 0.000 claims abstract description 130
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims abstract description 97
- 239000002245 particle Substances 0.000 claims abstract description 91
- 150000001869 cobalt compounds Chemical group 0.000 claims abstract description 40
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 40
- 230000003647 oxidation Effects 0.000 claims abstract description 24
- 239000011149 active material Substances 0.000 claims abstract description 15
- 238000003860 storage Methods 0.000 abstract description 23
- 239000008151 electrolyte solution Substances 0.000 abstract description 6
- 239000000243 solution Substances 0.000 abstract description 6
- 230000005611 electricity Effects 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 24
- 239000000843 powder Substances 0.000 description 23
- -1 cobalt oxyhydroxide Chemical compound 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 18
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 17
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 13
- 238000010277 constant-current charging Methods 0.000 description 11
- 238000011084 recovery Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000007600 charging Methods 0.000 description 8
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000011049 filling Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000002585 base Substances 0.000 description 3
- 229910001429 cobalt ion Inorganic materials 0.000 description 3
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 3
- 150000002815 nickel Chemical class 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910001122 Mischmetal Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229940065285 cadmium compound Drugs 0.000 description 2
- 150000001662 cadmium compounds Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 229910000483 nickel oxide hydroxide Inorganic materials 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 229910018916 CoOOH Inorganic materials 0.000 description 1
- 229910017961 MgNi Inorganic materials 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910010340 TiFe Inorganic materials 0.000 description 1
- 229910010380 TiNi Inorganic materials 0.000 description 1
- 229910008340 ZrNi Inorganic materials 0.000 description 1
- OSOVKCSKTAIGGF-UHFFFAOYSA-N [Ni].OOO Chemical compound [Ni].OOO OSOVKCSKTAIGGF-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- LBFUKZWYPLNNJC-UHFFFAOYSA-N cobalt(ii,iii) oxide Chemical compound [Co]=O.O=[Co]O[Co]=O LBFUKZWYPLNNJC-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010299 mechanically pulverizing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は活物質である水酸化
ニッケル含むペースト式正極を備えたアルカリ二次電池
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline secondary battery provided with a paste-type positive electrode containing nickel hydroxide as an active material.
【0002】[0002]
【従来の技術】アルカリ二次電池は、正極と負極との間
にセパレータを介装して作製された電極群及びアルカリ
電解液を容器内に収納した構造を有する。この正極とし
ては、従来より焼結式正極が用いられている。前記焼結
式正極は、穿孔鋼またはニッケル網体等の二次元基板に
ニッケル粒子を焼結し、得られた多孔板の十数ミクロン
の孔にニッケル塩水溶液を含浸した後、アルカリ処理し
て前記含浸ニッケル塩を水酸化ニッケルに変化させるこ
とにより製造される。2. Description of the Related Art An alkaline secondary battery has a structure in which an electrode group and an alkaline electrolyte prepared by interposing a separator between a positive electrode and a negative electrode are housed in a container. Conventionally, a sintered positive electrode has been used as the positive electrode. The sintered positive electrode is obtained by sintering nickel particles on a two-dimensional substrate such as perforated steel or a nickel mesh, impregnating an aqueous solution of nickel salt into pores of about ten microns of the obtained porous plate, and then performing an alkali treatment. It is produced by changing the impregnated nickel salt to nickel hydroxide.
【0003】しかしながら、前記焼結式正極はその製造
においてニッケル塩の含浸工程およびアルカリ処理工程
のような複雑な活物質含浸操作を必要とする。また、所
定量の活物質を含浸するには前記操作を通常、4〜10
回程度繰り返す必要がある。その結果、製造コストが高
くなるという問題がある。さらに、前記焼結により得ら
れたニッケル粒子焼結体は、多孔度が80%を越えると
機械的強度を維持することが困難になるため、前記活物
質の充填量を増加させることには限界があった。However, the above-mentioned sintered positive electrode requires complicated active material impregnation operations such as a nickel salt impregnation step and an alkali treatment step in its production. In addition, in order to impregnate a predetermined amount of the active material, the above operation is usually performed in 4 to 10
It needs to be repeated about once. As a result, there is a problem that the manufacturing cost increases. Further, if the porosity of the nickel particle sintered body obtained by the sintering is more than 80%, it becomes difficult to maintain the mechanical strength, so that it is impossible to increase the filling amount of the active material. was there.
【0004】このようなことから、活物質である水酸化
ニッケル粒子に導電材、結着剤および水を添加、混合し
てペーストを調製し、このペーストをスポンジ状金属多
孔体、金属繊維マットのような3次元構造の導電性芯体
に充填して正極を製造することが検討されている。この
ような方法により製造された正極は、焼結式正極に対し
て非焼結式正極(またはペースト式正極)と呼ばれとい
る。前記ペースト式正極は、前記金属多孔体の多孔度お
よび平均孔径が前記焼結式正極に比べて大きいために活
物質の充填が容易で、かつ充填量を増加させることがで
きる利点を有する。[0004] For this reason, a paste is prepared by adding and mixing a conductive material, a binder and water to nickel hydroxide particles as an active material, and this paste is used as a sponge-like porous metal or metal fiber mat. It has been studied to manufacture a positive electrode by filling a conductive core having such a three-dimensional structure. The positive electrode manufactured by such a method is called a non-sintered positive electrode (or a paste positive electrode) with respect to the sintered positive electrode. The paste-type positive electrode has an advantage that the porosity and average pore diameter of the porous metal body are larger than that of the sintered-type positive electrode, so that the active material can be easily filled and the amount of the active material can be increased.
【0005】前記ペースト式正極に用いられる導電材と
しては、従来より、例えば水酸化コバルト、一酸化コバ
ルト等のコバルト化合物や、金属コバルトが知られてい
る。前記二次電池において、これらの導電材は、組み立
て後に行われるエージング中に一端前記電解液に溶け出
して前記水酸化ニッケル粒子の表面に析出する。次い
で、初充電において電気化学的に酸化されて導電性に富
むオキシ水酸化コバルトに変化される。前記オキシ水酸
化コバルトは水酸化ニッケル粒子同士の導通及び水酸化
ニッケル粒子と導電性芯体の導通を向上させるため、正
極の利用率が向上する。[0005] As the conductive material used for the paste-type positive electrode, for example, a cobalt compound such as cobalt hydroxide and cobalt monoxide, and metallic cobalt have been known. In the secondary battery, these conductive materials once dissolve into the electrolytic solution during aging performed after assembly and precipitate on the surface of the nickel hydroxide particles. Next, at the first charge, it is electrochemically oxidized and converted into cobalt oxyhydroxide having high conductivity. Since the cobalt oxyhydroxide improves the conduction between the nickel hydroxide particles and the conduction between the nickel hydroxide particles and the conductive core, the utilization rate of the positive electrode is improved.
【0006】しかしながら、前記ペースト調製工程にお
いて粒子同士または粉末同士の均一混合は難しく、前記
正極中に前記導電材を均一に分散させることは困難であ
った。従って、前述した方法で製造された二次電池にお
いて、正極中のオキシ水酸化コバルトの分布が偏るた
め、この正極は必ずしも十分な利用率を有するものでは
なかった。However, it is difficult to uniformly mix particles or powders in the paste preparation step, and it is difficult to uniformly disperse the conductive material in the positive electrode. Therefore, in the secondary battery manufactured by the above-described method, the distribution of cobalt oxyhydroxide in the positive electrode is biased, so that the positive electrode does not always have a sufficient utilization rate.
【0007】更に、このオキシ水酸化コバルトを含む正
極を備えた二次電池は、長期間に亘る貯蔵により自己放
電が進行して容量が低下した際に、再充電により容量を
回復させることが困難であるという問題点があった。こ
の問題は、前記二次電池が高温下で貯蔵された場合に顕
著であった。Further, in a secondary battery provided with a positive electrode containing this cobalt oxyhydroxide, it is difficult to recover the capacity by recharging when self-discharge progresses due to long-term storage and the capacity decreases. There was a problem that it is. This problem was remarkable when the secondary battery was stored at a high temperature.
【0008】[0008]
【発明が解決しようとする課題】本発明の目的は、正極
の利用率を高めて容量を向上させ、かつ長期間に亘る貯
蔵、特に高温下での貯蔵により自己放電が進行した場合
に再充電により容量を回復させて高容量を維持すること
が可能なアルカリ二次電池を提供しようとするものであ
る。SUMMARY OF THE INVENTION It is an object of the present invention to increase the capacity of a positive electrode by increasing its utilization rate, and to recharge the battery when self-discharge has progressed due to long-term storage, especially at high temperatures. It is an object of the present invention to provide an alkaline secondary battery capable of recovering capacity and maintaining high capacity.
【0009】[0009]
【課題を解決するための手段】本発明のアルカリ二次電
池は、活物質である水酸化ニッケル粒子を含むペースト
を集電体に充填した構造を有する正極と、負極と、前記
正極と前記負極との間に介装されるセパレータと、アル
カリ電解液とを備えたアルカリ二次電池において、前記
水酸化ニッケル粒子は、導電性を持つ3価のコバルト化
合物領域及び酸化数がそれより低いコバルト種領域から
なるコバルト系膜で均一に被覆されており、かつ前記3
価のコバルト化合物領域の一部は前記膜表面から前記水
酸化ニッケル粒子表面に達する形態を有することを特徴
とするものである。According to the present invention, there is provided an alkaline secondary battery having a structure in which a current collector is filled with a paste containing nickel hydroxide particles as an active material, a negative electrode, the positive electrode and the negative electrode. Wherein the nickel hydroxide particles are a trivalent cobalt compound region having conductivity and a cobalt species having a lower oxidation number than the separator. Region is uniformly coated with a cobalt-based film comprising
A part of the valence cobalt compound region has a form reaching the surface of the nickel hydroxide particles from the film surface.
【0010】[0010]
【発明の実施の形態】本発明のアルカリ二次電池の製造
方法は、水酸化ニッケル粒子の表面にコバルト種からな
る均一な層を形成し、この複合水酸化ニッケル粒子を含
むペーストを集電体に充填することにより作製された正
極と、負極と、前記正極と前記負極との間に介装される
セパレータと、アルカリ電解液とを具備したアルカリ二
次電池に電流値を段階的に高くする定電流充電を施す初
充電を行うことにより前記複合水酸化ニッケル粒子を導
電性の3価のコバルト化合物領域及び酸化数がそれより
低いコバルト種領域からなるコバルト系膜で表面が被覆
された水酸化ニッケル粒子に変換させると共に前記コバ
ルト系膜の前記3価のコバルト化合物領域の少なくとも
一部を前記コバルト系膜の表面から前記水酸化ニッケル
粒子表面に達する形態にすることを特徴とするものであ
る。BEST MODE FOR CARRYING OUT THE INVENTION In the method for manufacturing an alkaline secondary battery according to the present invention, a uniform layer composed of cobalt species is formed on the surface of nickel hydroxide particles, and the paste containing the composite nickel hydroxide particles is used as a current collector. The current value is gradually increased in an alkaline secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte. By performing the initial charge for performing the constant current charging, the composite nickel hydroxide particles are subjected to hydroxylation whose surface is coated with a cobalt-based film comprising a conductive trivalent cobalt compound region and a cobalt species region having a lower oxidation number. At least a part of the trivalent cobalt compound region of the cobalt-based film reaches the surface of the nickel hydroxide particles from the surface of the cobalt-based film while being converted into nickel particles. It is characterized in that the state.
【0011】前記複合水酸化ニッケル粒子のコバルト種
からなる均一な層は、例えば、水酸化コバルト(Co
(OH)2 )、一酸化コバルト(CoO)、金属コバル
ト等から形成することができる。中でも、一酸化コバル
トか、水酸化コバルトのいずれか一方か、または両方か
らなるコバルト種層を有する複合水酸化ニッケル粒子は
好適である。The uniform layer composed of cobalt species of the composite nickel hydroxide particles is, for example, cobalt hydroxide (Co).
(OH) 2 ), cobalt monoxide (CoO), metallic cobalt or the like. Among them, composite nickel hydroxide particles having a cobalt seed layer composed of one or both of cobalt monoxide and cobalt hydroxide are preferable.
【0012】前記複合水酸化ニッケル粒子は、例えば次
の(1)及び(2)に示す方法により作製することがで
きる。The composite nickel hydroxide particles can be produced, for example, by the following methods (1) and (2).
【0013】(1)水酸化ニッケル粒子の表面に水酸化
コバルトを沈殿させることにより前記水酸化コバルトを
含むコバルト種からなる均一な層を形成し、複合水酸化
ニッケル粒子を作製する。(1) Precipitating cobalt hydroxide on the surface of the nickel hydroxide particles to form a uniform layer of the cobalt species containing the cobalt hydroxide, thereby producing composite nickel hydroxide particles.
【0014】(2)水酸化ニッケル粒子を母粒子、コバ
ルト種を子粒子として両者を機械的衝撃力によって母粒
子表面に子粒子を分散付着ないし分散接合させるメカノ
ケミカル法により前記水酸化ニッケル粒子の表面にコバ
ルト種からなる均一な層を形成し、複合水酸化ニッケル
粒子を作製する。(2) The nickel hydroxide particles are used as the base particles and the cobalt species are used as the child particles. The nickel hydroxide particles are dispersed and adhered to the surface of the mother particles by a mechanical impact force or are bonded by a mechanochemical method. A uniform layer composed of cobalt species is formed on the surface to produce composite nickel hydroxide particles.
【0015】前記(1)及び前記(2)の方法のうち、
前記(1)の方法が好適である。[0015] Of the methods (1) and (2),
The method (1) is preferred.
【0016】前記(1)の方法について説明する。The method (1) will be described.
【0017】前記水酸化ニッケル粒子は、平均粒径が5
〜30μm、タップ密度が1.8g/cm3 以上である
ことが好ましい。前記水酸化ニッケル粒子は、比表面積
が8〜25m2 /gであることが好ましい。The nickel hydroxide particles have an average particle size of 5
It is preferable that the tap density is 1.8 g / cm 3 or more. The nickel hydroxide particles have a specific surface area of 8 to 25 m 2. / G.
【0018】前記水酸化ニッケル粒子は、球状もしくは
それに近似した形状を有することが好ましい。The nickel hydroxide particles preferably have a spherical shape or a shape similar thereto.
【0019】前記コバルト種は微量のCoO2 、Co3
O4 等の酸化コバルトを含むことを許容する。The cobalt species is trace amounts of CoO 2 , Co 3
It is allowed to contain cobalt oxide such as O 4 .
【0020】前記複合水酸化ニッケル粒子を含む正極
は、例えば次の(A),(B)に示す方法により作製す
ることができる。The positive electrode containing the composite nickel hydroxide particles can be produced, for example, by the following methods (A) and (B).
【0021】(A)前記複合水酸化ニッケル粒子に結着
剤と水とを添加し、混練することによりペーストを調製
する。前記ペーストを集電体に充填し、これを乾燥した
後、成形することにより前記正極を作製する。(A) A paste is prepared by adding a binder and water to the composite nickel hydroxide particles and kneading them. The positive electrode is prepared by filling the paste into a current collector, drying the paste, and then molding the paste.
【0022】前記結着剤としては、例えばカルボキシメ
チルセルロース、メチルセルロース、ポリアクリル酸ナ
トリウム、ポリテトラフルオロエチレン等を挙げること
ができる。Examples of the binder include carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, polytetrafluoroethylene and the like.
【0023】前記集電体としては、例えばニッケル、ス
テンレスまたはニッケルメッキが施された金属から形成
された網状、スポンジ状、繊維状、もしくはフェルト状
の金属多孔体等を挙げることができる。Examples of the current collector include a mesh-like, sponge-like, fiber-like, or felt-like porous metal body made of nickel, stainless steel, or nickel-plated metal.
【0024】この正極において、前記コバルト種層は、
前記水酸化ニッケル粒子に前記複合水酸化ニッケル粒子
に対して金属コバルト換算で3重量%〜20重量%付着
されていることが好ましい。これは次のような理由によ
るものである。前記コバルト種層を金属コバルト換算で
3重量%未満にすると、正極の初期の利用率が低下する
恐れがあると共に長期間、あるいは高温下での貯蔵後に
再充電により容量を回復することが困難になる恐れがあ
る。一方、前記コバルト種層が金属コバルト換算で20
重量%を越えると、正極中に占めるコバルト種の割合が
多くなり過ぎて水酸化ニッケル粒子の量が減少する恐れ
がある。前記コバルト種層は、前記水酸化ニッケル粒子
に前記複合水酸化ニッケル粒子に対して金属コバルト換
算で5重量%〜10重量%付着されているのが更に好ま
しい。In this positive electrode, the cobalt seed layer is
It is preferable that the nickel hydroxide particles are attached to the composite nickel hydroxide particles in an amount of 3% by weight to 20% by weight in terms of metal cobalt. This is due to the following reasons. If the cobalt seed layer is less than 3% by weight in terms of metallic cobalt, the initial utilization rate of the positive electrode may decrease, and it is difficult to recover the capacity by recharging after storage for a long time or at a high temperature. There is a risk of becoming. On the other hand, the cobalt seed layer has a metal cobalt equivalent of 20.
If the content is more than 10% by weight, the proportion of the cobalt species in the positive electrode may become too large and the amount of nickel hydroxide particles may decrease. More preferably, the cobalt seed layer is attached to the nickel hydroxide particles in an amount of 5% by weight to 10% by weight in terms of metal cobalt with respect to the composite nickel hydroxide particles.
【0025】(B)前記複合水酸化ニッケル粒子に結着
剤とコバルト種粉末と水とを添加し、混練することによ
りペーストを調製する。前記ペーストを集電体に充填
し、これを乾燥した後、成形することにより前記正極を
作製する。(B) A paste is prepared by adding a binder, a cobalt seed powder and water to the composite nickel hydroxide particles and kneading them. The positive electrode is prepared by filling the paste into a current collector, drying the paste, and then molding the paste.
【0026】前記コバルト種粉末としては、例えば、水
酸化コバルト粉末、一酸化コバルト粉末、金属コバルト
粉末等を挙げることができる。中でも、一酸化コバルト
粉末か、水酸化コバルト粉末のいずれか一方か、または
両方からなるコバルト種粉末は好適である。なお、前記
コバルト種粉末は、不活性の四酸化三コバルト(Co 3
O4 )を微量含むことを許容する。Examples of the cobalt seed powder include water
Cobalt oxide powder, cobalt monoxide powder, metallic cobalt
Powders and the like can be mentioned. Among them, cobalt monoxide
Powder or cobalt hydroxide powder, or
Cobalt seed powders comprising both are preferred. The above
The cobalt seed powder is an inert tricobalt tetroxide (Co Three
OFour ) Is allowed.
【0027】前記結着剤としては、前記(A)の方法で
用いたものと同様なものを挙げることができる。Examples of the binder include those similar to those used in the method (A).
【0028】前記集電体としては、前記(A)の方法で
用いたものと同様なものを挙げることができる。Examples of the current collector include those similar to those used in the method (A).
【0029】この正極において、前記コバルト種層を前
記水酸化ニッケル粒子に前記複合水酸化ニッケル粒子に
対して金属コバルト換算で1重量%以上付着させ、かつ
正極中のコバルト種の総量を前記複合水酸化ニッケル粒
子に対して金属コバルト換算で3重量%〜20重量%に
することが好ましい。これは次のような理由によるもの
である。前記コバルト種層を金属コバルト換算で1重量
%未満にすると、水酸化ニッケル粒子表面全体に均一に
前記コバルト種層を形成することが困難になる恐れがあ
る。換言すれば、水酸化ニッケル粒子自身の表面が露出
した不均一状態となる恐れがある。また、前記コバルト
種の総量を金属コバルト換算で3重量%未満にすると、
正極の初期の利用率が低下する恐れがあると共に長期
間、あるいは高温下での貯蔵後に再充電により容量を回
復することが困難になる恐れがある。一方、前記コバル
ト種の総量が金属コバルト換算で20重量%を越える
と、正極中に占めるコバルト種の割合が多くなり過ぎて
水酸化ニッケル粒子の量が減少する恐れがある。前記正
極において、前記コバルト種層を前記水酸化ニッケル粒
子に前記複合水酸化ニッケル粒子に対して金属コバルト
換算で3重量%以上付着させ、かつ前記正極中のコバル
ト種の総量を前記複合水酸化ニッケル粒子に対して金属
コバルト換算で5重量%〜10重量%にすることが更に
好ましい。In this positive electrode, the cobalt seed layer is attached to the nickel hydroxide particles in an amount of 1% by weight or more in terms of metallic cobalt with respect to the composite nickel hydroxide particles, and the total amount of cobalt species in the positive electrode is reduced to the composite water. It is preferable that the content be 3 wt% to 20 wt% in terms of metal cobalt with respect to the nickel oxide particles. This is due to the following reasons. If the cobalt seed layer is less than 1% by weight in terms of metallic cobalt, it may be difficult to form the cobalt seed layer uniformly over the entire surface of the nickel hydroxide particles. In other words, there is a possibility that the surface of the nickel hydroxide particles themselves is exposed and becomes non-uniform. When the total amount of the cobalt species is less than 3% by weight in terms of metallic cobalt,
The initial utilization rate of the positive electrode may decrease, and it may be difficult to recover the capacity by recharging for a long time or after storage at a high temperature. On the other hand, if the total amount of the cobalt species exceeds 20% by weight in terms of metallic cobalt, the proportion of the cobalt species in the positive electrode becomes too large, and the amount of nickel hydroxide particles may decrease. In the positive electrode, the cobalt seed layer is attached to the nickel hydroxide particles by 3% by weight or more in terms of metal cobalt with respect to the composite nickel hydroxide particles, and the total amount of cobalt species in the positive electrode is reduced by the composite nickel hydroxide. More preferably, the content is 5% by weight to 10% by weight in terms of metal cobalt with respect to the particles.
【0030】前記正極作製方法のうち、前記(A)の方
法は、長期間、あるいは高温下における貯蔵後の容量回
復率を飛躍的に向上することができる。一方、前記
(B)の方法は、コバルト種粉末の添加量を変えること
により前記正極中のコバルト種の総量をアルカリ二次電
池の種類に応じて調節することができるため、前記
(A)のようにコバルト種が複合水酸化ニッケル粒子の
みから供される場合に比べてアルカリ二次電池の量産性
を向上することができる。Of the above-mentioned positive electrode preparation methods, the method (A) can dramatically improve the capacity recovery rate after storage for a long period of time or at a high temperature. On the other hand, in the method (B), the total amount of the cobalt species in the positive electrode can be adjusted according to the type of the alkaline secondary battery by changing the addition amount of the cobalt seed powder. Thus, the mass productivity of the alkaline secondary battery can be improved as compared with the case where the cobalt species is provided only from the composite nickel hydroxide particles.
【0031】前記初充電について説明する。The first charge will be described.
【0032】前記初充電は、電流値を段階的に高くする
定電流充電を施すことにより行われる。この段階的な定
電流充電は、二段階であっても良いが、二段階以上であ
っても良い。The above-mentioned initial charge is performed by performing a constant current charge for increasing the current value stepwise. This stepwise constant current charging may be performed in two stages, or may be performed in two or more stages.
【0033】前記定電流充電は、0.02CmA〜0.
5CmAの範囲内で電流値を段階的に高くすることが好
ましい。これは次のような理由によるものである。前記
電流値を0.02CmA未満にすると、電極表面で電気
化学反応が不均一に起き易くなり、電極特性が低下する
恐れがある。また、所望の充電電気量を施すための時間
が長くなり生産上の問題が大きくなる恐れがある。一
方、前記電流値が0.5CmAを越えると、充電分極抵
抗が大きくなり、コバルト種の酸化反応だけでなく、水
酸化ニッケルの酸化反応も同時に起こるようになるた
め、所望の充電電気量とコバルト種の酸化量との相関性
が低下する恐れがある。The constant current charging is performed at 0.02 CmA to 0.
It is preferable to increase the current value stepwise within the range of 5 CmA. This is due to the following reasons. When the current value is less than 0.02 CmA, an electrochemical reaction is likely to occur unevenly on the electrode surface, and the electrode characteristics may be degraded. In addition, there is a possibility that the time required for applying a desired amount of charged electricity is increased, and the problem in production is increased. On the other hand, if the current value exceeds 0.5 CmA, the charge polarization resistance increases, and not only the oxidation reaction of cobalt species but also the oxidation reaction of nickel hydroxide occurs simultaneously. Correlation with the amount of species oxidation may be reduced.
【0034】本発明の方法により製造されたアルカリ二
次電池(例えば円筒形アルカリ二次電池)の例を図1を
参照して説明する。An example of an alkaline secondary battery (for example, a cylindrical alkaline secondary battery) manufactured by the method of the present invention will be described with reference to FIG.
【0035】図1に示すように有底円筒状の容器1内に
は、ペースト式正極2とセパレータ3とペースト式負極
4とを積層してスパイラル状に捲回することにより作製
された電極群5が収納されている。前記負極4は、前記
電極群5の最外周に配置されて前記容器1と電気的に接
触している。アルカリ電解液は、前記容器1内に収容さ
れている。中央に孔6を有する円形の封口板7は、前記
容器1の上部開口部に配置されている。リング状の絶縁
性ガスケット8は、前記封口板7の周縁と前記容器1の
上部開口部内面の間に配置され、前記上部開口部を内側
に縮径するカシメ加工により前記容器1に前記封口板7
を前記ガスケット8を介して気密に固定している。正極
リード9は、一端が前記正極2に接続、他端が前記封口
板7の下面に接続されている。帽子形状をなす正極端子
10は、前記封口板7上に前記孔6を覆うように取り付
けられている。ゴム製の安全弁11は、前記封口板7と
前記正極端子10で囲まれた空間内に前記孔6を塞ぐよ
うに配置されている。中央に穴を有する絶縁材料製の押
え板12は、前記正極端子10上に前記正極端子10の
突起部が前記穴から突出されるように配置されている。
外装チューブ13は、前記押え板12の周縁、前記容器
1の側面及び前記容器1の底部周縁を被覆している。As shown in FIG. 1, an electrode group formed by laminating a paste-type positive electrode 2, a separator 3, and a paste-type negative electrode 4 in a cylindrical container 1 having a bottom and spirally winding the same. 5 are stored. The negative electrode 4 is arranged at the outermost periphery of the electrode group 5 and is in electrical contact with the container 1. The alkaline electrolyte is contained in the container 1. A circular sealing plate 7 having a hole 6 in the center is arranged at the upper opening of the container 1. The ring-shaped insulating gasket 8 is disposed between the peripheral edge of the sealing plate 7 and the inner surface of the upper opening of the container 1, and the sealing plate is formed on the container 1 by caulking to reduce the diameter of the upper opening inward. 7
Are hermetically fixed via the gasket 8. One end of the positive electrode lead 9 is connected to the positive electrode 2, and the other end is connected to the lower surface of the sealing plate 7. The positive electrode terminal 10 having a hat shape is attached on the sealing plate 7 so as to cover the hole 6. A rubber safety valve 11 is disposed so as to close the hole 6 in a space surrounded by the sealing plate 7 and the positive electrode terminal 10. A holding plate 12 made of an insulating material and having a hole in the center is disposed on the positive electrode terminal 10 such that a projection of the positive electrode terminal 10 projects from the hole.
The outer tube 13 covers the periphery of the holding plate 12, the side surface of the container 1, and the periphery of the bottom of the container 1.
【0036】次に、前記ペースト式正極2、ペースト式
負極4、セパレータ3および電解液について説明する。Next, the paste-type positive electrode 2, the paste-type negative electrode 4, the separator 3, and the electrolyte will be described.
【0037】前記ペースト式正極2は、導電性を持つ3
価のコバルト化合物領域及び酸化数がそれより低いコバ
ルト種領域からなるコバルト系膜で表面が被覆された水
酸化ニッケル粒子を含み、かつ前記3価のコバルト化合
物領域の少なくとも一部が前記膜表面から前記水酸化ニ
ッケル粒子表面に達する形態を有する。The paste type positive electrode 2 has a conductivity of 3
A nickel-based particle having a surface coated with a cobalt-based film comprising a cobalt compound region having a valence of less than and a cobalt species region having a lower oxidation number, and at least a part of the trivalent cobalt compound region having a surface area of at least It has a form reaching the surface of the nickel hydroxide particles.
【0038】前記導電性を有する3価のコバルト化合物
としては、例えば、オキシ水酸化コバルト(CoOO
H)を挙げることができる。Examples of the conductive trivalent cobalt compound include cobalt oxyhydroxide (CoOO).
H).
【0039】前記3価よりも低い酸化数を有するコバル
ト種としては、水酸化コバルト(Co(OH)2 )を挙
げることができる。ただし、前記コバルト種は、少量の
一酸化コバルト(CoO)、金属コバルトを含んでもよ
い。As the cobalt species having an oxidation number lower than trivalent, cobalt hydroxide (Co (OH) 2 ) can be exemplified. However, the cobalt species may include small amounts of cobalt monoxide (CoO) and metallic cobalt.
【0040】前記コバルト系膜中の3価のコバルト化合
物は、コバルトの原子数換算で20%〜80%の割合で
存在することが好ましい。これは次のような理由による
ものである。前記存在比率を20%未満にすると、前記
二次電池の初期容量が低下する恐れがある。一方、前記
存在比率が80%を越えると、前記3価よりも低い酸化
数を有するコバルト化合物の量が少ないために長期間、
あるいは高温下での貯蔵後に再充電により前記二次電池
の容量を回復させることが困難になる恐れがある。The trivalent cobalt compound in the cobalt-based film is preferably present at a ratio of 20% to 80% in terms of the number of cobalt atoms. This is due to the following reasons. If the existence ratio is less than 20%, the initial capacity of the secondary battery may decrease. On the other hand, if the abundance exceeds 80%, the amount of the cobalt compound having an oxidation number lower than trivalent is small,
Alternatively, it may be difficult to recover the capacity of the secondary battery by recharging after storage at a high temperature.
【0041】前記導電性を持つ3価のコバルト化合物領
域は、不活性の四酸化三コバルトを微量含むことを許容
する。The trivalent cobalt compound region having conductivity is allowed to contain a small amount of inert tricobalt tetroxide.
【0042】前記酸化数が3価より低いコバルト種領域
は、不活性の四酸化三コバルトを微量含むことを許容す
る。The above-mentioned cobalt species region having an oxidation number lower than trivalent allows a trace amount of inactive tricobalt tetroxide to be contained.
【0043】前記負極4は、活物質と結着剤と水とを含
むペーストを導電性基板に充填した構造を有する。The negative electrode 4 has a structure in which a paste containing an active material, a binder and water is filled in a conductive substrate.
【0044】前記活物質としては、例えばカドミウム化
合物などの充放電反応に直接関与する物質や、例えば水
素吸蔵合金のような充放電反応に直接関与する物質を吸
蔵・放出する物質等を用いることができる。中でも、前
記活物質として水素吸蔵合金を含む負極を備えた二次電
池は、カドミウム化合物の粉末を含む負極を備えた二次
電池に比べて大電流での放電が可能で、かつ環境汚染の
恐れが少ないため、好適である。As the active material, for example, a substance which directly participates in the charge / discharge reaction such as a cadmium compound or a substance which absorbs / releases a substance directly involved in the charge / discharge reaction such as a hydrogen storage alloy may be used. it can. Among them, a secondary battery provided with a negative electrode containing a hydrogen storage alloy as the active material can discharge at a larger current than a secondary battery provided with a negative electrode containing a cadmium compound powder, and may cause environmental pollution. Is small, so that it is preferable.
【0045】前記水素吸蔵合金としては、格別制限され
るものではなく、電解液中で電気化学的に発生させた水
素を吸蔵でき、かつ放電時にその吸蔵水素を容易に放出
できるものであればよい。例えば、LaNi5 、MmN
i5 (Mm;ミッシュメタル)、LmNi5 (Lm;ラ
ンタン富化したミッシュメタル)、またはこれらのNi
の一部をAl、Mn、Co、Ti、Cu、Zn、Zr、
Cr、Bのような元素で置換した多元素系のもの、もし
くはTiNi系、TiFe系、ZrNi系、MgNi系
のものを挙げることができる。中でも、一般式LmNi
x Mny Az (ただし、AはAl,Coから選ばれる少
なくとも一種の金属、原子比x,y,zはその合計値が
4.8≦x+y+z≦5.4を示す)で表される水素吸
蔵合金を用いることが望ましい。The hydrogen storage alloy is not particularly limited as long as it can store hydrogen electrochemically generated in an electrolytic solution and can easily release the stored hydrogen during discharge. . For example, LaNi 5 , MmN
i 5 (Mm; misch metal), LmNi 5 (Lm; lanthanum-enriched misch metal), or Ni
A part of Al, Mn, Co, Ti, Cu, Zn, Zr,
Examples thereof include a multi-element type substituted by elements such as Cr and B, or a TiNi type, TiFe type, ZrNi type, or MgNi type. Among them, the general formula LmNi
x Mn y A z (However, A is Al, shows at least one metal selected from Co, the atomic ratio x, y, z is the total value of 4.8 ≦ x + y + z ≦ 5.4) hydrogen represented by It is desirable to use an occlusion alloy.
【0046】前記結着剤としては、例えばカルボキシメ
チルセルロース、メチルセルロース、ポリアクリル酸ナ
トリウム、ポリテトラフルオロエチレン等を挙げること
ができる。Examples of the binder include carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, polytetrafluoroethylene and the like.
【0047】前記導電性基板としては、例えば、パンチ
ドメタル、エキスパンデッドメタル、穿孔剛板、ニッケ
ルネットなどの二次元基板や、フェルト状金属多孔体
や、スポンジ状金属基板などの三次元基板を挙げること
ができる。Examples of the conductive substrate include a two-dimensional substrate such as a punched metal, an expanded metal, a perforated rigid plate, and a nickel net, and a three-dimensional substrate such as a felt-like metal porous body and a sponge-like metal substrate. Can be mentioned.
【0048】前記負極において、前記活物質として水素
吸蔵合金を用いる場合、例えばカーボンブラック、黒鉛
等の導電性粉末を含むことを許容する。In the case where a hydrogen storage alloy is used as the active material in the negative electrode, it is allowed to contain a conductive powder such as carbon black or graphite.
【0049】前記セパレータ3としては、例えば、ポリ
アミド系合成樹脂繊維(例えばナイロン6,6繊維な
ど)からなる不織布、ポリオレフィン系合成樹脂繊維製
不織布に親水性処理が施されたもの等を挙げることがで
きる。前記ポリオレフィンとしては、例えばポリエチレ
ン、ポリプロピレンなどを挙げることができる。また、
前記親水性処理としては、例えばプラズマ処理、スルフ
ォン化処理、親水基を持つビニルモノマーをグラフト共
重合させる方法等を挙げることができる。特に、前記ポ
リオレフィン系合成樹脂繊維製不織布に親水性処理が施
されたものは、電解液保持性能が高く、かつ耐酸化性が
優れていることから前記二次電池の高温保管時の自己放
電が抑制されるため、好適である。Examples of the separator 3 include a nonwoven fabric made of a polyamide-based synthetic resin fiber (eg, nylon 6,6 fiber), and a nonwoven fabric made of a polyolefin-based synthetic resin fiber which has been subjected to a hydrophilic treatment. it can. Examples of the polyolefin include polyethylene and polypropylene. Also,
Examples of the hydrophilic treatment include a plasma treatment, a sulfonation treatment, and a method of graft copolymerizing a vinyl monomer having a hydrophilic group. In particular, the non-woven fabric made of the polyolefin-based synthetic resin fiber that has been subjected to the hydrophilic treatment has a high electrolytic solution holding performance, and has excellent oxidation resistance. It is preferable because it is suppressed.
【0050】前記アルカリ電解液としては、例えば、水
酸化ナトリウム(NaOH)の水溶液、水酸化リチウム
(LiOH)の水溶液、水酸化カリウム(KOH)の水
溶液、NaOHとLiOHの混合液、KOHとLiOH
の混合液、KOHとLiOHとNaOHの混合液等を用
いることができる。Examples of the alkaline electrolyte include an aqueous solution of sodium hydroxide (NaOH), an aqueous solution of lithium hydroxide (LiOH), an aqueous solution of potassium hydroxide (KOH), a mixed solution of NaOH and LiOH, and a mixture of KOH and LiOH.
, A mixture of KOH, LiOH and NaOH, and the like.
【0051】本発明のアルカリ二次電池の製造方法によ
れば、水酸化ニッケル粒子の表面にコバルト種からなる
均一な層を形成し、得られた複合水酸化ニッケル粒子を
含むペーストを集電体に充填することにより作製された
正極と、負極と、セパレータと、アルカリ電解液とを具
備したアルカリ二次電池に電流値を段階的に高くする定
電流充電を施す初充電を行い、前記複合水酸化ニッケル
粒子を導電性の3価のコバルト化合物領域及び酸化数が
それより低いコバルト種領域からなるコバルト系膜で表
面が被覆された水酸化ニッケル粒子に変換させると共に
前記コバルト系膜の前記3価のコバルト化合物領域の少
なくとも一部を前記コバルト系膜の表面から前記水酸化
ニッケル粒子表面に達する形態にする。According to the method for producing an alkaline secondary battery of the present invention, a uniform layer made of cobalt species is formed on the surface of nickel hydroxide particles, and the obtained paste containing composite nickel hydroxide particles is used as a current collector. A positive electrode, a negative electrode, a separator, and an alkaline secondary battery including an alkaline electrolyte are prepared by filling the composite water, and the initial charge is performed by performing constant current charging to gradually increase the current value. The nickel oxide particles are converted into nickel hydroxide particles whose surface is coated with a cobalt-based film composed of a conductive trivalent cobalt compound region and a cobalt species region having a lower oxidation number. At least a part of the cobalt compound region is formed so as to reach the surface of the nickel hydroxide particles from the surface of the cobalt-based film.
【0052】ところで、酸化数が3価より低いコバルト
種を含むペースト式正極とアルカリ電解液を備えたアル
カリ二次電池に充電を施すと、前記正極において前記コ
バルト種が3価のコバルト化合物に酸化される反応と前
記水酸化ニッケルがオキシ水酸化ニッケル(NiOO
H)に酸化される反応が同時に起こる。また、前記コバ
ルト種の酸化反応が生じる酸化還元電位は前記水酸化ニ
ッケルの酸化反応が生じる酸化還元電位よりも卑側にあ
る。その結果、例えば前記二次電池に定電流充電を施す
と設定電流値が大きくなるに従って前記正極の電位が高
くなるため、電流値が大きな定電流充電ほど前記水酸化
ニッケルの酸化反応が優先的に生じる。従来法のように
正極の総容量(前記コバルト種の容量及び前記水酸化ニ
ッケルの容量の合計)全てに亘って一定電流で充電する
初充電を行う場合、前記コバルト種の酸化反応が優位に
なるような電流値に設定する。初充電中この電流値を変
えないため、前記正極中の前記コバルト種全てが導電性
の3価のコバルト化合物であるオキシ水酸化コバルトに
酸化されて前記正極の電位が十分に高められないと、前
記水酸化ニッケルの酸化反応が優位にならない。つま
り、正極の総容量全てに亘って一定電流で充電する初充
電を行うと、前記正極に存在するコバルト種はオキシ水
酸化コバルトのみになる。By charging a paste-type positive electrode containing a cobalt species having an oxidation number lower than trivalent and an alkaline electrolyte, the cobalt species is oxidized to a trivalent cobalt compound in the positive electrode. Reaction and the nickel hydroxide are converted to nickel oxyhydroxide (NiOO)
The reaction oxidized to H) occurs simultaneously. Further, the oxidation-reduction potential at which the oxidation reaction of the cobalt species occurs is closer to the base than the oxidation-reduction potential at which the oxidation reaction of nickel hydroxide occurs. As a result, for example, when the constant current charging is performed on the secondary battery, the potential of the positive electrode increases as the set current value increases, so that the oxidation reaction of the nickel hydroxide is preferentially performed as the constant current charging increases. Occurs. In the case of performing the initial charge of charging with a constant current over the entire positive electrode total capacity (the sum of the capacity of the cobalt species and the capacity of the nickel hydroxide) as in the conventional method, the oxidation reaction of the cobalt species becomes dominant. Set to such a current value. In order not to change this current value during the initial charge, if all of the cobalt species in the positive electrode are oxidized to cobalt oxyhydroxide, which is a conductive trivalent cobalt compound, and the potential of the positive electrode is not sufficiently increased, The oxidation reaction of the nickel hydroxide does not become dominant. In other words, when the initial charge of charging at a constant current over the entire capacity of the positive electrode is performed, the only cobalt species present in the positive electrode is cobalt oxyhydroxide.
【0053】既述したように、このコバルト種としてオ
キシ水酸化コバルトのみを含む正極を備えた二次電池は
長期間に亘り貯蔵されたり、あるいは高温下において貯
蔵されて自己放電が進行して容量が低下した際に、再充
電により容量を回復させることができないという問題点
がある。このような二次電池において自己放電が進行す
ると、正極中のオキシ水酸化コバルトが還元され、再び
導電性を持つことのないコバルト化合物に変化するため
に前記正極の利用率が低下するものと考えられる。従っ
て、前述した条件で貯蔵された従来の二次電池の容量を
再充電により向上させることができないのは、前記貯蔵
により低下した前記正極の利用率を再充電により回復さ
せることができないためであると考えられる。As described above, a secondary battery provided with a positive electrode containing only cobalt oxyhydroxide as a cobalt species is stored for a long period of time, or is stored at a high temperature and self-discharge proceeds to increase the capacity. There is a problem that the capacity cannot be recovered by recharging when the battery charge decreases. It is considered that when self-discharge proceeds in such a secondary battery, cobalt oxyhydroxide in the positive electrode is reduced and changes to a cobalt compound having no conductivity again, so that the utilization rate of the positive electrode decreases. Can be Therefore, the reason that the capacity of the conventional secondary battery stored under the above-described conditions cannot be improved by recharging is that the utilization rate of the positive electrode lowered by the storage cannot be recovered by recharging. it is conceivable that.
【0054】本発明に係る製造方法によれば、酸化数が
3価より低いコバルト種が全て3価のコバルト化合物に
酸化される前に前記水酸化ニッケルの酸化反応に移行さ
せることができる。すなわち、最初に電流値を小さくし
た定電流充電を施すと、前記正極の電位が低いため、前
記コバルト種の酸化反応を優先的に起こすことができ
る。次いで、電流値を大きくすると、分極抵抗の値が大
きくなるため、前記コバルト種を残したまま前記正極の
電位を前記コバルト種の酸化反応が優先的に生じる電位
から前記水酸化ニッケルの酸化反応が優先的に生じる電
位に移行させることができる。従って、初充電として、
最初に前記コバルト種の酸化反応が優位になるような小
さな電流値で定電流充電を行った後、水酸化ニッケルの
酸化反応を主とするのに十分な充電分極を与える大きな
電流値で定電流充電を行うことによって、前記コバルト
種の酸化量を制御することができる。According to the production method of the present invention, it is possible to shift to the oxidation reaction of nickel hydroxide before all the cobalt species having an oxidation number lower than trivalent are oxidized to the trivalent cobalt compound. That is, when the constant current charging with the current value reduced first is performed, the potential of the positive electrode is low, so that the oxidation reaction of the cobalt species can occur preferentially. Next, when the current value is increased, the value of the polarization resistance is increased, so that the potential of the positive electrode is changed from the potential at which the oxidation reaction of the cobalt species occurs preferentially while the cobalt species remains, so that the oxidation reaction of the nickel hydroxide is performed. The potential can be shifted to a preferentially generated potential. Therefore, as the first charge,
First, constant current charging is performed at a small current value such that the oxidation reaction of the cobalt species becomes dominant, and then constant current charging is performed at a large current value that provides a sufficient charge polarization to mainly cause the oxidation reaction of nickel hydroxide. By charging, the amount of oxidation of the cobalt species can be controlled.
【0055】つまり、本発明の方法によりアルカリ二次
電池を製造すると、前記二次電池において、組立後、正
極中の酸化数が3価より低いコバルト種が前記アルカリ
電解液に溶解してブルーコンプレックスイオン(HCo
O2 - )に変化される。前記コバルト種が一酸化コバル
トからなる場合の電解液への溶出反応を下記式(1)に
示す。That is, when an alkaline secondary battery is manufactured by the method of the present invention, in the secondary battery, after assembling, a cobalt species having an oxidation number lower than trivalent in the positive electrode is dissolved in the alkaline electrolyte and a blue complex is formed. Ion (HCo
O 2 -) is changed to. The elution reaction to the electrolyte when the cobalt species is cobalt monoxide is shown in the following formula (1).
【0056】 CoO+OH- → HCoO2 - (1) この二次電池に最初に電流値を小さくした定電流充電を
施すと、前記ブルーコンプレックスイオンは下記式
(2)に示す反応式に従って前記水酸化ニッケル粒子の
表面に水酸化コバルトとして析出し、前記水酸化ニッケ
ル粒子表面が水酸化コバルトを主成分とする3価より低
い酸化数を有するコバルト種からなる膜で被覆される。CoO + OH − → HCoO 2 − (1) When the secondary battery is first subjected to constant current charging with a reduced current value, the blue complex ion becomes nickel hydroxide according to the reaction formula shown in the following formula (2). The nickel hydroxide particles are precipitated as cobalt hydroxide on the surface of the particles, and the surface of the nickel hydroxide particles is coated with a film composed of cobalt species having a lower oxidation number than trivalent and containing cobalt hydroxide as a main component.
【0057】 HCoO2 - +H2 O → Co(OH)2 +OH- (2) 前記コバルト種膜が形成された後、このコバルト種膜の
表面に水酸化物イオン(OH- )が接触した後電気化学
反応により電子を放出してオキシ水酸化コバルト(Co
OOH)を含む導電性の3価のコバルト化合物に変化す
る。前記コバルト種が水酸化コバルトである場合の酸化
反応を下記式(3)に示す。HCoO 2 − + H 2 O → Co (OH) 2 + OH − (2) After the cobalt seed film is formed, the surface of the cobalt seed film is contacted with hydroxide ions (OH − ), and then electricity is applied. Cobalt oxyhydroxide (Co
OOH) into a conductive trivalent cobalt compound. The oxidation reaction when the cobalt species is cobalt hydroxide is shown in the following formula (3).
【0058】 Co(OH)2 +OH- → CoOOH+H2 O+e- (3) この酸化反応は前記膜の表面から内部に向かって進行す
る。生成した3価のコバルト化合物領域の少なくとも一
部が前記水酸化ニッケル粒子表面に達した際に定電流充
電の設定電流値を大きくして前記正極の電位を前記水酸
化ニッケルの酸化反応が優先的に生じる電位に移行させ
る。その結果、水酸化ニッケル粒子の表面を前記3価の
コバルト化合物領域及び前記酸化数がそれより低いコバ
ルト種領域から形成されたコバルト系膜で被覆すること
ができ、かつ前記3価のコバルト化合物領域の少なくと
も一部を前記膜表面から前記水酸化ニッケル粒子表面に
達する形態にすることができる。Co (OH) 2 + OH − → CoOOH + H 2 O + e − (3) This oxidation reaction proceeds from the surface of the film toward the inside. When at least a part of the generated trivalent cobalt compound region reaches the surface of the nickel hydroxide particles, the set current value of the constant current charging is increased, and the potential of the positive electrode is preferentially oxidized by the oxidation reaction of the nickel hydroxide. To the potential generated at As a result, the surface of the nickel hydroxide particles can be covered with a cobalt-based film formed from the trivalent cobalt compound region and the cobalt species region having a lower oxidation number, and the trivalent cobalt compound region At least a part of the film may reach the surface of the nickel hydroxide particles from the film surface.
【0059】また、このコバルト系膜中の前記コバルト
種領域の分布を均一にすることが重要である。例えば、
ミキサによって酸化数が3価より低いコバルト種の粉末
と水酸化ニッケル粒子と結着剤を混練してペーストを調
製し、前記ペーストを集電体に充填することにより正極
を作製すると、前記正極中の前記コバルト種の分布に偏
りが生じる。このような正極を備えたアルカリ二次電池
に前記初充電を施すと、前記コバルト種粉末の分布の偏
りに起因して厚さにばらつきがあるコバルト種膜が形成
され易く、厚さにばらつきがある場合にはこの膜が酸化
されて得られたコバルト系膜において厚さの薄い箇所ほ
ど未酸化領域が少なくなり易い。前記コバルト種膜の酸
化量によっては前記厚さの薄い箇所に前記未酸化領域が
残らない場合がある。このような二次電池を高温下のよ
うな過酷な条件下で貯蔵し、前記膜中の3価のコバルト
化合物領域の導電性が大幅に損なわれた場合、前記コバ
ルト系膜の前記厚さの薄い箇所は新たに酸化されるコバ
ルト種が存在しないため、再充電によってその導電性を
復帰させることができなくなる。その結果、再充電後に
形成されたコバルト系膜において、導電パスとして機能
できない箇所が部分的に存在するため、導通にばらつき
が生じる恐れがあり、ばらつき方に因っては高い利用率
が得られなくなる恐れがある。It is important to make the distribution of the cobalt seed region uniform in the cobalt-based film. For example,
When a paste is prepared by kneading a powder of cobalt species having an oxidation number lower than trivalent with a mixer, nickel hydroxide particles and a binder by a mixer, and filling the paste into a current collector, a positive electrode is prepared. In the distribution of the cobalt species. When the initial charge is applied to the alkaline secondary battery having such a positive electrode, a cobalt seed film having a variation in thickness due to the uneven distribution of the cobalt seed powder is easily formed, and the variation in the thickness is increased. In some cases, a thinner portion of a cobalt-based film obtained by oxidizing this film tends to have less unoxidized region. Depending on the amount of oxidation of the cobalt seed film, the unoxidized region may not remain at the thin portion. When such a secondary battery is stored under severe conditions such as high temperature and the conductivity of the trivalent cobalt compound region in the film is significantly impaired, the thickness of the cobalt-based film is reduced. Since there is no cobalt species to be newly oxidized in the thin portion, the conductivity cannot be restored by recharging. As a result, in the cobalt-based film formed after the recharging, there is a portion that cannot function as a conductive path, so that there is a possibility that the conduction varies, and a high utilization rate is obtained depending on the variation. There is a risk of disappearing.
【0060】本発明の製造方法によれば、水酸化ニッケ
ル粒子の表面にコバルト種からなる均一な層を形成し、
この複合水酸化ニッケル粒子を用いてペーストを調製し
た後、前記ペーストを集電体に充填することにより正極
を作製することによって、水酸化ニッケル粒子の表面に
前記コバルト種からなる均一な層が所望の強度をもって
付着あるいは接合しているため、前記正極中に前記コバ
ルト種を均一に分散させることができる。このような正
極を備えた二次電池に前記初充電を施すことによって、
前記複合水酸化ニッケル粒子を導電性の3価のコバルト
化合物領域及び酸化数がそれより低いコバルト種領域か
らなる厚さが均一なコバルト系膜で表面が被覆された水
酸化ニッケル粒子に変換することができ、前記コバルト
系膜の前記3価のコバルト化合物領域の少なくとも一部
を前記コバルト系膜の表面から前記水酸化ニッケル粒子
表面に達する形態にすることができ、更に前記膜中に前
記コバルト種領域を均一に分散させることができる。According to the production method of the present invention, a uniform layer composed of cobalt species is formed on the surface of the nickel hydroxide particles,
After preparing a paste using the composite nickel hydroxide particles, a positive electrode is prepared by filling the paste into a current collector, so that a uniform layer made of the cobalt species is desired on the surface of the nickel hydroxide particles. The cobalt species can be uniformly dispersed in the positive electrode because they are adhered or joined with a sufficient strength. By performing the initial charge on a secondary battery having such a positive electrode,
Converting the composite nickel hydroxide particles into nickel hydroxide particles whose surface is coated with a uniform thickness cobalt-based film comprising a conductive trivalent cobalt compound region and a cobalt species region having a lower oxidation number. And at least a part of the trivalent cobalt compound region of the cobalt-based film can be formed to reach the surface of the nickel hydroxide particles from the surface of the cobalt-based film. The regions can be evenly dispersed.
【0061】このコバルト系膜は、優れた導電パスとし
て機能することができるため、水酸化ニッケル粒子同士
の導通及び水酸化ニッケル粒子と集電体との導通を良好
にすることができる。その結果、従来の前記正極の初期
の利用率を向上することができるため、前記正極を備え
た二次電池の初期容量を向上することができる。Since the cobalt-based film can function as an excellent conductive path, the conduction between the nickel hydroxide particles and the conduction between the nickel hydroxide particles and the current collector can be improved. As a result, the initial utilization rate of the conventional positive electrode can be improved, so that the initial capacity of a secondary battery including the positive electrode can be improved.
【0062】また、前記二次電池において、長期間に亘
り貯蔵されたり、あるいは高温下において貯蔵されて自
己放電が進行して容量が低下した際、前記コバルト系膜
中の前記3価のコバルト化合物領域の導電性が損なわれ
て前記正極の利用率が低下するが、再充電を施すとこの
膜中の前記コバルト種領域が酸化され、新たに導電性の
3価のコバルト化合物領域を形成することができる。前
記コバルト種領域は、前記コバルト系膜中に均一に分布
しているため、この再充電による酸化で前記コバルト系
膜全体の導電性を向上させることができる。その結果、
前記正極の利用率を回復させて前記二次電池の容量を向
上することができ、前記二次電池は前述したような条件
で貯蔵された後においても高い容量を維持することがで
きる。When the secondary battery is stored for a long period of time or stored at a high temperature and self-discharge proceeds to reduce the capacity, the trivalent cobalt compound in the cobalt-based film is reduced. Although the conductivity of the region is impaired and the utilization rate of the positive electrode is reduced, when recharging is performed, the cobalt seed region in this film is oxidized to form a new conductive trivalent cobalt compound region. Can be. Since the cobalt seed region is uniformly distributed in the cobalt-based film, the conductivity of the entire cobalt-based film can be improved by the oxidation due to the recharging. as a result,
The capacity of the secondary battery can be improved by recovering the utilization rate of the positive electrode, and the secondary battery can maintain a high capacity even after being stored under the above-described conditions.
【0063】また、本発明の製造方法によると、混合法
により正極にコバルト種を添加する場合に比べてコバル
ト種の添加量を低減することができるため、水酸化ニッ
ケル粒子の量を増加させて容量の向上を図ることが可能
になる。In addition, according to the production method of the present invention, the amount of cobalt species added can be reduced as compared with the case where cobalt species is added to the positive electrode by the mixing method. The capacity can be improved.
【0064】更に、前記初充電により前記コバルト系膜
中に前記3価のコバルト化合物領域をコバルトの原子数
換算で20%〜80%存在させることによって、初期の
正極利用率を向上させるために必要な導電性の3価のコ
バルト化合物の量と、長期放置後に前記コバルト系膜を
再度導電パスとして機能させるために必要な3価より低
い酸化数を有するコバルト種の量を同時に確保すること
ができる。従って、初期容量と、長期貯蔵後あるいは高
温下での貯蔵後の容量回復率の両者が飛躍的に向上され
たアルカリ二次電池を製造することができる。Further, by making the trivalent cobalt compound region in the cobalt-based film 20% to 80% in terms of the number of cobalt atoms by the initial charge, it is necessary to improve the initial positive electrode utilization rate. It is possible to simultaneously secure the amount of a trivalent cobalt compound having high conductivity and the amount of a cobalt species having an oxidation number lower than trivalent necessary to make the cobalt-based film function as a conductive path again after long-term storage. . Therefore, it is possible to manufacture an alkaline secondary battery in which both the initial capacity and the capacity recovery rate after long-term storage or storage at high temperature are dramatically improved.
【0065】前述した表面にコバルト種からなる均一な
層が形成された水酸化ニッケル粒子は、メカノケミカル
法や、沈殿法により作製することができる。前記沈殿法
は、水酸化ニッケルが、通常、金属ニッケルを硫酸溶液
等の酸に溶解させ、これを水酸化ナトリウム溶液のよう
な塩基で中和、沈殿することによって得られることに着
目して見出だされた方法である。従って、前記沈殿法に
よると、水酸化ニッケル粒子表面に水酸化コバルトを沈
殿させるという簡単な工程により複合水酸化ニッケル粒
子を得ることができるため、機械的エネルギーを利用し
てコバルト種からなる均一な層を形成する前記メカノケ
ミカル法に比べて前記複合水酸化ニッケル粒子を比較的
容易に、かつ高収率で作製することができる。The nickel hydroxide particles having a uniform layer of cobalt species formed on the surface described above can be produced by a mechanochemical method or a precipitation method. The above-mentioned precipitation method pays attention to the fact that nickel hydroxide is usually obtained by dissolving nickel metal in an acid such as a sulfuric acid solution and neutralizing and precipitating this with a base such as a sodium hydroxide solution. That's how it came out. Therefore, according to the precipitation method, composite nickel hydroxide particles can be obtained by a simple process of precipitating cobalt hydroxide on the surface of nickel hydroxide particles. The composite nickel hydroxide particles can be produced relatively easily and in high yield as compared with the mechanochemical method for forming a layer.
【0066】[0066]
【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0067】実施例1〜4 市販のランタン富化したミッシュメタルLmおよびN
i、Co、Mn、Alを用いて高周波炉によって、Lm
Ni4.0 Co0.4 Mn0.3 Al0.3 の組成からなる水素
吸蔵合金を作製した。前記水素吸蔵合金を機械粉砕し、
これを200メッシュのふるいを通過させた。得られた
合金粉末100重量部に対してポリアクリル酸ナトリウ
ム0.5重量部、カルボキシメチルセルロース(CM
C)0.125重量部、ポリテトラフルオロエチレンの
ディスパージョン(比重1.5,固形分60wt%)を
固形分換算で1.5重量部および導電材としてカーボン
粉末1重量部を水50重量部と共に混合することによっ
て、ペーストを調製した。このペーストを導電性基板と
してのパンチドメタルに塗布、乾燥した後、加圧成型す
ることによってペースト式負極を作製した。Examples 1-4 Commercially available lanthanum-enriched misch metals Lm and N
i, Co, Mn, Al, Lm
A hydrogen storage alloy having a composition of Ni 4.0 Co 0.4 Mn 0.3 Al 0.3 was produced. Mechanically pulverizing the hydrogen storage alloy,
This was passed through a 200 mesh sieve. To 100 parts by weight of the obtained alloy powder, 0.5 parts by weight of sodium polyacrylate and carboxymethyl cellulose (CM
C) 0.125 parts by weight, 1.5 parts by weight of polytetrafluoroethylene dispersion (specific gravity 1.5, solids content 60 wt%) in terms of solids and 1 part by weight of carbon powder as a conductive material and 50 parts by weight of water A paste was prepared by mixing with This paste was applied to a punched metal as a conductive substrate, dried, and then molded under pressure to produce a paste negative electrode.
【0068】また、沈殿法により複合水酸化ニッケル粒
子を作製した。まず、平均粒径が10μmの水酸化ニッ
ケル粒子を水洗、乾燥した後、一定濃度のコバルトイオ
ンのみが存在する溶液に移し、一定時間撹拌し、水酸化
ニッケル粒子の細孔にコバルトイオンを十分に浸み込ま
せた。つづいて、この溶液を対流を起こさせた水酸化ナ
トリウム水溶液に滴下し、前記水酸化ニッケル粒子の表
面に水酸化コバルトからなる均一な層を形成して複合水
酸化ニッケル粒子を作製した。この複合水酸化ニッケル
粒子の表面に形成された水酸化コバルトの量は、前記コ
バルトイオンのみが存在する溶液の濃度規制により生成
された複合水酸化ニッケル粒子全体に対して金属コバル
ト換算で4重量%とした。また、複合水酸化ニッケル粒
子の表面に形成された水酸化コバルト量(金属コバルト
換算)は、この粒子を塩酸に溶解させて公知の原子吸光
分析法により定量し、予め水酸化ニッケル粒子中に共沈
されたコバルト量を差し引くことにより算出した。Further, composite nickel hydroxide particles were prepared by a precipitation method. First, nickel hydroxide particles having an average particle diameter of 10 μm are washed with water and dried, then transferred to a solution in which only a certain concentration of cobalt ions is present, and stirred for a certain time, so that the cobalt ions are sufficiently introduced into the pores of the nickel hydroxide particles. Soaked. Subsequently, this solution was added dropwise to a sodium hydroxide aqueous solution in which convection was caused to form a uniform layer made of cobalt hydroxide on the surface of the nickel hydroxide particles, thereby producing composite nickel hydroxide particles. The amount of cobalt hydroxide formed on the surface of the composite nickel hydroxide particles was 4% by weight in terms of metallic cobalt with respect to the total composite nickel hydroxide particles produced by the concentration regulation of the solution containing only the cobalt ions. And The amount of cobalt hydroxide (in terms of metallic cobalt) formed on the surface of the composite nickel hydroxide particles is determined by dissolving the particles in hydrochloric acid and quantifying by known atomic absorption spectrometry. It was calculated by subtracting the amount of precipitated cobalt.
【0069】得られた複合水酸化ニッケル粉末100重
量部に対して結着剤としてカルボキシメチルセルロース
0.25重量部、ポリアクリル酸ナトリウム0.25重
量部、ポリテトラフルオロエチレン3重量部、水30重
量部を添加して混練することによりペーストを調製し
た。つづいて、このペーストを導電性基板としてのニッ
ケルメッキ繊維基板内に充填した後、乾燥し、成型する
ことによりペースト式正極を作製した。[0069] Based on 100 parts by weight of the obtained composite nickel hydroxide powder, 0.25 parts by weight of carboxymethyl cellulose, 0.25 parts by weight of sodium polyacrylate, 3 parts by weight of polytetrafluoroethylene, and 30 parts by weight of water as a binder. A paste was prepared by adding and kneading parts. Subsequently, the paste was filled in a nickel-plated fiber substrate as a conductive substrate, dried, and molded to produce a paste-type positive electrode.
【0070】次いで、セパレータとしてポリプロピレン
繊維及びポリエチレン繊維から作製された不織布に親水
化処理が施されたものを用い、前記セパレータを前記負
極と前記正極との間に介装し、渦巻状に捲回して電極群
を作製した。このような電極群と7NのKOHおよび1
NのLiOHからなる電解液を有底円筒状容器に収納
し、前述した図1に示す構造を有し、AAサイズで、公
称容量が1100mAhの円筒形アルカリ二次電池を組
み立てた。Next, a non-woven fabric made of a polypropylene fiber and a polyethylene fiber, which has been subjected to a hydrophilic treatment, is used as a separator, the separator is interposed between the negative electrode and the positive electrode, and spirally wound. To form an electrode group. Such an electrode group and 7N KOH and 1
An electrolytic solution composed of N LiOH was housed in a cylindrical container having a bottom, and a cylindrical alkaline secondary battery having the structure shown in FIG. 1 described above and having an AA size and a nominal capacity of 1100 mAh was assembled.
【0071】得られた二次電池に下記表1に示す条件で
初充電を施した後、1.0CmAで端子電圧が1.0V
になるまで放電した。After the obtained secondary battery was initially charged under the conditions shown in Table 1 below, the terminal voltage was 1.0 CmA and the terminal voltage was 1.0 V
Discharged until.
【0072】比較例1,2 活物質である水酸化ニッケル粉末90重量部および導電
材として水酸化コバルト粉末10重量部からなる混合粉
体に、結着剤としてカルボキシメチルセルロース0.2
5重量部、ポリアクリル酸ナトリウム0.25重量部、
ポリテトラフルオロエチレン3重量部添加し、これらに
水を30重量部添加して混練することによりペーストを
調製した。つづいて、このペーストを導電性基板として
のニッケルメッキ繊維基板内に充填した後、乾燥し、成
型することによりペースト式正極を作製した。Comparative Examples 1 and 2 A mixed powder comprising 90 parts by weight of nickel hydroxide powder as an active material and 10 parts by weight of cobalt hydroxide powder as a conductive material was mixed with carboxymethyl cellulose 0.2 as a binder.
5 parts by weight, 0.25 parts by weight of sodium polyacrylate,
A paste was prepared by adding 3 parts by weight of polytetrafluoroethylene, adding 30 parts by weight of water thereto, and kneading. Subsequently, the paste was filled in a nickel-plated fiber substrate as a conductive substrate, dried, and molded to produce a paste-type positive electrode.
【0073】この正極と実施例1〜4と同様な負極との
間に実施例1〜4と同様なセパレータを介装し、渦巻状
に捲回して電極群を作製した。このような電極群と実施
例1〜4と同様な組成の電解液を有底円筒状容器に収納
し、前述した図1に示す構造を有し、AAサイズで、公
称容量が1100mAhの円筒形アルカリ二次電池を組
み立てた。The same separator as in Examples 1 to 4 was interposed between the positive electrode and the negative electrode as in Examples 1 to 4, and spirally wound to form an electrode group. Such an electrode group and an electrolytic solution having the same composition as those of Examples 1 to 4 were housed in a cylindrical container having a bottom, and had the structure shown in FIG. 1 described above, and had a size of AA and a nominal capacity of 1100 mAh. An alkaline secondary battery was assembled.
【0074】得られた二次電池に下記表1に示す条件で
初充電を施した後、1.0CmAで端子電圧が1.0V
になるまで放電した。After the obtained secondary battery was initially charged under the conditions shown in Table 1 below, the terminal voltage was 1.0 CmA and the terminal voltage was 1.0 V
Discharged until.
【0075】参照例1 実施例1〜4と同様な方法によって組み立てられた円筒
形アルカリ二次電池に下記表1に示す条件で初充電を施
した後、1.0CmAで端子電圧が1.0Vになるまで
放電した。Reference Example 1 A cylindrical alkaline secondary battery assembled in the same manner as in Examples 1 to 4 was subjected to initial charging under the conditions shown in Table 1 below, and then was applied at 1.0 CmA and a terminal voltage of 1.0 V Discharged until.
【0076】参照例2〜5 比較例1,2と同様な方法によって組み立てられた円筒
形アルカリ二次電池に下記表1に示す条件で初充電を施
した後、1.0CmAで端子電圧が1.0Vになるまで
放電した。Reference Examples 2 to 5 After the cylindrical alkaline rechargeable batteries assembled in the same manner as in Comparative Examples 1 and 2 were initially charged under the conditions shown in Table 1 below, the terminal voltage was 1.0 CmA and the terminal voltage was 1 The battery was discharged until the voltage became 0.0V.
【0077】初充電が施された実施例1〜4、比較例1
〜2及び参照例1〜5の二次電池について、初期容量の
測定を行った。各二次電池を0.1CmAで16時間充
電した後、1.0CmAで端子電圧が1.0Vになるま
で放電し、放電持続時間から初期容量を算出した。その
結果を下記表1に示す。Examples 1 to 4 with initial charging, Comparative Example 1
, And the secondary batteries of Reference Examples 1 to 5 were measured for initial capacity. After charging each secondary battery at 0.1 CmA for 16 hours, it was discharged at 1.0 CmA until the terminal voltage became 1.0 V, and the initial capacity was calculated from the discharge duration time. The results are shown in Table 1 below.
【0078】また、実施例1〜4、比較例1〜2及び参
照例1〜5の二次電池について、初充電時の電池の充電
電圧曲線の変化からコバルトの酸化に費やされた充電電
気量を求め、前記正極に存在するコバルト種中に占める
3価のコバルト化合物の割合をコバルトの原子数換算で
求めた。その結果を下記表1に併記する。The secondary batteries of Examples 1 to 4, Comparative Examples 1 and 2 and Reference Examples 1 to 5 showed that the charge electricity consumed for the oxidation of cobalt was determined from the change in the charge voltage curve of the batteries at the time of the first charge. The amount was determined, and the proportion of the trivalent cobalt compound in the cobalt species present in the positive electrode was determined in terms of the number of cobalt atoms. The results are shown in Table 1 below.
【0079】初期容量の確認を行った実施例1〜4、比
較例1〜2及び参照例1〜5の二次電池について、65
℃で28日間貯蔵後、初期容量測定と同じ充放電条件で
充放電サイクルを5回繰り返し、5サイクル目の回復容
量を測定した。5サイクル目の回復容量を初期容量にて
除することにより回復率を求め、5サイクル目の回復容
量と共に下記表1に併記する。The secondary batteries of Examples 1 to 4, Comparative Examples 1 and 2 and Reference Examples 1 to 5 in which the initial capacity was confirmed were 65%
After storage at 28 ° C. for 28 days, the charge / discharge cycle was repeated five times under the same charge / discharge conditions as the initial capacity measurement, and the recovery capacity at the fifth cycle was measured. The recovery rate was determined by dividing the recovery capacity at the fifth cycle by the initial capacity, and is also shown in Table 1 below together with the recovery capacity at the fifth cycle.
【0080】[0080]
【表1】 [Table 1]
【0081】表1から明らかなように、実施例1〜4の
二次電池は、正極に存在するコバルト種中に占める3価
のコバルト化合物の比率が18〜78%で、高い初期容
量と高温貯蔵後における高い容量回復率との両者を同時
に満足していることがわかる。特に、実施例1〜4の二
次電池は、比較例1,2及び参照例1〜5の二次電池に
比べて高温貯蔵後における容量回復率を大幅に改善でき
ることがわかる。この実施例1〜4の二次電池につい
て、SEM(走査電子顕微鏡),EDS(エネルギー分
散型X線分析)及びXPS(X線光電子分光法)により
正極の水酸化ニッケル粉末を観察したところ、図2に示
すように正極の水酸化ニッケル粉末20が導電性の3価
のコバルト化合物領域21(主にオキシ水酸化コバルト
からなる)と酸化数が3価より低いコバルト種領域22
(主に水酸化コバルトからなる)から形成された厚さが
均一なコバルト系膜23で被覆され、かつ前記3価のコ
バルト化合物領域21の一部が前記膜23表面から前記
水酸化ニッケル粉末表面に達する形態を持っており、更
に前記コバルト種領域22が均一に存在していることを
確認できた。なお、前記コバルト化合物領域21には、
微量の四酸化三コバルトが含まれていた。As is clear from Table 1, the secondary batteries of Examples 1 to 4 have a high initial capacity and a high temperature in which the ratio of the trivalent cobalt compound in the cobalt species present in the positive electrode is 18 to 78%. It can be seen that both the high capacity recovery rate after storage is satisfied at the same time. In particular, it can be seen that the secondary batteries of Examples 1 to 4 can significantly improve the capacity recovery rate after high-temperature storage as compared with the secondary batteries of Comparative Examples 1 and 2 and Reference Examples 1 to 5. With respect to the secondary batteries of Examples 1 to 4, the nickel hydroxide powder of the positive electrode was observed by SEM (scanning electron microscope), EDS (energy dispersive X-ray analysis), and XPS (X-ray photoelectron spectroscopy). As shown in FIG. 2, the nickel hydroxide powder 20 of the positive electrode has a conductive trivalent cobalt compound region 21 (mainly composed of cobalt oxyhydroxide) and a cobalt seed region 22 whose oxidation number is lower than trivalent.
(Mainly composed of cobalt hydroxide) is coated with a cobalt-based film 23 having a uniform thickness, and a part of the trivalent cobalt compound region 21 is formed from the surface of the film 23 to the surface of the nickel hydroxide powder. , And it was confirmed that the cobalt seed region 22 was uniformly present. The cobalt compound region 21 includes:
A trace amount of tricobalt tetroxide was contained.
【0082】これに対し、比較例1,2及び参照例1の
二次電池は、正極に存在するコバルト種が3価のコバル
ト化合物のみで、初期容量が高いものの高温貯蔵後にお
ける容量回復率が極めて低いことがわかる。また、参照
例2〜5の二次電池は、正極に存在するコバルト種中に
占める3価のコバルト化合物の比率が23〜83%で、
初期容量は実施例1〜4の二次電池と同程度に高いもの
の、容量回復率が実施例1〜4の二次電池に比べてやや
低いことがわかる。これは、ただの混合による水酸化コ
バルト粉末の分散では水酸化ニッケル粒子の表面を被覆
するコバルト系膜中のコバルト種領域の分布に偏りが生
じ、正極の部位によって導電性の回復度合いが異なった
ためである。On the other hand, in the secondary batteries of Comparative Examples 1 and 2 and Reference Example 1, the cobalt species present in the positive electrode was only a trivalent cobalt compound, and although the initial capacity was high, the capacity recovery rate after high-temperature storage was low. It turns out that it is extremely low. In the secondary batteries of Reference Examples 2 to 5, the proportion of the trivalent cobalt compound in the cobalt species present in the positive electrode was 23 to 83%,
It can be seen that the initial capacity is as high as the secondary batteries of Examples 1 to 4, but the capacity recovery rate is slightly lower than the secondary batteries of Examples 1 to 4. This is because the dispersion of the cobalt hydroxide powder by simple mixing causes a bias in the distribution of the cobalt species region in the cobalt-based film covering the surface of the nickel hydroxide particles, and the degree of conductivity recovery differs depending on the position of the positive electrode. It is.
【0083】なお、前記実施例では、負極4および非焼
結式正極2の間にセパレータ3を介在して渦巻状に捲回
して作製した電極群を有底円筒状の容器1内に収納した
構造を有する円筒形アルカリ二次電池に適用した例を説
明したが、複数の負極および複数の正極の間にセパレー
タをそれぞれ介在して積層物とし、この積層物を有底矩
形筒状の容器内に収納した構造を有する角形アルカリ二
次電池にも適用することができる。In the above embodiment, the electrode group produced by spirally winding the separator 4 between the negative electrode 4 and the non-sintered positive electrode 2 was housed in the bottomed cylindrical container 1. Although an example in which the present invention is applied to a cylindrical alkaline secondary battery having a structure is described, a separator is interposed between a plurality of negative electrodes and a plurality of positive electrodes to form a laminate, and the laminate is placed in a bottomed rectangular cylindrical container. The present invention can also be applied to a prismatic alkaline secondary battery having a structure accommodated in a battery.
【0084】[0084]
【発明の効果】以上詳述したように本発明のアルカリ二
次電池によれば、初期容量において高容量を実現するこ
とができ、かつ長期間に亘る貯蔵、特に高温下での貯蔵
により自己放電が生じた際に、充放電を施すことによっ
て容量を回復させることができ、このような貯蔵後も高
容量を維持することができる等顕著な効果を奏する。As described above in detail, according to the alkaline secondary battery of the present invention, a high capacity can be realized in the initial capacity, and self-discharge can be achieved by storage for a long time, particularly at high temperature. When this occurs, the capacity can be recovered by charging and discharging, and a remarkable effect such as maintaining a high capacity even after such storage can be achieved.
【図1】本発明に係るアルカリ二次電池を示す斜視図。FIG. 1 is a perspective view showing an alkaline secondary battery according to the present invention.
【図2】本発明の実施例1〜4のアルカリ二次電池にお
ける正極の水酸化ニッケル粉末を示す模式図。FIG. 2 is a schematic diagram showing nickel hydroxide powder of a positive electrode in the alkaline secondary batteries of Examples 1 to 4 of the present invention.
1…容器、 2…正極、 3…セパレータ、 4…負極、 5…電極群、 7…封口板、 8…絶縁ガスケット、 13…外装チューブ。 DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode, 5 ... Electrode group, 7 ... Sealing plate, 8 ... Insulating gasket, 13 ... Outer tube.
フロントページの続き (72)発明者 菅野 憲一 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 (72)発明者 乙幡 秀和 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内Continuing from the front page (72) Inventor Kenichi Kanno 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation (72) Inventor Hidekazu Ohata 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Stock In company
Claims (2)
ペーストを集電体に充填した構造を有する正極と、負極
と、前記正極と前記負極との間に介装されるセパレータ
と、アルカリ電解液とを備えたアルカリ二次電池におい
て、 前記水酸化ニッケル粒子は、導電性を持つ3価のコバル
ト化合物領域及び酸化数がそれより低いコバルト種領域
からなるコバルト系膜で均一に被覆されており、かつ前
記3価のコバルト化合物領域の一部は前記膜表面から前
記水酸化ニッケル粒子表面に達する形態を有することを
特徴とするアルカリ二次電池。A positive electrode having a structure in which a current collector contains paste containing nickel hydroxide particles as an active material; a negative electrode; a separator interposed between the positive electrode and the negative electrode; Wherein the nickel hydroxide particles are uniformly coated with a cobalt-based film comprising a conductive trivalent cobalt compound region and a cobalt species region having a lower oxidation number. And a part of the trivalent cobalt compound region has a form reaching the surface of the nickel hydroxide particles from the surface of the film.
合物は、コバルトの原子数換算で20%〜80%の割合
で存在することを特徴とする請求項1記載のアルカリ二
次電池。2. The alkaline secondary battery according to claim 1, wherein the trivalent cobalt compound in the cobalt-based film is present in a ratio of 20% to 80% in terms of the number of cobalt atoms.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000222912A JP3686316B2 (en) | 1995-05-18 | 2000-07-24 | Alkaline secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11972095A JP3151379B2 (en) | 1995-05-18 | 1995-05-18 | Manufacturing method of alkaline secondary battery |
JP2000222912A JP3686316B2 (en) | 1995-05-18 | 2000-07-24 | Alkaline secondary battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11972095A Division JP3151379B2 (en) | 1995-05-18 | 1995-05-18 | Manufacturing method of alkaline secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001052696A true JP2001052696A (en) | 2001-02-23 |
JP3686316B2 JP3686316B2 (en) | 2005-08-24 |
Family
ID=18717097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000222912A Expired - Fee Related JP3686316B2 (en) | 1995-05-18 | 2000-07-24 | Alkaline secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3686316B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011430A1 (en) * | 2004-07-30 | 2006-02-02 | Toyota Jidosha Kabushiki Kaisha | Alkali battery positive electrode active material, alkali battery positive electrode, alkali battery, and method for manufacturing alkali battery positive electrode active material |
-
2000
- 2000-07-24 JP JP2000222912A patent/JP3686316B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011430A1 (en) * | 2004-07-30 | 2006-02-02 | Toyota Jidosha Kabushiki Kaisha | Alkali battery positive electrode active material, alkali battery positive electrode, alkali battery, and method for manufacturing alkali battery positive electrode active material |
US9276258B2 (en) | 2004-07-30 | 2016-03-01 | Toyota Jidosha Kabushiki Kaisha | Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method for manufacturing positive electrode active material for alkaline storage battery |
Also Published As
Publication number | Publication date |
---|---|
JP3686316B2 (en) | 2005-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001217000A (en) | Nickel-hydrogen secondary battery | |
US7393612B2 (en) | Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery | |
JP3173973B2 (en) | Alkaline storage battery | |
EP0852405A2 (en) | Positive electrode, alkaline secondary battery, and method for manufacturing alkaline secondary battery | |
JP3151379B2 (en) | Manufacturing method of alkaline secondary battery | |
JP3686316B2 (en) | Alkaline secondary battery | |
JP3567021B2 (en) | Alkaline secondary battery | |
JP3130204B2 (en) | Alkaline secondary battery | |
JPH08315850A (en) | Alkaline secondary battery and its manufacture | |
JP3234492B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3379893B2 (en) | Paste-type positive electrode for alkaline secondary battery and method for producing alkaline secondary battery | |
JP3393978B2 (en) | Alkaline secondary battery | |
JP3554059B2 (en) | Method for producing positive electrode for alkaline storage battery | |
JP3343470B2 (en) | Manufacturing method of alkaline secondary battery | |
JPH09213325A (en) | Alkaline secondary battery | |
JP4118991B2 (en) | Manufacturing method of nickel metal hydride storage battery | |
JP3011393B2 (en) | Method for manufacturing nickel-metal hydride storage battery | |
KR100276798B1 (en) | Manufacturing method of paste type positive electrode and alkali secondary battery for alkali secondary battery, alkali secondary battery | |
JPH11297353A (en) | Manufacture of nickel-hydrogen secondary battery | |
JPH09213363A (en) | Manufacture of alkali storage battery | |
JPH1097865A (en) | Alkali storage battery and its manufacture | |
JPH10255789A (en) | Nickel hydrogen secondary battery | |
JPH10275620A (en) | Positive electrode for alkaline storage battery, alkaline storage battery, and manufacture of alkaline storage battery | |
JP3213684B2 (en) | Manufacturing method of alkaline secondary battery | |
JPH1197003A (en) | Nickel hydrogen secondary cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050602 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080610 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080610 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090610 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |