[go: up one dir, main page]

JP2001037085A - Method and apparatus for frequency controlling power system including secondary cell - Google Patents

Method and apparatus for frequency controlling power system including secondary cell

Info

Publication number
JP2001037085A
JP2001037085A JP11208116A JP20811699A JP2001037085A JP 2001037085 A JP2001037085 A JP 2001037085A JP 11208116 A JP11208116 A JP 11208116A JP 20811699 A JP20811699 A JP 20811699A JP 2001037085 A JP2001037085 A JP 2001037085A
Authority
JP
Japan
Prior art keywords
power
frequency
secondary battery
deviation
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11208116A
Other languages
Japanese (ja)
Other versions
JP4155674B2 (en
Inventor
Takehiko Ashitani
武彦 芦谷
Masatoshi Okubo
昌利 大久保
Tetsuo Sasaki
鉄雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP20811699A priority Critical patent/JP4155674B2/en
Publication of JP2001037085A publication Critical patent/JP2001037085A/en
Application granted granted Critical
Publication of JP4155674B2 publication Critical patent/JP4155674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To instantaneously maintain a demand and supply balance at normal and emergency times in a power system by incorporating a secondary cell for charging or discharging to suppress a change in a frequency based on a detected result of a frequency deviation detector. SOLUTION: A deviation Δf from a reference frequency of a frequency of a system is detected by a frequency detector 31 in an electric circuit 7 of a previously decided measuring ground point. If the deviation Δf exceeds a predetermined deviation range, an output command controller outputs an LFC signal, and controls output of a secondary cell system 30. A power controller 37 applies an output control signal based on a detection signal to a charge/discharge controller 34. The control signal controls the controller 34 to supply a power to the circuit 1 by discharging the cell 36 when the deviation Δf is a negative value. The control signal controls the controller 34 to charge the cell 36 to input the power to the secondary cell system when the deviation Δf is a positive value. Thus, a rapid and efficient operation can be executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、二次電池システムを
用いた電力系統の周波数制御方法及びその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency control method and apparatus for a power system using a secondary battery system.

【0002】[0002]

【従来の技術】電力事業の電力系統では、原子力発電
所、火力発電所、水力発電所(揚水発電所を含む)等の
電源が用いられている。これらの電源は、電力の需給に
不均衡が生じると、その周波数が変動する。これらの電
源の内、原子力発電所は常に一定の電力を出力するよう
に運用されている。原子力発電所を除く他の電源は、負
荷の消費電力の変動、すなわち需要変動に対応して中央
給電指令所から出される出力制御の信号に基づいて出力
調整を行っている。その結果、前記の出力調整による各
電源からの供給電力と負荷の消費電力とのバランスを保
って周波数を基準周波数(50Hzまたは60Hz)に
対して所定の偏差(例えば制御目標±0.1Hz)内に
維持している。
2. Description of the Related Art In a power system of a power business, power sources such as a nuclear power station, a thermal power station, and a hydropower station (including a pumped-storage power station) are used. These power sources fluctuate in frequency when power supply and demand become unbalanced. Of these power sources, nuclear power plants are operated so as to always output constant power. The other power supplies except the nuclear power plant adjust the output based on the output control signal issued from the central power supply dispatching station in response to the fluctuation of the power consumption of the load, that is, the fluctuation of the demand. As a result, the frequency is maintained within a predetermined deviation (for example, control target ± 0.1 Hz) from the reference frequency (50 Hz or 60 Hz) while maintaining a balance between the power supplied from each power supply and the power consumption of the load due to the output adjustment. Has been maintained.

【0003】電力系統における供給電力の制御(以下、
需給制御という)を行うために、発電機の出力を制御す
る制御信号としては、現在、主に次の2つの信号を使用
している。1つは、数分から約20分程度の周期での需
要変動に対応して各発電機の出力制御を行うLFC信号(L
oad Frequency Control signal,負荷周波数制御信号)
である。「LFC」は負荷周波数制御の略称であり、前記
の周期の需要変動により需給に不均衡が生じたとき、周
波数が基準周波数の所定の範囲から逸脱しないように発
電機の出力を制御することをいう。もう1つは、LFC信
号が対象とするよりも長い周期(20分以上)の大幅な
需要変動に対応して各発電機の出力制御を行うEDC信号
(Economic load Dispatching Control signal,経済負
荷配分制御信号)である。LFC信号が対象とするよりも
短い周期(数分以下)の変動幅が狭い需要変動について
は、各発電機に設けられているガバナフリー機能によ
り、電力系統の周波数変動に応じて自動的に発電機の出
力を制御している。電力系統の運用に際しては、これら
の各機能を活用し、電力系統の需要変動に応じて各発電
機の出力を適切に制御することで、電力系統の周波数が
基準周波数に対して所定の偏差内に保たれるように制御
している。しかしながら、発電機の出力の制御だけで
は、需要変動に対応できない場合もある。そのような場
合には、種々の電力貯蔵技術を用いて、需要の少ないと
きに電力を貯蔵し、需要の多いときには貯蔵した電力を
放出して需要変動に対応する場合がある。
[0003] Control of supply power in a power system (hereinafter, referred to as
Currently, the following two signals are mainly used as control signals for controlling the output of the generator in order to perform supply / demand control). One is an LFC signal (LFC) that controls the output of each generator in response to demand fluctuations in a cycle of several minutes to about 20 minutes.
oad Frequency Control signal, load frequency control signal)
It is. `` LFC '' is an abbreviation of load frequency control, and controls output of the generator so that the frequency does not deviate from a predetermined range of the reference frequency when imbalance occurs in supply and demand due to the demand fluctuation in the cycle. Say. The other is an EDC signal (Economic load Dispatching Control signal) for controlling the output of each generator in response to a large demand fluctuation with a longer cycle (20 minutes or more) than the LFC signal targets. Signal). For demand fluctuations in which the fluctuation width is shorter (less than a few minutes) than the target of the LFC signal, the power is automatically generated according to the frequency fluctuation of the power system by the governor-free function provided in each generator. Controlling the output of the machine. When operating the power system, each of these functions is utilized to appropriately control the output of each generator in response to fluctuations in demand in the power system, so that the frequency of the power system is within a predetermined deviation from the reference frequency. It is controlled to be kept. However, there are cases in which it is not possible to respond to demand fluctuations only by controlling the output of the generator. In such a case, various power storage technologies may be used to store power when demand is low and to release the stored power when demand is high to respond to demand fluctuations.

【0004】電力貯蔵技術としては、ナトリウム硫黄電
池やレドックスフロー電池等の二次電池を用いた二次電
池システムの開発が進められている。二次電池システム
は、化学反応を利用した直流電源を、交流・直流変換器
を介して電力系統に連係しているので前記の各種電源に
比較して、出力制御信号に対する出力応答性が高いとい
う特徴を有している。また、二次電池の特徴として、数
秒から数分程度の短時間ならば過負荷運転ができる。た
だし、電池容量や電池特性及び設計仕様により、最大過
負荷時間は変化する。過負荷運転とは、二次電池の定格
電力(二次電池の容量を考慮して、最も高い効率を達成
すべく所定の時間一定電力で充放電する際の電力を指
す)を超える電力で充電又は放電をすることを言う。二
次電池はこの能力を有するので、需給調整能力という観
点から既存の各種電源に比べてより優れた電力設備であ
ると言える。
As a power storage technology, the development of a secondary battery system using a secondary battery such as a sodium-sulfur battery or a redox flow battery is in progress. Since the secondary battery system is linked to the power system via the AC / DC converter using the DC power supply utilizing the chemical reaction, the output responsiveness to the output control signal is higher than the various power supplies. Has features. In addition, as a feature of the secondary battery, overload operation can be performed for a short time of several seconds to several minutes. However, the maximum overload time varies depending on the battery capacity, battery characteristics, and design specifications. Overload operation is charging with power exceeding the rated power of the rechargeable battery (meaning the power when charging and discharging at a constant power for a predetermined time to achieve the highest efficiency in consideration of the capacity of the rechargeable battery). Or discharge. Since the secondary battery has this capability, it can be said that the secondary battery is a more excellent power facility than existing various power sources in terms of supply and demand adjustment capability.

【0005】前記の2種の二次電池は現時点において、
技術的にほぼ完成された状況にある。例えば、数百kW
級の設備が、オフィスビルなどでピークカットを目的と
した電力貯蔵設備として実際に運用されている。また、
数千kW級の大容量の設備についても、実用段階の電力
貯蔵設備として検討が進められており、電力系統におけ
る需給制御分野での運用が検討されている。
At present, the above two types of secondary batteries are:
The situation is almost technically complete. For example, several hundred kW
Class facilities are actually operated as power storage facilities for the purpose of peak cutting in office buildings and the like. Also,
Studies are also underway on large-capacity facilities of the order of thousands of kW as power storage facilities at the practical stage, and operation in the supply and demand control field in power systems is being studied.

【0006】[0006]

【発明が解決しようとする課題】電気事業用の火力発電
機(以下火力機という)の大部分は、需要が急増した際
に対応できるように通常の運転時にはその出力を定格出
力よりも低い値に抑制した運転を行っている。需要変動
が生じたときに、出力を増減して周波数の変動を所定の
許容偏差内に保つことができるように、定常運転時の火
力機等発電機の出力を定格以下に抑制し余裕を持たせる
ことを「LFC調整容量を確保する」といい、この余裕の
出力を「LFC調整容量」という。LFC調整容量を確保する
ために、1日の内の需要が最大となる時間帯において
も、発電効率が最も高い定格出力での運転が出来ず、定
格より低い出力で運転をするため、発電効率上最適な運
転が行えない状況にある。そこで、火力機によるLFC調
整容量の確保のための出力抑制運転を極力しなくてもよ
い新たな技術を導入し、電力系統の最適な運用を行う必
要がある。
Most of the thermal power generators (hereinafter referred to as "thermal power generators") for the electric power industry have their output lower than the rated output during normal operation so as to cope with a sudden increase in demand. The operation is controlled to When demand fluctuations occur, the output of a generator such as a thermal power plant during steady operation is suppressed to below the rating so that the output can be increased or decreased to keep the frequency fluctuation within a predetermined allowable deviation. This is called “securing the LFC adjustment capacity”, and the output with this extra margin is called “LFC adjustment capacity”. In order to secure LFC regulation capacity, even at the time of the day when demand is at its maximum, operation at the rated output with the highest power generation efficiency is not possible, and operation at a lower output than the rating is required. It is in a situation where optimal driving cannot be performed. Therefore, it is necessary to introduce a new technology that does not require as much as possible output suppression operation to secure the LFC adjustment capacity of the thermal power unit, and perform optimal operation of the power system.

【0007】火力機はその特性上、出力制御信号に対す
る応答に時間遅れを生じることが知られている。このこ
とは、仮に基準周波数からの偏差が大きくなり、前記の
LFC信号を用いて火力機に対し出力制御を行ったとして
も、場合によっては、需要の変動に追従しない場合があ
る。需要変動に追従しない発電機の出力の変動は、周波
数にじょう乱を発生させる原因となる。従って系統運用
に際しては、需要変動への応答性の高い発電機が望まれ
る。すなわち、敏速な出力制御が可能な電源があれば、
需要変動の発生に際して、直ちに変動分に相当する出力
制御が行なわれて、需給バランスを維持することができ
る。
[0007] It is known that a thermal power machine has a time delay in response to an output control signal due to its characteristics. This means that if the deviation from the reference frequency becomes large,
Even if output control is performed on a thermal power plant using an LFC signal, in some cases, it may not follow demand fluctuations. Fluctuations in generator output that do not follow demand fluctuations cause frequency disturbances. Therefore, in system operation, a generator with high response to demand fluctuation is desired. That is, if there is a power supply capable of prompt output control,
When a demand fluctuation occurs, an output control corresponding to the fluctuation is immediately performed, and a supply-demand balance can be maintained.

【0008】発電機の出力制御に時間遅れがあるので、
需要変動に対応する発電機の出力分担を考慮して、通常
は複数台の発電機によりLFC調整容量を分担している状
況にある。現状の電力系統における需給制御技術で効率
の良いシステムを構築するためには、LFC調整容量を分
担している既存の電源よりも高速な出力制御が可能な新
たな電源により代替する必要がある。なお、電力系統の
通常運用において、既存の電源の内、火力機に比べて出
力応答性の高いすなわち出力制御が容易な可変速揚水発
電機が電力系統に並列に接続されている場合は、接続さ
れていない場合に比較して周波数の偏差を小さくできる
ことが知られている。
Since there is a time delay in the output control of the generator,
In consideration of the output sharing of the generator corresponding to the demand fluctuation, usually, the LFC adjustment capacity is shared by a plurality of generators. In order to build an efficient system using the supply and demand control technology in the current power system, it is necessary to replace it with a new power supply that can control the output faster than the existing power supply that shares the LFC adjustment capacity. In the normal operation of the power system, if a variable speed pumped generator with higher output responsiveness, that is, easier output control, is connected in parallel to the power system among existing power sources, It is known that the deviation of the frequency can be reduced as compared with the case where it is not performed.

【0009】電力系統における電源特性の変化として、
火力機の大型化による出力特性の変化が挙げられる。火
力機のプラントでは、昭和40年代前半頃まで主流であ
った、出力が400MW(メガワット)程度までのドラ
ムボイラ機に変わり、それ以後はより大型で大出力の貫
流ボイラ機が多く使用されるようになった。ドラムボイ
ラ機はプラント内にドラムを有し、これが熱容量のバッ
ファとして働く。需要変動による周波数の変動に対応し
て、このバッファ機能により出力を増減して一定時間所
望の出力を維持することが可能である。一方、貫流ボイ
ラ機は、水が蒸気管のなかで蒸気となり、直接過熱機と
タービンへ送られる。そのため、ドラムボイラ機のよう
なバッファ機能を有していない。
As a change in power supply characteristics in a power system,
A change in output characteristics due to an increase in the size of a thermal power unit is cited. In thermal power plants, drum boilers with output of up to 400 MW (megawatts), which had been the mainstream until the early 1960's, will be replaced by larger boilers with larger output. Became. Drum boilers have a drum in the plant that acts as a buffer for heat capacity. In response to frequency fluctuations due to demand fluctuations, the output can be increased or decreased by this buffer function to maintain a desired output for a certain period of time. On the other hand, in a once-through boiler, water is turned into steam in a steam pipe and sent directly to a superheater and a turbine. Therefore, it does not have a buffer function unlike a drum boiler machine.

【0010】図6の(a)は、LFCが行われない程度の小幅
な周波数変動を伴う電力需要の増加による、周波数の基
準周波数f0から変化を示すグラフである。図6の(b)
は、電力需要の急増に対応する、ドラムボイラ機の発電
機出力の変化を示し、(c)は貫流ボイラ機の発電機出力
の変化を示す。ドラムボイラ機では、図6の(b)に示す
ように、時刻t0で周波数が低下し始めると出力をPa1に
増加させる指令が出される。この指令により、時刻t0
よりやや遅れて発電機出力が増加し、時刻t1で出力指
令値Pa1に到達して以後その状態を保つ。貫流ボイラ機
では、図6の(c)に示すように、時刻t1より遅れてt2
で発電機出力が出力指令値Pb1に達するが、時刻t3で低
下し始める。時刻t3以後の貫流ボイラ機の出力が低下
する時間領域は、本来、ガバナフリー機能(以下GF機能
という)で出力を制御する領域である。この様に熱容量
のバッファを持たない貫流ボイラ機の出力特性が電力系
統の周波数に与える影響は、電力系統内で貫流ボイラ機
を用いる比率が高まる程大きくなり、周波数低下が一定
時間継続した場合、系統運用者が想定しているLFC調整
容量に相当する出力増加が得られないことになる。した
がって、近年の周波数制御においては、GF機能をも対象
としたLFCを検討して行く必要が生じており、これに対
応可能な電力系統技術が必要である。
FIG. 6A is a graph showing a change from the reference frequency f0 of the frequency due to an increase in power demand accompanied by a small frequency fluctuation such that LFC is not performed. FIG. 6 (b)
Shows the change in the generator output of the drum boiler corresponding to the rapid increase in the power demand, and (c) shows the change in the generator output of the once-through boiler. In the drum boiler machine, as shown in FIG. 6B, when the frequency starts decreasing at time t0, a command to increase the output to Pa1 is issued. By this command, time t0
The generator output increases slightly later, reaches the output command value Pa1 at time t1, and keeps that state thereafter. In the once-through boiler machine, as shown in FIG.
, The generator output reaches the output command value Pb1, but starts decreasing at time t3. The time region in which the output of the once-through boiler machine decreases after time t3 is a region where the output is controlled by the governor-free function (hereinafter referred to as the GF function). In this way, the influence of the output characteristics of the once-through boiler having no heat capacity buffer on the frequency of the power system increases as the ratio of using the once-through boiler in the power system increases, and if the frequency decrease continues for a certain period of time, The output increase corresponding to the LFC adjustment capacity assumed by the grid operator cannot be obtained. Therefore, in recent frequency control, it is necessary to consider an LFC that also targets the GF function, and a power system technology that can cope with this is required.

【0011】我が国では多数の原子力機が稼働している
が、原子力機は、電力需要が一日の中で最低となる深夜
等の軽負荷期においても、経済性の観点から常に一定出
力で運転している。この軽負荷期に運転される各電源の
構成によっては、供給電力が過剰となる場合がある。ま
た、原子力機はLFC運転を行っていないため、軽負荷期
に周波数を調整するために出力制御をする電力設備は、
一部の火力機と水力機(場合によっては可変速揚水機)
にかぎられる。その結果、LFC調整容量が不足すること
があり、周波数を基準周波数に維持することが困難とな
り、周波数変動が大きくなることがある。この周波数変
動の抑制に対応可能な新技術の導入による周波数制御方
式が望まれている。
Although a large number of nuclear power units are operating in Japan, the nuclear power units always operate at a constant output from the viewpoint of economic efficiency even in a light load period such as late at night when the power demand is lowest in a day. are doing. Depending on the configuration of each power supply operated during the light load period, the supplied power may be excessive. In addition, since nuclear power plants do not perform LFC operation, power equipment that controls output to adjust frequency during light load periods is
Some thermal and hydraulic (and possibly variable speed pumps)
It is limited. As a result, the LFC adjustment capacity may be insufficient, and it may be difficult to maintain the frequency at the reference frequency, and frequency fluctuation may increase. There is a demand for a frequency control method by introducing a new technology capable of coping with the suppression of the frequency fluctuation.

【0012】現状の電力系統の運用においては、例え
ば、需要増大期に、老朽化して平常は使用していない低
能率の火力機の運転を行うことによりLFC調整容量を確
保する場合がある。この様な老朽化した火力機はエネル
ギー変換効率が低いため、燃料費用の低減、ひいては化
石燃料の有効活用の観点から運用効率に改善の余地があ
る。必要なLFC調整容量を確保する目的とは言え、低効
率の火力機の稼働数が増加することは二酸化炭素(CO
2)、窒素酸化物(NOx)、硫黄酸化物(SOx)等の排出
量が増加することになる。このため、環境保全や公害に
対する社会的要求から見てもできる限り排出量を減らす
必要がある。そこで、このような老朽化した火力機を使
わなくても、必要なLFC調整容量が確保できるような新
技術の導入が望まれている。
In the current operation of the electric power system, for example, there is a case where the LFC adjustment capacity is ensured by operating a low-efficiency thermal power unit that is aging and is not normally used during an increasing demand period. Since such an aging thermal power plant has low energy conversion efficiency, there is room for improvement in operation efficiency from the viewpoint of reducing fuel costs and effectively utilizing fossil fuels. Despite the purpose of ensuring the necessary LFC regulation capacity, the increase in the number of low-efficiency
2) Emissions of nitrogen oxides (NOx), sulfur oxides (SOx), etc. will increase. Therefore, it is necessary to reduce emissions as much as possible in view of social demands for environmental protection and pollution. Therefore, it is desired to introduce a new technology that can secure the necessary LFC adjustment capacity without using such an aging thermal power plant.

【0013】今後の電力系統の運用を取り巻く環境の変
化として電力市場の自由化がある。この自由化に伴い、
太陽光や風力といった「再生可能エネルギー」を利用し
た多数の電源が電力系統に連系してくるものと考えられ
る。これらの電源は自然界の再生可能エネルギーを活用
しているので、気象条件に大きく影響され、通常の運転
において、常に一定の電力を供給することは困難であ
る。この様な発電出力の不安定な多くの電源が系統に連
系され電源構成に占める割合が大きくなった場合、これ
らの電源から常時一定の発電出力を得ることが困難な状
況から出力変動が大きくなり、周波数を基準周波数に維
持することが困難となる状況が発生するものと考えられ
る。そこで、これらの発電出力の不安定な電源の増加に
伴う大きな出力変化に対しても瞬時に対応可能な新技術
の構築が必要な状況にある。
As a change in the environment surrounding the operation of the electric power system in the future, there is liberalization of the electric power market. With this liberalization,
It is considered that a large number of power sources using “renewable energy” such as solar and wind power are connected to the power system. Since these power sources use renewable energy in the natural world, they are greatly affected by weather conditions, and it is difficult to always supply constant power during normal operation. When a large number of such power sources with unstable power generation outputs are connected to the grid and their share in the power supply configuration increases, the output fluctuates greatly because it is difficult to obtain a constant power generation output from these power sources at all times. It is considered that a situation occurs in which it becomes difficult to maintain the frequency at the reference frequency. Therefore, it is necessary to construct a new technology capable of instantaneously coping with a large output change caused by an increase in the power source whose power generation output is unstable.

【0014】上記の問題に対処するために、これまでに
公開されている二次電池を用いた周波数制御に関する従
来技術について、以下に説明する。特開平5−1681
71号公報では、配電低圧系統に連系する、太陽電池電
源システムと二次電池の組合せによる太陽電池電源シス
テムを提案している。この従来技術では、常時運用にお
いて二次電池を電力貯蔵設備としてのみ使用している。
気象条件等による常時運用中の太陽電池電源システムの
出力変動を二次電池で補間すると言った、電力系統から
見た周波数の一定制御に寄与する運用は考慮されていな
い。
In order to deal with the above-mentioned problem, a prior art concerning frequency control using a secondary battery, which has been disclosed, will be described below. JP-A-5-1681
No. 71 proposes a solar cell power supply system that is connected to a distribution low-voltage system and that is a combination of a solar cell power supply system and a secondary battery. In this conventional technique, a secondary battery is used only as a power storage facility in a normal operation.
Operations that contribute to constant control of the frequency viewed from the power system, such as interpolating output fluctuations of the solar cell power supply system during normal operation due to weather conditions or the like with a secondary battery, are not considered.

【0015】特開平8−140285号公報では、二次
電池であるナトリウム硫黄電池を用いて系統周波数の変
動を最小限に抑える電力貯蔵分散電源システムを提案し
ている。このシステムは配電系統へ連系するシステムで
あり、電力供給の基幹系統での運用を考慮したものでは
ない。また、電力系統の中央一括制御(例えば中央給電
指令所からの制御)による既存の他の電源との協調を考
慮した運用については触れられていない。また、連系す
る電力系統間での連系線潮流変動を抑制することを含め
た周波数制御の検討は行われていない。従ってこのシス
テムでは、周波数変動は抑制できるが、連系線潮流変動
は抑制できない。またこのシステムでは、LFCが対象と
する時間領域での負荷変動への対応を考慮していない。
例えば逐次予測による補正は、1時間から30分先の補
正である。また、既存の発電機により分担してきたLFC
調整容量を代替して受持つための二次電池システムの運
用は考慮されていない。
Japanese Patent Application Laid-Open No. Hei 8-140285 proposes a power storage / distributed power supply system that uses a sodium-sulfur battery as a secondary battery to minimize fluctuations in system frequency. This system is connected to the distribution system, and does not consider operation in the power supply backbone system. Further, there is no mention of operation in consideration of coordination with other existing power sources by centralized control of the power system (for example, control from a central power supply command center). In addition, no study has been conducted on frequency control including suppression of power line flow fluctuation between interconnected power systems. Therefore, in this system, frequency fluctuations can be suppressed, but interconnection line power flow fluctuations cannot be suppressed. Also, this system does not consider how to handle load fluctuations in the time domain targeted by the LFC.
For example, the correction based on the sequential prediction is a correction one hour to 30 minutes ahead. In addition, LFC that has been shared by existing generators
No consideration is given to the operation of the secondary battery system for substituting for the adjusted capacity.

【0016】特開平9−270269号公報では、ナト
リウム硫黄電池を用いた、電力貯蔵、電力系統のピーク
カット装置及び周波数・電圧安定化装置などのシステム
を提案している。この従来例はおもに電池システムの仕
様に関するものであり、システムの運用による系統制御
に関するものではない。
Japanese Unexamined Patent Publication No. 9-270269 proposes a system using a sodium-sulfur battery, such as a power storage device, a power system peak cut device, and a frequency / voltage stabilization device. This conventional example mainly relates to the specifications of the battery system, and does not relate to system control by operating the system.

【0017】本発明が解決しようとする課題をまとめる
と以下のようになる。系統運用上必要なLFC調整容量を
確保するための火力機の出力抑制運転は運用効率向上の
観点から見ると不合理であり、出力抑制運転をすること
なくLFC調整容量を確保できることが求められていた。
火力機の出力制御に対する応答遅れ特性から、需要変動
によっては、その出力が需要変動に追従しない場合があ
る。この応答遅れにより、火力機のLFC運用自体が系統
周波数の外乱要因とならない様に応答遅れなしでLFC調
整容量が確保できることが求められていた。火力機の出
力制御に対する応答遅れ特性を考慮し、LFC調整容量を
確保するためには複数台の火力機によってLFC調整容量
を分担しなければならないが、設備の効率運用の観点か
らLFC調整容量を確保する新しい手段を設け、LFC調整容
量を分担する火力機の数を減らすことが求められてい
た。火力機のなかで貫流ボイラ機の運転台数の比率が高
まると、電力需要が増加して周波数低下が数分以上継続
する状況下においては供給電力が不足しLFC調整容量を
確保できないおそれがある。この不足する供給電力を短
時間に補完して周波数変動を抑制できるLFC調整容量の
確保手段が必要であった。
The problems to be solved by the present invention are summarized as follows. From the viewpoint of improving operation efficiency, it is irrational from the viewpoint of improving operation efficiency that the thermal power plant's output suppression operation to secure the LFC adjustment capacity necessary for system operation is unreasonable. Was.
Due to a response delay characteristic of the power control of the thermal power unit, the output may not follow the demand fluctuation depending on the demand fluctuation. Due to this response delay, it has been demanded that the LFC adjustment capacity can be ensured without a response delay so that the LFC operation of the thermal power unit itself does not cause a disturbance of the system frequency. In order to secure the LFC adjustment capacity in consideration of the response delay characteristics to the power control of the thermal power unit, the LFC adjustment capacity must be shared by multiple thermal power units, but from the viewpoint of efficient operation of the equipment, the LFC adjustment capacity must be increased. There was a need to provide new means to secure and reduce the number of thermal power plants sharing LFC regulation capacity. When the ratio of the number of operating once-through boilers among the thermal power plants increases, there is a possibility that the power supply becomes insufficient and the LFC adjustment capacity cannot be secured under the situation where the power demand increases and the frequency decreases continuously for several minutes or more. There was a need for a means for securing an LFC adjustment capacity capable of compensating for this shortage of supply power in a short time and suppressing frequency fluctuations.

【0018】夜間など電力需要が減少する時間帯で、系
統に接続される電源の数が減少した場合、LFC調整容量
が不足し、周波数変動が大きくなる場合がある。これを
抑制するためのLFC調整容量確保手段が必要であった。
需要増大時にLFC調整容量を確保するために、老朽化し
た低能率火力機を運転すると、運転効率や環境保全(CO
2,NOx,SOxの排出抑制)の観点から問題がありこの様な
老朽化した火力機を使わなくても、必要なLFC調整容量
が確保できる事が求められていた。多数の再生可能エネ
ルギー電源が系統に連系した場合、その出力変動に伴い
周波数変動が大きくなることがある。このような出力変
動を高速で抑制するためのLFC調整容量の確保が可能な
技術の導入が必要であった。以上のことから明らかなよ
うに、ある電力系統の全体としての運用効率を高く保
ち、不足分電力を応答の遅れなく短時間に補充すること
により必要なLFC調整容量を確保する方法及びその装置
の実現が、電力系統の周波数制御方法及びその装置にお
ける課題であった。
If the number of power supplies connected to the grid decreases during a time period when the power demand decreases, such as at night, the LFC adjustment capacity may be insufficient and the frequency fluctuation may increase. LFC adjustment capacity securing means for suppressing this was required.
When an aging low-efficiency thermal power plant is operated to secure LFC adjustment capacity when demand increases, operating efficiency and environmental conservation (CO
There is a problem from the viewpoint of (2, suppression of NOx and SOx emissions), and it has been required that the necessary LFC adjustment capacity can be secured without using such an aging thermal power plant. When a large number of renewable energy power sources are connected to a power system, the frequency fluctuation may increase with the output fluctuation. It was necessary to introduce a technology that could secure the LFC adjustment capacity to suppress such output fluctuations at high speed. As is evident from the above, a method and a device for securing the necessary LFC adjustment capacity by maintaining the operation efficiency of a certain power system as a whole and replenishing the insufficient power in a short time without delay in response. The realization has been a problem in the frequency control method and the device of the power system.

【0019】[0019]

【課題を解決するための手段】本発明の電力系統の周波
数制御装置は、電力を発電する発電部と、電力を消費す
る負荷と、発電部と負荷とを接続する電路とを有する電
力系統において発電部からの電力発電量と負荷の電力消
費量の需給不均衡に伴って変動する周波数を計測し、あ
らかじめ定められている基準周波数からの偏差を検出す
る周波数偏差検出器、及び前記電力系統に交流・直流変
換装置を介して接続され、前記周波数偏差検出器の検出
結果に基づいて周波数の変動を抑制するように充電又は
放電を行う二次電池を有する。二次電池の高速な出力応
答性、ならびに短時間の場合に許容される過負荷運転能
力を利用し、電力系統の需要変動に応じて二次電池を充
放電して出力制御を行う。これにより、電力系統におけ
る常時及び緊急時の需給バランスを瞬時に維持すること
が可能となり、前記の各課題を解決することができる電
力系統の周波数制御装置を提供することができる。
SUMMARY OF THE INVENTION A frequency control apparatus for a power system according to the present invention is a power system having a power generation unit for generating power, a load for consuming power, and an electric circuit connecting the power generation unit and the load. A frequency deviation detector that measures a frequency that fluctuates in accordance with supply and demand imbalance of the power generation amount and the power consumption amount of the load from the power generation unit, and detects a deviation from a predetermined reference frequency, and the power system. A secondary battery connected via an AC / DC converter and configured to charge or discharge so as to suppress a change in frequency based on the detection result of the frequency deviation detector. Utilizing the high-speed output response of the secondary battery and the overload operation capability allowed in a short time, the secondary battery is charged and discharged according to the fluctuation of the power system to perform output control. Accordingly, it is possible to instantaneously maintain the supply and demand balance in the power system at all times and in an emergency, and to provide a frequency control device for the power system capable of solving the above-described problems.

【0020】本発明の他の観点の電力系統の周波数制御
装置は、電力を発電する発電部と、電力を消費する負荷
と、発電部と負荷とを接続する電路とを有する電力系統
において、発電部からの電力発電量と負荷の電力消費量
の需給不均衡に伴って変動する周波数を計測し、あらか
じめ定められている基準周波数からの偏差を検出する周
波数偏差検出器、前記周波数偏差検出器の検出信号を受
け、前記偏差が所定の範囲を超えたとき前記発電部の発
電電力を制御するための負荷周波数制御信号(LFC信
号)を前記発電部に与える負荷周波数制御装置、及び交
流・直流変換装置を有する充放電制御装置を経て前記電
力系統に接続され、前記の偏差が所定の範囲以下のと
き、電力を前記電力系統に放電し、又は電力系統の電力
により充電される二次電池を有し、前記LFC信号によ
る発電部の発電電力の制御と前記二次電池の充放電によ
って、電力の需給不均衡を解消して電力系統の周波数変
動を抑制する。偏差が所定の範囲以下の小幅な需給不均
衡に対しては、二次電池の充電により電力系統からの電
力を貯蔵し、又は二次電池の放電により貯蔵した電力を
供給する。二次電池の高速応答性により小幅な需給不均
衡を敏速に解消することができる。前記の偏差が所定範
囲を超えたときは大幅な需給不均衡が生じているので、
LFC信号により、発電部の電力発電量を制御して、大幅
な需給不均衡を解消することができる。
According to another aspect of the present invention, there is provided a frequency control apparatus for a power system, comprising: a power generation unit configured to generate power; a load consuming power; and a power path connecting the power generation unit and the load. A frequency deviation detector that measures a frequency that fluctuates in accordance with supply and demand imbalance of the power generation amount and the power consumption amount of the load from the unit, and detects a deviation from a predetermined reference frequency, the frequency deviation detector A load frequency control device for receiving a detection signal and providing a load frequency control signal (LFC signal) for controlling the generated power of the power generation unit to the power generation unit when the deviation exceeds a predetermined range, and AC / DC conversion Connected to the power system via a charge / discharge control device having a device, and when the deviation is equal to or less than a predetermined range, the power is discharged to the power system or charged by the power of the power system. Has a battery, the charge and discharge control as the secondary battery of the power generated by the power generation unit by the LFC signal, it suppresses the frequency change of the power system to eliminate the power supply and demand imbalances. For a small supply-demand imbalance in which the deviation is equal to or less than a predetermined range, the power from the power system is stored by charging the secondary battery, or the stored power is supplied by discharging the secondary battery. Due to the high-speed response of the secondary battery, a small supply-demand imbalance can be promptly resolved. When the deviation exceeds a predetermined range, a large supply-demand imbalance has occurred,
By using the LFC signal, the amount of power generated by the power generation unit can be controlled to eliminate a large supply-demand imbalance.

【0021】本発明の電力系統の周波数制御方法は、電
力を発電する発電部と、電力を消費する負荷と、発電部
と負荷とを接続する電路とを有する電力系統において、
発電部からの電力発電量と負荷の電力消費量の需給不均
衡に伴って変動する周波数を計測し、あらかじめ定めら
れている基準周波数からの偏差を検出するステップ、及
び前記電力系統に交流・直流変換装置を有する充放電制
御装置を介して接続され、前記偏差を検出するステップ
の検出結果に基づいて、周波数の変動を抑制するように
二次電池の充電又は放電を行うステップを有する。二次
電池の高速な出力応答性、ならびに短時間の場合に許容
される過負荷運転能力を利用し、電力系統の需要変動に
応じて二次電池を充放電して出力制御を行う。これによ
り、電力系統における常時及び緊急時の需給バランスを
瞬時に維持することが可能となり、前記の各課題を解決
することができる電力系統の周波数制御方法を提供する
ことができる。
According to the frequency control method for a power system of the present invention, in a power system having a power generation unit for generating power, a load consuming power, and an electric circuit connecting the power generation unit and the load,
Measuring a frequency that fluctuates in accordance with supply and demand imbalance between the power generation amount from the power generation unit and the power consumption amount of the load, and detecting a deviation from a predetermined reference frequency; and The method includes a step of charging or discharging the secondary battery connected via a charge / discharge control device having a conversion device and suppressing a change in frequency based on a detection result of the step of detecting the deviation. Utilizing the high-speed output response of the secondary battery and the overload operation capability allowed in a short time, the secondary battery is charged and discharged according to the fluctuation of the power system to perform output control. This makes it possible to instantaneously maintain the supply and demand balance in the power system at all times and in an emergency, and to provide a power system frequency control method capable of solving the above-described problems.

【0022】[0022]

【発明の実施の形態】以下、本発明の好適な実施例につ
いて図1から図5を参照して説明する。 《実施例1》実施例1は、多数の電源(発電機)の発電
電力を制御する中央給電指令所から各電源を制御するた
めに出される供給制御信号である、LFC信号とEDC信号を
利用して二次電池システムの入出力を制御し、電力系統
の周波数を基準周波数の所定の偏差内に維持することを
可能とする周波数制御方法及びその装置に関する。図1
は、二次電池システム30を含む周波数制御装置のブロ
ック図であり、図2は、二次電池システム30のブロッ
ク図である。図1において、電力系統1は、発電部2
と、需要家すなわち負荷8とを結ぶ系統である。この系
統は、発電部2として、原子力発電機群3、水力発電機
群4、火力発電機群5及び太陽電池や風力発電機などの
再生可能エネルギー電源群6を有している。これらの発
電機群及び電源群は電路7により負荷8に接続されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to FIGS. << Embodiment 1 >> Embodiment 1 uses an LFC signal and an EDC signal, which are supply control signals issued to control each power supply from a central power supply command station that controls power generated by a large number of power supplies (generators). The present invention relates to a frequency control method and an apparatus for controlling an input / output of a secondary battery system and maintaining a frequency of a power system within a predetermined deviation of a reference frequency. FIG.
2 is a block diagram of a frequency control device including the secondary battery system 30. FIG. 2 is a block diagram of the secondary battery system 30. In FIG. 1, a power system 1 includes a power generation unit 2
And a customer, that is, a load 8. This system includes a nuclear power generator group 3, a hydroelectric generator group 4, a thermal power generator group 5, and a renewable energy power source group 6 such as a solar cell and a wind generator as the power generation unit 2. The generator group and the power supply group are connected to a load 8 by an electric circuit 7.

【0023】電路7には、二次電池システム30が接続
されており、その中に設けられた二次電池36に電路7
を経て電力を貯蔵し、又は貯蔵した電力を電路7に供給
する。この内、水力発電機群4,火力発電機群5及び二
次電池システム30はLFC対象電源であり、電力の需要
変動に応じてその出力が制御される。LFCは変動周期が
数分から20分の周期を持つ需要変動に対応するための
出力制御である。原子力発電機群3は常に一定の電力を
発電しており、LFCの対象外の発電機である。再生可能
エネルギー電源群6はその出力が自然状況に応じて常に
変動しているので制御不可能であり、LFC対象外の電源
である。
A secondary battery system 30 is connected to the electric circuit 7, and a secondary battery 36 provided therein is connected to the electric circuit 7.
To store the power via the power supply or supply the stored power to the electric circuit 7. Among them, the hydraulic power generator group 4, the thermal power generator group 5, and the secondary battery system 30 are LFC target power supplies, and their outputs are controlled according to fluctuations in power demand. The LFC is an output control for responding to a demand fluctuation having a fluctuation period of several minutes to 20 minutes. The nuclear power generator group 3 is always generating a certain amount of electric power, and is a generator not subject to LFC. The renewable energy power source group 6 cannot be controlled because its output constantly fluctuates according to natural conditions, and is a power source not subject to LFC.

【0024】中央給電指令所に設けられている出力指令
制御部20は、LFC装置(負荷周波数制御装置)22の
入力端に接続された周波数検出器21を有し、電力系統
1の電路7において周波数を測定し、基準周波数(50
Hz又は60Hz)との偏差△fを検出してLFC装置22
に印加する。LFC装置22の出力端21Aは、LFC制御対
象の、水力発電機群4,火力発電機群5及び二次電池シ
ステム30の制御入力端に接続されている。LFC装置2
2から系統要求量信号を出力する出力端21Bは加算器
23の負入力端に接続されている。加算器23の正入力
端は加算器24の出力端に接続されている。加算器23
の出力端はEDC装置25の入力端25Aに接続されてい
る。EDC装置25の出力端25Bは前記のLFC制御対象電
源の制御入力端に接続されている。EDC装置25の他の
出力端25Cは、加算器24の負入力端に接続されてい
る。加算器24の正入力端には、各発電機の実際の出力
値が入力される。
The output command control unit 20 provided at the central power supply command station has a frequency detector 21 connected to an input terminal of an LFC device (load frequency control device) 22. The frequency is measured and the reference frequency (50
Hz or 60 Hz) and detects the deviation Δf from the LFC device 22.
Is applied. The output terminal 21 </ b> A of the LFC device 22 is connected to the control input terminals of the hydraulic power generator group 4, the thermal power generator group 5, and the secondary battery system 30 to be LFC-controlled. LFC device 2
The output terminal 21B that outputs the system demand signal from the second 2 is connected to the negative input terminal of the adder 23. The positive input terminal of the adder 23 is connected to the output terminal of the adder 24. Adder 23
Is connected to an input terminal 25A of the EDC device 25. An output terminal 25B of the EDC device 25 is connected to a control input terminal of the power supply to be controlled by the LFC. The other output terminal 25C of the EDC device 25 is connected to the negative input terminal of the adder 24. The actual output value of each generator is input to the positive input terminal of the adder 24.

【0025】図2は二次電池システム30の詳細な構成
を示すブロック図である。図において、二次電池システ
ム30の端子29は発電部2から負荷8に至る電路7に
接続されている。実際には、電力系統の開閉所50(変
電所の場合もある)において、電路7に接続されてい
る。端子29は、互いに直列接続された周波数検出器3
1、遮断器32及び変圧器33を経て、充放電制御装置
34に接続されている。充放電制御装置34は交流・直
流変換装置(図示省略)を有しており、電圧・電流計測
装置35を経て二次電池36に接続されている。二次電
池は、例えばナトリウム硫黄電池である。二次電池シス
テム30内には演算処理部を含む電力制御部37が設け
られ、その入力端37Aに、出力指令制御部20から出
力されるLFC信号とEDC信号が入力される。電力制御部3
7の入力端37Bには周波数検出器31の検出出力が入
力され、入力端37Cには充放電制御装置34に内蔵さ
れた出力測定装置によって測定された実出力値の測定信
号が入力される。実出力値は、出力指令制御部20にも
入力される。電圧・電流計測装置35で測定された電圧
・電流値の測定信号は充電深度計測装置38に入力され
る。充電深度計測装置38は、次に説明する「充電深
度」を計測し、計測値を電力制御部37の入力端37D
に入力する。「充電深度」とは二次電池の完全に放電さ
れた状態から充電を開始して、その電池に充電すること
のできる全電力量(充電容量)と、ある時点で既に充電
されている電力量との割合である。電力制御部37の出
力端37Eは充放電制御装置34の入力端に接続されて
いる。
FIG. 2 is a block diagram showing a detailed configuration of the secondary battery system 30. In the figure, a terminal 29 of the secondary battery system 30 is connected to the electric circuit 7 from the power generation unit 2 to the load 8. Actually, it is connected to the electric circuit 7 at the switchgear 50 (may be a substation) of the power system. The terminal 29 is connected to the frequency detector 3 connected in series with each other.
1, connected via a circuit breaker 32 and a transformer 33 to a charge / discharge control device 34. The charge / discharge control device 34 has an AC / DC converter (not shown), and is connected to a secondary battery 36 via a voltage / current measuring device 35. The secondary battery is, for example, a sodium-sulfur battery. A power control unit 37 including an arithmetic processing unit is provided in the secondary battery system 30, and an LFC signal and an EDC signal output from the output command control unit 20 are input to an input terminal 37A. Power control unit 3
7, a detection output of the frequency detector 31 is input to an input terminal 37B, and a measurement signal of an actual output value measured by an output measurement device built in the charge / discharge control device 34 is input to an input terminal 37C. The actual output value is also input to the output command control unit 20. The measurement signal of the voltage / current value measured by the voltage / current measuring device 35 is input to the charging depth measuring device 38. The charging depth measuring device 38 measures “charging depth” described below, and outputs the measured value to the input terminal 37D of the power control unit 37.
To enter. "Charge depth" refers to the total amount of power (charging capacity) that can be charged to a rechargeable battery starting from a completely discharged state, and the amount of power already charged at a certain point in time. And the ratio. An output terminal 37E of the power control unit 37 is connected to an input terminal of the charge / discharge control device 34.

【0026】二次電池システム30は100MW程度の
小容量火力機と同程度あるいはそれ以上の容量の二次電
池を用い、主に送電系統に接続される。また必要に応じ
て配電系統に前記の容量よりも小容量の分散電源として
複数の二次電池システムを並列接続して、必要となる二
次電池容量を確保してもよい。
The secondary battery system 30 uses a secondary battery having a capacity equal to or greater than that of a small-capacity thermal power plant of about 100 MW, and is mainly connected to a power transmission system. In addition, if necessary, a plurality of secondary battery systems may be connected in parallel to the distribution system as a distributed power source having a smaller capacity than the above-mentioned capacity to secure a necessary secondary battery capacity.

【0027】次に本実施例の周波数制御方法を説明す
る。あらかじめ決められている測定地点の電路7におい
て、周波数検出器21及び31により系統の周波数の基
準周波数からの偏差「Δf」を検出する。異なる電力事
業者間の電力流通を示す連系線潮流を制御する場合は偏
差△fの代わりに「ΔPt+KΔf」(ΔPtは連系線潮流
の周波数の基準値からの偏差、Kは系統定数、Δfは基
準周波数からの偏差を表す)検出してもよい。偏差△f
が所定の偏差範囲(例えば、±0.04Hz)を超えた
場合には、出力指令制御部20からLFC信号を出力して
二次電池システム30の出力制御を行う。本実施例のLF
Cの制御対象は、周期が20分程度以下の需要変動であ
り、この周期範囲の需要変動をLFCにより補償する。
Next, the frequency control method of this embodiment will be described. In the electric circuit 7 at a predetermined measuring point, the frequency detectors 21 and 31 detect the deviation “Δf” of the system frequency from the reference frequency. When controlling the interconnection flow indicating the power flow between different power companies, "ΔPt + KΔf" (ΔPt is the deviation of the interconnection line flow frequency from the reference value, K is the system constant, Δf Represents a deviation from the reference frequency). Deviation △ f
Exceeds a predetermined deviation range (for example, ± 0.04 Hz), the output command control unit 20 outputs an LFC signal to control the output of the secondary battery system 30. LF of this embodiment
The control target of C is a demand change having a cycle of about 20 minutes or less, and the demand change in this cycle range is compensated by the LFC.

【0028】需要変動の周期が数分以下の短周期でかつ
変動幅の狭い変動に対する出力制御について以下に説明
する。系統の周波数は周波数検出器21及び31の両方
で検出されるが、例えば±0.04Hz以下の偏差△f
は二次電池システム30内の周波数検出器31により検
出される。周波数検出器31から出力される偏差△fを
示す検出信号は電力制御部37に入力される。電力制御
部37はこの検出信号に基づく出力制御信号を充放電制
御装置34に印加する。出力制御信号は、偏差△fが負
の値のときは、二次電池36が放電して端子29から電
路7に電力が供給されるように、充放電制御装置34を
制御する。偏差△fが正の値のときは、端子29から二
次電池システムに電力が流入し、二次電池36が充電さ
れるように、充放電制御装置34は制御される。
An output control for a fluctuation in which the cycle of the demand fluctuation is a short cycle of several minutes or less and the fluctuation width is narrow will be described below. The frequency of the system is detected by both the frequency detectors 21 and 31, and for example, the deviation Δf of ± 0.04 Hz or less
Is detected by the frequency detector 31 in the secondary battery system 30. The detection signal indicating the deviation Δf output from the frequency detector 31 is input to the power control unit 37. The power control unit 37 applies an output control signal based on the detection signal to the charge / discharge control device 34. The output control signal controls the charge / discharge control device 34 such that when the deviation Δf is a negative value, the secondary battery 36 is discharged and power is supplied from the terminal 29 to the electric circuit 7. When the deviation Δf is a positive value, the charge / discharge control device 34 is controlled such that power flows into the secondary battery system from the terminal 29 and the secondary battery 36 is charged.

【0029】周波数偏差が±0.04Hzを超える周波
数変動は、出力指令制御部20内の周波数検出器21に
よって検出され、偏差検出信号がLFC装置22に入力さ
れる。LFC装置22は、入力された偏差検出信号に基づ
いてLFC信号を端子21Aに出力する。LFC信号は水力発
電機群4及び火力発電機群5の制御部(図示省略)及び
二次電池システム30電力制御部37に印加される。LF
C信号は、パルスコード信号であり、各発電機及び二次
電池の出力の増減を指令するコード情報を有している。
LFC信号を受けた電力制御部37は、出力制御信号を充
放電制御装置34に与え、二次電池36の充電又は放電
を制御する。
A frequency variation having a frequency deviation exceeding ± 0.04 Hz is detected by a frequency detector 21 in the output command control unit 20, and a deviation detection signal is input to the LFC device 22. The LFC device 22 outputs an LFC signal to the terminal 21A based on the input deviation detection signal. The LFC signal is applied to a control unit (not shown) of the hydroelectric generator group 4 and the thermal power generator group 5 and a power control unit 37 of the secondary battery system 30. LF
The C signal is a pulse code signal and has code information for instructing an increase or decrease in the output of each generator and the secondary battery.
The power control unit 37 receiving the LFC signal supplies an output control signal to the charge / discharge control device 34 to control charging or discharging of the secondary battery 36.

【0030】本実施例における二次電池システム30
は、充電及び放電時に、定格電流以上の電流(以下、過
大電流という)で充放電する「過負荷運転」を前提とし
て、二次電池36の容量が設計されている。また、二次
電池36の充電深度を充電深度計測装置38で計測し、
計測値を電力制御部37の端子37Dに入力している。
これにより、電力制御部37は交流・直流制御装置34
に出力制御信号を与えて、二次電池36の充電深度が所
定の値に保たれるように、充放電を制御する。本実施例
では、充電深度が70〜80%程度となるまで充電を行
い、同20〜30%程度となるまで放電を行うことにす
る。充電深度は充電時を95%、放電時を5%程度にす
ることもできる。充電深度を上記の範囲に保つことによ
り、200〜250%程度の過負荷運転が可能となる。
上記の充電深度の範囲は二次電池の種類、特性、目的と
する運用形態により個々に検討して決める。
The secondary battery system 30 in the present embodiment
The capacity of the secondary battery 36 is designed on the premise of “overload operation” in which charging and discharging are performed at a current higher than the rated current (hereinafter, referred to as an excessive current) during charging and discharging. Also, the charging depth of the secondary battery 36 is measured by the charging depth measuring device 38,
The measured value is input to a terminal 37D of the power control unit 37.
As a result, the power control unit 37 is controlled by the AC / DC control device 34.
To control the charge and discharge so that the charge depth of the secondary battery 36 is maintained at a predetermined value. In the present embodiment, charging is performed until the charging depth becomes about 70 to 80%, and discharging is performed until the charging depth becomes about 20 to 30%. The charging depth can be about 95% during charging and about 5% during discharging. By keeping the charging depth in the above range, overload operation of about 200 to 250% becomes possible.
The range of the above-mentioned charge depth is determined by individually examining the type, characteristics and intended operation mode of the secondary battery.

【0031】二次電池システム30は、化学反応を利用
する直流電源である。化学反応を利用することから、出
力制御の応答性は、従来の火力機や水力機に比較して著
しく良く、高速応答が可能である。この高速応答性を活
用することにより、高速かつ精度の高いLFCを行うこと
が可能となる。二次電池システム30は、短時間であれ
ば過負荷運転が可能であるので、常時の系統運用に必要
とされるLFC調整容量に関し、従来の火力機や水力機等
で確保していたLFC調整容量より少ない定格容量の二次
電池で必要なLFC調整容量を確保することが可能であ
る。ただし、電池容量や電池特性及び設計仕様により、
最大過負荷時間は変化する。ところで、電力系統におけ
る基準周波数からの周波数変動は、ほぼ正規分布となる
ことが知られている。例えば、二次電池36の過大電流
による放電を必要とする状態があまり長くない時間続い
た後には、同程度の時間の過大電流による充電が継続
的、あるいは断続的に発生することが多い。このことか
ら、二次電池システム30の過負荷運転時の系統との電
力の授受に関しては、電力変換上のロス分を無視すれ
ば、平均値がほぼ0となることになる。このような電力
系統の特性と二次電池の過負荷能力を活用することによ
り、LFC調整容量の2ないし3分の1の定格容量の二次
電池36を用いて、所望のLFC調整容量を確保した運転
を行うことが可能となる。これにより、設備投資コスト
を押さえた電力システムの設計が可能となる。二次電池
36の充電深度の20〜30%まで放電されたとき、あ
るいは70〜80%まで充電されたとき、二次電池36
の充放電を停止する。それ以後のLFCは水力発電機群4
及び火力発電機群5によって行われる。
The secondary battery system 30 is a DC power supply utilizing a chemical reaction. Since a chemical reaction is used, the response of the output control is remarkably better than that of a conventional thermal power unit or a hydraulic power unit, and a high-speed response is possible. By utilizing this high-speed response, LFC with high speed and high accuracy can be performed. Since the rechargeable battery system 30 can perform overload operation for a short time, the LFC adjustment capacity required for normal operation of the system is controlled by the LFC adjustment that has been secured by conventional thermal power plants and hydraulic power plants. It is possible to secure the necessary LFC adjustment capacity with a secondary battery having a rated capacity smaller than the capacity. However, depending on battery capacity, battery characteristics and design specifications,
The maximum overload time varies. By the way, it is known that the frequency fluctuation from the reference frequency in the power system has a substantially normal distribution. For example, after the state in which the secondary battery 36 needs to be discharged due to the excessive current lasts for not too long, the charging due to the excessive current for the same amount of time often occurs continuously or intermittently. From this, with respect to the transfer of power to and from the system during the overload operation of the secondary battery system 30, the average value is almost 0 if the loss in power conversion is ignored. By utilizing the characteristics of the power system and the overload capacity of the secondary battery, a desired LFC adjusted capacity is secured by using the secondary battery 36 having a rated capacity of two to one third of the LFC adjusted capacity. It becomes possible to perform the operation which performed. As a result, it becomes possible to design a power system while suppressing capital investment costs. When discharged to 20 to 30% of the charging depth of the secondary battery 36, or when charged to 70 to 80%,
Stop charging and discharging. After that, the LFC was hydroelectric generator group 4
And the thermal power generator group 5.

【0032】LFC装置22は、周波数検出器21から入
力される周波数偏差△fを示す信号に基づいて、電力系
統1の電力需要変動を補うために必要な電力を示すデー
タであるLFC系統要求量を出力し、加算器23の負入力
端に印加する。一方、発電部2と電池システム30か
ら、それらの出力電力を示すデータである実出力値が加
算器24の正入力端に印加される。加算器24の負入力
端にはEDC装置25の端子25Cから出るデータの出力
指令値が印加され、この指令値から前記実出力値を減算
して出力指令値と実出力値との差が求められる。この差
は加算器23の正入力端に印加される。加算器23にお
いて、この差と系統要求量との差である制御誤差が求め
られ、EDC装置25の入力端子25Aに印加される。EDC
装置25は、この制御誤差に基づいて、端子25Bから
EDC信号を出力し、水力発電機群4、火力発電機群5及
び二次電池システム30に印加する。EDC信号は、変動
周期が20分程度以上であり、かつかなり大幅な需要変
動を抑制するための制御を行う。EDCでは、主として水
力発電機群4と火力発電機群5の個々の発電機を、あら
かじめ設定されている最も発電効率が高く、従って、最
も経済的な運転状態となるように制御しつつ出力を増減
させている。
The LFC device 22 receives the signal indicating the frequency deviation Δf input from the frequency detector 21 and calculates the required LFC system data, which is the data indicating the power required to compensate for the power demand fluctuation of the power system 1. Is output to the negative input terminal of the adder 23. On the other hand, from the power generation unit 2 and the battery system 30, an actual output value, which is data indicating their output power, is applied to the positive input terminal of the adder 24. An output command value of data output from the terminal 25C of the EDC device 25 is applied to a negative input terminal of the adder 24, and the actual output value is subtracted from the command value to obtain a difference between the output command value and the actual output value. Can be This difference is applied to the positive input of adder 23. In the adder 23, a control error, which is a difference between the difference and the required system amount, is obtained and applied to the input terminal 25A of the EDC device 25. EDC
The device 25 receives a signal from the terminal 25B based on the control error.
An EDC signal is output and applied to the hydraulic power generator group 4, the thermal power generator group 5, and the secondary battery system 30. The EDC signal has a fluctuation cycle of about 20 minutes or more, and performs control for suppressing a considerably large demand fluctuation. In the EDC, the output is controlled while controlling the individual generators of the hydroelectric generator group 4 and the thermal power generator group 5 so that the preset power generation efficiency is the highest and, therefore, the most economical operation state. Has been increased or decreased.

【0033】図3の(a)は夏季平日の1日の電力系統に
おける消費電力の変動を示すグラフであり、(b)は周波
数変動を考慮した同1日の二次電池の出力変動を示すグ
ラフである。図3の(b)の縦軸は、二次電池の出力の定
格出力に対する割合を示し、正値は放電を表し、負値は
充電を表している。±P1は、使用する二次電池の設計上
の許容過負荷の定格負荷に対する百分比である。本実施
例の動作及び効果をまとめると、以下のようになる。変
動周期が20分程度以下の短周期でかつ小幅な需要変動
に対しては、まず二次電池36の充放電により対応す
る。二次電池36の充電深度が20%から80%の範囲
にある間は二次電池の充放電を行う。放電により充電深
度が20%より小さくなり、または、充電により充電深
度が80%を超えると、二次電池36の充放電を停止
し、水力発電機群4及び火力発電機群5の出力の増減に
より、需要変動に対応する。
FIG. 3 (a) is a graph showing fluctuations in power consumption in the power system on one day in the summer week, and FIG. 3 (b) shows fluctuations in the output of the secondary battery on the same day in consideration of frequency fluctuations. It is a graph. The vertical axis of FIG. 3B indicates the ratio of the output of the secondary battery to the rated output, where a positive value indicates discharging and a negative value indicates charging. ± P1 is the percentage of the allowable overload in the design of the secondary battery to be used to the rated load. The operation and effect of the present embodiment are summarized as follows. A short demand cycle with a fluctuation cycle of about 20 minutes or less is first addressed by charging and discharging the secondary battery 36. While the charge depth of the secondary battery 36 is in the range of 20% to 80%, the secondary battery is charged and discharged. When the depth of charge is less than 20% due to discharging, or the depth of charge exceeds 80% due to charging, charging and discharging of the secondary battery 36 is stopped, and the output of the hydroelectric generator group 4 and the thermal power generator group 5 is increased or decreased. Responds to fluctuations in demand.

【0034】二次電池によりLFC調整容量を確保するの
で、火力機がLFC調整容量を分担する必要はない。従っ
て火力機の出力抑制運転をする必要はなく、最も効果の
高い定格出力で運転することができる。二次電池はLFC
の制御速度が速いので、敏速かつ正確な電力制御が行わ
れ、貫流ボイラ機の運転台数の比率が高くなっても、LF
C調整容量が不足することはない。また二次電池で調整
容量確保するので、老朽化した低能率出力機を運転する
必要はない。多数の再生可能エネルギー電源が系統して
連系され、気象状況の急変によりその出力が急速に変動
した場合でも、二次電池の速いLFC応答性によりその出
力変動を補うことができる。なお、LFC信号の制御対象
とならない程度の小さな周波数変動に関しては、二次電
池システムが運転されている系統にて測定される周波数
(当該システムにて測定)変動を検出し、従来の水力機
や火力機と同様に応答するガバナフリー特性を有するこ
とで、微少な周波数に対応した運転が行える。また、系
統事故などにより、二次電池システムが運転されている
系統が単独系統となった場合は、単独系統内にて基準周
波数を保つ出力制御を行うようにすればよい。
Since the LFC adjustment capacity is secured by the secondary battery, it is not necessary for the power plant to share the LFC adjustment capacity. Therefore, it is not necessary to perform the output suppression operation of the thermal power unit, and the operation can be performed at the rated output with the highest effect. Rechargeable battery is LFC
Control speed is fast, so that quick and accurate power control is performed, and even if the ratio of the number of once-through boiler
There is no shortage of C adjustment capacity. In addition, since the regulated capacity is secured by the secondary battery, it is not necessary to operate an aging low-efficiency output machine. Even if a large number of renewable energy power sources are systematically interconnected and their output fluctuates rapidly due to sudden changes in weather conditions, the output fluctuation can be compensated for by the fast LFC response of the secondary battery. In addition, as for the frequency fluctuation that is small enough not to be controlled by the LFC signal, the frequency fluctuation (measured by the system) measured by the system in which the secondary battery system is operated is detected, and the conventional hydraulic machine or the like is detected. With a governor-free characteristic that responds in the same manner as a thermal power plant, operation corresponding to a minute frequency can be performed. Further, when the system in which the secondary battery system is operated becomes a single system due to a system accident or the like, output control for maintaining the reference frequency within the single system may be performed.

【0035】《実施例2》実施例2は、二次電池システ
ム40の二次電池として、レドックスフロー電池41を
用いた周波数制御装置であり、そのブロック図を図4に
示す。その他の構成は図1と同じである。レドックスフ
ロー電池41は、バナジウムの酸化還元反応を利用した
二次電池であり、電池セルスタック部分とバナジウムの
電解液を貯蔵する電解液タンク42、43ならびにその
電解液を循環させる循環ポンプ44、45から構成され
る。レドックスフロー電池は、電解液タンク42、43
の容積を増やすことにより電池の容量を増やすことが出
来ることから、大規模な電源としての使用に適した二次
電池である。レドックスフロー電池の過負荷運転可能範
囲(過負荷時間は数秒から数十秒程度)の一例を図5に
示す。
Embodiment 2 Embodiment 2 is a frequency control device using a redox flow battery 41 as a secondary battery of a secondary battery system 40, and its block diagram is shown in FIG. Other configurations are the same as those in FIG. The redox flow battery 41 is a secondary battery using a redox reaction of vanadium, and includes a battery cell stack portion and electrolyte tanks 42 and 43 for storing an electrolyte of vanadium, and circulation pumps 44 and 45 for circulating the electrolyte. Consists of The redox flow battery is connected to the electrolyte tanks 42 and 43.
Since the capacity of the battery can be increased by increasing the volume of the secondary battery, the secondary battery is suitable for use as a large-scale power supply. FIG. 5 shows an example of the overload operable range (overload time is about several seconds to several tens of seconds) of the redox flow battery.

【0036】図5から分かるように、充電深度にもよる
が、充電、放電のそれぞれ図に示す運転範囲において、
過負荷運転を行うことが可能であり、最大約300%程
度の過負荷運転を行うことが可能である。電力系統での
運転に際しては、この充電深度を二次電池の電圧や電流
を測定して充電深度計測装置38により計測し、どの程
度の過負荷運転が可能であるかを二次電池システム40
の電力制御部46で判定し、LFC信号及びEDC信号に応じ
て出力制御を行う。過負荷運転を行うことを前提とする
為、充電時の充電深度は最大でも約70〜80%程度を
目標として運転する。電池容量については、その使用目
的に応じて、電解液タンク容積を変更すればよく、特に
系統運用に必要な電力を確保するには必要量に応じて電
解液タンクの容積を大きくすればよい。
As can be seen from FIG. 5, depending on the charge depth, in the operation ranges shown in the figures of charge and discharge, respectively.
An overload operation can be performed, and an overload operation of about 300% at the maximum can be performed. When operating in a power system, this depth of charge is measured by the voltage and current of the secondary battery and measured by the depth of charge measuring device 38, and how much overload operation is possible is determined by the secondary battery system 40.
And the output control is performed in accordance with the LFC signal and the EDC signal. Since it is assumed that the overload operation is performed, the operation is performed with a target charging depth of about 70 to 80% at the maximum during charging. Regarding the battery capacity, the volume of the electrolyte tank may be changed according to the purpose of use, and in particular, to secure the power required for system operation, the volume of the electrolyte tank may be increased according to the required amount.

【0037】レドックスフロー電池は、電解液の流量を
変えることにより、単位時間当たり電池セルを通過する
電荷量を多くするとともに、電解液濃度を均一にするこ
とが出来るため、短時間における過負荷運転能力の拡大
が可能である。実施例2では大容量のレドックスフロー
電池を用いることにより、例えば、大規模電源が系統事
故により電力系統から遮断された場合、即応性の高い瞬
動予備力を有する電源として働き、系統の周波数を維持
する運用に利用することが出来る。また、レドックスフ
ロー電池は水力機や火力機にくらべて著しく応答性が良
く、周波数変動への応答性が良いため、系統運用に必要
とされる従来のLFC調整容量よりも少ない容量で、従来
と同様の周波数変動抑制効果を得ることが出来る。ま
た、二次電池の過負荷能力を活用することにより、必要
なLFC調整容量よりも少ない定格容量の二次電池システ
ムにより従来と同様の周波数維持が可能であり、設備投
資を抑制した電力システムを構成することが出来る。
In the redox flow battery, the amount of charge passing through the battery cell per unit time can be increased and the concentration of the electrolyte can be made uniform by changing the flow rate of the electrolyte. Capacity expansion is possible. In the second embodiment, by using a large-capacity redox flow battery, for example, when a large-scale power supply is cut off from the power system due to a system accident, the power supply acts as a power supply having a highly responsive spinning reserve, and the frequency of the system is reduced. It can be used for maintaining operations. In addition, redox flow batteries have significantly better responsiveness than hydropower and thermal power plants, and have better responsiveness to frequency fluctuations, so they have a smaller capacity than the conventional LFC adjustment capacity required for grid operation, and A similar frequency fluctuation suppression effect can be obtained. In addition, by utilizing the overload capacity of the secondary battery, it is possible to maintain the same frequency as before with a secondary battery system with a rated capacity that is smaller than the required LFC adjustment capacity, and to realize a power system with reduced capital investment. Can be configured.

【0038】太陽光発電や風力発電などは、自然エネル
ギーを利用している為、その運用に際し、天候状況に影
響を受ける。系統運用者から見た場合、常時の供給電源
としては不安定な出力変動を伴う電源である。これらの
電源が今後より多く系統に連系し、電源構成に占める比
率が高まった場合、基準周波数の維持には、この不安定
な電源の出力変動を補完する電源が必要である。この補
完用の電源設備として、二次電池を用いるとその高速応
答特性と大きな電力容量を利用し供給力の変動を一定に
維持することで、周波数変動を抑制した運用が可能とな
る。
Solar power, wind power, and the like use natural energy and are affected by weather conditions when operating. From the point of view of the system operator, a power supply that always has unstable output fluctuations as a regular power supply. If more of these power sources are connected to the system in the future and their share in the power supply configuration increases, a power source that compensates for the unstable output fluctuation of the power source is required to maintain the reference frequency. If a secondary battery is used as the supplementary power supply equipment, it is possible to use the high-speed response characteristic and a large power capacity to keep the fluctuation of the supply power constant, thereby enabling the operation in which the frequency fluctuation is suppressed.

【0039】[0039]

【発明の効果】以上の各実施例で詳しく説明したように
本発明によれば、二次電池システムを用いて電力系統の
常時および緊急時の周波数制御を行うことにより、既存
の周波数制御方式に比較して、より高速かつ効率的な運
用が可能となる。
As described in detail in each of the above embodiments, according to the present invention, the regular and emergency frequency control of the power system is performed by using the secondary battery system, so that the existing frequency control method can be implemented. Compared with this, faster and more efficient operation becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1と2に共通の、周波数制御装
置のブロック図
FIG. 1 is a block diagram of a frequency control device common to Embodiments 1 and 2 of the present invention.

【図2】実施例1の二次電池システムのブロック図FIG. 2 is a block diagram of a secondary battery system according to the first embodiment.

【図3】(a)は電力系統における消費電力に関する1日
の変化の一例を示すグラフ (b)は二次電池の充放電状況の一例を示すグラフ
FIG. 3A is a graph showing an example of a daily change in power consumption in a power system; FIG. 3B is a graph showing an example of a charge / discharge state of a secondary battery;

【図4】本発明の実施例2の二次電池システムのブロッ
ク図
FIG. 4 is a block diagram of a secondary battery system according to Embodiment 2 of the present invention.

【図5】実施例2の二次電池の充放電を示すグラフFIG. 5 is a graph showing charging and discharging of the secondary battery of Example 2.

【図6】(a)は系統の周波数の変動を示すグラフ (b)はドラムボイラを有する火力器の出力、及び(c)は貫
流ボイラを有する火力器の出力変化を示すグラフ
FIG. 6 (a) is a graph showing a change in the frequency of the system, (b) is a graph showing the output of a fired heater having a drum boiler, and (c) is a graph showing a change in output of a thermal plant having a once-through boiler.

【符号の説明】[Explanation of symbols]

1 電力系統 2 発電部 3 原子力発電機群 4 水力発電機群 5 火力発電機群 6 再生可能エネルギー電源群 7 電路 8 負荷(需要家) 20 出力指令制御部 21 周波数検出器 22 LFC装置 23、24 加算器 25 EDC装置 30 二次電池システム 31 周波数検出装置 32 遮断器 33 変圧器 34 充放電制御装置 35 電圧・電流計側装置 36 二次電池 37 電力制御部 38 充電深度計測装置 40 二次電池システム 41 レドックスフロー電池 42、43 電解液タンク 44、45 循環ポンプ 46 電力制御部 47、48 流量計 50 開閉所 REFERENCE SIGNS LIST 1 power system 2 power generation unit 3 nuclear power generator group 4 hydroelectric generator group 5 thermal power generator group 6 renewable energy power supply group 7 electric circuit 8 load (consumer) 20 output command control unit 21 frequency detector 22 LFC device 23, 24 Adder 25 EDC device 30 Secondary battery system 31 Frequency detector 32 Circuit breaker 33 Transformer 34 Charge / discharge controller 35 Voltage / ammeter side device 36 Secondary battery 37 Power controller 38 Charge depth measuring device 40 Secondary battery system 41 Redox flow battery 42, 43 Electrolyte tank 44, 45 Circulation pump 46 Power control unit 47, 48 Flow meter 50 Switchyard

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 鉄雄 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 Fターム(参考) 5G066 AA05 AE09 JA01 JB03  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tetsuo Sasaki 3-3-22 Nakanoshima, Kita-ku, Osaka Kansai Electric Power Co., Inc. F term (reference) 5G066 AA05 AE09 JA01 JB03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電力を発電する発電部と、電力を消費す
る負荷と、発電部と負荷とを接続する電路とを有する電
力系統において、発電部からの電力発電量と負荷の電力
消費量の需給不均衡に伴って変動する周波数を計測し、
あらかじめ定められている基準周波数からの偏差を検出
する周波数偏差検出器、及び前記電力系統に交流・直流
変換装置を有する充放電制御装置を介して接続され、前
記周波数偏差検出器の検出結果に基づいて周波数の変動
を抑制するように充電又は放電を行う二次電池を有する
電力系統の周波数制御装置。
In a power system having a power generation unit that generates power, a load that consumes power, and an electric circuit that connects the power generation unit and the load, a power generation amount from the power generation unit and a power consumption amount of the load are calculated. Measure the frequency that fluctuates with the supply and demand imbalance,
A frequency deviation detector for detecting a deviation from a predetermined reference frequency, and connected to the power system via a charge / discharge control device having an AC / DC converter, based on a detection result of the frequency deviation detector A frequency control device for an electric power system having a secondary battery that performs charging or discharging so as to suppress frequency fluctuations.
【請求項2】 電力を発電する発電部と、電力を消費す
る負荷と、発電部と負荷とを接続する電路とを有する電
力系統において、発電部からの電力発電量と負荷の電力
消費量の需給不均衡に伴って変動する周波数を計測し、
あらかじめ定められている基準周波数からの偏差を検出
する周波数偏差検出器、 前記周波数偏差検出器の検出信号を受け、前記偏差が所
定の範囲を超えたとき前記発電部の発電電力を制御する
ための負荷周波数制御信号(LFC信号)を前記発電部
に与える負荷周波数制御装置、及び交流・直流変換装置
を有する充放電制御装置を経て前記電力系統に接続さ
れ、前記の偏差が所定の範囲以下のとき、電力を前記電
力系統に放電し、又は電力系統の電力により充電される
二次電池を有し、 前記LFC信号による発電部の発電電力の制御と前記二
次電池の充放電によって、電力の需給不均衡を解消して
電力系統の周波数変動を抑制する電力系統の周波数制御
装置。
2. In a power system having a power generation unit for generating power, a load consuming power, and an electric circuit connecting the power generation unit and the load, a power generation amount from the power generation unit and a power consumption amount of the load are calculated. Measure the frequency that fluctuates with the supply and demand imbalance,
A frequency deviation detector for detecting a deviation from a predetermined reference frequency, receiving a detection signal of the frequency deviation detector, and controlling the generated power of the power generation unit when the deviation exceeds a predetermined range. When connected to the power system via a load frequency control device that supplies a load frequency control signal (LFC signal) to the power generation unit and a charge / discharge control device having an AC / DC converter, and when the deviation is equal to or less than a predetermined range. A secondary battery that discharges power to the power system or is charged by the power of the power system, and controls power generated by a power generation unit based on the LFC signal and charges and discharges the secondary battery to supply and receive power. A power system frequency control device that eliminates imbalance and suppresses power system frequency fluctuations.
【請求項3】 前記二次電池がナトリウム硫黄電池であ
る請求項1又は2記載の電力系統の周波数制御装置。
3. The power system frequency control device according to claim 1, wherein the secondary battery is a sodium-sulfur battery.
【請求項4】 前記二次電池がレドックスフロー電池で
ある請求項1又は2記載の電力系統の周波数制御装置。
4. The frequency control device for a power system according to claim 1, wherein the secondary battery is a redox flow battery.
【請求項5】 前記二次電池は、定格値より大きい電力
で充放電する過負荷運転を行うことを特徴とする請求項
1又は2記載の電力系統の周波数制御装置。
5. The frequency control device for a power system according to claim 1, wherein the secondary battery performs an overload operation in which the secondary battery is charged and discharged with power larger than a rated value.
【請求項6】 過負荷運転可能範囲を拡大するため前記
レドックスフロー電池の電解液の流量を、充放電電力の
増減に応じて増減させる循環ポンプを備える請求項4記
載の電力系統の周波数制御装置。
6. A frequency control device for a power system according to claim 4, further comprising a circulating pump for increasing or decreasing the flow rate of the electrolyte of the redox flow battery in accordance with an increase or decrease in charge / discharge power in order to expand an overload operable range. .
【請求項7】 前記二次電池の、完全に放電された状態
から充電を開始してその電池に充電できる全電力量と、
ある時点で既に充電されている電力量との割合で定義さ
れる充電深度を計測する充電深度計測装置、及び前記充
電深度が所定の範囲内に保たれるように二次電池の充放
電を制御する制御手段を備える請求項1又は2記載の電
力系統の周波数制御装置。
7. A total amount of power that can be charged to the secondary battery by starting charging from a completely discharged state and charging the battery.
A depth-of-charge measuring device that measures a depth of charge defined as a percentage of the amount of power already charged at a certain point in time, and controls charging and discharging of a secondary battery such that the depth of charge is kept within a predetermined range. The frequency control device for a power system according to claim 1, further comprising a control unit that performs the control.
【請求項8】 前記充電深度の範囲が、充電時に95%
以下、放電時に5%以上であることを特徴とする請求項
7記載の電力系統の周波数制御装置。
8. The battery according to claim 1, wherein the range of the charging depth is 95% during charging.
8. The frequency control device according to claim 7, wherein the frequency is 5% or more during discharging.
【請求項9】 電力を発電する発電部と、電力を消費す
る負荷と、発電部と負荷とを接続する電路とを有する電
力系統において、発電部からの電力発電量と負荷の電力
消費量の需給不均衡に伴って変動する周波数を計測し、
あらかじめ定められている基準周波数からの偏差を検出
するステップ、及び前記電力系統に交流・直流変換装置
を介して接続され、前記偏差を検出するステップの検出
結果に基づいて、周波数の変動を抑制するように二次電
池の充電又は放電を行うステップを有する電力系統の周
波数制御方法。
9. In a power system having a power generation unit that generates power, a load that consumes power, and an electric circuit that connects the power generation unit and the load, a power generation amount from the power generation unit and a power consumption amount of the load. Measure the frequency that fluctuates with the supply and demand imbalance,
A step of detecting a deviation from a predetermined reference frequency; and a step of being connected to the electric power system via an AC / DC converter, and suppressing a fluctuation in frequency based on a detection result of the step of detecting the deviation. The method for controlling the frequency of the power system includes the step of charging or discharging the secondary battery as described above.
JP20811699A 1999-07-22 1999-07-22 Frequency control device for power system including secondary battery Expired - Fee Related JP4155674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20811699A JP4155674B2 (en) 1999-07-22 1999-07-22 Frequency control device for power system including secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20811699A JP4155674B2 (en) 1999-07-22 1999-07-22 Frequency control device for power system including secondary battery

Publications (2)

Publication Number Publication Date
JP2001037085A true JP2001037085A (en) 2001-02-09
JP4155674B2 JP4155674B2 (en) 2008-09-24

Family

ID=16550909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20811699A Expired - Fee Related JP4155674B2 (en) 1999-07-22 1999-07-22 Frequency control device for power system including secondary battery

Country Status (1)

Country Link
JP (1) JP4155674B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325496A (en) * 2001-04-24 2002-11-08 Tokyo Electric Power Co Inc:The Wind power output limiting system and method
WO2003015236A1 (en) * 2001-08-03 2003-02-20 Sumitomo Electric Industries, Ltd. Method for operating power source system and power source system comprising secondary battery
WO2003023933A1 (en) * 2001-09-13 2003-03-20 Made Tecnologías Renovables, S.A. System for conditioning and generating/storing power in electrical distribution networks in order to improve the dynamic stability and frequency control thereof
JP2003116218A (en) * 2001-10-04 2003-04-18 Hitachi Ltd Power supply method and device
JP2003284244A (en) * 2002-03-20 2003-10-03 Kansai Electric Power Co Inc:The Method and system for providing ancillary service using secondary battery
JP2005020845A (en) * 2003-06-25 2005-01-20 Meidensha Corp Method for compensating delay time of information transmission signal
JP2008178215A (en) * 2007-01-18 2008-07-31 Toshiba Corp Frequency adjustment system and frequency adjustment method
JP2008278725A (en) * 2007-05-07 2008-11-13 Hitachi Ltd Wind power generation system, control method therefor, and wind power plant using the same
JP2009213186A (en) * 2008-02-29 2009-09-17 Toshiba Corp Power system linkage device between different systems
JP2010116070A (en) * 2008-11-13 2010-05-27 Nishishiba Electric Co Ltd Marine vessel energy system
JP2011015590A (en) * 2009-07-06 2011-01-20 Kansai Electric Power Co Inc:The Secondary battery charging controller and secondary battery charging control program
WO2011024769A1 (en) 2009-08-25 2011-03-03 株式会社 東芝 Power system demand control equipment, demand control program and recording medium
JP2012222994A (en) * 2011-04-11 2012-11-12 Hokuriku Electric Power Co Inc:The Method and device of controlling load frequency of power system
JP2013502898A (en) * 2009-08-17 2013-01-24 プレミアム パワー コーポレイション Energy storage system and related methods
WO2013114712A1 (en) * 2012-01-30 2013-08-08 株式会社 東芝 Operation planning system
JP2014090586A (en) * 2012-10-30 2014-05-15 Central Research Institute Of Electric Power Industry Governor-free controller using power storage device and governor-free control method
WO2014123189A1 (en) * 2013-02-08 2014-08-14 日本電気株式会社 Battery control device, battery control system, battery control method, and recording medium
WO2014123188A1 (en) * 2013-02-08 2014-08-14 日本電気株式会社 Battery control device, battery control assistance device, battery control system, battery control method, battery control assistance method, and recording medium
KR20150022732A (en) * 2013-08-23 2015-03-04 고려대학교 산학협력단 System and method for controlling particpation-capacity of electric charging station for associating with renewable energy source
WO2015037654A1 (en) * 2013-09-12 2015-03-19 日本電気株式会社 Control device, electricity storage device, battery control system, battery control device, control method, battery control method, and recording medium
JP2015173570A (en) * 2014-03-12 2015-10-01 株式会社日立製作所 Automatic frequency controller and automatic frequency control method
WO2016027378A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device, supply and demand control method
WO2016027380A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device and supply and demand control method
WO2016027379A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device and supply and demand control method
KR101610699B1 (en) 2014-07-07 2016-04-20 이엔테크놀로지 주식회사 Power management system for frequency regulation based on energy storage sytem and method thereof
WO2016063739A1 (en) * 2014-10-23 2016-04-28 日本電気株式会社 Control device, power storage device, control method and recording medium
WO2016111087A1 (en) * 2015-01-07 2016-07-14 日本電気株式会社 Control device, supply and demand adjustment control device, power supply and demand adjustment system, control method, and supply and demand adjustment control method and program
JP2017028945A (en) * 2015-07-27 2017-02-02 株式会社東芝 Power plant power control apparatus and power control method
JP2018042351A (en) * 2016-09-06 2018-03-15 日本電気株式会社 Controller, control method, and program
CN110867851A (en) * 2019-11-25 2020-03-06 国网河北省电力有限公司高邑县供电分公司 A kind of switch station structure design method
CN113131502A (en) * 2021-04-23 2021-07-16 广东电网有限责任公司电力调度控制中心 Double-layer power coordination distribution method and device for centralized energy storage power station
CN113330622A (en) * 2019-01-16 2021-08-31 株式会社电装 Supply setting system for reusable secondary battery module
WO2021260958A1 (en) * 2020-06-22 2021-12-30 株式会社東芝 Power storage control system
WO2023236625A1 (en) * 2022-06-10 2023-12-14 华为数字能源技术有限公司 Scheduling method and device for energy storage and charging system
WO2024209628A1 (en) * 2023-04-06 2024-10-10 日立Geニュークリア・エナジー株式会社 Ancillary services supply facility

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9685799B2 (en) 2014-03-14 2017-06-20 Panasonic Intellectual Property Management Co., Ltd. Storage battery control device, storage battery control method, and storage battery control system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116550A (en) * 1981-01-13 1982-07-20 Tokyo Shibaura Electric Co Frequency improving system
JPS57132736A (en) * 1981-02-06 1982-08-17 Hitachi Ltd Automatic load frequency central control system
JPS5972939A (en) * 1982-10-20 1984-04-25 株式会社東芝 Generating command controller for power system
JPH06290796A (en) * 1993-03-30 1994-10-18 Shin Etsu Polymer Co Ltd Bipolar plate with reaction electrode layer for secondary battery
JPH0965588A (en) * 1995-08-24 1997-03-07 Hitachi Ltd Power storage system
JPH10155242A (en) * 1996-11-19 1998-06-09 Chubu Electric Power Co Inc Power system load frequency control system
JPH1127874A (en) * 1997-07-04 1999-01-29 Hitachi Ltd Power storage system using secondary battery
JPH1169893A (en) * 1997-08-26 1999-03-09 Hitachi Eng & Services Co Ltd Hybrid power generation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116550A (en) * 1981-01-13 1982-07-20 Tokyo Shibaura Electric Co Frequency improving system
JPS57132736A (en) * 1981-02-06 1982-08-17 Hitachi Ltd Automatic load frequency central control system
JPS5972939A (en) * 1982-10-20 1984-04-25 株式会社東芝 Generating command controller for power system
JPH06290796A (en) * 1993-03-30 1994-10-18 Shin Etsu Polymer Co Ltd Bipolar plate with reaction electrode layer for secondary battery
JPH0965588A (en) * 1995-08-24 1997-03-07 Hitachi Ltd Power storage system
JPH10155242A (en) * 1996-11-19 1998-06-09 Chubu Electric Power Co Inc Power system load frequency control system
JPH1127874A (en) * 1997-07-04 1999-01-29 Hitachi Ltd Power storage system using secondary battery
JPH1169893A (en) * 1997-08-26 1999-03-09 Hitachi Eng & Services Co Ltd Hybrid power generation system

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325496A (en) * 2001-04-24 2002-11-08 Tokyo Electric Power Co Inc:The Wind power output limiting system and method
WO2003015236A1 (en) * 2001-08-03 2003-02-20 Sumitomo Electric Industries, Ltd. Method for operating power source system and power source system comprising secondary battery
JP2003052132A (en) * 2001-08-03 2003-02-21 Sumitomo Electric Ind Ltd How to operate the power supply system
WO2003023933A1 (en) * 2001-09-13 2003-03-20 Made Tecnologías Renovables, S.A. System for conditioning and generating/storing power in electrical distribution networks in order to improve the dynamic stability and frequency control thereof
ES2190735A1 (en) * 2001-09-13 2003-08-01 Made Tecnologias Renovables S System for conditioning and generating/storing power in electrical distribution networks in order to improve the dynamic stability and frequency control thereof
JP2003116218A (en) * 2001-10-04 2003-04-18 Hitachi Ltd Power supply method and device
JP2003284244A (en) * 2002-03-20 2003-10-03 Kansai Electric Power Co Inc:The Method and system for providing ancillary service using secondary battery
JP2005020845A (en) * 2003-06-25 2005-01-20 Meidensha Corp Method for compensating delay time of information transmission signal
JP2008178215A (en) * 2007-01-18 2008-07-31 Toshiba Corp Frequency adjustment system and frequency adjustment method
JP2008278725A (en) * 2007-05-07 2008-11-13 Hitachi Ltd Wind power generation system, control method therefor, and wind power plant using the same
JP2009213186A (en) * 2008-02-29 2009-09-17 Toshiba Corp Power system linkage device between different systems
JP2010116070A (en) * 2008-11-13 2010-05-27 Nishishiba Electric Co Ltd Marine vessel energy system
JP2011015590A (en) * 2009-07-06 2011-01-20 Kansai Electric Power Co Inc:The Secondary battery charging controller and secondary battery charging control program
JP2013502898A (en) * 2009-08-17 2013-01-24 プレミアム パワー コーポレイション Energy storage system and related methods
US9257846B2 (en) 2009-08-17 2016-02-09 Vionx Energy Corporation Energy storage systems and associated methods
WO2011024769A1 (en) 2009-08-25 2011-03-03 株式会社 東芝 Power system demand control equipment, demand control program and recording medium
TWI400852B (en) * 2009-08-25 2013-07-01 Toshiba Kk Logistic control device, logistic control program and its recording medium of a power system
US8536835B2 (en) 2009-08-25 2013-09-17 Kabushiki Kaisha Toshiba Supply and demand control apparatus for electric power system, and storage medium storing supply and demand control program
JP2012222994A (en) * 2011-04-11 2012-11-12 Hokuriku Electric Power Co Inc:The Method and device of controlling load frequency of power system
WO2013114712A1 (en) * 2012-01-30 2013-08-08 株式会社 東芝 Operation planning system
US9606561B2 (en) 2012-01-30 2017-03-28 Kabushiki Kaisha Toshiba Operation planning system
CN104067476A (en) * 2012-01-30 2014-09-24 株式会社东芝 Operation planning system
JP2014090586A (en) * 2012-10-30 2014-05-15 Central Research Institute Of Electric Power Industry Governor-free controller using power storage device and governor-free control method
CN105075052A (en) * 2013-02-08 2015-11-18 日本电气株式会社 Battery control device, battery control assistance device, battery control system, battery control method, battery control assistance method, and recording medium
AU2014215084B2 (en) * 2013-02-08 2016-05-05 Nec Corporation Battery control device, battery control system, battery control method, and recording medium
WO2014123189A1 (en) * 2013-02-08 2014-08-14 日本電気株式会社 Battery control device, battery control system, battery control method, and recording medium
US10079501B2 (en) 2013-02-08 2018-09-18 Nec Corporation Battery control device, battery control system, battery control method, and recording medium
JP2015057936A (en) * 2013-02-08 2015-03-26 日本電気株式会社 Device and system for battery control, power storage device, control device, battery control method, battery control support method, and program
JP2018164399A (en) * 2013-02-08 2018-10-18 日本電気株式会社 Battery control device, control device, battery control system, battery control method and battery control support method
JP5633872B1 (en) * 2013-02-08 2014-12-03 日本電気株式会社 Battery control device, battery control system, battery control method, and recording medium
WO2014123188A1 (en) * 2013-02-08 2014-08-14 日本電気株式会社 Battery control device, battery control assistance device, battery control system, battery control method, battery control assistance method, and recording medium
US10784702B2 (en) 2013-02-08 2020-09-22 Nec Corporation Battery control device, battery control system, battery control method,and recording medium
US10365675B2 (en) 2013-02-08 2019-07-30 Nec Corporation Battery control device, battery control support device, battery control system, battery control method, battery control support method, and recording medium
JP5633871B1 (en) * 2013-02-08 2014-12-03 日本電気株式会社 Battery control device, battery control support device, battery control system, battery control method, battery control support method, and recording medium
KR101629807B1 (en) 2013-08-23 2016-06-13 고려대학교 산학협력단 System and method for controlling particpation-capacity of electric charging station for associating with renewable energy source
KR20150022732A (en) * 2013-08-23 2015-03-04 고려대학교 산학협력단 System and method for controlling particpation-capacity of electric charging station for associating with renewable energy source
JPWO2015037654A1 (en) * 2013-09-12 2017-03-02 日本電気株式会社 Control device, power storage device, battery control system, battery control device, control method, battery control method, and recording medium
WO2015037654A1 (en) * 2013-09-12 2015-03-19 日本電気株式会社 Control device, electricity storage device, battery control system, battery control device, control method, battery control method, and recording medium
US10056757B2 (en) 2013-09-12 2018-08-21 Nec Corporation Control device, power storage device, battery control system, battery control device, control method, battery control method, and recording medium
JP2015173570A (en) * 2014-03-12 2015-10-01 株式会社日立製作所 Automatic frequency controller and automatic frequency control method
KR101610699B1 (en) 2014-07-07 2016-04-20 이엔테크놀로지 주식회사 Power management system for frequency regulation based on energy storage sytem and method thereof
WO2016027379A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device and supply and demand control method
WO2016027378A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device, supply and demand control method
JPWO2016027379A1 (en) * 2014-08-22 2017-04-27 中国電力株式会社 Supply and demand control device, supply and demand control method
JPWO2016027380A1 (en) * 2014-08-22 2017-04-27 中国電力株式会社 Supply and demand control device, supply and demand control method
JP5946983B1 (en) * 2014-08-22 2016-07-06 中国電力株式会社 Supply and demand control device, supply and demand control method
WO2016027380A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device and supply and demand control method
WO2016063739A1 (en) * 2014-10-23 2016-04-28 日本電気株式会社 Control device, power storage device, control method and recording medium
JPWO2016111087A1 (en) * 2015-01-07 2017-10-26 日本電気株式会社 Control device, supply / demand adjustment control device, power supply / demand adjustment system, control method, supply / demand adjustment control method, and program
WO2016111087A1 (en) * 2015-01-07 2016-07-14 日本電気株式会社 Control device, supply and demand adjustment control device, power supply and demand adjustment system, control method, and supply and demand adjustment control method and program
JP2017028945A (en) * 2015-07-27 2017-02-02 株式会社東芝 Power plant power control apparatus and power control method
JP2018042351A (en) * 2016-09-06 2018-03-15 日本電気株式会社 Controller, control method, and program
CN113330622A (en) * 2019-01-16 2021-08-31 株式会社电装 Supply setting system for reusable secondary battery module
CN113330622B (en) * 2019-01-16 2023-09-15 株式会社电装 Supply setting system for reusable secondary battery modules
CN110867851A (en) * 2019-11-25 2020-03-06 国网河北省电力有限公司高邑县供电分公司 A kind of switch station structure design method
WO2021260958A1 (en) * 2020-06-22 2021-12-30 株式会社東芝 Power storage control system
JP7463204B2 (en) 2020-06-22 2024-04-08 株式会社東芝 Energy storage control system
CN113131502A (en) * 2021-04-23 2021-07-16 广东电网有限责任公司电力调度控制中心 Double-layer power coordination distribution method and device for centralized energy storage power station
WO2023236625A1 (en) * 2022-06-10 2023-12-14 华为数字能源技术有限公司 Scheduling method and device for energy storage and charging system
WO2024209628A1 (en) * 2023-04-06 2024-10-10 日立Geニュークリア・エナジー株式会社 Ancillary services supply facility

Also Published As

Publication number Publication date
JP4155674B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4155674B2 (en) Frequency control device for power system including secondary battery
US8334606B2 (en) Wind power generation system of a type provided with power storage system
CN112086997B (en) Photovoltaic coordination frequency modulation control method based on variable power tracking and super capacitor storage
JP4759587B2 (en) Wind farm
JP4170565B2 (en) Power fluctuation smoothing apparatus and control method of distributed power supply system including the same
JP3352662B2 (en) Power system stabilizing apparatus and power system stabilizing method using secondary battery system
CN102474104B (en) Power supply system, power supply method, program, recording medium, and power supply controller
JP5717172B2 (en) Power supply system
JPH1169893A (en) Hybrid power generation system
JP2006226189A (en) Power generation system
US12027859B2 (en) Methods and systems for power management in a microgrid
CN112821381A (en) Automatic power generation control method and system for distributed power supply in micro-grid
CN110266026B (en) Energy storage constant volume method for power plant energy storage auxiliary frequency modulation
JP2023510436A (en) Grid voltage control method and system based on load transformer and power storage regulation
JP2016039685A (en) Controller, power storage system comprising the same, and control method and control program for the same
JP5549994B2 (en) Converter control device
CN106329562A (en) Method and control device of wind power plant participating in black starting of power grid
Zhang et al. Research on frequency regulation strategy based on model predictive control for wind-hydro-storage complementary microgrid
KR101299269B1 (en) Battery Energy Storage System
WO2017132802A1 (en) Inverter control device and method for energy interconnection and energy storage of ac bus
JP7615361B2 (en) Distributed Power Control System
JP2003092831A (en) Power supply system and operation method thereof
RU2726943C1 (en) Method of reducing fuel consumption by diesel-generator units in hybrid power plant with renewable energy resources
KR101993640B1 (en) Balancing energy storage system using hopping battery cell
JP2021164318A (en) Power transfer system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees