JP2001033388A - Method and device for measuring concentration of chlorophyll a - Google Patents
Method and device for measuring concentration of chlorophyll aInfo
- Publication number
- JP2001033388A JP2001033388A JP11209008A JP20900899A JP2001033388A JP 2001033388 A JP2001033388 A JP 2001033388A JP 11209008 A JP11209008 A JP 11209008A JP 20900899 A JP20900899 A JP 20900899A JP 2001033388 A JP2001033388 A JP 2001033388A
- Authority
- JP
- Japan
- Prior art keywords
- measuring
- light
- chlorophyll
- turbidity
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水中のクロロフィ
ルa濃度の測定方法及びその装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring chlorophyll a concentration in water.
【0002】[0002]
【従来の技術】現在、水中のクロロフィルa濃度を測定
する方法として、単波長吸光光度法、三波長吸光光度
法、高速液体クロマトグラフ法及び蛍光光度法等があ
る。この中でも、蛍光光度計法はクロロフィルa濃度現
場測定方法としても用いられている。2. Description of the Related Art At present, methods for measuring the concentration of chlorophyll a in water include single-wavelength absorptiometry, three-wavelength absorptiometry, high-performance liquid chromatography, and fluorometry. Among them, the fluorometer method is also used as a chlorophyll a concentration in-situ measurement method.
【0003】現場測定の場合、実験室での分析と違い、
現場のその場でクロロフィルa濃度を知ることができる
というメリットがある。また、現場で連続測定できれ
ば、連続的にクロロフィルa濃度を知ることができ、水
域の富栄養化の状況を連続的モニタリングできるという
メリットもある。[0003] In the case of in-situ measurement, unlike laboratory analysis,
There is an advantage that the chlorophyll a concentration can be known on the spot at the site. In addition, if continuous measurement can be performed on site, there is an advantage that the chlorophyll a concentration can be continuously known and the state of eutrophication in the water area can be continuously monitored.
【0004】蛍光光度法によるクロロフィルa濃度測定
方法について、簡単に原理、方法を説明する。 (原 理)クロロフィルaに紫外線を照射すると、赤
色の蛍光を発し、その強度は励起光の強さに比例するの
で、強い光源を使用することにより高感度の測定ができ
る。 (測定機器)蛍光光度計または蛍光分光光度計を用い
る。 (測定操作) 1)蛍光光度計または蛍光分光光度計の励起波長を436n
m、蛍光部の波長を670nmに調節する。[0004] The principle and method of measuring chlorophyll a concentration by the fluorescence method will be briefly described. (Principle) When chlorophyll a is irradiated with ultraviolet rays, it emits red fluorescence, and its intensity is proportional to the intensity of the excitation light. Therefore, a highly sensitive measurement can be performed by using a strong light source. (Measurement equipment) A fluorometer or a fluorescence spectrophotometer is used. (Measurement operation) 1) Set the excitation wavelength of the fluorometer or the fluorescence spectrophotometer to 436n.
m, adjust the wavelength of the fluorescent part to 670 nm.
【0005】2)検液の一定量を正確に取り、セルに入
れる。2) A certain amount of a test solution is accurately taken and put into a cell.
【0006】3)セルを蛍光光度計にセットして、励起
波長436nm、受光波長670nmで蛍光測定をする。3) The cell is set in a fluorimeter and fluorescence is measured at an excitation wavelength of 436 nm and a reception wavelength of 670 nm.
【0007】4)測定した蛍光の読取値からクロロフィ
ルa濃度を算出する。この際、クロロフィルa1μg/
l当りの固有蛍光(蛍光光度とクロロフィルa濃度の検
量線)を予め求めておく。4) The chlorophyll a concentration is calculated from the measured fluorescence reading. At this time, 1 μg of chlorophyll a /
The intrinsic fluorescence per 1 (calibration curve of fluorescence intensity and chlorophyll a concentration) is determined in advance.
【0008】尚、励起光、受光の波長選択をフィルター
で行なうフィルター式の蛍光光度計の場合、一次フィル
ター(励起光源側)としては436nmの干渉フィルター
か、その付近に極大を持つ色ガラスフィルターを用い
る。また、二次フィルター(受光部側)としては、650n
m以上の光のみを透過する赤色ガラスフィルターを用い
る。In the case of a filter-type fluorometer in which the wavelengths of excitation light and light reception are selected by a filter, an interference filter of 436 nm or a color glass filter having a local maximum near it is used as a primary filter (excitation light source). Used. In addition, as a secondary filter (light receiving unit side), 650n
A red glass filter that transmits only light of m or more is used.
【0009】ここで、前述の蛍光分析による定量方法の
原理について説明する。Here, the principle of the above-described quantification method by fluorescence analysis will be described.
【0010】蛍光は光の吸収により生ずる。いま、蛍光
物質の濃度cの溶液を厚みbのセルに入れ、励起光源に
よって照射する時、入射光の強さをI0、透過光の強さ
をIとすれば、蛍光物質による光の吸収についてはLamb
ert−Beerの法則が成り立ち、下記(1)式となる。[0010] Fluorescence is generated by light absorption. Now, when a solution having a concentration c of a fluorescent substance is put into a cell having a thickness b and irradiated with an excitation light source, if the intensity of incident light is I 0 and the intensity of transmitted light is I, light absorption by the fluorescent substance is possible. About Lamb
The law of ert-Beer is established, and the following equation (1) is obtained.
【0011】 I=I0・exp(−a・b・c) ……(1) ここでaは、吸光係数である。I = I 0 · exp (−a · b · c) (1) where a is an extinction coefficient.
【0012】したがって、吸収された光の強さは、下記
(2)式となる。Therefore, the intensity of the absorbed light is given by the following equation (2).
【0013】 I0−I=I0・(1−exp(−a・b・c)) ……(2) 光の照射方向と直角に受光器を置いて蛍光の強さを測定
すれば、蛍光強度Fは、それ自身が溶液により吸収され
ず、また照射光の吸収に比例すると仮定すれば、下記
(3)式となる。I 0 −I = I 0 · (1−exp (−a · b · c)) (2) If the intensity of the fluorescence is measured by placing the light receiver at right angles to the light irradiation direction, Assuming that the fluorescence intensity F itself is not absorbed by the solution and is proportional to the absorption of the irradiation light, the following expression (3) is obtained.
【0014】 F=K’・(I0−I)=K・I0・(1−exp(−a・b・c))・φ …… (3) ここで、Kは溶液の照射面積、受光器の大きさとレスポ
ンスなど機器による定数、φは蛍光収率すなわち吸収さ
れた励起光量に対する総蛍光量の比である。よって、下
記(4)(5)式が得られる。F = K ′ · (I 0 -I) = K · I 0 · (1-exp (−a · b · c)) · φ (3) where K is the irradiation area of the solution, A constant depending on the device such as the size of the light receiver and the response, and φ is the fluorescence yield, that is, the ratio of the total fluorescence amount to the absorbed excitation light amount. Therefore, the following equations (4) and (5) are obtained.
【0015】 F=K・I0・φ・a・b・c、(a・b・c<0.05) ……(4) F=K・I0・φ・a・b・c・(1−a・b・c/2)、(0.05<a・b・ c<0.25) ……(5) 希釈溶液では(4)式が成立するので、測定機器の諸条
件を一定にすれば、蛍光強度Fは蛍光物質濃度cに比例
し、予めFとcの関係式を求めれば、未知濃度を求める
ことができる。F = K · I 0 · φ · a · b · c, (a · b · c <0.05) (4) F = K · I 0 · φ · a · b · c · (1− (abc / 2), (0.05 <abc <0.25) (5) Since the equation (4) holds for a diluted solution, if the various conditions of the measuring device are fixed, the fluorescence intensity F is proportional to the fluorescent substance concentration c, and an unknown concentration can be obtained by obtaining a relational expression between F and c in advance.
【0016】次に、現場におけるクロロフィルaの測定
方法について述べる。Next, a method for measuring chlorophyll a in the field will be described.
【0017】現場用測定装置には、直接センサを現場の
水中に沈めるタイプと装置は現場陸上に設置して検水を
装置に通水するタイプの2種類ある。前者を「現場蛍光
光度計」、後者を「通常の蛍光光度計」と呼称する。There are two types of on-site measuring devices: a type in which the sensor is directly submerged in the water at the site, and a type in which the sensor is installed on land at the site and water is passed through the device. The former is referred to as "in situ fluorometer" and the latter is referred to as "normal fluorometer".
【0018】現場蛍光光度計は、測定したい地点、深さ
までセンサを沈めた後、その地点における蛍光光度を測
定し、その測定値からクロロフィルa濃度に換算するこ
とを特徴としている。濃度換算式は、蛍光光度とクロロ
フィルa濃度の関係を予備試験で調査して、予め設定す
る必要がある。尚、連続測定を実現するため、検出部に
は測定妨害となる汚れ除去用にワイパーが付帯されてい
るものもある。The in-situ fluorimeter is characterized in that after the sensor is sunk to the point and depth to be measured, the luminous intensity at that point is measured, and the measured value is converted into chlorophyll a concentration. The concentration conversion formula needs to be set in advance by examining the relationship between the fluorescence intensity and the chlorophyll a concentration by a preliminary test. In addition, in order to realize continuous measurement, some detection units are provided with a wiper for removing dirt that may interfere with measurement.
【0019】通常の蛍光光度計は、測定したい地点、深
さの水をポンプアップして、フローセルに通水して蛍光
光度を測定し、その測定値からクロロフィルa濃度に換
算することを特徴としている。現場蛍光光度計と同様
に、蛍光光度とクロロフィルa濃度の関係を予備試験で
調査して、濃度換算式を予め設定する必要がある。以
後、本蛍光光度計による測定方法を、「現場蛍光光度計
を用いた現場測定」と呼称する。An ordinary fluorometer is characterized in that water at a point and a depth to be measured is pumped up, the water is passed through a flow cell, the fluorescence is measured, and the measured value is converted into chlorophyll a concentration. I have. As in the case of the in-situ fluorometer, it is necessary to investigate the relationship between the fluorescence intensity and the chlorophyll a concentration by a preliminary test and to set a concentration conversion formula in advance. Hereinafter, the measurement method using the present fluorometer is referred to as “in-situ measurement using an in-situ fluorometer”.
【0020】海洋環境調査法・日本海洋学会編(恒星社
厚生閣)には、現場蛍光光度計を用いたクロロフィルa
測定について次の旨の記述がある。植物プランクトンの
生体に含まれるクロロフィルaが蛍光を発する性質を利
用して、海洋の現場でクロロフィルaを測定することが
できる。現場蛍光光度計は、採水・ろ過・抽出等の作業
が不要で、検出部を直接水中に入れて深度を変えたり曳
行したりすればクロロフィルa量の連続記録ができるの
で極めて便利であるが、抽出法などに比べると精度は劣
る。現場蛍光光度計の使用上もっとも重要なことは、個
々の測定装置に信頼できる検量線を予め作成しておく必
要がある。植物プランクトン以外の微粒子や溶存物など
による濁りが著しい場合にも、測定誤差が大きくなる可
能性があるから注意しなれればならない。The marine environment survey method, edited by the Oceanographic Society of Japan (Koseisha Koseikaku) includes chlorophyll a using an in-situ fluorometer.
The following statement is made regarding the measurement. By utilizing the property that chlorophyll a contained in a living body of phytoplankton emits fluorescence, chlorophyll a can be measured at a marine site. The on-site fluorometer is extremely convenient because it does not require operations such as water sampling, filtration, extraction, etc., and it is possible to continuously record the amount of chlorophyll a by changing the depth or towing the detector directly into water. The accuracy is inferior to that of the extraction method. The most important thing in using an in-situ fluorometer is that a reliable calibration curve must be created in advance for each measuring device. Care must be taken even when the turbidity due to fine particles or dissolved substances other than phytoplankton is remarkable because the measurement error may increase.
【0021】[0021]
【発明が解決しようとする課題】蛍光光度計で現場の検
水を測定する場合、前述のように、植物性プランクトン
以外の微粒子や溶存物などによる濁りが著しい場合にも
測定誤差が大きくなる可能性があるように、常に変動す
る検水水質によって、測定される蛍光光度が測定誤差を
含む可能性が大きい。このように現場測定においては、
検水中の濁質や共存物質が特に問題となる。これは現場
蛍光光度計、通常の蛍光光度計に共通することである。When measuring water at a site with a fluorometer, as described above, the measurement error can be large even when turbidity due to fine particles other than phytoplankton or dissolved matter is remarkable. As a result, there is a great possibility that the measured luminous intensity includes a measurement error due to the constantly changing sample water quality. Thus, in the field measurement,
The turbidity and coexisting substances in the test water are particularly problematic. This is common to in-situ fluorimeters and ordinary fluorimeters.
【0022】また、濁質や共存物質が多い場合、具体的
に次のような問題がある。蛍光物質が発した蛍光が検水
中の濁質や共存物質による反射、散乱、吸収で減光さ
れ、蛍光受光部で受光する蛍光が実際に発せられた蛍光
より弱くなる。前述の現場蛍光光度計は、水中に検出部
を浸漬して蛍光光度を測定するだけで、検水の濁質や溶
存物質に関する上記の問題点には対応できていないのが
現状である。Further, when there are a lot of turbid substances and coexisting substances, there are the following problems. The fluorescence emitted by the fluorescent substance is reduced by reflection, scattering, and absorption by the turbidity and coexisting substances in the test water, and the fluorescence received by the fluorescence receiving unit becomes weaker than the fluorescence actually emitted. At present, the above-mentioned in-situ fluorometer only measures the fluorescence intensity by immersing the detection unit in water and does not address the above-mentioned problems relating to the turbidity and dissolved substances of the sample.
【0023】そこで、本発明は上記の事情に鑑みてなさ
れたもので、検水中に汚濁物質が共存しても、検水中の
クロロフィルa濃度を高精度に測定することが可能なク
ロロフィルa濃度測定方法及びその装置を提供すること
を課題とする。Accordingly, the present invention has been made in view of the above circumstances, and even if pollutants coexist in the test water, it is possible to measure the chlorophyll a concentration in the test water with high accuracy. It is an object to provide a method and an apparatus therefor.
【0024】[0024]
【課題を解決するための手段】本発明は、上記の課題を
達成するために、第1発明は、検水の蛍光光度と濁度を
測定し、この蛍光光度と濁度の測定値から演算によって
検水のクロロフィルa濃度を算出することを特徴として
いる。According to the present invention, in order to achieve the above-mentioned object, a first invention is to measure the fluorescence and turbidity of a test water, and calculate from the measured values of the fluorescence and turbidity. The chlorophyll a concentration of the test water is calculated by the following method.
【0025】第2発明は、前記検水の濁度は、下記式に
より算出することを特徴としている。According to a second aspect of the present invention, the turbidity of the sample is calculated by the following equation.
【0026】T=a・L・log(I0/I) T:濁度 a:定数 L:測定セル長 I0:検水への入射光強度 I:検水の透過光強度 第3発明は、前記クロロフィルa濃度算出のための演算
は、下記式によることを特徴としている。T = a · L·log (I 0 / I) T: turbidity a: constant L: measuring cell length I 0 : intensity of incident light on test water I: transmitted light intensity of test water The calculation for calculating the chlorophyll a concentration is based on the following equation.
【0027】C=K’・10T/K・F C:検水中のクロロフィルa濃度 T:検水の濁度 F:検水の蛍光光度 K、K’:定数 第4発明は、検水が供給された測定セルに、光源から一
定波長の光を照射させて検水の蛍光光度を測定する蛍光
光度測定手段と、検水が供給された測定セルに、光源か
ら一定波長の光を照射させて検水の濁度を測定する濁度
測定手段と、前記蛍光光度測定手段と濁度測定手段とか
ら供給された測定値を格納し、これらの測定値から演算
によって測定セル内の検水のクロロフィルa濃度を算出
する演算処理手段とからなることを特徴としている。C = K ′ · 10 T / K · FC C: Chlorophyll a concentration in the test water T: Turbidity of the test water F: Fluorescence intensity of the test water K, K ′: Constant The supplied measuring cell is irradiated with light of a certain wavelength from a light source to measure the fluorescence intensity of the sample water, and the measuring cell supplied with the sample is irradiated with light of a certain wavelength from the light source. Turbidity measuring means for measuring the turbidity of the test water, storing the measured values supplied from the fluorescence luminosity measuring means and the turbidity measuring means, and calculating the measured water turbidity in the measuring cell from these measured values. And an arithmetic processing means for calculating the chlorophyll a concentration.
【0028】第5発明は、前記濁度測定手段は、光源か
ら前記測定セルへ照射される光の強度と前記測定セルか
ら透過した光の強度を測定した後、これらの測定値から
演算によって測定セル内の検水の濁度を算出することを
特徴としている。According to a fifth aspect of the present invention, the turbidity measuring means measures the intensity of light emitted from the light source to the measuring cell and the intensity of light transmitted from the measuring cell, and then measures the intensity from the measured values. It is characterized in that the turbidity of the water sample in the cell is calculated.
【0029】第6発明は、前記測定セルは、前記蛍光光
度測定手段と濁度測定手段の共有測定セルであり、蛍光
光度測定時に濁度測定用照射光を遮断し、濁度測定時に
蛍光光度測定用照射光を遮断することによって、一定時
間毎に蛍光光度と濁度の測定の切替を行なうことを特徴
としている。According to a sixth aspect of the present invention, the measuring cell is a shared measuring cell of the fluorescence luminosity measuring means and the turbidity measuring means, and blocks irradiation light for turbidity measurement at the time of measuring the fluorescence and measures the fluorescence at the time of measuring the turbidity. It is characterized in that the measurement illuminance is switched at regular intervals by shutting off the measurement irradiation light.
【0030】第7発明は、検水が供給された測定セル
に、光源から一定波長の光を照射させて検水の蛍光光度
を測定する蛍光光度測定手段と、検水が供給された測定
セルへ照射される光源からの光の強度と前記測定セルか
ら透過した光の強度を測定する入射光・透過光強度測定
手段と、前記蛍光光度測定手段と入射光・透過光強度測
定手段とから供給された測定値を格納し、これらの測定
値から演算によって測定セル内の検水のクロロフィルa
濃度を算出する演算処理手段とからなることを特徴とし
ている。According to a seventh aspect of the present invention, there is provided a fluorescent light measuring means for irradiating a light having a predetermined wavelength from a light source to a measuring cell to which a test water is supplied, and measuring a fluorescent intensity of the test water, and a measuring cell to which the test water is supplied. Incident light / transmitted light intensity measuring means for measuring the intensity of light from the light source irradiated to the light source and the intensity of light transmitted from the measuring cell; and supplied from the fluorescent light intensity measuring means and the incident light / transmitted light intensity measuring means. The measured values are stored, and the chlorophyll a of the test water in the measuring cell is calculated from these measured values.
And a calculation processing means for calculating the density.
【0031】第8発明は、前記測定セルは、前記蛍光光
度測定手段と入射光・透過光強度測定手段の共有測定セ
ルであり、蛍光光度測定時に入射光強度・透過光強度測
定用照射光を遮断し、入射光強度・透過光強度測定時に
蛍光光度測定用照射光を遮断することによって、一定時
間毎に蛍光光度と入射光・透過光強度の測定を切り替え
ることを特徴としている。According to an eighth aspect of the present invention, the measuring cell is a shared measuring cell of the fluorescence luminosity measuring means and the incident light / transmitted light intensity measuring means. It is characterized in that the measurement is switched between the fluorescence intensity and the incident light / transmitted light intensity at regular intervals by shutting off and interrupting the irradiation light for fluorescence intensity measurement when measuring the incident light intensity / transmitted light intensity.
【0032】[0032]
【発明の実施の形態】本発明に係るクロロフィルa測定
方法で用いる蛍光光度計は、蛍光光度法によるクロロフ
ィルa濃度測定原理に基づくものを用いる(例えば、励
起波長436nm付近、受光側波長650nm以上の蛍光光度を測
定できるものであること)。本発明に係る蛍光光度は、
励起波長436nm付近、受光側波長670nm付近の蛍光光度
で、クロロフィルa濃度測定用の蛍光光度である。BEST MODE FOR CARRYING OUT THE INVENTION The fluorometer used in the method for measuring chlorophyll a according to the present invention is based on the principle of measuring the concentration of chlorophyll a by the fluorometry (for example, when the excitation wavelength is around 436 nm and the light receiving side wavelength is 650 nm or more). Fluorescent intensity can be measured). The fluorescence intensity according to the present invention,
This is the fluorescence intensity around the excitation wavelength of 436 nm and the light receiving side wavelength of around 670 nm, which is the fluorescence intensity for measuring the concentration of chlorophyll a.
【0033】本発明の実施の形態について説明するにあ
たり、先ず濁質共存下におけるクロロフィルa濃度測定
精度の向上について考察する。In describing the embodiment of the present invention, first, improvement of the measurement accuracy of chlorophyll a concentration in the presence of a turbid substance will be considered.
【0034】蛍光光度計によるクロロフィルa濃度測定
の従来の方法は、蛍光光度計を用いて検水の蛍光光度を
測定し、予め用意した蛍光光度とクロロフィルa濃度と
の関係式を用いて、蛍光光度と関係式から検水中のクロ
ロフィルa濃度を算出する方法である。ここでいう関係
式は、下記の(6)式で示される。The conventional method of measuring chlorophyll-a concentration using a fluorometer is to measure the fluorescence intensity of a test sample using a fluorometer, and to calculate the fluorescence intensity using a relational expression between the fluorescence intensity and the chlorophyll-a concentration prepared in advance. This is a method of calculating the chlorophyll a concentration in the test water from the luminous intensity and the relational expression. The relational expression here is represented by the following expression (6).
【0035】 (クロロフィルa濃度)=A×(蛍光光度)+B ……(6) (6)式は、予め予備試験を実施して求めておく。
(6)式は、濃度既知のクロロフィルa試料の濃度列を
作成し、それらの蛍光光度を測定した後、クロロフィル
a濃度と蛍光光度の関係から求める。濃度既知のクロロ
フィルa試料の濃度列は、クロロフィルa(濃度は別途
測定)を含む実検水を純水などで希釈して作る方法が用
いられている。この場合、前者の濃度列は濁質など共存
物質はないが、後者の濃度列は実際測定する現場の検水
中の濁質など共存物質がき希釈倍率応じて存在する。こ
のように、クロロフィルa濃度換算式(6)は、予備試
験においてある一定の試験条件で作成される。(Concentration of chlorophyll a) = A × (fluorescence intensity) + B (6) Equation (6) is obtained by conducting a preliminary test in advance.
Equation (6) is obtained from a relationship between the chlorophyll a concentration and the fluorescence intensity after preparing a concentration sequence of chlorophyll a samples of known concentrations and measuring their fluorescence intensity. The concentration sequence of a chlorophyll-a sample whose concentration is known is prepared by diluting actual test water containing chlorophyll-a (the concentration is measured separately) with pure water or the like. In this case, the former concentration column has no coexisting substances such as turbidity, while the latter concentration column has coexisting substances such as turbidity in the sample water at the actual measurement site depending on the dilution ratio. As described above, the chlorophyll a concentration conversion formula (6) is created under certain test conditions in the preliminary test.
【0036】しかし、現場の実検水は必ずしも予備試験
と同様の検水状態を示すとは限らないし、むしろ条件は
異なる場合が多い。現場において水質は常に変動する。
この水質の変動、水質の違いが(6)式でのクロロフィ
ルa濃度換算時に誤差として表われ、測定精度が悪化す
る。However, the actual water sample at the site does not always show the same water test state as that of the preliminary test, and the conditions are rather different in many cases. Water quality always fluctuates on site.
The fluctuation of the water quality and the difference of the water quality appear as an error when converting the chlorophyll a concentration in the equation (6), and the measurement accuracy is deteriorated.
【0037】この変動する検水水質の中でクロロフィル
a濃度測定精度に最も大きく影響を与えるのが、濁質で
あると考えられる。検水の蛍光光度測定において、クロ
ロフィルaがその濃度に比例して励起光を吸収して、そ
の吸収に比例して蛍光を発する(クロロフィルaについ
て、従来の技術で述べた蛍光分析による定量法の原理に
おける希釈溶液であることを前提とする)。発せられた
蛍光が検水中の濁質により反射、散乱され、その結果、
減光され、蛍光受光部で受光する蛍光が実際に発せられ
た蛍光より小さく測定される。また、蛍光の減光の度合
いも、検水濁質によって変動する。極端な例では、微量
のクロロフィルaが発した蛍光が蛍光検出部で検出され
ないほど、濁質によって反射、散乱、減光されれば、検
水中にクロロフィルa=0という結果になる場合も考え
られる。It is considered that the turbid matter has the greatest influence on the chlorophyll a concentration measurement accuracy among the fluctuating sample water qualities. In the fluorescence measurement of the test water, chlorophyll a absorbs the excitation light in proportion to its concentration and emits fluorescence in proportion to the absorption (for the quantification method of chlorophyll a by the fluorescence analysis described in the related art). It is assumed that it is a diluted solution in principle). The emitted fluorescence is reflected and scattered by the turbidity in the test water, and as a result,
The fluorescence which is attenuated and received by the fluorescence receiving unit is measured to be smaller than the actually emitted fluorescence. Further, the degree of the extinction of the fluorescence also varies depending on the sample turbidity. In an extreme example, if the fluorescence emitted by the trace amount of chlorophyll a is not detected by the fluorescence detection unit, but is reflected, scattered, or dimmed by the turbidity, chlorophyll a = 0 may result in the test water. .
【0038】以上のことから、従来の蛍光光度からクロ
ロフィルa濃度換算する方法は、(6)式を用いるた
め、検水の濁度が変化すれば、換算精度は落ちることと
なる。As described above, since the conventional method of converting the chlorophyll a concentration from the fluorescence intensity uses the equation (6), if the turbidity of the test water changes, the conversion accuracy will decrease.
【0039】ここで、検水の濁度が蛍光光度にどの程度
影響について考察する。検水中の濁質の指標として、濁
度計のよる濁度を用いる。濁度計は、透過光測定方式の
ものを使用する。濁度計の透過光は660nm付近の波長を
使用する。Here, how much the turbidity of the test water affects the fluorescence intensity will be considered. The turbidity measured by a turbidimeter is used as an index of the turbidity in the test water. The turbidimeter uses a transmitted light measurement method. The transmitted light of the turbidimeter uses a wavelength around 660 nm.
【0040】蛍光光度計は、励起光波長436nm付近、蛍
光受光波長670nm付近で使用する。The fluorometer is used at an excitation light wavelength of around 436 nm and a fluorescence reception wavelength of around 670 nm.
【0041】透過光濁度計で使用する検量線を下記
(7)式で示されるものとする。つまり、次式で示すよ
うに濁度と吸光度の関係が1次式で成り立つ範囲、水域
でするものとする。The calibration curve used in the transmitted light turbidimeter is represented by the following equation (7). That is, as shown in the following equation, the relationship between the turbidity and the absorbance is set in a range where the relationship is established by a linear equation and in a water area.
【0042】T=a・L・(E660) ……(7) 濁度:T(度) L:セル長(cm) E660:波長660nm付近の吸光度(abs/cm) a:定数(a>0) 波長600nm以上では検水中の色度成分などの吸収はほと
んどないため、波長660nmの吸光度(E660)と波長670n
mの吸光度(以下、E670(abs/cm)とする)はほぼ
等しいと考えられる。T = a · L · (E 660) (7) Turbidity: T (degrees) L: Cell length (cm) E 660: Absorbance (abs / cm) near wavelength 660 nm a: Constant (a> 0) ) Above 600nm wavelength, there is almost no absorption of chromaticity components in the test water, so the absorbance at 660nm (E660) and 670n wavelength
The absorbance of m (hereinafter referred to as E670 (abs / cm)) is considered to be substantially equal.
【0043】そこで、E660=E670と仮定すると、下記
(8)式のようになる T=a・L・(E670) ……(8) 吸光度の定義より、 E670=log(I0/I) ……(9) I0:波長670nmの入射光強度 I:波長670nmの透過光強度 (8)式を(9)式に代入すると、(10)式になる。[0043] Thus, assuming that the E660 = E670, following (8) from the definition of the way becomes T = a · L · (E670 ) ...... (8) absorbance of the equation, E670 = log (I 0 / I) ... ... (9) I 0: incident light intensity of the wavelength 670nm I: substituting the transmitted light intensity of the wavelength 670nm (8) equation (9), the equation (10).
【0044】T=a・L・(Log(I0/I)) ∴I0/I=10T/a・L ……(10) 検水のクロロフィルa濃度をCとする。今、クロロフィ
ルaがその濃度に比例して、励起光を吸収し、その吸収
に比例して、蛍光を発するとする。つまり、前述の従来
技術における希釈溶液、検水中のクロロフィルa濃度が
希薄であることとする。この時の、蛍光強度をF0とす
ると、蛍光の原理より下記(11)式が得られる。T = a · L · (Log (I 0 / I)) ∴I 0 / I = 10 T / a · L (10) Let C be the chlorophyll a concentration of the test sample. Suppose now that chlorophyll a absorbs excitation light in proportion to its concentration and emits fluorescence in proportion to its absorption. That is, it is assumed that the chlorophyll a concentration in the diluted solution and the test water in the above-described conventional technique is low. If the fluorescence intensity at this time is F 0 , the following equation (11) is obtained from the principle of fluorescence.
【0045】F0=k・L’・C ……(11) F0:検水中のクロロフィルaが発する蛍光の波長670nm
の強度 L’:蛍光光度計のセル長(cm) C:検水中のクロロフィルa濃度(μg/l) k:定数(k>0) また、このとき蛍光光度計で検出される受光波長670nm
の蛍光光度をFとする。蛍光は、セル中の検水の濁度に
反射、散乱され、減光するため、FはF0より小さくな
る。F 0 = k · L ′ · C (11) F 0 : wavelength 670 nm of fluorescence emitted from chlorophyll a in the sample water
L ': Cell length of the fluorometer (cm) C: Chlorophyll a concentration in the test water (μg / l) k: Constant (k> 0) Also, the light receiving wavelength 670 nm detected by the fluorometer at this time
Is the fluorescence intensity of F. The fluorescence is reflected and scattered by the turbidity of the sample in the cell, and is dimmed, so that F becomes smaller than F 0 .
【0046】蛍光検出は670nmで行なうので、(10)式
のIをFに置き換えることができるので、下記(12)式
となる。Since the fluorescence detection is performed at 670 nm, I in equation (10) can be replaced with F, and the following equation (12) is obtained.
【0047】F0/F=10T/a・L ……(12) しかし、実際は蛍光が長さL’のセルを透過するのでは
なく、セル内の検水から蛍光が発せられるため、その蛍
光が濁質により減光される度合いは、長さL’のセルを
透過する場合より小さい。ここで、検水のクロロフィル
aの蛍光が見かけのセル長L”を透過するとし、見かけ
のセル長L”=b・L’(bは定数、0≦b≦1)とす
ると、(12)式は下記(13)式となる。F 0 / F = 10 T / a · L (12) However, since the fluorescence does not actually pass through the cell having the length L ′, the fluorescence is emitted from the water sample in the cell, The degree to which the fluorescence is dimmed by the turbidity is smaller than when transmitted through a cell of length L '. Here, assuming that the fluorescence of the chlorophyll a in the sample passes through the apparent cell length L ″ and the apparent cell length L ″ = b · L ′ (b is a constant, 0 ≦ b ≦ 1), (12) The equation becomes the following equation (13).
【0048】F0/F=10T/a・L" ……(13) 蛍光光度計のセル長L’を変えないとすると、(13)式
の右辺の変数は濁度Tのみとなるので、a・L”=a・
b・L’=K(Kは定数、K>0)と置くと、(13)式
は下記(14)(15)式となる。F 0 / F = 10 T / a · L ” (13) If the cell length L ′ of the fluorometer is not changed, only the turbidity T is the variable on the right side of the equation (13). , A · L ″ = a ·
If b · L ′ = K (K is a constant, K> 0), the equation (13) becomes the following equations (14) and (15).
【0049】F0/F=10T/K ……(14) F/F0=1/(10T/K) ……(15) また、(11)(15)式から、F0を消去し、Cでまとめ
ると下記(16)式となる。F 0 / F = 10 T / K (14) F / F 0 = 1 / (10 T / K ) (15) Further, F 0 is deleted from the equations (11) and (15). Then, when summarized by C, the following equation (16) is obtained.
【0050】 C=(1/(k・L’))・F0=(1/(k・L’))・10T/K・F ……( 16) kは定数、L’は一定なので、1/(k・L’)=K’
(K’は定数、K’>0)とおくと(16)式は、下記
(17)式となる。C = (1 / (k · L ′)) · F 0 = (1 / (k · L ′)) · 10 T / K · F (16) Since k is a constant and L ′ is constant, , 1 / (k · L ′) = K ′
If (K ′ is a constant, K ′> 0), the equation (16) becomes the following equation (17).
【0051】C=K’・10T/K・F ……(17) (15)式より、TとF/F0の関係は図1に示された特
性図となる。C = K ′ · 10 T / K · F (17) From equation (15), the relationship between T and F / F 0 is a characteristic diagram shown in FIG.
【0052】検水濁度が高くなるにしたがって、F/F
0値が低くなる。つまり、検水濁度が高くなるにしたが
って、蛍光光度計で検出する蛍光光度計は検水の蛍光光
度は検水中のクロロフィルaが実際に発した蛍光光度よ
りも小さくなる。As the turbidity of the sample increases, the F / F
0 value decreases. That is, as the turbidity of the test water increases, the fluorimeter of the fluorimeter detected by the fluorimeter becomes smaller than the luminous intensity actually emitted by the chlorophyll a in the test water.
【0053】(17)式より、FとCの関係は図2に示さ
れた特性図となる。図2より、蛍光光度で検水の蛍光光
度F’が測定された時、検水の濁度が0であれば、クロ
ロフィルa濃度がC”になるのに対し、検水濁度がT’
であれば、クロロフィルa濃度はC’になり、蛍光光度
が等しくても、検水の濁度によってクロロフィルa濃度
が異なることが分かる。同様に、クロロフィルa濃度が
C”の検水でも濁度が異なると、検出される蛍光光度は
異なることがわかる。From the equation (17), the relationship between F and C is a characteristic diagram shown in FIG. From FIG. 2, it can be seen that when the turbidity of the test water is 0 when the turbidity of the test water is 0, the chlorophyll a concentration becomes C ″, whereas the turbidity of the test water is T ′.
Then, the chlorophyll a concentration becomes C ′, and it can be seen that the chlorophyll a concentration differs depending on the turbidity of the test sample even when the fluorescence intensity is equal. Similarly, it can be seen that, even when the turbidity is different even in the water sample having a chlorophyll a concentration of C ″, the detected fluorescence intensity is different.
【0054】図2において、従来法における測定誤差を
考える。(6)式のような蛍光光度とクロロフィルa濃
度の関係を用いる従来法で検水濁度0の濃度列を用いた
予備試験により図2の濁度=0時の検量線を得たとす
る。次に現場で、実検水を測定し、1回目の結果として
濁度=0、蛍光光度F’を得、2回目の結果として濁度
T’、蛍光光度=F’を得たとすると、検量線から双方
の検水のクロロフィルa濃度よりC”−C’だけ低く測
定されることになる。これが濁度変動によるクロロフィ
ルaの測定誤差である。In FIG. 2, a measurement error in the conventional method is considered. It is assumed that a calibration curve at the time of turbidity = 0 in FIG. 2 is obtained by a preliminary test using a concentration column of water turbidity 0 by a conventional method using the relationship between the fluorescence intensity and the chlorophyll a concentration as in the equation (6). Next, the actual test water was measured at the site, and turbidity = 0 and fluorescence luminosity F ′ were obtained as the first result, and the turbidity was obtained as the second result.
Assuming that T ′ and fluorescence intensity = F ′ are obtained, the chlorophyll a concentration is measured to be lower than the chlorophyll a concentration of both samples by C ″ −C ′ from the calibration curve. This is a measurement error of chlorophyll a due to turbidity fluctuation. is there.
【0055】(17)式は予備試験において予め求めてお
く。予備試験では、使用する濁度計の測定波長にける吸
光度(上記の場合E660)と蛍光光度計の蛍光受光波長
における吸光度(上記の場合E670)がほとんど等し
く、その差が無視できることを確認し、濁度0の検水を
用いて(17)式のK’を、濁度既知の検水を用いて(1
7)式のKをそれぞれ求め、(17)を作成する。Equation (17) is obtained in advance in a preliminary test. In the preliminary test, it was confirmed that the absorbance at the measurement wavelength of the turbidimeter used (E660 in the above case) and the absorbance at the fluorescence reception wavelength of the fluorometer (E670 in the above case) were almost equal, and the difference was negligible. Using a water sample with a turbidity of 0, K ′ of the expression (17) was calculated using a water sample with a known turbidity of (1).
7) Calculate K in the formula and create (17).
【0056】(17)式のクロロフィルa濃度換算式を用
いれば、検水の濁度が変動しても、精度良くクロロフィ
ルa濃度が測定できる。また、予備試験時の検水濁度と
実検水の濁度が異なっても、精度よくクロロフィルa濃
度を測定することができる。Using the chlorophyll a concentration conversion formula (17), the chlorophyll a concentration can be measured accurately even if the turbidity of the test sample varies. Further, even if the turbidity of the test water differs from the turbidity of the actual test water at the time of the preliminary test, the chlorophyll a concentration can be accurately measured.
【0057】以下、本発明の実施の形態を図面に基づい
て説明する。 (第1形態)図3は、本発明に係るクロロフィルa濃度
測定方法を示した概要図であり、(a)は検水を計測器
に通水する場合、(b)は計測器(または検出部)を検
水に浸漬する場合の構成を説明している。Hereinafter, embodiments of the present invention will be described with reference to the drawings. (First Embodiment) FIGS. 3A and 3B are schematic diagrams showing a method for measuring chlorophyll a concentration according to the present invention. FIG. 3A shows a case where a sample is passed through a measuring device, and FIG. Part) is described in the case of immersion in a sample.
【0058】本形態に係るクロロフィルa濃度測定装置
は、濁度計10、蛍光光度計11及びクロロフィルa濃度演
算器12から構成される。The chlorophyll a concentration measuring apparatus according to the present embodiment comprises a turbidimeter 10, a fluorimeter 11, and a chlorophyll a concentration calculator 12.
【0059】濁度計10は、660nm付近の波長の透過光で
濁度を測定し、この測定値をクロロフィルa濃度演算器
12に供給する。The turbidity meter 10 measures turbidity with transmitted light having a wavelength near 660 nm, and uses the measured value as a chlorophyll a concentration calculator.
Supply to 12.
【0060】蛍光光度計11は、励起光波長436nm付近及
び蛍光光度波長670nm付近で蛍光光度を測定し、この測
定値をクロロフィルa濃度演算器12に供給する。また、
前記蛍光光度計11は、汚れ除去機能を備え、長時間の連
続測定においても精度良く蛍光光度を測定する機能を有
している。The fluorimeter 11 measures the fluorescence intensity around the excitation light wavelength 436 nm and the fluorescence intensity wavelength 670 nm, and supplies the measured value to the chlorophyll a concentration calculator 12. Also,
The fluorometer 11 has a stain removing function, and has a function of accurately measuring the fluorescence intensity even in a long-time continuous measurement.
【0061】尚、検水の蛍光光度と濁度は同時に測定さ
れ、これら測定値はクロロフィルa濃度演算器12に供給
される。Incidentally, the fluorescence intensity and turbidity of the sample are measured at the same time, and these measured values are supplied to the chlorophyll a concentration calculator 12.
【0062】クロロフィルa濃度演算器12は、濁度計10
及び蛍光光度計11から供給された測定値を格納した後、
蛍光光度と濁度の関数で表される下記のクロロフィルa
濃度換算式を用いて、クロロフィルa濃度を算出する。The chlorophyll a concentration calculator 12 has a turbidimeter 10
And after storing the measurement value supplied from the fluorometer 11,
The following chlorophyll a expressed as a function of fluorescence intensity and turbidity
The chlorophyll a concentration is calculated using the concentration conversion formula.
【0063】C=K’・10T/K・F ……(18) C:検水中のクロロフィルa濃度 T:検水の濁度 F:検水の蛍光光度 K、K’:定数(K、K’>0) クロロフィルa濃度の算出に際して、予め(18)式の定
数K、K’を求めておく必要がある。すなわち、濁度計
10の測定波長における吸光度と蛍光光度計11の蛍光受光
波長における吸光度がほとんど等しく、その差が無視で
きることを確認した後、濁度0の検水を用いて(18)式
のK’値を、濁度既知の検水を用いてK値を求める。C = K ′ · 10 T / K · F (18) C: chlorophyll a concentration in the test water T: turbidity of the test water F: fluorescence intensity of the test water K, K ′: constants (K, K ′> 0) When calculating the chlorophyll a concentration, it is necessary to obtain the constants K and K ′ in equation (18) in advance. That is, turbidity meter
After confirming that the absorbance at the measurement wavelength of 10 and the absorbance at the fluorescence reception wavelength of the fluorometer 11 are almost equal and the difference can be ignored, the K ′ value of the equation (18) is calculated using a water sample with a turbidity of 0. The K value is determined using a water sample with a known turbidity.
【0064】本形態に係るクロロフィルa測定装置は、
使用する濁度計の測定波長における吸光度と蛍光光度計
の蛍光受波長における吸光度がほとんど等しく、その差
が無視できる水系で適用が可能である。The chlorophyll a measuring apparatus according to the present embodiment
The absorbance at the measurement wavelength of the turbidimeter to be used is almost equal to the absorbance at the fluorescence receiving wavelength of the fluorometer, and the present invention can be applied to an aqueous system in which the difference is negligible.
【0065】本形態に係るクロロフィルa測定装置は、
現場陸上に設置する方法(通常の蛍光光度計を用いる方
法)でも、直接検水に浸漬する方法(現場蛍光光度計を
用いる場合)でも使用が可能である。前者の場合は、検
水をポンプ等により各計測器に通水する必要がある。現
場では測定したい場所(位置、水深)の水をポンプ等で
取り出せばよい。後者の場合は、その必要はなく、測定
したい検水に計測器または計測器の検出部を浸漬すれば
よい。The chlorophyll a measuring device according to the present embodiment
It can be used either on-site installation (method using a normal fluorometer) or direct immersion in water sample (in the case of using an on-site fluorometer). In the former case, it is necessary to pass the test water to each measuring instrument by a pump or the like. At the site, water at a place (position, water depth) to be measured may be taken out with a pump or the like. In the latter case, this is not necessary, and the measuring instrument or the detecting section of the measuring instrument may be immersed in the water sample to be measured.
【0066】本形態例に係るクロロフィルa測定装置
は、検水濁度が変動する現場での使用を前提に考えた
が、現場でなく実験室でも適用が可能である。この場
合、現場から検水を採水し、実験室において回分式で測
定を行なう。 (第2形態)第1形態で、蛍光光度計を用いた水中のク
ロロフィルa濃度測定における検水の濁度補正方法を創
出した。第1形態では蛍光光度計と透過光式濁度計の2
種類の水質計測器を使用した。この場合、既存の水質機
器を用いて構成できる利点がある。The apparatus for measuring chlorophyll a according to the present embodiment is supposed to be used on site where the turbidity of the sample varies, but can be applied not only on site but also in a laboratory. In this case, water is sampled from the site, and measurement is performed in a laboratory in a batch system. (Second embodiment) In the first embodiment, a method for correcting turbidity of water sample in measurement of chlorophyll-a concentration in water using a fluorometer was created. In the first embodiment, two types of fluorometer and transmitted light turbidimeter are used.
Different types of water quality measuring instruments were used. In this case, there is an advantage that it can be configured using existing water quality equipment.
【0067】しかし、水質計器で現場連続測定を行なう
時、機器の汚れが問題になる。機器の汚れは、生物膜、
鉄、マンガン成分の付着などで、検出部に汚れが生じた
場合、正常な測定ができなくなる可能性が高い。そのた
め、連続測定用計測器はそれぞれ汚れ除去対策(例え
ば、洗浄ワイパー等)を施している場合が多い。第1形
態のように2台の水質計器を使用すると、計器の構造、
汚れ除去対策内容などの違いにより、汚れ具合に差が生
じる可能性がある。計器の汚れ自体は計器単体の測定に
支障を及ぼす可能性があるが、計器間の汚れの差は各計
器の測定値を用いて算出するクロロフィルa濃度の誤差
になる。よって、計測器間の汚れの差はないほうがよ
い。However, when performing on-site continuous measurement with a water quality meter, contamination of the equipment becomes a problem. Equipment stains include biofilms,
If the detection unit becomes contaminated due to adhesion of iron and manganese components, it is highly likely that normal measurement cannot be performed. For this reason, the measuring instruments for continuous measurement often take measures to remove dirt (for example, cleaning wipers). When two water quality meters are used as in the first embodiment, the structure of the meters,
There is a possibility that there is a difference in the degree of dirt due to a difference in the details of the dirt removal measures. The dirt on the instrument itself may hinder the measurement of the single instrument, but the difference in the dirt between the instruments results in an error in the chlorophyll a concentration calculated using the measured value of each instrument. Therefore, it is better that there is no difference in dirt between the measuring instruments.
【0068】そこで、本形態において、発明者は、各計
器間のセル汚れの差を相殺するために、同一測定セルで
2つの光源を用いて、検水の蛍光光度と濁度を交互に測
定するによりクロロフィルa濃度を算出するクロロフィ
ルa濃度測定装置を発案した。Therefore, in the present embodiment, the inventor measured the fluorescence intensity and turbidity of the test sample alternately using two light sources in the same measurement cell in order to cancel the difference in cell contamination between the instruments. Then, a chlorophyll a concentration measuring device for calculating chlorophyll a concentration was proposed.
【0069】当該クロロフィルa測定装置は、検水が供
給された測定セルに、光源から一定波長の光を照射させ
て検水の蛍光光度を測定する蛍光光度測定手段と、前記
測定セルに、光源から一定波長の光を照射させて検水の
濁度を測定する濁度測定手段と、前記蛍光光度測定手段
と濁度測定手段とから供給された測定値を格納し、これ
らの測定値から演算によって測定セル内の検水のクロロ
フィルa濃度を算出する演算処理手段とからなることを
特徴としている。The apparatus for measuring chlorophyll a comprises: a luminous intensity measuring means for irradiating a light of a predetermined wavelength from a light source to a measuring cell supplied with the water to measure the luminous intensity of the water; Turbidity measuring means for irradiating light of a certain wavelength to measure the turbidity of the test water, and storing the measured values supplied from the fluorescence luminosity measuring means and the turbidity measuring means, and calculating from these measured values And arithmetic processing means for calculating the chlorophyll a concentration of the test water in the measurement cell.
【0070】ここで、前記濁度測定手段は、光源から前
記測定セルへ照射される光の強度(以下、透過光参照強
度と称する)と前記測定セルから透過した光の強度(以
下、透過光強度と称する)を測定した後、これらの測定
値から演算によって測定セル内の検水の濁度を算出する
機能を有している。Here, the turbidity measuring means includes an intensity of light emitted from the light source to the measuring cell (hereinafter referred to as transmitted light reference intensity) and an intensity of light transmitted from the measuring cell (hereinafter referred to as transmitted light). (Hereinafter referred to as intensity), and has a function of calculating the turbidity of the test water in the measurement cell by calculation from these measured values.
【0071】また、一定時間毎に同一検水の蛍光光度と
濁度の測定の切替を行なうために、前記測定セルは、前
記蛍光光度測定手段と濁度測定手段の共有測定セルであ
り、蛍光光度測定時に濁度測定用照射光を遮断し、濁度
測定時に蛍光光度測定用照射光を遮断することを特徴と
している。Further, in order to switch the measurement of the fluorescence and turbidity of the same sample at regular intervals, the measurement cell is a shared measurement cell of the fluorescence luminosity measurement means and the turbidity measurement means. It is characterized in that irradiation light for turbidity measurement is blocked during luminosity measurement and irradiation light for fluorescence luminosity measurement is blocked during turbidity measurement.
【0072】図4は第2形態に係るクロロフィルa濃度
測定装置及び蛍光光度測定の説明図である。図4におい
て、蛍光光度測定手段に係る構成部は、436nm付近の励
起光を出力できる光源である蛍光測定用励起光源20、43
6nm付近の光を取り出す光学フィルタ21、蛍光光度測定
時に透過光測定用照射光を遮断するシャッター22、励起
光の反射や散乱を遮断し、670nm付近の光を取り出すフ
ィルター23、検水が連続的に通水されるフローセル40及
びフローセル40からの蛍光・透過光を受光し、この測定
値を演算処理部50に供給する受光器24からなる。FIG. 4 is an explanatory view of a chlorophyll a concentration measuring device and a fluorescence photometric measurement according to the second embodiment. In FIG. 4, the components related to the fluorescence photometric measurement means are excitation light sources 20 and 43 for fluorescence measurement, which are light sources capable of outputting excitation light near 436 nm.
Optical filter 21 for extracting light around 6 nm, shutter 22 for blocking irradiation light for transmitted light measurement during fluorescence photometry, filter 23 for blocking reflection and scattering of excitation light and extracting light around 670 nm, and water sampling is continuous And a light receiver 24 that receives the fluorescence / transmitted light from the flow cell 40 and supplies the measured value to the arithmetic processing unit 50.
【0073】また、濁度測定手段に係る構成部は、濁度
補正用信号用として670nm付近の光(透過法による濁度
測定で用いられている660nm付近の波長である必要はな
い)を出力する濁度補正信号用光源30、670nm付近の光
を取り出す光学フィルター31(31と23は同一の光学仕様
をもつフィルターを使用する)、透過光測定時に励起光
を遮断する励起光シャッター32、透過光源からの透過光
参照強度を取り出すためのハーフミラー33及び透過光参
照強度を測定し、この測定値を濁度測定のために演算処
理部50に供給する透過光参照強度用受光器34と、透過光
強度を測定するための前述のフローセル40、光学フィル
タ23及び受光器24とからなる。The component relating to the turbidity measuring means outputs light of about 670 nm for the signal for turbidity correction (it is not necessary to have the wavelength of about 660 nm used in the turbidity measurement by the transmission method). Turbidity correction signal light source 30, optical filter 31 for extracting light near 670 nm (31 and 23 use filters with the same optical specifications), excitation light shutter 32 for blocking excitation light when measuring transmitted light, transmission A half mirror 33 for extracting the transmitted light reference intensity from the light source and the transmitted light reference intensity are measured, and a transmitted light reference intensity light receiver 34 for supplying the measured value to the arithmetic processing unit 50 for turbidity measurement, It comprises the above-described flow cell 40 for measuring the intensity of transmitted light, the optical filter 23, and the light receiver 24.
【0074】フローセル40は、励起光照射方向の光路長
と透過光照射方向の光路長が等しいものが用いられる。
フローセル40は蛍光光度測定と透過光強度測定の共有構
成部であるため、励起光入射面・透過面と透過光入射面
・透過面の汚れ具合は等しくなる。The flow cell 40 has the same optical path length in the excitation light irradiation direction and the same light path length in the transmitted light irradiation direction.
Since the flow cell 40 is a common component for the measurement of the fluorescence intensity and the measurement of the transmitted light intensity, the degree of contamination on the excitation light incidence surface / transmission surface and the transmission light incidence surface / transmission surface is equal.
【0075】演算処理部50は、受光器24、34から供給さ
れた測定値を格納し、演算によって検水の濁度、クロロ
フィルa濃度を算出した後、これらの算出値を表示する
機能を有している。The arithmetic processing unit 50 has a function of storing the measured values supplied from the light receivers 24 and 34, calculating the turbidity of the test water and the chlorophyll a concentration by calculation, and displaying the calculated values. are doing.
【0076】次に、本形態に係る装置によるクロロフィ
ルa濃度測定の説明を図4に基づいて行なう。Next, measurement of chlorophyll a concentration by the apparatus according to the present embodiment will be described with reference to FIG.
【0077】蛍光強度測定工程においては、濁質補正信
号用光源30とフローセル40の間に透過光シャッター22が
挿入される。透過光測定用光を遮断するためである。励
起光シャッター32が開けられると、検水を格納している
フローセル40に蛍光測定用励起光源20から励起光が照射
される。ここで、光源20とフローセル40間に設置された
光学フィルター21によって、前記励起光から一定波長の
光(例えば、436nm)が取り出される。一定波長の励起
光を受けたフローセル内の検水は、検水中の蛍光物質に
より長波長の光を放出する。ここでも、フローセル40と
受光部24の間に設置された光学フィルター23によって、
検水から放出された光から一定波長(例えば、670nm)
が取り出される。受光器24は、前記の一定波長の光を検
出し、蛍光光度として測定する。この測定値は、検水の
クロロフィルa濃度を算出のために演算処理部に供給さ
れる。蛍光光度を測定した後は濁度測定工程に移行す
る。In the fluorescence intensity measuring step, the transmitted light shutter 22 is inserted between the turbidity correction signal light source 30 and the flow cell 40. This is for blocking the transmitted light measurement light. When the excitation light shutter 32 is opened, excitation light is emitted from the fluorescence measurement excitation light source 20 to the flow cell 40 storing the water sample. Here, light of a certain wavelength (for example, 436 nm) is extracted from the excitation light by the optical filter 21 provided between the light source 20 and the flow cell 40. The water sample in the flow cell that has received the excitation light of a certain wavelength emits light of a long wavelength due to the fluorescent substance in the water sample. Again, by the optical filter 23 installed between the flow cell 40 and the light receiving unit 24,
A certain wavelength (eg, 670nm) from the light emitted from the sample
Is taken out. The light receiver 24 detects the light of the above-mentioned fixed wavelength and measures it as a fluorescence intensity. This measured value is supplied to the arithmetic processing unit for calculating the chlorophyll a concentration of the test water. After measuring the fluorescence intensity, the process proceeds to the turbidity measurement step.
【0078】濁度測定工程においては、図5に示した濁
度補正用透過光測定の説明図のように、蛍光測定用励起
光源20からの励起光を遮断するために励起光シャッター
32が蛍光測定用励起光源30とフローセル40の間に挿入さ
れると、透過光シャッター22が開けられ、検水を格納し
ているフローセル40に濁質補正信号用光源30から透過光
測定用光が照射される。ここで、透過光測定用光から
は、光源30とハーフミラー33との間に設置された光学フ
ィルター31によって、一定波長(例えば670nm)が取り
出される。ハーフミラー33は、前記の取り出された光か
ら参照光を取り出し透過光参照強度用受光器34に供給す
ると同時に、透過光測定用光をそのままフローセル40に
照射する。受光器34は、ハーフミラー33で取り出された
参照光を検出し、透過光参照光強度I0として測定し、
この測定値を濁度等の算出のために演算処理部50に供給
する。フローセル40を透過した照射光においても、蛍光
光度測定時と同様に光学フィルター23によって一定波長
の光が取り出される。この取り出された光は受光器24に
おいて透過光強度Iとして測定される。測定された透過
光強度Iは、検水のクロロフィルa濃度を算出のために
演算処理部50に供給される。In the turbidity measurement step, as shown in FIG. 5 for explaining the transmitted light measurement for turbidity correction, an excitation light shutter is used to cut off the excitation light from the excitation light source 20 for fluorescence measurement.
When 32 is inserted between the fluorescence measurement excitation light source 30 and the flow cell 40, the transmitted light shutter 22 is opened, and the transmitted light measurement light is transmitted from the turbidity correction signal light source 30 to the flow cell 40 storing the water sample. Is irradiated. Here, a certain wavelength (for example, 670 nm) is extracted from the transmitted light measurement light by the optical filter 31 provided between the light source 30 and the half mirror 33. The half mirror 33 extracts the reference light from the extracted light and supplies it to the transmitted light reference intensity light receiver 34, and simultaneously irradiates the flow cell 40 with the transmitted light measurement light. The light receiver 34 detects the reference light taken out by the half mirror 33 and measures it as a transmitted light reference light intensity I 0 ,
This measured value is supplied to the arithmetic processing unit 50 for calculating turbidity and the like. Even in the irradiation light transmitted through the flow cell 40, light of a certain wavelength is extracted by the optical filter 23 as in the case of measuring the fluorescence intensity. The extracted light is measured as the transmitted light intensity I in the light receiver 24. The measured transmitted light intensity I is supplied to the arithmetic processing unit 50 for calculating the chlorophyll a concentration of the test water.
【0079】演算処理部50は、受光器34から供給された
透過光参照強度と受光器24から供給された透過光強度か
ら、数式(8)(9)による演算によって濁度を算出し
た後、この濁度の算出値と受光器24から供給された蛍光
光度の測定値とから数式(18)による演算によってクロ
ロフィルa濃度を算出する。The arithmetic processing unit 50 calculates the turbidity from the transmitted light reference intensity supplied from the light receiving device 34 and the transmitted light intensity supplied from the light receiving device 24 by calculation using equations (8) and (9). The chlorophyll a concentration is calculated from the calculated value of the turbidity and the measured value of the fluorescent luminous intensity supplied from the light receiver 24 by the calculation using the equation (18).
【0080】蛍光光度測定工程と濁度測定工程は、励起
光シャッター、透過光シャッターの出し入れで切替えら
れる。励起光シャッター、透過光シャッターは、自動的
に一定時間毎に切り替えられ、各工程は共に同一時間継
続される。The fluorescence luminosity measurement step and the turbidity measurement step are switched by taking in and out the excitation light shutter and the transmitted light shutter. The excitation light shutter and the transmitted light shutter are automatically switched at regular time intervals, and each process is continued for the same time.
【0081】本形態例に係るクロロフィルa測定装置を
用いることにより、同一のフローセルで蛍光光度と濁度
を測定するので、フローセルの汚れの影響は相殺され
る。By using the chlorophyll a measuring apparatus according to the present embodiment, the fluorescence intensity and the turbidity are measured with the same flow cell, so that the influence of the contamination of the flow cell is cancelled.
【0082】[0082]
【発明の効果】本発明に係るクロロフィルa測定方法及
び測定装置によれば、検水の蛍光光度と共に濁度を測定
し、この検水濁度の測定値と検水の蛍光光度からクロロ
フィルa濃度への換算を補正するので、検水の濁質によ
るクロロフィルa濃度の測定誤差が小さくなり、濁度が
変動しやすい検水に対してクロロフィルa濃度を精度よ
く測定することが可能となる。According to the method and apparatus for measuring chlorophyll-a according to the present invention, the turbidity is measured together with the fluorescence of the sample, and the chlorophyll-a concentration is determined from the measured value of the turbidity of the sample and the fluorescence of the sample. Since the conversion to へ is corrected, the measurement error of the chlorophyll a concentration due to the turbidity of the test water is reduced, and the chlorophyll a concentration can be accurately measured with respect to the test water in which the turbidity tends to fluctuate.
【0083】また、本発明に係るクロロフィルa測定装
置には、同一測定セルで検水の蛍光光度と濁度を交互に
測定するため、測定セルの汚れに起因するクロロフィル
a濃度測定誤差を相殺させる効果がある。In the chlorophyll-a measuring apparatus according to the present invention, the fluorescence intensity and turbidity of the sample are alternately measured in the same measuring cell, thereby canceling the chlorophyll-a concentration measurement error caused by the contamination of the measuring cell. effective.
【図面の簡単な説明】[Brief description of the drawings]
【図1】検水における濁度Tと蛍光光度F/F0の関係
(イメージ)を示した特性図。FIG. 1 is a characteristic diagram showing a relationship (image) between turbidity T and fluorescence luminous intensity F / F 0 in a water sample.
【図2】蛍光光度計測定値Fとクロロフィルa濃度の関
係(イメージ)を示した特性図。FIG. 2 is a characteristic diagram showing a relationship (image) between the measured value F of the fluorometer and the concentration of chlorophyll a.
【図3】本発明に係るクロロフィルa濃度測定装置シス
テム概要図。FIG. 3 is a schematic diagram of a chlorophyll a concentration measuring system according to the present invention.
【図4】第2形態に係るクロロフィルa濃度測定装置及
び蛍光光度測定の説明図。FIG. 4 is an explanatory view of a chlorophyll a concentration measuring device and a fluorescence photometric measurement according to a second embodiment.
【図5】第2形態に係る濁度補正用透過光測定の説明
図。FIG. 5 is an explanatory diagram of turbidity correction transmitted light measurement according to a second embodiment.
10…濁度計 11…蛍光光度計 12…クロロフィルa濃度演算器 20…蛍光測定用励起光源 21…光学フィルタ(436nm用) 22…透過光シャッター 23、31…光学フィルタ(670nm用) 24…受光器 30…濁質補正信号用光源 32…励起光シャッター 33…ハーフミラー 34…透過光参照強度用受光器 40…フローセル 50…演算処理部 10 turbidimeter 11 fluorimeter 12 chlorophyll-a concentration calculator 20 excitation light source for fluorescence measurement 21 optical filter (for 436 nm) 22 transmitted light shutter 23, 31 optical filter (for 670 nm) 24 light reception 30 ... Light source for turbidity correction signal 32 ... Excitation light shutter 33 ... Half mirror 34 ... Light receiver for transmitted light reference intensity 40 ... Flow cell 50 ... Arithmetic processing unit
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G043 AA01 BA14 CA03 EA01 EA13 GA02 GB01 GB19 GB21 HA09 HA11 JA03 KA02 KA05 LA01 NA01 NA11 2G054 AA03 AB01 CA20 EA03 EA04 EA09 EB01 FA09 FA19 FA22 FA33 FB01 GA03 GB01 GB02 JA01 JA06 2G059 AA01 BB05 CC12 EE01 EE07 HH02 HH06 JJ03 JJ23 KK01 MM01 MM12 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G043 AA01 BA14 CA03 EA01 EA13 GA02 GB01 GB19 GB21 HA09 HA11 JA03 KA02 KA05 LA01 NA01 NA11 2G054 AA03 AB01 CA20 EA03 EA04 EA09 EB01 FA09 FA19 FA22 FA33 FB01 GA03 GB01 GB02 JA01 BB05 CC12 EE01 EE07 HH02 HH06 JJ03 JJ23 KK01 MM01 MM12
Claims (8)
の蛍光光度と濁度の測定値から演算によって検水のクロ
ロフィルa濃度を算出することを特徴とするクロフィル
a濃度測定方法。1. A method for measuring the chlorophyll a concentration of chlorophyll a, wherein the chlorophyll a concentration of the sample is measured by measuring the fluorescence and turbidity of the sample and calculating the chlorophyll a from the measured values of the fluorescence and turbidity.
ることを特徴とする請求項1記載のクロロフィルa濃度
測定方法。 T=a・L・log(I0/I) T:濁度 a:定数 L:測定セル長 I0:検水への入射光強度 I:検水の透過光強度2. The chlorophyll a concentration measuring method according to claim 1, wherein the turbidity of the sample is calculated by the following equation. T = a · L·log (I 0 / I) T: turbidity a: constant L: measuring cell length I 0 : intensity of incident light to test water I: intensity of transmitted light to test water
算は、下記式によることを特徴とする請求項1または2
記載のクロロフィルa濃度測定方法。 C=K’・10T/K・F C:検水中のクロロフィルa濃度 T:検水の濁度 F:検水の蛍光光度 K、K’:定数3. The calculation for calculating the chlorophyll a concentration according to the following equation.
The method for measuring chlorophyll a concentration described in the above. C = K '· 10 T / K · F C: Chlorophyll a concentration in the test water T: Turbidity of the test water F: Fluorescence intensity of the test water K, K': Constant
一定波長の光を照射させて検水の蛍光光度を測定する蛍
光光度測定手段と、検水が供給された測定セルに、光源
から一定波長の光を照射させて検水の濁度を測定する濁
度測定手段と、前記蛍光光度測定手段と濁度測定手段と
から供給された測定値を格納し、これらの測定値から演
算によって測定セル内の検水のクロロフィルa濃度を算
出する演算処理手段とからなることを特徴とするクロフ
ィルa濃度測定装置。4. A fluorescent light measuring means for irradiating a light of a predetermined wavelength from a light source to a measuring cell to which the test water has been supplied to measure the fluorescent light of the test water, and a light source for the measuring cell to which the test water has been supplied. Turbidity measuring means for irradiating light of a certain wavelength to measure the turbidity of the test water, and storing the measured values supplied from the fluorescence luminosity measuring means and the turbidity measuring means, and calculating from these measured values A chlorophyll-a concentration measuring device, comprising: arithmetic processing means for calculating the chlorophyll-a concentration of the test water in the measurement cell.
セルへ照射される光の強度と前記測定セルから透過した
光の強度を測定した後、これらの測定値から演算によっ
て測定セル内の検水の濁度を算出することを特徴とする
請求項4記載のクロロフィルa濃度測定装置。5. The turbidity measuring means measures the intensity of light emitted from the light source to the measuring cell and the intensity of light transmitted from the measuring cell, and calculates the intensity of the light in the measuring cell from the measured values. The chlorophyll a concentration measuring device according to claim 4, wherein the turbidity of the sample is calculated.
と濁度測定手段の共有測定セルであり、蛍光光度測定時
に濁度測定用照射光を遮断し、濁度測定時に蛍光光度測
定用照射光を遮断することによって、一定時間毎に蛍光
光度と濁度の測定の切替を行なうことを特徴とする請求
項4または5記載のクロロフィルa濃度測定装置。6. The measurement cell is a shared measurement cell of the fluorescence luminosity measurement means and the turbidity measurement means, and blocks irradiation light for turbidity measurement during fluorescence measurement and irradiation for fluorescence measurement during turbidity measurement. 6. The chlorophyll-a concentration measuring apparatus according to claim 4, wherein switching of measurement of fluorescence intensity and turbidity is performed at regular intervals by blocking light.
一定波長の光を照射させて検水の蛍光光度を測定する蛍
光光度測定手段と、検水が供給された測定セルへ照射さ
れる光源からの光の強度と前記測定セルから透過した光
の強度を測定する入射光・透過光強度測定手段と、前記
蛍光光度測定手段と入射光・透過光強度測定手段とから
供給された測定値を格納し、これらの測定値から演算に
よって測定セル内の検水のクロロフィルa濃度を算出す
る演算処理手段とからなることを特徴とするクロフィル
a濃度測定装置。7. A fluorescent light measuring means for irradiating a light having a predetermined wavelength from a light source to a measuring cell to which the test water has been supplied, and measuring a fluorescent intensity of the test water, and irradiating the measuring cell to which the test water has been supplied. Incident light / transmitted light intensity measuring means for measuring the intensity of light from the light source and the intensity of light transmitted from the measuring cell; and measurement supplied from the fluorescent light intensity measuring means and the incident light / transmitted light intensity measuring means. A chlorophyll-a concentration measuring device, comprising: a processor for storing values and calculating the chlorophyll-a concentration of the test water in the measuring cell from the measured values by calculation.
と入射光・透過光強度測定手段の共有測定セルであり、
蛍光光度測定時に入射光強度・透過光強度測定用照射光
を遮断し、入射光強度・透過光強度測定時に蛍光光度測
定用照射光を遮断することによって、一定時間毎に蛍光
光度と入射光・透過光強度の測定を切り替えることを特
徴とする請求項7記載のクロフィルa濃度測定装置。8. The measuring cell is a shared measuring cell of the fluorescence luminosity measuring means and the incident light / transmitted light intensity measuring means,
By blocking the irradiation light for measuring the incident light intensity and transmitted light intensity when measuring the fluorescence intensity, and blocking the irradiation light for measuring the fluorescence intensity when measuring the incident light intensity and transmitted light intensity, the fluorescence intensity and the incident light The clofil a concentration measuring apparatus according to claim 7, wherein measurement of transmitted light intensity is switched.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11209008A JP2001033388A (en) | 1999-07-23 | 1999-07-23 | Method and device for measuring concentration of chlorophyll a |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11209008A JP2001033388A (en) | 1999-07-23 | 1999-07-23 | Method and device for measuring concentration of chlorophyll a |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001033388A true JP2001033388A (en) | 2001-02-09 |
Family
ID=16565767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11209008A Pending JP2001033388A (en) | 1999-07-23 | 1999-07-23 | Method and device for measuring concentration of chlorophyll a |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001033388A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005522668A (en) * | 2001-09-12 | 2005-07-28 | アプライズ テクノロジーズ,インコーポレーテッド | Multi-channel fluorescence sensor |
JP2007519926A (en) * | 2004-01-30 | 2007-07-19 | ナルコ カンパニー | Compatible chip-open cell fluorometer |
CN101858857A (en) * | 2010-05-14 | 2010-10-13 | 同济大学 | Analysis and determination method of phytoplankton chlorophyll-a in eutrophic water body |
CN102004049A (en) * | 2010-09-02 | 2011-04-06 | 北京利达科信环境安全技术有限公司 | Preparation method of adjusting standard solution for online detector of chlorophyll A |
JP2012068226A (en) * | 2010-08-24 | 2012-04-05 | Hamamatsu Photonics Kk | Chemiluminescence measuring device and method |
JP2013190211A (en) * | 2012-03-12 | 2013-09-26 | Dkk Toa Corp | Fluorometric analysis apparatus |
JP2016029401A (en) * | 2015-12-04 | 2016-03-03 | 東亜ディーケーケー株式会社 | Fluorometric analyzer |
JP2016510412A (en) * | 2013-02-15 | 2016-04-07 | ファウベーエム ゲゼルシャフト ミット ベシュレンクテルハフツング | Method and apparatus for determining concentration |
JP2016536573A (en) * | 2013-09-27 | 2016-11-24 | エコラボ ユーエスエー インコーポレイティド | Multi-channel fluorescent sensor and method of using the same |
CN106970054A (en) * | 2017-04-26 | 2017-07-21 | 清华大学深圳研究生院 | The method that blue-green algae in situ detection precision is improved with anti-fluorescence disturbance decoupling algorithm |
JP2017536550A (en) * | 2014-11-25 | 2017-12-07 | ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ | Integration of fluorescence detection function into absorbance measuring device |
CN114609091A (en) * | 2022-03-22 | 2022-06-10 | 暨南大学 | Linkage calibration measurement method of water turbidity and chlorophyll a concentration based on spectral technology |
-
1999
- 1999-07-23 JP JP11209008A patent/JP2001033388A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005522668A (en) * | 2001-09-12 | 2005-07-28 | アプライズ テクノロジーズ,インコーポレーテッド | Multi-channel fluorescence sensor |
JP2008224680A (en) * | 2001-09-12 | 2008-09-25 | Apprise Technologies Inc | Multichannel fluorescence sensor |
JP2007519926A (en) * | 2004-01-30 | 2007-07-19 | ナルコ カンパニー | Compatible chip-open cell fluorometer |
CN101858857A (en) * | 2010-05-14 | 2010-10-13 | 同济大学 | Analysis and determination method of phytoplankton chlorophyll-a in eutrophic water body |
JP2012068226A (en) * | 2010-08-24 | 2012-04-05 | Hamamatsu Photonics Kk | Chemiluminescence measuring device and method |
CN102004049A (en) * | 2010-09-02 | 2011-04-06 | 北京利达科信环境安全技术有限公司 | Preparation method of adjusting standard solution for online detector of chlorophyll A |
CN102004049B (en) * | 2010-09-02 | 2012-07-25 | 北京利达科信环境安全技术有限公司 | Preparation method of adjusting standard solution for online detector of chlorophyll A |
JP2013190211A (en) * | 2012-03-12 | 2013-09-26 | Dkk Toa Corp | Fluorometric analysis apparatus |
EP2956758B1 (en) * | 2013-02-15 | 2019-11-27 | VWMS Inventions GmbH | Method and device for determining the concentration of a fluorescent substance in a medium |
JP2016510412A (en) * | 2013-02-15 | 2016-04-07 | ファウベーエム ゲゼルシャフト ミット ベシュレンクテルハフツング | Method and apparatus for determining concentration |
JP2016536573A (en) * | 2013-09-27 | 2016-11-24 | エコラボ ユーエスエー インコーポレイティド | Multi-channel fluorescent sensor and method of using the same |
JP2017536550A (en) * | 2014-11-25 | 2017-12-07 | ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ | Integration of fluorescence detection function into absorbance measuring device |
JP2016029401A (en) * | 2015-12-04 | 2016-03-03 | 東亜ディーケーケー株式会社 | Fluorometric analyzer |
CN106970054A (en) * | 2017-04-26 | 2017-07-21 | 清华大学深圳研究生院 | The method that blue-green algae in situ detection precision is improved with anti-fluorescence disturbance decoupling algorithm |
CN106970054B (en) * | 2017-04-26 | 2019-08-09 | 清华大学深圳研究生院 | The method for improving cyanobacteria in situ detection precision with anti-fluorescence disturbance decoupling algorithm |
CN114609091A (en) * | 2022-03-22 | 2022-06-10 | 暨南大学 | Linkage calibration measurement method of water turbidity and chlorophyll a concentration based on spectral technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5125747A (en) | Optical analytical instrument and method having improved calibration | |
Röttgers et al. | Measurements of optical absorption by chromophoric dissolved organic matter using a point‐source integrating‐cavity absorption meter | |
CN108351304B (en) | Water quality analyzer | |
US5489977A (en) | Photomeric means for monitoring solids and fluorescent material in waste water using a falling stream water sampler | |
US8981314B2 (en) | Method and apparatus for the optical determination of total organic carbon in aqueous streams | |
US20150041682A1 (en) | Systems and Methods for Monitoring Phenanthrene Equivalent Concentrations | |
US6028663A (en) | Photometric analysis of water suspensions | |
US3806727A (en) | Optical detector system | |
CA2418871A1 (en) | Method and apparatus for detecting chemical contamination | |
CN113841043B (en) | Water quality analysis system, sensor module, calibration device, and calibration method for water quality analysis system | |
JP2001033388A (en) | Method and device for measuring concentration of chlorophyll a | |
EP0587077A2 (en) | Method and apparatus for measuring concentration of a solution using pathlength complementarily modulated cells | |
KR20190040278A (en) | Water quality detection | |
CA3226467A1 (en) | Fluorescence and scatter and absorption spectroscopic apparatus with a sapphire tube and method for analyzing inline low level hydrocarbon in a flow medium | |
JP3754581B2 (en) | Analysis method for multi-component organic solutions | |
JP4048139B2 (en) | Concentration measuring device | |
US4329149A (en) | Method for spectrophotometric compensation for colorimetric reagent variation | |
JP2000356635A (en) | Concentration measuring method of chlorophyll a and device therefor | |
JP2018526644A (en) | Method and apparatus for determining substance concentration or substance in a liquid medium | |
CN114527069A (en) | Multipurpose double-light-source self-compensation light path design | |
JPH0414298B2 (en) | ||
SU1755129A1 (en) | Method for diagnostics of oil pollutions of water areas | |
WO2005100955A1 (en) | Method and apparatus for determining the absorption of weakly absorbing and/or scattering liquid samples | |
JPH0125017B2 (en) | ||
CA2740828A1 (en) | Determination of the salt concentration of an aqueous solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060711 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061107 |