JP2001032524A - Building construction method - Google Patents
Building construction methodInfo
- Publication number
- JP2001032524A JP2001032524A JP11203941A JP20394199A JP2001032524A JP 2001032524 A JP2001032524 A JP 2001032524A JP 11203941 A JP11203941 A JP 11203941A JP 20394199 A JP20394199 A JP 20394199A JP 2001032524 A JP2001032524 A JP 2001032524A
- Authority
- JP
- Japan
- Prior art keywords
- core shaft
- building
- top structure
- supported
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conveying And Assembling Of Building Elements In Situ (AREA)
Abstract
(57)【要約】
【課題】 コアシャフトの頂部に頂部構造体を設け、そ
の下方に建物本体部を設けた形態の建物を効率的に施工
する。
【解決手段】 頂部構造体4を地組し、コアシャフト1
を順次立ち上げ、頂部構造体をコアシャフトに仮支持せ
しめかつそれより反力をとって順次迫り上げていき、頂
部構造体をコアシャフトの頂部に設置した後、その下方
において建物本体部5を順次地組して吊り上げて設置す
る。頂部構造体をコアシャフトに対して球座3等の揺動
支持装置を介して揺動可能に支持した形態の建物に適用
する場合、頂部構造体をコアシャフトの頂部に仮支持し
た状態で建物本体部を吊り上げ、建物本体部の全階層を
吊り支持した後に、頂部構造体をコアシャフトの頂部に
設けた揺動支持装置に対して全方向に揺動可能に支持せ
しめる。
(57) [Problem] To efficiently construct a building in which a top structure is provided at the top of a core shaft and a building body is provided below the top structure. SOLUTION: A top structure 4 is grounded, and a core shaft 1 is formed.
Are sequentially raised, the top structure is temporarily supported on the core shaft, and the reaction force is applied thereto. Then, the top structure is sequentially moved up. After the top structure is installed on the top of the core shaft, the building body 5 is placed below the top structure. It will be laid one after another and set up. When applied to a building in which the top structure is swingably supported on a core shaft via a swing support device such as a ball seat 3, the building is temporarily mounted on the top of the core shaft while the building is temporarily supported on the top of the core shaft. After lifting the main body and suspending and supporting all floors of the building main body, the top structure is supported so as to be capable of swinging in all directions on a swing support device provided on the top of the core shaft.
Description
【0001】[0001]
【発明の属する技術分野】本発明は建物の施工方法、特
に耐震建物等の特殊な形態の建物に適用して好適な施工
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a construction method for a building, and more particularly to a construction method suitable for a special type of building such as an earthquake-resistant building.
【0002】[0002]
【従来の技術】周知のように、建物の耐震性を向上させ
るための構造としては、剛性を高めて耐力を向上させる
という耐力構造、免震装置により建物の固有周期を長周
期化して地震入力を低減せしめるという免震構造、建物
の要所に各種ダンパー等の制振装置を設置して振動を制
御しエネルギーを吸収するというものがあり、それぞれ
種々の方式のものが提案され実用化されており、その形
態に応じて様々な施工方法が試みられている。2. Description of the Related Art As is well known, a structure for improving the seismic resistance of a building includes a bearing structure for enhancing rigidity by increasing rigidity and a seismic isolation device for increasing the natural period of the building by using a seismic isolation device. There is a seismic isolation structure that reduces the vibration, a type of damping device installed at a key point in the building to control the vibration and absorb the energy, and various types have been proposed and put into practical use. Various construction methods have been tried according to the form.
【0003】[0003]
【発明が解決しようとする課題】しかし、従来までに提
案されている耐震構造は、設計が困難であったり、建物
の規模や形態に制約があったり、コスト高となるといっ
た一長一短があり、未だ有効な構造や施工方法が模索さ
れているのが実状である。However, the seismic structures proposed so far have advantages and disadvantages such as difficulty in designing, restrictions on the size and form of the building, and high costs. In fact, effective structures and construction methods are being sought.
【0004】[0004]
【課題を解決するための手段】請求項1の発明は、建物
中心部に設けた高剛性のコアシャフトと、該コアシャフ
トの頂部に設けられた頂部構造体と、該頂部構造体の下
方に設けられた多層階の建物本体部とを有する建物を対
象とする施工方法であって、前記頂部構造体を地組する
とともに、前記コアシャフトを順次立ち上げていきつ
つ、前記頂部構造体を該コアシャフトに対して仮支持せ
しめかつ該コアシャフトより反力をとって順次迫り上げ
ていき、前記コアシャフトを頂部まで構築し前記頂部構
造体を該コアシャフトの頂部に設置した後、該頂部構造
体の下方において前記建物本体部をその頂部から順次地
組しては前記頂部構造体より吊り上げて前記コアシャフ
トの周囲に設置するものである。According to the first aspect of the present invention, there is provided a high-rigidity core shaft provided at the center of a building, a top structure provided at the top of the core shaft, and a structure provided below the top structure. A construction method intended for a building having a multi-story building body portion provided, wherein the top structure is laid and the core shaft is sequentially raised while the top structure is being formed. After temporarily supporting the core shaft and taking up a reaction force from the core shaft and sequentially moving up, the core shaft is built up to the top, and the top structure is installed on the top of the core shaft. Below the body, the building main body is sequentially laid from the top, suspended from the top structure, and installed around the core shaft.
【0005】請求項2の発明は、建物中心部に設けた高
剛性のコアシャフトと、該コアシャフトの頂部を支点と
して該コアシャフトの周囲において揺動可能に支持され
た主構造体からなり、該主構造体は、前記コアシャフト
の頂部に揺動支持装置を介して支持された高剛性の頂部
構造体より多層階の建物本体部を前記コアシャフトの周
囲に吊り支持してなる建物を対象とする施工方法であっ
て、前記頂部構造体を地組するとともに、前記コアシャ
フトを順次立ち上げていきつつ、前記頂部構造体を該コ
アシャフトに対して仮支持せしめかつ該コアシャフトよ
り反力をとって順次迫り上げていき、前記コアシャフト
を頂部まで構築し前記頂部構造体を該コアシャフトの頂
部に仮支持した状態で、該頂部構造体の下方において前
記建物本体部をその頂部から順次地組しては前記頂部構
造体より吊り上げて該頂部構造体より吊り支持し、該建
物本体部の全階層を吊り支持した後に、前記頂部構造体
を前記コアシャフトの頂部に設けた揺動支持装置に対し
て揺動可能に支持せしめるものである。According to a second aspect of the present invention, there is provided a high-rigidity core shaft provided at the center of a building, and a main structure supported swingably around the core shaft with the top of the core shaft as a fulcrum, The main structure is intended for a building in which a multi-story building body is suspended and supported around the core shaft from a high-rigidity top structure supported on the top of the core shaft via a swing support device. The top structure is grounded, and while the core shaft is sequentially raised, the top structure is temporarily supported on the core shaft and a reaction force is generated by the core shaft. Then, with the core shaft constructed up to the top and the top structure temporarily provisionally supported on the top of the core shaft, the building main body is removed below the top structure. The ground structure was sequentially erected from the top, lifted from the top structure, suspended and supported by the top structure, suspended and supported on all levels of the building body, and then provided with the top structure on the top of the core shaft. The swing support device is configured to be swingably supported.
【0006】[0006]
【発明の実施の形態】図1および図2は本発明の施工方
法が施工対象とする建物の概要を示すもので、図1は立
断面図、図2は基準階平面図である。この建物は、図1
に示されるように、建物中心部に設けた高剛性のコアシ
ャフト1と、そのコアシャフト1の頂部を支点としてそ
の周囲において全方向に揺動可能に支持された主構造体
2からなる。主構造体2は、コアシャフト1の頂部に球
座(揺動支持装置)3を介して支持された高剛性の頂部
構造体4と、その頂部構造体4より吊り支持された多層
階の建物本体部5からなる。1 and 2 show the outline of a building to be constructed by the construction method of the present invention. FIG. 1 is a vertical sectional view and FIG. 2 is a plan view of a reference floor. This building is shown in Figure 1.
As shown in FIG. 1, a high-rigidity core shaft 1 is provided at the center of a building, and a main structure 2 is supported around the top of the core shaft 1 so as to be swingable in all directions. The main structure 2 includes a high-rigidity top structure 4 supported on the top of the core shaft 1 via a ball seat (oscillation support device) 3, and a multi-story building suspended and supported by the top structure 4. It comprises a main body 5.
【0007】コアシャフト1は建物全体の全鉛直荷重
(自重)および地震時における全水平荷重を支持し得る
高軸剛性かつ高曲げ剛性を有する鉄筋コンクリート造の
構造体であって、本実施形態では図2に示すように水平
断面形状がほぼ正方形とされてその内部がエレベータや
階段室等の共用スペースとして、すなわちこの建物全体
のセンターコアとして利用されている。そして、コアシ
ャフト1の頂部中心位置には鋳鋼製の球座3が設けら
れ、この球座3により主構造体2を全方向に揺動可能な
状態で支持するものとなっている。The core shaft 1 is a reinforced concrete structure having high axial rigidity and high bending rigidity capable of supporting the entire vertical load (own weight) of the entire building and the entire horizontal load during an earthquake. As shown in FIG. 2, the horizontal cross-sectional shape is substantially square, and the inside is used as a common space such as an elevator and a staircase, that is, as a center core of the whole building. A ball 3 made of cast steel is provided at the center position of the top of the core shaft 1, and the main structure 2 is supported by the ball 3 so as to be swingable in all directions.
【0008】主構造体2を構成している頂部構造体4
は、建物本体部5の全重量を吊り支持可能な高剛性のも
ので、本実施形態では鉄骨からなる大規模なトラス(い
わゆるハットトラス)により構成されている。この頂部
構造体4はコアシャフト1の外周側に張り出す大きさの
平面視正方形状とされて、その中心が上記の球座3を介
してコアシャフト1によりただ1点で全方向に揺動可能
な状態で支持されている。なお、頂部構造体4の中心部
には上方へ突出する支柱6が設けられ、その支柱6から
頂部構造体4の周縁部を吊り支持するための引張材7が
架設され、これにより頂部構造体4の剛性を確保しつつ
その構造を簡略化でき、建物本体部5を安定に支持し得
るものとなっている。The top structure 4 constituting the main structure 2
Is of high rigidity capable of suspending and supporting the entire weight of the building body 5, and in this embodiment, is constituted by a large-scale truss (so-called hat truss) made of steel. The top structure 4 has a square shape in a plan view and is large enough to protrude toward the outer peripheral side of the core shaft 1. The center of the top structure 4 is swung in all directions at a single point by the core shaft 1 via the above-mentioned ball seat 3. Supported where possible. A support 6 protruding upward is provided at the center of the top structure 4, and a tension member 7 for suspending and supporting the peripheral portion of the top structure 4 is provided from the support 6, whereby the top structure 4 is provided. The structure can be simplified while the rigidity of the building 4 is secured, and the building body 5 can be stably supported.
【0009】また、建物本体部5は、柱8、梁9、スラ
ブ10からなる通常の多層建物と同様の形態のものであ
るが、これは頂部構造体4から吊り下げられて地表より
浮いた状態でコアシャフト1の周囲に設置されている。
そして、この建物本体部5の内周とコアシャフト1との
間、および建物本体部5の下端と地表との間にはクリア
ランス11,12が確保され、したがって建物本体部5
は頂部構造体4と一体となって全方向に揺動可能とされ
ている。なお、建物本体部5とコアシャフト1の間には
各層に通路13が設けられるが、それら通路13は建物
本体部5の揺動を拘束しないようにエキスパンションジ
ョイントを介して設けられている。The building body 5 has the same form as that of an ordinary multi-story building including columns 8, beams 9, and slabs 10, but it is suspended from the top structure 4 and floats above the ground surface. It is installed around the core shaft 1 in a state.
Clearances 11 and 12 are secured between the inner periphery of the building body 5 and the core shaft 1 and between the lower end of the building body 5 and the ground.
Are swingable in all directions integrally with the top structure 4. The passages 13 are provided in each layer between the building body 5 and the core shaft 1, and the passages 13 are provided via expansion joints so as not to restrict the swing of the building body 5.
【0010】上記構造の建物は、図3にモデル化して示
すように、主構造体2がコアシャフト1の頂部の球座3
に支持されつつその周囲においてヤジロベーの如く全方
向に揺動可能な振り子として応答するものとなる。した
がって主構造体2の振り子としての固有周期を、想定さ
れる地震動周期よりも十分に長周期に設定することによ
り、主構造体2の地震入力に対する共振をほぼ完全に防
止することができる。シミュレーションによれば、上記
の構造からなる20階建て程度の建物では主構造体2の
固有周期は13秒以上にもなり、長周期型の地震動周期
に比較してもはるかに長周期となる。[0010] In the building having the above structure, the main structure 2 is a ball seat 3 at the top of the core shaft 1 as shown in FIG.
While being supported by the pendulum, it responds as a pendulum that can swing in all directions like a yajirobe. Therefore, by setting the natural period of the main structure 2 as a pendulum to be sufficiently longer than the assumed earthquake motion period, resonance of the main structure 2 with respect to an earthquake input can be almost completely prevented. According to the simulation, the natural period of the main structure 2 is about 13 seconds or more in a building of about 20 stories having the above structure, which is much longer than that of a long-period type ground motion.
【0011】以上のように、上記構造の建物によれば、
居住空間である建物本体部5の長周期化ないし超長周期
化を実現でき、したがって地震時においても建物本体部
5は殆ど振動することがなく、そのため如何なる地震動
に対しても、また如何なる地域や地盤に設置される建物
であっても、地震に対する安全性と居住性を十分に確保
できるものである。As described above, according to the building having the above structure,
It is possible to realize a long or very long period of the building body 5 which is a living space, and therefore, the building body 5 hardly vibrates even in the event of an earthquake. Even for a building installed on the ground, it is possible to ensure sufficient safety against earthquakes and livability.
【0012】そして、上記構造の建物によれば、建物本
体部5は頂部構造体4から吊り支持されて地表面から浮
いた状態で設置されるので、その柱8には圧縮耐力が必
要とされず単なる吊り材であれば良い。したがって建物
本体部5の構造は図4に別のモデルとして示すように吊
り材としての柱8によって各層のスラブ10を吊り支持
するものであれば良く、その柱8としては所望の引張耐
力を確保できるだけの最小断面の鋼材を採用可能であ
り、あるいはパラレルストランドケーブルを柱8として
採用することも不可能ではない。また、同様の理由によ
り柱8の所要本数も少なくて済むので建物本体部5の内
部空間を無柱とすることも可能であるし、建物本体部5
が地表より浮いているので敷地が広く開放されて有効利
用を図ることができる利点もある。ただし、建物本体部
5が全体として一体化した振り子として揺動することが
好ましく、そのため各層にはたとえば図4に示すように
ブレース等の補剛手段14を設けることで各層の層間変
位を拘束することが好ましい。According to the building having the above structure, the main body 5 of the building is suspended from the top structure 4 and installed in a state of being suspended above the ground surface. Instead, it may be a simple hanging material. Therefore, the structure of the building main body 5 may be any structure as long as the slab 10 of each layer is suspended and supported by the pillars 8 as suspending members, as shown as another model in FIG. 4, and the pillars 8 secure a desired tensile strength. It is not impossible to use a steel material having the smallest possible cross section, or to employ a parallel strand cable as the column 8. Further, for the same reason, the required number of pillars 8 can be reduced, so that the internal space of the building body 5 can be made pillarless, and the building body 5
There is also an advantage that the site is widely opened because it is floating above the surface of the ground and effective utilization can be achieved. However, it is preferable that the building main body 5 swings as an integrated pendulum as a whole. Therefore, for example, as shown in FIG. 4, a stiffening means 14 such as a brace is provided on each layer to restrict the interlayer displacement of each layer. Is preferred.
【0013】また、コアシャフト1は建物全体の全自重
を常時鉛直荷重として受けているので、地震時の応力変
動を考慮してもコアシャフト1に生じる引張応力は殆ど
無視することが可能であり、したがってコアシャフト1
および基礎は構造的に単純かつ明快であってその設計は
容易であり、通常の鉄筋コンクリート造の構造体で十分
に対応可能である。ただし、コアシャフト1自体の固有
周期は自ずと短いものとなるので短周期型の地震時には
共振することも想定される。そこで、コアシャフト1の
振動が球座3を介して主構造体2へ伝達されることが懸
念されるような場合には、支承部に免震装置や制振装置
を介装することでコアシャフト1から主構造体2への振
動伝達を制御することができる。Further, since the core shaft 1 always receives the total weight of the entire building as a vertical load, the tensile stress generated in the core shaft 1 can be almost neglected even in consideration of stress fluctuation during an earthquake. And therefore the core shaft 1
And the foundation is structurally simple and clear, its design is easy, and ordinary reinforced concrete structures are sufficient. However, since the natural period of the core shaft 1 itself is naturally short, it is assumed that the core shaft 1 resonates during a short-period earthquake. If there is a concern that the vibration of the core shaft 1 is transmitted to the main structure 2 via the ball seat 3, a seismic isolation device or a vibration damping device is interposed in the support portion to make the core. Vibration transmission from the shaft 1 to the main structure 2 can be controlled.
【0014】なお、上記構造の建物では風荷重により主
構造体2に揺動が惹起されることが想定されるので、風
荷重による揺動によって居住性が損なわれることが懸念
される場合には、それを防止するべく、たとえば図4に
示すように建物本体部5とコアシャフト1や地盤との間
に、通常時においては主構造体の揺動を拘束し地震時に
おいては開放されて揺動を許容せしめるフューズ機構1
5を設けることが好ましい。そのフューズ機構15とし
ては、地震力を受けて機械的に作動するもの、あるいは
センサにより地震を感知して強制的に作動させるもの等
が好適に採用可能である。なお、通常時の揺動を拘束す
るうえではフューズ機構15を建物本体部5の最下部に
設置することが有効である。In a building having the above structure, it is assumed that the main structure 2 is swung by the wind load. Therefore, when there is a concern that the livability may be impaired by the swing due to the wind load. In order to prevent this, for example, as shown in FIG. 4, between the building main body 5 and the core shaft 1 or the ground, the swing of the main structure is normally restrained, and the swing is released in the event of an earthquake. Fuse mechanism 1 that allows movement
5 is preferably provided. As the fuse mechanism 15, a mechanism that mechanically operates by receiving seismic force or a mechanism that forcibly operates by detecting an earthquake with a sensor can be suitably used. It is effective to install the fuse mechanism 15 at the lowermost part of the building main body 5 in order to restrain the swing in the normal state.
【0015】また、同じく建物本体部5とコアシャフト
1や地盤との間に、地震時に主構造体2が揺動した際に
作動してその振動エネルギーを吸収する各種のダンパー
16を設けることにより、主構造体2の揺動を抑制しか
つ速やかに減衰させることが可能である。そのダンパー
16は図4に示すようにフューズ機構15に組み込んだ
り、フューズ機構15自体にダンパー16としての機能
を備えることも考えられる。また、このようなダンパー
16をコアシャフト1と建物本体部5との間に多数設け
ることで、先に述べた地震時におけるコアシャフト1の
振動をこれらのダンパー16で抑制し減衰させることも
できる。Also, various dampers 16 are provided between the building body 5 and the core shaft 1 or the ground to operate when the main structure 2 swings during an earthquake and absorb the vibration energy. In addition, it is possible to suppress the swing of the main structure 2 and quickly attenuate it. The damper 16 may be incorporated into the fuse mechanism 15 as shown in FIG. 4, or the fuse mechanism 15 itself may have a function as the damper 16. Further, by providing a large number of such dampers 16 between the core shaft 1 and the building main body 5, the vibration of the core shaft 1 during the above-described earthquake can be suppressed and attenuated by these dampers 16. .
【0016】以上、本発明の施工方法の施工対象である
建物の構造について説明したが、次にその施工方法の実
施形態について図5〜図12を参照して説明する。The structure of a building to be constructed by the construction method of the present invention has been described above. Next, an embodiment of the construction method will be described with reference to FIGS.
【0017】まず、図5に示すように頂部構造体4を地
組し、支柱20により地表面上に浮かせた状態で支持し
つつ、その下方においてコアシャフト1の最下層の部分
を施工し、そのコアシャフト1より頂部構造体4をクラ
イミングマスト21により支持せしめる。First, as shown in FIG. 5, the top structure 4 is laid in the ground, and is supported in a state where it is floated on the ground surface by the columns 20, and the lowermost layer portion of the core shaft 1 is constructed below it. The top structure 4 is supported by the climbing mast 21 from the core shaft 1.
【0018】図6および図7に示すように、コアシャフ
ト1を順次立ち上げていきつつ、クライミングマスト2
1を上方へ盛替えていき、そのクライミングマスト21
によりコアシャフト1から反力をとって頂部構造体4を
順次迫り上げていく。As shown in FIGS. 6 and 7, while the core shaft 1 is sequentially raised, the climbing mast 2
The climbing mast 21
As a result, a reaction force is taken from the core shaft 1 and the top structure 4 is sequentially pushed up.
【0019】図8に示すように、コアシャフト1を頂部
まで施工して頂部構造体4をその上方に仮支持した状態
で、図9に示すようにコアシャフト1の頂部に球座3を
施工する。As shown in FIG. 8, while the core shaft 1 is constructed to the top and the top structure 4 is temporarily supported thereon, the ball seat 3 is constructed on the top of the core shaft 1 as shown in FIG. I do.
【0020】そして、図10および図11に示すよう
に、コアシャフト1の周囲つまり頂部構造体4の下方に
おいて建物本体部5をその頂部の部分からたとえば3層
ずつ順次地組してはそれを吊り上げて、頂部構造体4よ
り吊り支持せしめる。この際、建物本体部5の柱8自体
を吊り材とすることができる。Then, as shown in FIGS. 10 and 11, the building main body 5 is sequentially laid from the top portion around the core shaft 1, that is, below the top structure 4, for example, three layers at a time. It is lifted and suspended from the top structure 4. At this time, the pillar 8 itself of the building body 5 can be used as a hanging material.
【0021】図12に示すように建物本体部5の全階層
を頂部構造体4から吊り支持し、上述したブレース等の
補剛手段14、フューズ機構15、ダンパー16等を施
工したら、頂部構造体4を球座3に対して揺動可能に支
持せしめ、最後にクライミングマスト21を撤去する。As shown in FIG. 12, the entire structure of the building main body 5 is suspended from the top structure 4, and the stiffening means 14, such as braces, the fuse mechanism 15, the damper 16 and the like are installed. 4 is swingably supported with respect to the ball base 3, and the climbing mast 21 is finally removed.
【0022】以上の施工手順によれば、コアシャフト1
に対して頂部構造体4を球座3により支承するというき
わめて特殊な構造の建物を支障なく効率的に施工し得る
ことはもとより、特に、頂部構造体4を地組して順次迫
り上げていき、かつ建物本体部5も地組して吊り上げて
いくので、主要な作業の大半を地上において実施でき、
したがって高所作業を軽減できるとともに高所への資材
搬送も軽減できるのできわめて施工性に優れる。また、
頂部構造体4を先行施工してそれ以降の作業の大半を頂
部構造体4の下方において行うので、頂部構造体4が施
工中の屋根として機能して全天候型の施工を実現でき
る。According to the above construction procedure, the core shaft 1
In addition to being able to efficiently construct a very special structure in which the top structure 4 is supported by the ball seat 3 without hindrance, in particular, the top structure 4 is gradually erected and grounded. , And the building body 5 is also laid on the ground, so that most of the main work can be carried out on the ground,
Therefore, work at high places can be reduced and material transportation to high places can be reduced, so that the workability is extremely excellent. Also,
Since the top structure 4 is pre-constructed and most of the subsequent work is performed below the top structure 4, the top structure 4 functions as a roof during the construction, thereby realizing all-weather construction.
【0023】以上で本発明の実施形態を説明したが、本
発明の施工方法は上記のように頂部構造体4を球座3に
より全方向に揺動自在に支持するという形態の極めて特
殊な建物に限らず、コアシャフト1の頂部に頂部構造体
4を設けかつその下方に建物本体部5を設ける形態の建
物であれば同様に適用することができる。Although the embodiment of the present invention has been described above, the construction method of the present invention is a very special building in which the top structure 4 is swingably supported in all directions by the ball seat 3 as described above. However, the present invention is not limited to this, and can be similarly applied to a building in which the top structure 4 is provided on the top of the core shaft 1 and the building body 5 is provided below the top structure 4.
【0024】また、本発明の施工方法は、上記の球座3
に代えて図13に示すように複数の免震装置30の集合
体を採用した建物を施工する際にも同様に適用可能であ
る。この建物は、図13(a)に示すようにそれぞれが
仮想の中心Oを向くように傾斜状態で設置されて主構造
体2をその中心Oの回りに揺動可能に支持する複数の免
震装置30の集合体を揺動支持装置として採用し、各免
震装置30を仮想の半径Rを有する仮想の曲面Sの接線
方向に沿って作動させるように構成されたものである。
それら免震装置30としては図示例のような積層ゴムの
みならず、ベアリング支承や滑り支承等も採用可能であ
る。上記の仮想の曲面Sとしては、建物の形態等に応じ
て球面あるいは円筒面を設定することが考えられ、球面
の場合は全方向の揺動が可能であり、円筒面の場合はそ
の円筒面の周方向への揺動が可能である。また、この場
合、各免震装置30が中心Oを共通としてその回りの回
転運動が可能であれば良いのであり、その限りにおいて
(a)に示すように単一の仮想曲面Sを設定することに
限らず、(b)あるいは(c)に模式的に示すように、
個々の免震装置30に対して、あるいは免震装置30を
任意のグループに区分して各グループ毎に、所望回転半
径R(R1,R2)の仮想曲面S(S1,S2)を設定
すれば良い。Further, the construction method of the present invention provides the above-described ball seat 3
Instead, the present invention can be similarly applied to the construction of a building employing an aggregate of a plurality of seismic isolation devices 30 as shown in FIG. As shown in FIG. 13 (a), this building is installed in an inclined state so as to face a virtual center O, and a plurality of seismic isolation devices that support the main structure 2 so as to swing around the center O are provided. An assembly of the devices 30 is adopted as a swing support device, and each seismic isolation device 30 is configured to operate along a tangential direction of a virtual curved surface S having a virtual radius R.
As the seismic isolation device 30, not only the laminated rubber as shown in the illustrated example but also a bearing support or a sliding support can be adopted. As the above-mentioned virtual curved surface S, it is conceivable to set a spherical surface or a cylindrical surface according to the form of the building or the like. In the case of a spherical surface, swing in all directions is possible, and in the case of a cylindrical surface, the cylindrical surface Can be swung in the circumferential direction. In this case, it is only necessary that the seismic isolation devices 30 have a common center O and can rotate around the center O. In this case, a single virtual curved surface S is set as shown in FIG. However, as schematically shown in (b) or (c),
If a virtual curved surface S (S1, S2) having a desired rotation radius R (R1, R2) is set for each seismic isolation device 30 or for each group by dividing the seismic isolation device 30 into an arbitrary group. good.
【0025】[0025]
【発明の効果】請求項1の発明は、コアシャフトの頂部
に頂部構造体を設け、その下方に建物本体部を設けた形
態の建物を施工するに際し、頂部構造体を地組し、コア
シャフトを順次立ち上げていきつつそのコアシャフトか
ら反力をとって頂部構造体を順次迫り上げていき、頂部
構造体の下方において建物本体部をその頂部から順次地
組しては吊り上げていってその下方に設置するので、主
要な作業の大半を地上において実施でき、したがって高
所作業を軽減できるとともに高所への資材搬送も軽減で
きるので、きわめて施工性に優れる。また、頂部構造体
を先行施工してそれ以降の作業の大半を頂部構造体の下
方において行うので、頂部構造体が施工中の屋根として
機能して全天候型の施工を実現できる。According to the first aspect of the present invention, when constructing a building in which a top structure is provided at the top of a core shaft and a building body is provided below the top structure, the top structure is grounded, While gradually starting up, take the reaction force from the core shaft and gradually move up the top structure, and below the top structure, hang the building body part from the top one by one and hang it up. Since it is installed below, most of the main work can be carried out on the ground, so that work in high places can be reduced and material transport to high places can be reduced, so that the workability is extremely excellent. In addition, since the top structure is pre-constructed and most of the subsequent work is performed below the top structure, the top structure functions as a roof during the construction, thereby realizing all-weather construction.
【0026】請求項2の発明は、コアシャフトの頂部に
頂部構造体を揺動支持装置を介して揺動自在に設け、頂
部構造体から建物本体部を吊り支持した形態の建物を施
工するに際し、頂部構造体を地組するとともに、コアシ
ャフトを順次立ち上げていきつつ、頂部構造体をコアシ
ャフトに対して仮支持せしめかつ該コアシャフトより反
力をとって順次迫り上げていき、コアシャフトを頂部ま
で構築して頂部構造体をコアシャフトの頂部に仮支持し
た状態で、頂部構造体の下方において建物本体部をその
頂部から順次地組しては頂部構造体より吊り上げて頂部
構造体より吊り支持し、建物本体部の全階層を吊り支持
した後に、頂部構造体をコアシャフトの頂部に設けた揺
動支持装置に対して揺動可能に支持せしめるので、上記
と同様の効果を奏することに加え、コアシャフトに対し
て主構造体を揺動支持装置により支持するというきわめ
て特殊な構造の建物を支障なく効率的に施工することが
できる。According to a second aspect of the present invention, a construction is provided in which a top structure is swingably provided on the top of a core shaft via a swing support device, and a building body is suspended from the top structure and supported. While the top structure is grounded and the core shaft is sequentially raised, the top structure is temporarily supported on the core shaft, and the core shaft is gradually raised by taking a reaction force from the core shaft. In the state where the top structure is temporarily supported on the top of the core shaft, the building body is sequentially erected from the top under the top structure, and then lifted from the top structure and lifted from the top structure. After suspending and supporting all levels of the building main body, the top structure is swingably supported by the swing support device provided on the top of the core shaft, so that the same effects as above are achieved. In addition to Rukoto, the building of very special structure of the major structures to the core shaft is supported by a swing supporting device can be without any trouble efficiently construction.
【図1】 本発明の施工対象である建物の概要を示す立
断面図である。FIG. 1 is a vertical sectional view showing an outline of a building to be constructed according to the present invention.
【図2】 同、基準階平面図である。FIG. 2 is a plan view of a reference floor.
【図3】 同建物をモデル化した図である。FIG. 3 is a diagram modeling the same building.
【図4】 同建物を別のモデルとして示した図である。FIG. 4 is a diagram showing the same building as another model.
【図5】 本発明の施工方法の実施形態を示す図であっ
て、頂部構造体を地組した状態を示す図である。FIG. 5 is a view showing an embodiment of the construction method of the present invention, and is a view showing a state in which a top structure is grounded.
【図6】 同、コアシャフトを立ち上げ、頂部構造体を
迫り上げていく状態を示す図である。FIG. 6 is a view showing a state in which the core shaft is raised and the top structure is pushed up.
【図7】 同、同じくコアシャフトを立ち上げ、頂部構
造体を迫り上げていく状態を示す図である。FIG. 7 is a view showing a state in which the core shaft is raised and the top structure is pushed up similarly.
【図8】 同、コアシャフトを頂部まで立ち上げ、頂部
構造体を仮支持した状態を示す図である。FIG. 8 is a view showing a state where the core shaft is raised up to the top and the top structure is temporarily supported.
【図9】 同、コアシャフトの頂部に球座を設けた状態
を示す図である。FIG. 9 is a diagram showing a state where a ball seat is provided on the top of the core shaft.
【図10】 同、建物本体部を地組した状態を示す図で
ある。FIG. 10 is a diagram showing a state where the building main body is grounded.
【図11】 同、建物本体部を吊り上げている状態を示
す図である。FIG. 11 is a diagram showing a state where the building body is lifted.
【図12】 同、建物本体部の全階層を吊り上げた状態
を示す図である。FIG. 12 is a diagram showing a state where all floors of the building body are lifted.
【図13】 本発明の施工対象である他の建物の概要を
示す図である。FIG. 13 is a diagram showing an outline of another building to be constructed according to the present invention.
1 コアシャフト 3 球座(揺動支持装置) 4 頂部構造体 5 建物本体部 30 免震装置(揺動支持装置) DESCRIPTION OF SYMBOLS 1 Core shaft 3 Ball seat (oscillation support apparatus) 4 Top structure 5 Building main body 30 Seismic isolation device (oscillation support apparatus)
Claims (2)
トと、該コアシャフトの頂部に設けられた頂部構造体
と、該頂部構造体の下方に設けられた多層階の建物本体
部とを有する建物を対象とする施工方法であって、 前記頂部構造体を地組するとともに、前記コアシャフト
を順次立ち上げていきつつ、前記頂部構造体を該コアシ
ャフトに対して仮支持せしめかつ該コアシャフトより反
力をとって順次迫り上げていき、 前記コアシャフトを頂部まで構築し前記頂部構造体を該
コアシャフトの頂部に設置した後、該頂部構造体の下方
において前記建物本体部をその頂部から順次地組しては
前記頂部構造体より吊り上げて前記コアシャフトの周囲
に設置することを特徴とする建物の施工方法。1. A high-rigidity core shaft provided at the center of a building, a top structure provided at the top of the core shaft, and a multi-story building body provided below the top structure. A construction method intended for a building having the core structure, wherein the top structure is grounded, and while the core shaft is sequentially raised, the top structure is temporarily supported on the core shaft and the core is After taking up a reaction force from the shaft and sequentially moving up, the core shaft is built up to the top and the top structure is installed on the top of the core shaft, and then the building body is placed under the top structure at the top. From the top structure to be installed around the core shaft.
トと、該コアシャフトの頂部を支点として該コアシャフ
トの周囲において揺動可能に支持された主構造体からな
り、該主構造体は、前記コアシャフトの頂部に揺動支持
装置を介して支持された高剛性の頂部構造体より多層階
の建物本体部を前記コアシャフトの周囲に吊り支持して
なる建物を対象とする施工方法であって、 前記頂部構造体を地組するとともに、前記コアシャフト
を順次立ち上げていきつつ、前記頂部構造体を該コアシ
ャフトに対して仮支持せしめかつ該コアシャフトより反
力をとって順次迫り上げていき、 前記コアシャフトを頂部まで構築し前記頂部構造体を該
コアシャフトの頂部に仮支持した状態で、該頂部構造体
の下方において前記建物本体部をその頂部から順次地組
しては前記頂部構造体より吊り上げて該頂部構造体より
吊り支持し、該建物本体部の全階層を吊り支持した後
に、前記頂部構造体を前記コアシャフトの頂部に設けた
揺動支持装置に対して揺動可能に支持せしめることを特
徴とする建物の施工方法。2. A high-rigidity core shaft provided at the center of a building, and a main structure swingably supported around the core shaft with the top of the core shaft as a fulcrum, wherein the main structure is A construction method for a building in which a multi-story building body is suspended and supported around the core shaft from a high-rigidity top structure supported on the top of the core shaft via a swing support device. While the top structure is grounded and the core shaft is sequentially raised, the top structure is temporarily supported on the core shaft, and a reaction force is applied from the core shaft to sequentially approach the top structure. In a state where the core shaft is constructed to the top and the top structure is temporarily supported on the top of the core shaft, the building main body is sequentially grounded from the top below the top structure. Then, after being suspended from the top structure and suspended from the top structure, and suspended and supported on all levels of the building body, the swinging device provided on the top of the core shaft is provided with the top structure. A building construction method characterized in that the building is swingably supported.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20394199A JP3733511B2 (en) | 1999-07-16 | 1999-07-16 | Building construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20394199A JP3733511B2 (en) | 1999-07-16 | 1999-07-16 | Building construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001032524A true JP2001032524A (en) | 2001-02-06 |
JP3733511B2 JP3733511B2 (en) | 2006-01-11 |
Family
ID=16482226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20394199A Expired - Fee Related JP3733511B2 (en) | 1999-07-16 | 1999-07-16 | Building construction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3733511B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008280677A (en) * | 2007-05-08 | 2008-11-20 | Ohbayashi Corp | Construction method for hanging structure building, and hanging structure building |
JP2008280678A (en) * | 2007-05-08 | 2008-11-20 | Ohbayashi Corp | Construction method of suspended structure building, suspended structure building |
CN105298125A (en) * | 2015-10-16 | 2016-02-03 | 中建三局集团有限公司 | Structural system with lower supporting and upper hanging and construction method of same |
KR101794085B1 (en) | 2009-02-09 | 2017-11-20 | 3엘-이노제니 인코포레이티드 | Construction system and method for multi-floor buildings |
JP2017214791A (en) * | 2016-06-01 | 2017-12-07 | 株式会社竹中工務店 | Building construction method |
CN110528891A (en) * | 2019-09-06 | 2019-12-03 | 成都建工第一建筑工程有限公司 | Large-span Spherical rack integral hoisting method |
CN111186751A (en) * | 2020-01-19 | 2020-05-22 | 河海大学 | Vertical transportation device and method in whole process of high-rise building construction and operation |
CN112554345A (en) * | 2020-11-27 | 2021-03-26 | 中国二冶集团有限公司 | Ground splicing and integral lifting construction method for large-span welding ball net rack |
-
1999
- 1999-07-16 JP JP20394199A patent/JP3733511B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008280677A (en) * | 2007-05-08 | 2008-11-20 | Ohbayashi Corp | Construction method for hanging structure building, and hanging structure building |
JP2008280678A (en) * | 2007-05-08 | 2008-11-20 | Ohbayashi Corp | Construction method of suspended structure building, suspended structure building |
KR101794085B1 (en) | 2009-02-09 | 2017-11-20 | 3엘-이노제니 인코포레이티드 | Construction system and method for multi-floor buildings |
CN105298125A (en) * | 2015-10-16 | 2016-02-03 | 中建三局集团有限公司 | Structural system with lower supporting and upper hanging and construction method of same |
JP2017214791A (en) * | 2016-06-01 | 2017-12-07 | 株式会社竹中工務店 | Building construction method |
CN110528891A (en) * | 2019-09-06 | 2019-12-03 | 成都建工第一建筑工程有限公司 | Large-span Spherical rack integral hoisting method |
CN110528891B (en) * | 2019-09-06 | 2021-04-16 | 成都建工第一建筑工程有限公司 | Integral hoisting method for large-span spherical net rack |
CN111186751A (en) * | 2020-01-19 | 2020-05-22 | 河海大学 | Vertical transportation device and method in whole process of high-rise building construction and operation |
CN112554345A (en) * | 2020-11-27 | 2021-03-26 | 中国二冶集团有限公司 | Ground splicing and integral lifting construction method for large-span welding ball net rack |
Also Published As
Publication number | Publication date |
---|---|
JP3733511B2 (en) | 2006-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Poon et al. | Structural design of Taipei 101, the world’s tallest building | |
JP4092624B2 (en) | Seismic isolation structure of building | |
KR20150138785A (en) | Vertical expansion remodeling method of existing building with seperate load path | |
JP2001032524A (en) | Building construction method | |
JP4804231B2 (en) | Seismic isolation structure on the piloti floor | |
JP3799199B2 (en) | Seismic building structure | |
CN110185179B (en) | Self-resetting building structure and construction method of prefabricated suspended floor | |
JPS63315772A (en) | Earthquakeproof building | |
JP4689386B2 (en) | Building with seismic isolation piloti floor | |
JP3854606B2 (en) | Vibration control mechanism | |
JP4837145B1 (en) | Seismic retrofitting structure | |
JP3636924B2 (en) | Foundation structure | |
Smirnov et al. | Seismic isolation of buildings and historical monuments. Recent developments in Russia | |
JP2762096B2 (en) | Skyscraper tower | |
JP2006016911A (en) | Seismic isolation structure | |
Melkumyan | Base Isolation Strategy for Retrofitting of the Existing 19-Story (including two basement floors) Apartment Building with Monolithic Load Bearing Walls in the City of Almaty, Kazakhstan | |
JP3896534B2 (en) | Apartment building | |
JP3925868B2 (en) | Seismic retrofit structure and seismic control structure using the same | |
JP3055073B2 (en) | Building | |
CN221589895U (en) | Upper overhanging type steel frame roof connecting structure and upper overhanging type steel frame structure thereof | |
JP3749675B2 (en) | Support structure for structure foundation | |
JP5290786B2 (en) | Damping structure | |
JP2829889B2 (en) | Lift-up method using multiple steel tube concrete columns | |
JP6448832B1 (en) | Seismic reinforcement structure of building | |
JP2000204787A (en) | Damping building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051005 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111028 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111028 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121028 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121028 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131028 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131028 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131028 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141028 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |