JP2001026892A - Alkali chloride electrolysis device and its operating method - Google Patents
Alkali chloride electrolysis device and its operating methodInfo
- Publication number
- JP2001026892A JP2001026892A JP11196286A JP19628699A JP2001026892A JP 2001026892 A JP2001026892 A JP 2001026892A JP 11196286 A JP11196286 A JP 11196286A JP 19628699 A JP19628699 A JP 19628699A JP 2001026892 A JP2001026892 A JP 2001026892A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- electrolytic cell
- alkali chloride
- hydrogen
- caustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003513 alkali Substances 0.000 title claims abstract description 51
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 title claims abstract description 47
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 47
- 238000011017 operating method Methods 0.000 title 1
- 239000007789 gas Substances 0.000 claims abstract description 116
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 50
- 238000009792 diffusion process Methods 0.000 claims abstract description 47
- 239000003518 caustics Substances 0.000 claims abstract description 43
- 239000001257 hydrogen Substances 0.000 claims abstract description 41
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000001301 oxygen Substances 0.000 claims abstract description 24
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 24
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 9
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000460 chlorine Substances 0.000 abstract description 5
- 229910052801 chlorine Inorganic materials 0.000 abstract description 5
- 239000007792 gaseous phase Substances 0.000 abstract description 2
- 230000006378 damage Effects 0.000 abstract 1
- 230000001681 protective effect Effects 0.000 abstract 1
- 239000003014 ion exchange membrane Substances 0.000 description 24
- 238000000034 method Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000012071 phase Substances 0.000 description 9
- 238000004880 explosion Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- LPLLVINFLBSFRP-UHFFFAOYSA-N 2-methylamino-1-phenylpropan-1-one Chemical compound CNC(C)C(=O)C1=CC=CC=C1 LPLLVINFLBSFRP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 102100032566 Carbonic anhydrase-related protein 10 Human genes 0.000 description 1
- 241000132539 Cosmos Species 0.000 description 1
- 235000005956 Cosmos caudatus Nutrition 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- 101000867836 Homo sapiens Carbonic anhydrase-related protein 10 Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 238000010349 cathodic reaction Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガス拡散陰極を備
えた電解槽において、塩化アルカリ水溶液を電解し、塩
素及び苛性アルカリを製造する電解装置及びその運転方
法に関し、特に電解を継続すると危険な状態となる場合
において電解槽を停止するようにできる保護するための
システムを有する電解装置及びその運転方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolysis apparatus for electrolyzing an aqueous solution of alkali chloride to produce chlorine and caustic alkali in an electrolytic cell provided with a gas diffusion cathode, and a method of operating the electrolysis apparatus. The present invention relates to an electrolysis apparatus having a protection system capable of stopping an electrolysis cell when a state occurs, and a method of operating the electrolysis apparatus.
【0002】[0002]
【従来の技術】塩化アルカリ水溶液を、ガス拡散陰極を
使用するイオン交換膜法で電解し、苛性アルカリを得る
方法は公知である。この製造方法は、その大要が、陽極
を有し塩化アルカリ水溶液を入れた陽極室と、陰極を有
し、水又は苛性アルカリ水溶液を入れた陰極室とを、一
般に陽イオン交換膜であるイオン交換膜により区画し、
両電極間に通電して電解する際に、陰極として素材が多
孔質体からなり、酸素含有ガスが供給されつつ電解され
るガス拡散陰極を用いて電解することにより、陰極室に
苛性アルカリを得るものであって、その陰極では水素ガ
スが発生しないため、電解電圧が著しく低減されるとい
う利点を有する。2. Description of the Related Art A method for obtaining a caustic alkali by electrolyzing an aqueous alkali chloride solution by an ion exchange membrane method using a gas diffusion cathode is known. This production method comprises, in its summary, an anode chamber having an anode and containing an aqueous alkali chloride solution, and a cathode chamber having a cathode and containing water or an aqueous caustic solution, which is generally an ion exchange membrane, which is a cation exchange membrane. Partitioned by an exchange membrane,
When conducting electricity between the two electrodes and conducting electrolysis, the cathode is made of a porous material, and by using a gas diffusion cathode that is electrolyzed while an oxygen-containing gas is supplied, electrolysis is performed to obtain caustic in the cathode chamber. Since no hydrogen gas is generated at the cathode, there is an advantage that the electrolysis voltage is significantly reduced.
【0003】この製造方法を開示した特許文献として
は、例えば特開昭54−97600号、特開昭56−4
4784号、特開昭56−130482号、特開昭57
−152479号、特開昭59−133386号、特開
昭61−266591号、特公昭58−44156号、
特公昭58−49639号、特公昭60−9595号、
特公昭61−20634号公報などが挙げられる。その
他多くのガス拡散陰極の製造法や性能の改善に関する多
くの提案がなされているが、異常事態を回避する方法に
ついての提案はなかった。Patent documents disclosing this production method include, for example, JP-A-54-97600 and JP-A-56-4.
4784, JP-A-56-130482, JP-A-57
-152479, JP-A-59-133386, JP-A-61-266591, JP-B-58-44156,
JP-B-58-49639, JP-B-60-9595,
JP-B-61-20634 and the like. Many proposals have been made regarding the production method and performance improvement of many other gas diffusion cathodes, but no proposal has been made on how to avoid abnormal situations.
【0004】[0004]
【発明が解決しようとする課題】ガス拡散陰極を使用す
るイオン交換膜法電解槽を、高性能を維持しつつ長期間
にわたり運転するためには、運転条件が重要であるとと
もに、特に電解槽の異常を検知して適切な処置を取るこ
とが重要であり、処置の仕方によっては停止時に電解槽
の性能を大幅に低下させてしまったり、場合によっては
使用できなくしてしまうこともありえる。従来の既に知
られている、ガス拡散陰極を使用しないイオン交換膜法
塩化アルカリ電解では、陽極を含む陽極室と陰極を含む
陰極室がイオン交換膜により区画され、陽極室には塩化
アルカリ水溶液が供給され、陽極において塩素ガスを生
成し、陰極室には苛性アルカリ水溶液又は水が供給さ
れ、陰極において苛性アルカリ及び水素ガスを生成す
る。In order to operate an ion-exchange membrane method electrolytic cell using a gas diffusion cathode for a long period of time while maintaining high performance, the operating conditions are important. It is important to detect abnormalities and take appropriate measures, and depending on the manner of treatment, the performance of the electrolytic cell may be significantly reduced at the time of stoppage, or may be impossible to use in some cases. In the conventional already known ion-exchange membrane method of alkali chloride electrolysis without using a gas diffusion cathode, an anode chamber including an anode and a cathode chamber including a cathode are separated by an ion-exchange membrane, and an alkali chloride aqueous solution is contained in the anode chamber. Supplied, chlorine gas is produced at the anode, caustic aqueous solution or water is supplied to the cathode chamber, and caustic and hydrogen gas are produced at the cathode.
【0005】一方、ガス拡散陰極を用いる塩化アルカリ
電解においては、陽極を含む陽極室とガス拡散陰極を含
む陰極室がイオン交換膜により区画され、陽極室には塩
化アルカリ水溶液が供給され、陽極において塩素ガスを
生成し、陰極室には苛性アルカリ水溶液又は水及び酸素
含有ガスが供給され、ガス拡散陰極において苛性アルカ
リを生成する。これら二つの電解法を比較した場合、陽
極反応は全く同じであるが、陰極反応は大きく異なり、
ガス拡散陰極を使用するイオン交換膜法電解において
は、水素ガスが発生しないのが特徴である。これに使用
するガス拡散陰極は各種のものが提案されており、代表
的なものとしては、カーボン粉末とポリテトラフルオロ
エチレンの混合物からホットプレスなどで成形されてお
り、微細孔を有するガス透過性のシート状であり、これ
に触媒として白金等の貴金属や銀それらの合金などが担
持されたものがあり、強度や導電性を増すために金属メ
ッシュで補強されることもある。On the other hand, in alkali chloride electrolysis using a gas diffusion cathode, an anode chamber including an anode and a cathode chamber including a gas diffusion cathode are separated by an ion exchange membrane. Chlorine gas is generated, and a caustic aqueous solution or water and an oxygen-containing gas are supplied to the cathode chamber to generate caustic at the gas diffusion cathode. When comparing these two electrolysis methods, the anodic reaction is exactly the same, but the cathodic reaction is significantly different,
In ion exchange membrane electrolysis using a gas diffusion cathode, a feature is that no hydrogen gas is generated. Various types of gas diffusion cathodes used for this purpose have been proposed. A typical example is a gas permeable cathode having a fine pore formed from a mixture of carbon powder and polytetrafluoroethylene by hot pressing or the like. There is a sheet on which a noble metal such as platinum or an alloy thereof is supported as a catalyst, and may be reinforced with a metal mesh in order to increase strength and conductivity.
【0006】ガス拡散陰極を用いる塩化アルカリ電解に
おいては、通常時は水素の発生はないが、場合によって
は水素を発生することがある。例えば、極端な場合とし
て酸素含有ガスが遮断された場合においては、加えられ
ている電流分は水素が発生する。また、ガス拡散陰極が
劣化すると、酸素の還元反応が起こりにくくなり、水素
が発生するし、酸素の過剰度が低くなり、陰極室におけ
る酸素濃度がある限界以下になった場合においても水素
が発生する。このように、ガス拡散陰極は導電体である
から、酸素還元反応が起きにくくなった場合には、水素
の発生が起こる。このような水素の発生が起きた時に
は、水素ガスは、排ガスとして排出される他に、循環苛
性アルカリ出口からも排出される。運転中は、酸素含有
ガスを供給し、排ガス中には過剰分の酸素が含まれるか
ら、水素が発生した場合においては、電解槽の陰極室の
ガス相あるいは排ガスラインにおいて、爆鳴気を形成す
ることになる。水素の爆発範囲は、空気中では、4〜7
5%といわれ、着火エネルギーが非常に低いのが特徴で
ある。ひとたび爆発が起これば、電解槽および付帯する
設備が破壊されることになる。In alkali chloride electrolysis using a gas diffusion cathode, hydrogen is not usually generated, but hydrogen may be generated in some cases. For example, in an extreme case where the oxygen-containing gas is cut off, hydrogen is generated for the applied current. In addition, when the gas diffusion cathode is deteriorated, the reduction reaction of oxygen becomes difficult to occur, hydrogen is generated, and the excess degree of oxygen is reduced, and hydrogen is generated even when the oxygen concentration in the cathode chamber falls below a certain limit. I do. As described above, since the gas diffusion cathode is a conductor, when the oxygen reduction reaction hardly occurs, hydrogen is generated. When such generation of hydrogen occurs, hydrogen gas is discharged not only as exhaust gas but also from the circulating caustic outlet. During operation, an oxygen-containing gas is supplied, and excess oxygen is contained in the exhaust gas. When hydrogen is generated, detonation is formed in the gas phase of the cathode chamber of the electrolytic cell or in the exhaust gas line. Will do. Hydrogen explosion range is 4-7 in air
It is said to be 5%, and is characterized by very low ignition energy. Once an explosion occurs, the electrolytic cell and associated equipment will be destroyed.
【0007】本発明は、ガス拡散陰極を備えた電解槽に
おいて、塩化アルカリ水溶液を電解し、塩素及び苛性ア
ルカリを製造する電解装置における運転方法に関し、水
素の発生を検知し、検知された水素濃度がまだ爆発を起
こさないが、それに近い程度に予め設定された値になっ
た時に、電解槽を停止することによって電解装置を保護
することを目的とする。The present invention relates to an operation method in an electrolysis apparatus for producing chlorine and caustic alkali by electrolyzing an aqueous alkali chloride solution in an electrolytic cell provided with a gas diffusion cathode, detecting the generation of hydrogen, and detecting the detected hydrogen concentration. The purpose of the present invention is to protect the electrolyzer by stopping the electrolyzer when the value does not cause an explosion yet but reaches a preset value close to the explosion.
【0008】[0008]
【課題を解決するための手段】本発明者等は、ガス拡散
陰極を備えた電解槽において、塩化アルカリ水溶液を電
解し、塩素及び苛性アルカリを製造する電解装置での運
転方法に関し、ガス拡散陰極において水素が発生した事
態に対処するための方法について鋭意検討を重ねた結
果、本発明を完成するに至った。具体的には、本発明
は、ガス拡散陰極を備えた塩化アルカリ電解槽におい
て、塩化アルカリ水溶液を電解し、塩素及び苛性アルカ
リを製造する電解装置における運転方法に関し、ガス拡
散陰極での水素の発生を検知し、検知された水素濃度が
爆発を起こさない程度の予め設定された値になった時
に、電解槽を停止することによって電解装置を保護でき
ることを見出してなされたものである。Means for Solving the Problems The inventors of the present invention relate to a method of operating an electrolytic cell for producing chlorine and caustic alkali by electrolyzing an aqueous alkali chloride solution in an electrolytic cell provided with a gas diffusion cathode. As a result of intensive studies on a method for coping with the situation where hydrogen was generated in the above, the present invention was completed. Specifically, the present invention relates to an operation method in an electrolysis apparatus for producing chlorine and caustic alkali by electrolyzing an alkali chloride aqueous solution in an alkali chloride electrolytic cell provided with a gas diffusion cathode, and generating hydrogen at the gas diffusion cathode. When the detected hydrogen concentration reaches a predetermined value that does not cause an explosion, it has been found that the electrolytic device can be protected by stopping the electrolytic cell.
【0009】すなわち、本発明は、次の手段によって前
記の目的を達成することができる。 (1)ガス拡散陰極を備えた塩化アルカリ電解槽を有す
る塩化アルカリ電解装置において、該塩化アルカリ電解
槽から出る酸素含有排ガスの排出ライン中及び/又は苛
性アルカリ水溶液を循環するタンクの気相部に水素検知
計を設置してなることを特徴とする塩化アルカリ電解装
置。 (2)ガス拡散陰極を備えた塩化アルカリ電解槽を有す
る塩化アルカリ電解装置の該塩化アルカリ電解槽から出
る酸素含有排ガスの排出ライン中及び/又は苛性アルカ
リ水溶液を循環するタンクの気相部での水素濃度が、設
定された値を超えた時に該塩化アルカリ電解槽の通電を
停止することを特徴とする塩化アルカリ電解装置の運転
方法。 (3)ガス拡散陰極を備えた塩化アルカリ電解槽を有す
る塩化アルカリ電解装置の該塩化アルカリ電解槽から出
る酸素含有排ガスの排出ライン中及び/又は苛性アルカ
リ水溶液を循環するタンクの気相部での水素濃度が、設
定された値を超えた時に該塩化アルカリ電解槽の通電を
停止するように構成してなることを特徴とする塩化アル
カリ電解装置の保護システム。That is, the present invention can achieve the above object by the following means. (1) In an alkali chloride electrolysis apparatus having an alkali chloride electrolysis tank provided with a gas diffusion cathode, in an exhaust line of an oxygen-containing exhaust gas discharged from the alkali chloride electrolysis tank and / or in a gas phase portion of a tank circulating a caustic aqueous solution. An alkali chloride electrolysis apparatus comprising a hydrogen detector. (2) In an alkali chloride electrolysis apparatus having an alkali chloride electrolysis tank provided with a gas diffusion cathode, in an exhaust line of oxygen-containing exhaust gas discharged from the alkali chloride electrolysis tank and / or in a gas phase part of a tank circulating a caustic aqueous solution. A method for operating an alkali chloride electrolysis apparatus, wherein the energization of the alkali chloride electrolyzer is stopped when the hydrogen concentration exceeds a set value. (3) In an alkali chloride electrolysis apparatus having an alkali chloride electrolysis tank provided with a gas diffusion cathode, in an exhaust line of oxygen-containing exhaust gas discharged from the alkali chloride electrolysis tank and / or in a gas phase part of a tank circulating a caustic alkali aqueous solution. A protection system for an alkali chloride electrolyzer, wherein the energization of the alkali chloride electrolyzer is stopped when the hydrogen concentration exceeds a set value.
【0010】[0010]
【発明の実施の形態】本発明をさらに詳しく説明する。
ガス拡散陰極を用いるイオン交換膜法塩化アルカリ電解
において、ガス拡散陰極では、次の反応が起こってい
る。 1/4 O2 + 1/2 H2 O + e → OH- このように、ガス拡散陰極では酸素及び水が反応に関与
する。DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail.
In the ion exchange membrane method alkali chloride electrolysis using a gas diffusion cathode, the following reaction occurs in the gas diffusion cathode. 1/4 O 2 + 1/2 H 2 O + e → OH - In this manner, oxygen and water participate in the reaction in the gas diffusion cathode.
【0011】以下、本発明の実施の形態を図面に基づい
て詳細に説明する。ガス拡散陰極を用いたイオン交換膜
法電解槽の1例を図2に示す。図2において、陽極室2
は、通常のイオン交換膜法電解槽と同じであり、供給口
4より塩化アルカリ水溶液が供給され、ガス液透過性陽
極3で電解される。生成した塩素ガス及び希薄塩化アル
カリ水溶液は排出口5より排出される。また、陽極にて
生成したアルカリ金属イオンは、イオン交換膜6を通り
陰極室7(3室型電解槽では「苛性室7」ともいう)へ
移動する。苛性室7では供給口8より苛性アルカリ水溶
液又は水が供給され、ガス拡散陰極10にて上式に従っ
て電解される。生成した水酸イオンは、イオン交換膜6
を通り移動してきたアルカリ金属イオンと反応して苛性
アルカリを生成し、排出口9より排出される。一方、ガ
ス拡散陰極10の苛性室7と反対側にガス室11があ
り、ガス供給口13より酸素含有ガスが供給され、排出
口12より排出される。Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 2 shows an example of an ion exchange membrane electrolytic cell using a gas diffusion cathode. In FIG. 2, the anode chamber 2
Is the same as an ordinary ion exchange membrane electrolytic cell. An aqueous alkali chloride solution is supplied from a supply port 4 and is electrolyzed by a gas liquid permeable anode 3. The generated chlorine gas and the dilute aqueous alkali chloride solution are discharged from the outlet 5. Further, the alkali metal ions generated at the anode pass through the ion exchange membrane 6 and move to the cathode chamber 7 (also referred to as “caustic chamber 7” in a three-chamber electrolytic cell). In the caustic chamber 7, an aqueous caustic solution or water is supplied from a supply port 8, and is electrolyzed at the gas diffusion cathode 10 according to the above equation. The generated hydroxyl ions are transferred to the ion exchange membrane 6
Reacts with the alkali metal ions that have passed through to generate caustic alkali, and is discharged from the outlet 9. On the other hand, a gas chamber 11 is provided on the side of the gas diffusion cathode 10 opposite to the caustic chamber 7, and an oxygen-containing gas is supplied from a gas supply port 13 and discharged from an outlet 12.
【0012】又、ガス拡散陰極を用いたイオン交換膜法
電解槽の別の例を図3に示す。図3において、イオン交
換膜から陽極室側は、図2に示すものと同じである。ガ
ス拡散陰極30は、イオン交換膜に接して配置され、陰
極室31はガス室と兼用になっており、ガス+水供給口
28より酸素含有ガス及び水が供給され、ガス拡散陰極
30にて上式に従って電解される。生成した水酸イオン
は、イオン交換膜26を通り移動してきたアルカリ金属
イオンと反応して苛性アルカリを生成し、苛性液+排ガ
ス排出口27より排ガスとともに排出される。ガス+水
供給口28より供給される水は苛性アルカリ濃度調整の
ために使用される。このようにガス拡散陰極を用いたイ
オン交換膜法電解にもいくつかの方式があるが、どの方
式にも適用できる。FIG. 3 shows another example of an ion-exchange membrane electrolytic cell using a gas diffusion cathode. 3, the portion from the ion exchange membrane to the anode chamber side is the same as that shown in FIG. The gas diffusion cathode 30 is disposed in contact with the ion exchange membrane, and the cathode chamber 31 is also used as a gas chamber. An oxygen-containing gas and water are supplied from a gas + water supply port 28, and the gas diffusion cathode 30 Electrolyzed according to the above equation. The generated hydroxyl ions react with the alkali metal ions that have passed through the ion exchange membrane 26 to generate caustic alkali, and are discharged together with the exhaust gas from the caustic liquid + exhaust gas outlet 27. The water supplied from the gas + water supply port 28 is used for adjusting the caustic alkali concentration. As described above, there are several methods for the ion exchange membrane method electrolysis using the gas diffusion cathode, but any method can be applied.
【0013】ガス拡散陰極において水素が発生する原因
については、先の述べた通りであるが、発生した水素ガ
スは、図2におけるガス室11及び陰極室7に排出さ
れ、排出口12又は、苛性液排出口9より出る。図3に
おいては、苛性液+排ガス排出口27より出る。したが
って、水素濃度を検知する位置は、排ガスライン及び苛
性循環タンク気相部で検出できる。もちろん、電解槽ガ
ス室での検出も可能であるが、一般に電解槽は、フィル
タープレス式で多数のガス室が存在するため、それぞれ
に設置することはコスト的に不利となる。水素濃度は、
極微量でも検出可能であるから複数の電解槽の排ガスが
集合されたラインでの採用が実用的である。尚、苛性循
環タンクは、複数の電解槽への苛性アルカリの供給循環
が行われるのが一般的である。使用する水素濃度計とし
ては、接触燃焼式、気体熱伝導式、熱線式半導体式など
の可燃性ガス検知計及びガスクロマトグラフ法等が使用
できる。図1に、設置例を示す。排ガスライン及び苛性
循環タンク気相部に水素ガス濃度計のセンサーを設置し
ている。The cause of the generation of hydrogen in the gas diffusion cathode is as described above. The generated hydrogen gas is discharged to the gas chamber 11 and the cathode chamber 7 in FIG. It comes out from the liquid outlet 9. In FIG. 3, the liquid exits from the caustic liquid + exhaust gas discharge port 27. Therefore, the position at which the hydrogen concentration is detected can be detected in the exhaust gas line and the gas phase of the caustic circulation tank. Of course, detection in the gas chamber of the electrolytic cell is also possible, but since the electrolytic cell generally has a large number of gas chambers of the filter press type, it is disadvantageous in terms of cost to install each gas chamber. The hydrogen concentration is
Since it is possible to detect even a very small amount, it is practical to use it in a line where exhaust gases from a plurality of electrolytic cells are collected. The caustic circulation tank generally supplies and circulates caustic alkali to a plurality of electrolytic cells. As the hydrogen concentration meter to be used, a flammable gas detector such as a catalytic combustion type, a gas heat conduction type, a hot wire type semiconductor type, and a gas chromatograph method can be used. FIG. 1 shows an installation example. Sensors for hydrogen gas concentration meters are installed in the exhaust gas line and in the gas phase of the caustic circulation tank.
【0014】水素ガスが一定量以上検出された場合にお
いては、電解槽を停止するのが最も安全である。水素ガ
スの爆発範囲は空気中で4〜75%であるから、4%未
満にすれば爆発という最悪の事態は避けられるが、検出
している位置による誤差やその後処置が行われるまでの
タイムラグ等も考慮し、安全率を見込み設定する。図2
のごとく陰極室には、酸素ガスは存在しないのであるか
ら、苛性循環タンク気相部での設定値は、安全率を見込
み、2%以下での設定が好ましいが、より低く設定する
ことにより、ガス拡散陰極で水素発生が行われていると
いう状態を早く検出できる。また、排ガスラインにおい
ては、いくつかのガス室からの集合となっている場合が
多く、その場合には、数に応じて設定値を低くすること
により、どのガス室においても4%未満で検出できるよ
うにしておけば良い。When hydrogen gas is detected in a certain amount or more, it is safest to stop the electrolytic cell. Since the explosion range of hydrogen gas is 4 to 75% in the air, the worst case of explosion can be avoided if it is less than 4%, but errors due to the detected position and time lag until subsequent treatment is performed In consideration of the above, the safety factor is estimated and set. FIG.
As described above, since oxygen gas does not exist in the cathode chamber, the set value in the gas phase portion of the caustic circulation tank is preferably set at 2% or less in consideration of the safety factor, but by setting it lower, A state in which hydrogen is being generated at the gas diffusion cathode can be quickly detected. In many cases, the exhaust gas line is composed of several gas chambers. In such a case, the set value is reduced according to the number of the gas chambers, so that the detection can be performed at less than 4% in any of the gas chambers. You should be able to do it.
【0015】水素ガスが検出された場合は、一刻も早く
処置する必要があるので、自動的に電解槽を停止するの
が良い。そのシステムとしては、検出された値がある設
定値になった時の信号により電解槽を停止させるシーケ
ンスとすれば良い。通常は電解槽の整流器を停止させれ
ば、電解反応は速やかに停止する。When hydrogen gas is detected, it is necessary to take action as soon as possible, so it is preferable to automatically stop the electrolytic cell. The system may have a sequence in which the electrolytic cell is stopped by a signal when the detected value reaches a certain set value. Usually, when the rectifier of the electrolytic cell is stopped, the electrolytic reaction is stopped immediately.
【0016】本発明によれば、ガス拡散陰極を用いるイ
オン交換膜法電解において、排ガスライン及び/又は苛
性循環タンク気相部に水素濃度検知計を設置することに
より、ガス拡散陰極での水素の発生を検知し、検知され
た水素濃度が爆発を起こさない程度の予め設定された値
になった時に、電解槽を停止することによって電解装置
を保護することができる。According to the present invention, in an ion exchange membrane electrolysis using a gas diffusion cathode, a hydrogen concentration detector is installed in an exhaust gas line and / or a gaseous phase portion of a caustic circulation tank, so that hydrogen at the gas diffusion cathode can be reduced. When the generation is detected and the detected hydrogen concentration reaches a preset value that does not cause an explosion, the electrolytic cell can be protected by stopping the electrolytic cell.
【0017】[0017]
【実施例】以下実施例により本発明を具体的に説明す
る。ただし、本発明はこの実施例のみに限定されるもの
ではない。The present invention will be described in detail with reference to the following examples. However, the present invention is not limited to only this embodiment.
【0018】実施例 図1に示すように、本発明に基づくガス拡散陰極を用い
るイオン交換膜法電解において、排ガスライン及び苛性
循環タンク気相部に水素濃度検知計を設置した。イオン
交換膜法の電解槽34は、陽極室32、陰極室31及び
ガス室33を有する。陰極室31は、苛性循環タンク3
5からの苛性ソーダ水溶液を導入し、濃度が上昇した苛
性ソーダ水溶液を苛性循環タンク35へ戻しているが、
その苛性循環タンク35の上部の気相部に水素ガスを検
出するセンサー37を設け、そのセンサー37を水素濃
度計36に接続する。さらに、同電解槽34では、酸素
含有ガス供給装置39から酸素含有ガスがガス室33の
上部に供給され、下部から酸素含有排ガス38が排出さ
れるが、その排ガス38の導管に、同様に水素ガスを検
出するセンサー37を設け、そのセンサー37を水素濃
度計36に接続する。EXAMPLE As shown in FIG. 1, in an ion exchange membrane method electrolysis using a gas diffusion cathode according to the present invention, a hydrogen concentration detector was installed in an exhaust gas line and a gas phase portion of a caustic circulation tank. The electrolytic cell 34 of the ion exchange membrane method has an anode chamber 32, a cathode chamber 31, and a gas chamber 33. The cathode chamber 31 has a caustic circulation tank 3.
The caustic soda aqueous solution from Step 5 is introduced, and the caustic soda aqueous solution whose concentration has increased is returned to the caustic circulation tank 35.
A sensor 37 for detecting hydrogen gas is provided in a gas phase portion above the caustic circulation tank 35, and the sensor 37 is connected to a hydrogen concentration meter 36. Further, in the electrolytic cell 34, the oxygen-containing gas is supplied from the oxygen-containing gas supply device 39 to the upper portion of the gas chamber 33, and the oxygen-containing exhaust gas 38 is discharged from the lower portion. A sensor 37 for detecting gas is provided, and the sensor 37 is connected to the hydrogen concentration meter 36.
【0019】この例では、酸素含有排ガス38の導管
に、センサー37を有する水素濃度計36として、新コ
スモス電機社製、PE−2DC型を使用し、このものは
接触燃焼式で、検知範囲0〜4%、警報点1%、測定精
度0.1%のものであった。また、苛性循環タンク35
の上部に設けた水素濃度計36は、新コスモス電機社
製、VT−2型を使用し、このものは気体熱伝導式で、
検知範囲0〜4%、警報点1%、測定精度0.1%のも
のであった。これらのセンサー37を有する水素濃度計
36を用いることにより、水素濃度が上昇したとき、電
解槽の通電を停止することができるので、危険を回避す
ることができた。In this example, a PE-2DC type manufactured by Shin-Cosmos Electric Co., Ltd. is used as a hydrogen concentration meter 36 having a sensor 37 in a conduit of an oxygen-containing exhaust gas 38, which is a contact combustion type and has a detection range of 0. 44%, alarm point 1%, measurement accuracy 0.1%. The caustic circulation tank 35
The hydrogen concentration meter 36 provided in the upper part of the product uses a VT-2 type manufactured by New Cosmos Electric Co., Ltd.
The detection range was 0 to 4%, the alarm point was 1%, and the measurement accuracy was 0.1%. By using the hydrogen concentration meter 36 having these sensors 37, the energization of the electrolytic cell can be stopped when the hydrogen concentration rises, so that danger could be avoided.
【0020】[0020]
【発明の効果】本発明によれば、ガス拡散陰極を備えた
塩化アルカリ電解槽において、ガス拡散陰極における水
素発生を検知することにより、電解装置を保護し、長期
間にわたり高性能のまま維持することができる。According to the present invention, in an alkaline chloride electrolytic cell provided with a gas diffusion cathode, by detecting the generation of hydrogen at the gas diffusion cathode, the electrolysis apparatus is protected and the high performance is maintained for a long time. be able to.
【図1】本発明による塩化アルカリ電解装置の保護シス
テムのフロー図を示す。FIG. 1 shows a flow diagram of a protection system for an alkaline chloride electrolysis device according to the present invention.
【図2】ガス拡散陰極を有するイオン交換膜法電解槽の
一例の模式図を示す。FIG. 2 shows a schematic view of an example of an ion exchange membrane electrolytic cell having a gas diffusion cathode.
【図3】ガス拡散陰極を有するイオン交換膜法電解槽の
別の模式図を示す。FIG. 3 shows another schematic view of an ion exchange membrane electrolytic cell having a gas diffusion cathode.
1 電解槽 2 陽極室 3 陽極 4 陽極液供給口 5 陽極液排出口 6 イオン交換膜 7 陰極室 8 苛性液供給口 9 苛性液排出口 10 ガス拡散陰極 11 ガス室 12 ガス排出口 13 ガス供給口 21 電解槽 22 陽極室 23 陽極 24 陽極液供給口 25 陽極液排出口 26 イオン交換膜 27 苛性液+排ガス排出口 28 ガス+水供給口 30 ガス拡散陰極 31 陰極室 32 陽極室 33 ガス室 34 電解槽 35 苛性循環タンク 36 水素濃度計 37 センサー 38 排ガス 39 酸素含有ガス供給装置 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Anode chamber 3 Anode 4 Anolyte supply port 5 Anolyte discharge port 6 Ion exchange membrane 7 Cathode chamber 8 Caustic liquid supply port 9 Caustic liquid discharge port 10 Gas diffusion cathode 11 Gas chamber 12 Gas discharge port 13 Gas supply port DESCRIPTION OF SYMBOLS 21 Electrolysis tank 22 Anode chamber 23 Anode 24 Anolyte supply port 25 Anolyte discharge port 26 Ion exchange membrane 27 Caustic liquid + exhaust gas discharge port 28 Gas + water supply port 30 Gas diffusion cathode 31 Cathode chamber 32 Anode chamber 33 Gas chamber 34 Electrolysis Tank 35 Caustic circulation tank 36 Hydrogen concentration meter 37 Sensor 38 Exhaust gas 39 Oxygen-containing gas supply device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂田 昭博 東京都港区西新橋一丁目14番1号 東亞合 成株式会社内 (72)発明者 斎木 幸治 大阪府豊中市北条町4丁目6番1−815号 (72)発明者 渡辺 武史 大阪府高石市高砂1−6 三井化学株式会 社大阪工場内 Fターム(参考) 4K021 AA03 AB01 BA03 BC06 CA09 CA10 CA13 DB16 DB31 DB50 DB53 EA06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihiro Sakata 1-14-1 Nishi-Shimbashi, Minato-ku, Tokyo Inside Toagoasei Co., Ltd. (72) Inventor Koji Saiki 4-6-1 Hojo-cho, Toyonaka-shi, Osaka −815 No. 72 (72) Inventor Takeshi Watanabe 1-6 Takasago, Takaishi City, Osaka Prefecture F-term (reference) 4K021 AA03 AB01 BA03 BC06 CA09 CA10 CA13 DB16 DB31 DB50 DB53 EA06
Claims (3)
槽を有する塩化アルカリ電解装置において、該塩化アル
カリ電解槽から出る酸素含有排ガスの排出ライン中及び
/又は苛性アルカリ水溶液を循環するタンクの気相部に
水素検知計を設置してなることを特徴とする塩化アルカ
リ電解装置。1. An alkaline chloride electrolysis apparatus having an alkaline chloride electrolytic cell provided with a gas diffusion cathode, wherein a gas phase in a discharge line of an oxygen-containing exhaust gas discharged from the alkaline chloride electrolytic cell and / or a tank circulating an aqueous caustic solution is provided. An alkaline chloride electrolysis apparatus characterized by having a hydrogen detector installed in a section.
槽を有する塩化アルカリ電解装置の該塩化アルカリ電解
槽から出る酸素含有排ガスの排出ライン中及び/又は苛
性アルカリ水溶液を循環するタンクの気相部での水素濃
度が、設定された値を超えた時に該塩化アルカリ電解槽
の通電を停止することを特徴とする塩化アルカリ電解装
置の運転方法。2. An alkali chloride electrolysis apparatus having an alkali chloride electrolysis tank provided with a gas diffusion cathode, in an exhaust line of an oxygen-containing exhaust gas discharged from the alkali chloride electrolysis tank and / or in a gas phase portion of a tank for circulating a caustic alkali aqueous solution. When the hydrogen concentration in step (b) exceeds a set value, stopping the energization of the alkaline chloride electrolytic cell.
槽を有する塩化アルカリ電解装置の該塩化アルカリ電解
槽から出る酸素含有排ガスの排出ライン中及び/又は苛
性アルカリ水溶液を循環するタンクの気相部での水素濃
度が、設定された値を超えた時に該塩化アルカリ電解槽
の通電を停止するように構成してなることを特徴とする
塩化アルカリ電解装置の保護システム。3. An alkali chloride electrolysis apparatus having an alkali chloride electrolysis tank provided with a gas diffusion cathode, in an exhaust line of oxygen-containing exhaust gas discharged from the alkali chloride electrolysis tank and / or in a gas phase portion of a tank for circulating a caustic aqueous solution. The energization of the alkaline chloride electrolyzer is stopped when the hydrogen concentration at step (b) exceeds a set value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19628699A JP3437128B2 (en) | 1999-07-09 | 1999-07-09 | Alkaline chloride electrolysis apparatus and its operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19628699A JP3437128B2 (en) | 1999-07-09 | 1999-07-09 | Alkaline chloride electrolysis apparatus and its operation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001026892A true JP2001026892A (en) | 2001-01-30 |
JP3437128B2 JP3437128B2 (en) | 2003-08-18 |
Family
ID=16355286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19628699A Expired - Lifetime JP3437128B2 (en) | 1999-07-09 | 1999-07-09 | Alkaline chloride electrolysis apparatus and its operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3437128B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009128297A1 (en) * | 2008-04-14 | 2009-10-22 | 三菱電機株式会社 | Active oxygen generating apparatus, humidifier, and air cleaner with humidifier |
JP2012111981A (en) * | 2010-11-19 | 2012-06-14 | Takasago Thermal Eng Co Ltd | Method and system for producing hydrogen |
KR20160083843A (en) * | 2013-07-08 | 2016-07-12 | 티센크루프 유에이치디이 클로린 엔지니어스 (이탈리아) 에스.알.엘. | Apparatus and method for operating an electrolysis with an oxygen depolarized cathode |
CN105829581A (en) * | 2013-12-18 | 2016-08-03 | 赢创德固赛有限公司 | Device and method for the flexible use of electricity |
JP2017502169A (en) * | 2013-12-04 | 2017-01-19 | エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH | Apparatus and method for flexible use of power |
-
1999
- 1999-07-09 JP JP19628699A patent/JP3437128B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009128297A1 (en) * | 2008-04-14 | 2009-10-22 | 三菱電機株式会社 | Active oxygen generating apparatus, humidifier, and air cleaner with humidifier |
CN102007230A (en) * | 2008-04-14 | 2011-04-06 | 三菱电机株式会社 | Active oxygen generating device, humidifier, and air purification system with humidifier |
US8491709B2 (en) | 2008-04-14 | 2013-07-23 | Mitsubishi Electric Corporation | Active oxygen generating device, humidifier, and air purification system with humidifier |
JP5419867B2 (en) * | 2008-04-14 | 2014-02-19 | 三菱電機株式会社 | Active oxygen generator, humidifier and air purifier with humidifier |
JP2012111981A (en) * | 2010-11-19 | 2012-06-14 | Takasago Thermal Eng Co Ltd | Method and system for producing hydrogen |
KR20160083843A (en) * | 2013-07-08 | 2016-07-12 | 티센크루프 유에이치디이 클로린 엔지니어스 (이탈리아) 에스.알.엘. | Apparatus and method for operating an electrolysis with an oxygen depolarized cathode |
JP2016526609A (en) * | 2013-07-08 | 2016-09-05 | シッセンクルップ ウーデ クロリン エンジニアーズ (イタリア) エス.アール.エル.ThyssenKrupp Uhde Chlorine Engineers (Italia) S.r.l. | Apparatus and method for performing electrolysis using an oxygen reduction cathode |
KR102336533B1 (en) | 2013-07-08 | 2021-12-07 | 티센크루프 유에이치디이 클로린 엔지니어스 (이탈리아) 에스.알.엘. | Apparatus and method for operating an electrolysis with an oxygen depolarized cathode |
JP2017502169A (en) * | 2013-12-04 | 2017-01-19 | エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH | Apparatus and method for flexible use of power |
CN105829581A (en) * | 2013-12-18 | 2016-08-03 | 赢创德固赛有限公司 | Device and method for the flexible use of electricity |
Also Published As
Publication number | Publication date |
---|---|
JP3437128B2 (en) | 2003-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100797062B1 (en) | Electrolyzer and Electrolysis Method | |
US4311569A (en) | Device for evolution of oxygen with ternary electrocatalysts containing valve metals | |
US5796799A (en) | Control apparatus for oxygen concentration of water in atomic reactor | |
KR101361651B1 (en) | A device using electrolyzer with a bipolar membrane and the method of producing hypochlorite solution and hydrogen gas thereby | |
US20080017519A1 (en) | Method and device for producing an alkali metal hypochlorite solution | |
JPWO2020105369A1 (en) | Hydrogen production method | |
US4173524A (en) | Chlor-alkali electrolysis cell | |
KR102400469B1 (en) | Electrolytic cell and electrode plate for electrolytic cell | |
KR20130077164A (en) | Water treatment apparatus for fuel cell | |
JP3421021B2 (en) | Electrolysis method of alkali chloride | |
JP2001026892A (en) | Alkali chloride electrolysis device and its operating method | |
SU878202A3 (en) | Method of electrolyzis of sodium chloride aqueous solution | |
KR20170023392A (en) | Device and method for treating indoor carbon dioxide | |
JP3408462B2 (en) | Method for protecting gas diffusion cathode in alkaline chloride electrolytic cell | |
JPH08246178A (en) | Electrochemical recovering method of salts and device therefor | |
GB1567274A (en) | Electrolytic production of hypochloites | |
JP2001020089A (en) | Protective method of alkali chloride electrolytic cell and protective device therefor | |
JP3373175B2 (en) | Method of starting operation of alkaline chloride electrolytic cell using gas diffusion cathode | |
JPS586789B2 (en) | Method for preventing deterioration of palladium oxide anodes | |
JPH01234585A (en) | Method and device for electrolysis using gas diffusion electrode | |
JP3758844B2 (en) | Electrolyzed water generator | |
JPH09195079A (en) | Electrolytic cell for producing electrolyzed water | |
JPH08323154A (en) | Deuterium concentration method and device | |
US6093305A (en) | Method of producing hydrogen halide and oxygen | |
JPH1199391A (en) | Method for removing chloride ion in waste liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3437128 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080606 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |