JP2001026268A - Railway vehicles and collision energy consuming beams for railway vehicles - Google Patents
Railway vehicles and collision energy consuming beams for railway vehiclesInfo
- Publication number
- JP2001026268A JP2001026268A JP11198875A JP19887599A JP2001026268A JP 2001026268 A JP2001026268 A JP 2001026268A JP 11198875 A JP11198875 A JP 11198875A JP 19887599 A JP19887599 A JP 19887599A JP 2001026268 A JP2001026268 A JP 2001026268A
- Authority
- JP
- Japan
- Prior art keywords
- energy consuming
- collision
- longitudinal direction
- load
- impact energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005192 partition Methods 0.000 claims description 64
- 238000005265 energy consumption Methods 0.000 claims description 53
- 238000005553 drilling Methods 0.000 claims description 37
- 238000006073 displacement reaction Methods 0.000 claims description 22
- 230000007423 decrease Effects 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 210000000707 wrist Anatomy 0.000 claims 1
- 230000006378 damage Effects 0.000 abstract description 9
- 230000035939 shock Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
Landscapes
- Vibration Dampers (AREA)
Abstract
(57)【要約】
【課題】 一編成列車の衝突時に、一編成列車の各鉄道
車両10において、衝撃エネルギーを有効に消費する。
【解決手段】 破壊域17が、客室13に隣接して、鉄道車
両10の端部に設定される。破壊域17は、前後方向へ水平
に延びて両端部をそれぞれ妻構体用フレーム27及び荷重
受け枠16に結合される中梁37,側梁38,屋根梁39を装備
している。
(57) [Summary] [PROBLEMS] To effectively consume impact energy in each railcar 10 of one train when a single train collides. SOLUTION: A destruction area 17 is set at an end of a railway vehicle 10 adjacent to a cabin 13. The fracture zone 17 is provided with a middle beam 37, a side beam 38, and a roof beam 39 which extend horizontally in the front-rear direction and are connected at both ends to the frame 27 and the load receiving frame 16, respectively.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、衝突時の衝撃エ
ネルギー消費機能を備える鉄道車両及び鉄道車両用衝突
エネルギー消費梁に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a railway vehicle having a function of consuming impact energy at the time of a collision and a collision energy consuming beam for a railway vehicle.
【0002】[0002]
【従来の技術】鉄道車両の衝突運動エネルギーを消費す
る従来の緩衝装置は、運転室前方下部に膨出状に配置し
たり(例:特開平7−186951号公報)、運転室す
ぐ後ろの台枠の部位に挿入したり(例:特開平10−2
26334号公報)している。2. Description of the Related Art A conventional shock absorber that consumes the kinetic energy of a railway vehicle is arranged in a bulging shape at a lower front portion of a cab (for example, Japanese Patent Application Laid-Open No. Hei 7-186951) or a platform just behind the cab. It can be inserted into the frame part (eg,
26334).
【0003】[0003]
【発明が解決しようとする課題】鉄道車両における従来
の緩衝装置は、運転室近傍で衝突運動エネルギー消費を
行う構造であり、運転室とは反対側の鉄道車両の端部
や、一編成列車の運転室付き鉄道車両以外の他の鉄道車
両における衝突運動エネルギー消費については何ら考慮
されていない。また、衝突運動エネルギーの消費は台枠
の高さのみでしか行われず、一編成列車の衝突時におけ
る隣接鉄道車両同士の台枠乗り上げ防止に十分な威力を
発揮できない。A conventional shock absorber in a railway vehicle has a structure in which collision kinetic energy is consumed in the vicinity of a driver's cab. No consideration is given to the impact kinetic energy consumption of other railway vehicles other than the railway vehicle with cab. In addition, the collision kinetic energy is consumed only at the height of the underframe, and cannot exert sufficient power to prevent the adjacent railcars from climbing over the underframe during a collision of one train.
【0004】また、鉄道車両の緩衝装置では、衝撃方向
へ一列の開口が穿設されている衝突エネルギー消費梁が
使用されるが、従来の衝突エネルギー消費梁では、衝撃
時では、特定の1個の開口においてのみ圧縮変形して、
その破断し、他の開口は圧縮変形しないまま残り、衝突
エネルギー消費梁の機能が十分に発揮されないことがあ
る。Further, in a shock absorber of a railway vehicle, a collision energy consuming beam having a row of openings in the direction of impact is used. Compression deformation only at the opening of
The opening is broken and the other openings remain uncompressed, and the function of the collision energy consuming beam may not be sufficiently exhibited.
【0005】この発明の目的は、上述の問題点を克服す
る鉄道車両及び鉄道車両用衝突エネルギー消費梁を提供
することである。[0005] It is an object of the present invention to provide a railway vehicle and a collision energy consuming beam for a railway vehicle that overcomes the above-mentioned problems.
【0006】[0006]
【課題を解決するための手段】この発明の鉄道車両(10)
は次のものを有している。車体(11)の前後方向へ妻構体
用フレーム(27)から所定距離、離されてかつ客室(13)に
隣接して設けられる荷重受け枠(16) 妻構体用フレーム(27)と荷重受け枠(16)との間に設定さ
れる衝撃エネルギー消費域(17) 衝撃エネルギー消費域(17)の車体部分において前後方向
へ水平に延びて両端をそれぞれ妻構体用フレーム(27)及
び荷重受け枠(16)に結合する複数個の衝撃エネルギー消
費梁(37,38,39)The railway vehicle of the present invention (10)
Has the following: A load receiving frame (16) provided at a predetermined distance from the wife frame (27) in the front-rear direction of the vehicle body (11) and adjacent to the cabin (13) The wife frame (27) and the load receiving frame (16) Impact energy consumption area set between (17) The impact energy consumption area (17) extends horizontally in the front-rear direction in the vehicle body part and has both ends of the frame (27) and the load receiving frame ( Multiple impact energy consuming beams (37, 38, 39) coupled to 16)
【0007】衝撃エネルギー消費域(17)は、(a)鉄道
車両(10)の片側のみに設けられている場合、及び(b)
鉄道車両(10)の両側に設けられている場合があるとす
る。The impact energy consumption area (17) is provided on (a) only one side of the railway vehicle (10), and (b)
It is assumed that there are cases in which there are provided on both sides of the railway vehicle (10).
【0008】衝撃エネルギー消費域(17)における空間
は、(a)衝撃エネルギー消費域専用の空間として鉄道
車両(10)に付加される場合だけでなく、(b)例えば、
鉄道車両(10)においてすでに洗面所、便所、出入り台等
が配備される空間を衝撃エネルギー消費域(17)と兼用す
る場合もあるとする。(b)の場合では、洗面所等にい
る人間を衝撃エネルギー消費域(17)作動時に保護するた
めに、作動後の衝撃エネルギー消費域(17)の長さを、0
とすることなく、所定長さを確保する。The space in the impact energy consumption area (17) is not limited to (a) the space dedicated to the impact energy consumption area and is added to the railway vehicle (10).
It is assumed that a space where a washroom, a toilet, a doorway and the like are already provided in the railway vehicle (10) may also be used as the impact energy consumption area (17). In the case (b), the length of the shock energy consumption area (17) after the operation is set to 0 in order to protect a person in the washroom or the like during the operation of the shock energy consumption area (17).
And a predetermined length is secured.
【0009】衝突時では、各衝撃エネルギー消費梁(37,
38,39)は、前後方向両側から妻構体用フレーム(27)と荷
重受け枠(16)とにより縮小方向へ衝突荷重を受けて、前
後方向長さを縮小し、その縮小に伴って、衝突運動エネ
ルギーを消費する。これにより、客室(13)の衝突荷重は
緩和される。このように、複数個の鉄道車両(10)を含む
車体(11)では、各鉄道車両(10)において適切な衝突運動
エネルギー消費を図り、客室(13)の乗客の安全性を向上
できる。At the time of collision, each impact energy consuming beam (37,
38, 39) receive a collision load in the reduction direction by the frame for wives structure (27) and the load receiving frame (16) from both sides in the front-rear direction, reduce the length in the front-rear direction, and Consumes kinetic energy. Thereby, the collision load of the cabin (13) is reduced. As described above, in the vehicle body (11) including the plurality of railway vehicles (10), appropriate kinetic energy consumption can be achieved in each railway vehicle (10), and the safety of passengers in the passenger compartment (13) can be improved.
【0010】この発明の鉄道車両(10)によれば、妻構体
用フレーム(27)は、下辺に沿って左右水平方向に延びる
端梁(28)と、下端部において端梁(28)に結合し端梁(28)
の両端部から起立する左右1対の隅柱(30)と、1対の隅
柱(30)より左右方向内側に配置され下端部において端梁
(28)に結合し端梁(28)から起立する衝突柱(24)とを有し
ている。According to the railway vehicle (10) of the present invention, the frame (27) for the wife structure is connected to the end beam (28) extending in the horizontal direction along the lower side and the end beam (28) at the lower end. End beam (28)
A pair of left and right corner pillars (30) standing up from both ends and a pair of end pillars arranged at the lower end in the left-right direction from the pair of corner pillars (30)
(28) and a collision column (24) standing up from the end beam (28).
【0011】この発明の鉄道車両(10)によれば、衝突柱
(24)は上端部において車体(11)の屋根部の高さに達し、
衝撃エネルギー消費梁としての衝撃エネルギー消費用屋
根梁(39)は、妻構体用フレーム側において衝突柱(24)の
上端部に結合している。According to the railway vehicle (10) of the present invention, the collision pillar
(24) reaches the height of the roof of the body (11) at the upper end,
The impact energy consuming roof beam (39) serving as the impact energy consuming beam is connected to the upper end of the collision column (24) on the side of the frame for the wife structure.
【0012】前後方向へ隣り関係にある鉄道車両同士で
は、衝突時に妻構体(15)同士が衝突し合っても、一方の
鉄道車両(10)における台枠端としての端梁(28)は、他方
の鉄道車両(10)における一対の衝突柱(24)と衝突して、
他方の鉄道車両(10)の台枠(20)に乗り上げることが回避
される。こうして、隣り関係の鉄道車両同士間で衝突時
に起こり易い台枠(20)の乗り上げを有効に防止しつつ、
衝突運動エネルギーの消費を効果的に実施できる。[0012] In the railcars adjacent to each other in the front-rear direction, even if the wife structures (15) collide with each other at the time of collision, the end beam (28) as the underframe end of one of the railcars (10) is Collision with a pair of collision pillars (24) in the other railway vehicle (10),
Riding on the underframe (20) of the other railway vehicle (10) is avoided. In this way, while effectively preventing the undercarriage (20), which is likely to occur at the time of a collision between adjacent railway cars,
The collision kinetic energy can be consumed effectively.
【0013】この発明の鉄道車両(10)によれば、衝突柱
(24)は、端梁(28)より下へ延びる垂下部(23)を一体に有
している。According to the railway vehicle (10) of the present invention, the collision pillar
(24) integrally has a hanging part (23) extending below the end beam (28).
【0014】前後方向へ隣り関係の鉄道車両同士の一方
の鉄道車両(10)の台枠(20)が、他方の鉄道車両(10)の台
枠(20)の下へ潜り込もうとすると、衝突柱(24)の垂下部
(23)に当接し、潜り込みを防止される。こうして、隣り
関係の鉄道車両同士間で衝突時に起こり易い台枠(20)の
潜り込みを有効に防止しつつ、衝突運動エネルギーの消
費を効果的に実施できる。When the underframe (20) of one railcar (10) of the railcars adjacent to each other in the front-rear direction tries to dive under the underframe (20) of the other railcar (10), Hanging column of collision pillar (24)
(23) is abutted to prevent sneaking in. In this way, the collision kinetic energy can be effectively consumed while effectively preventing the underframe (20), which is likely to occur at the time of a collision between adjacent railway vehicles, from being sunk.
【0015】この発明の鉄道車両(10)によれば、衝撃エ
ネルギー消費梁としての衝撃エネルギー消費用中梁(37)
及び衝撃エネルギー消費用側梁(38)は端梁(28)の高さに
おいて延び、衝撃エネルギー消費用中梁(37)は妻構体用
フレーム側において端梁(28)の中間部に結合し、衝撃エ
ネルギー消費用側梁(38)は、妻構体用フレーム側におい
て端梁(28)の両端部に結合し、衝撃エネルギー消費用中
梁(37)の強度は衝撃エネルギー消費用屋根梁(39)及び衝
撃エネルギー消費用側梁(38)の強度より大きく設定され
ている。According to the railway vehicle (10) of the present invention, the impact energy consuming middle beam (37) as the impact energy consuming beam is provided.
And the impact energy consuming side beam (38) extends at the height of the end beam (28), and the impact energy consuming middle beam (37) is connected to the intermediate portion of the end beam (28) on the side of the frame for the wife structure, The impact energy consuming side beam (38) is connected to both ends of the end beam (28) on the side of the frame for the wife structure, and the strength of the impact energy consuming middle beam (37) is equal to the impact energy consuming roof beam (39). And the strength is set to be greater than the strength of the impact energy consuming side beam (38).
【0016】なお、本明細書で言う「強度」とは、材料
破壊試験において荷重F−変位δ特性を調べたときに、
特性線上のFの最大値Fmaxを言うものとする。The term “strength” used in the present specification means that when a load F-displacement δ characteristic is examined in a material destruction test,
The maximum value Fmax of F on the characteristic line is referred to.
【0017】1対の衝突柱(24)は、妻構体(15)において
左右方向中央部に鉛直方向へ存在するので、他方の鉄道
車両(10)との衝突の際には、他方の鉄道車両(10)の台枠
(20)と衝突して、隅柱(30)より大きな衝突荷重を受け
る。また、衝突柱(24)は、他方の鉄道車両(10)の台枠(2
0)との衝突を下端部に受けるので、衝突柱(24)の下端部
の方が上端部より大きな衝突荷重を受ける。衝突柱(24)
の衝突荷重は、端梁(28)を介して左右方向中央側の衝撃
エネルギー消費用中梁(37)及び左右方向端側の衝撃エネ
ルギー消費用側梁(38)へ伝達されるが、衝撃エネルギー
消費用中梁(37)の衝突荷重は衝撃エネルギー消費用側梁
(38)及び衝撃エネルギー消費用屋根梁(39)の衝突荷重よ
り大きくなる。衝撃エネルギー消費用中梁(37)の強度が
衝撃エネルギー消費用屋根梁(39)及び衝撃エネルギー消
費用側梁(38)より大きいものに設定されることにより、
衝撃エネルギー消費用中梁(37)、衝撃エネルギー消費用
屋根梁(39)、及び衝撃エネルギー消費用側梁(38)の縮小
は調和の取れたものとなり、衝撃エネルギー消費域(17)
における衝撃エネルギー消費が適切に行われる。Since the pair of collision pillars (24) exists vertically in the center in the left-right direction in the wife structure (15), when a collision occurs with the other railway vehicle (10), the other railway vehicle (10) (10) Underframe
It collides with (20) and receives a greater collision load than the corner post (30). In addition, the collision pillar (24) is connected to the underframe (2) of the other railway vehicle (10).
Since the lower end of the collision column (24) receives the collision with (0), the lower end of the collision column (24) receives a larger collision load than the upper end. Collision pillar (24)
The impact load is transmitted through the end beam (28) to the middle beam (37) for impact energy consumption on the center in the left-right direction and to the side beam (38) for impact energy consumption on the end in the left-right direction. The collision load of the beam for consumption (37) is the side beam for impact energy consumption.
(38) and the impact load of the impact energy consuming roof beam (39). By setting the strength of the impact energy consuming middle beam (37) to be larger than the impact energy consuming roof beam (39) and the impact energy consuming side beam (38),
Shrinkage of impact energy consuming middle beams (37), impact energy consuming roof beams (39), and impact energy consuming side beams (38) are now in harmony and impact energy consumption area (17)
The impact energy consumption in is appropriately performed.
【0018】この発明の鉄道車両(10)によれば、一編成
列車の中間の鉄道車両(10)における衝撃エネルギー消費
域(17)の強度は、一編成列車の端側の鉄道車両(10)にお
ける衝撃エネルギー消費域(17)の強度より低く設定され
ている。According to the railway vehicle (10) of the present invention, the strength of the impact energy consumption area (17) in the intermediate railway vehicle (10) of the single train is the same as that of the railway vehicle (10) at the end of the single train. It is set lower than the strength of the impact energy consumption area (17) in.
【0019】衝突力は、一編成列車の前端から後方へ伝
達され、伝達に伴い、減衰されて、後方の鉄道車両(10)
程、衝突荷重は低下する。また、一編成列車は、進行方
向の逆転に伴い、進行方向前側及び後ろ側が逆転し、さ
らに、後ろ側から他の一編成列車が衝突する場合もあ
る。これらすべての状況に対処するために、一編成列車
の中間部の鉄道車両(10)の衝撃エネルギー消費域(17)の
強度を、一編成列車の端側の鉄道車両(10)の衝撃エネル
ギー消費域(17)の強度より小さく設定する。こうして、
一編成列車全体として各鉄道車両(10)の衝撃エネルギー
消費域(17)における衝突運動エネルギー消費が調和よく
行われる。The collision force is transmitted from the front end of one train to the rear, is attenuated by the transmission, and is attenuated.
The lower the collision load. In addition, with one train, the front and rear sides in the traveling direction are reversed with the reversal of the traveling direction, and another one train may collide from the rear side. In order to cope with all these situations, the strength of the impact energy consumption area (17) of the railcar (10) in the middle part of one train is adjusted by the impact energy consumption of the railcar (10) at the end of the one train. Set smaller than the intensity of the area (17). Thus,
The collision kinetic energy consumption in the impact energy consumption area (17) of each railway vehicle (10) is performed in a harmonious manner as a whole train.
【0020】この発明の鉄道車両(10)によれば、連結器
(21)が、妻構体用フレーム(27)より前後方向外側へ突出
しつつ、車体(11)の台枠(20)に取付けられ、台枠(20)へ
の連結器(21)の結合強度は、衝撃エネルギー消費域(17)
の強度より小さく設定されている。According to the railway vehicle (10) of the present invention, the coupler
(21) is attached to the underframe (20) of the vehicle body (11) while projecting outward in the front-rear direction from the wife frame (27), and the coupling strength of the coupler (21) to the underframe (20) is , Impact energy consumption area (17)
Is set to be smaller than the intensity.
【0021】台枠(20)への連結器(21)の連結強度は、台
枠(20)へ連結器(21)を固定するビス等の剪断破壊力を適
切に設定することにより調整できる。衝突時に連結器(2
1)が残っていると、連結器(21)は、妻構体(15)より出っ
張っているので、衝撃エネルギー消費梁(37,38,39)への
衝突荷重伝達が不適切になる。衝突時では、連結器(21)
が台枠(20)から脱落することにより、衝突力が妻構体用
フレーム(27)へ適切に伝達され、衝撃エネルギー消費域
(17)の衝突運動エネルギー消費が適切となる。The connection strength of the coupler (21) to the frame (20) can be adjusted by appropriately setting the shear breaking force of a screw or the like for fixing the coupler (21) to the frame (20). Coupler (2
If 1) remains, the coupler (21) protrudes from the wife structure (15), so that the transmission of the collision load to the impact energy consuming beams (37, 38, 39) becomes inappropriate. In the event of a collision, the coupler (21)
Falls off from the underframe (20), the collision force is properly transmitted to the frame (27) for the wife structure, and the impact energy consumption area
The collision kinetic energy consumption of (17) becomes appropriate.
【0022】この発明の鉄道車両(10)によれば、衝撃エ
ネルギー消費梁(37,38,39)は、筒壁に開口(49,50)を穿
設されて衝撃エネルギー消費梁(37,38,39)の両端範囲に
わたり延びる筒体と、衝撃エネルギー消費梁(37,38,39)
内に収容されて筒体が最大強度のピークを越えた寸法ま
で縮小してから縮小開始してエネルギーを消費するバッ
クアップ用エネルギー消費部材(53)とを有している。According to the railway vehicle (10) of the present invention, the impact energy consuming beams (37, 38, 39) are provided with openings (49, 50) in the cylindrical wall so that the impact energy consuming beams (37, 38) are formed. , 39) and a cylinder extending over both ends of the impact energy consuming beam (37, 38, 39)
A back-up energy consuming member (53) that is housed in the housing and reduces the size of the cylinder to a size exceeding the peak of the maximum strength, and then starts to reduce and consumes energy.
【0023】バックアップ用エネルギー消費部材(53)に
は、例えば、チューブ、ハニカム、発泡アルミニウムを
含むものとする。各衝撃エネルギー消費梁(37,38,39)に
おける開口(49,50)の個数は、衝撃エネルギー消費梁(3
7,38,39)の長手方向へ1個に限定されず、複数個であっ
てもよいとする。また、複数個の開口(49,50)は、衝撃
エネルギー消費梁(37,38,39)の長手方向へ同一位置にあ
るもの同士が組とされ、これら組が、衝撃エネルギー消
費梁(37,38,39)の長手方向へ複数個、存在するようにな
っていてもよい。The backup energy consuming member (53) includes, for example, a tube, a honeycomb, and foamed aluminum. The number of openings (49, 50) in each impact energy consuming beam (37, 38, 39) is
7, 38, 39) is not limited to one in the longitudinal direction, but may be plural. Further, the plurality of openings (49, 50) are formed as a set of those located at the same position in the longitudinal direction of the impact energy consuming beam (37, 38, 39), and these sets are used as the impact energy consuming beam (37, 38). 38, 39) in the longitudinal direction.
【0024】筒体では、長手方向へ各開口(49,50)の範
囲の強度が他の範囲より弱くなっており、衝突時では、
各開口(49,50)の範囲が縮小し、衝撃エネルギーの消費
が行われる。このような筒体の荷重−変位特性の最大強
度は、通常は、フラットにならず、所定の変位でピーク
となり、それ以上の変位増大に対して、減少する。バッ
クアップ用エネルギー消費部材(53)は、筒体による衝突
運動エネルギー荷重が適当に弱まって来てから、衝突運
動エネルギー消費を行うことになるので、衝撃エネルギ
ー消費域(17)全体の荷重−変位特性をフラット化するこ
とができる。In the cylindrical body, the strength in the range of each opening (49, 50) in the longitudinal direction is weaker than the other ranges.
The area of each opening (49, 50) is reduced, and the consumption of impact energy is performed. The maximum strength of the load-displacement characteristic of such a cylindrical body usually does not become flat, but peaks at a predetermined displacement, and decreases as the displacement further increases. The backup energy consuming member (53) consumes the collision kinetic energy after the collision kinetic energy load due to the cylinder is appropriately reduced, so that the load-displacement characteristic of the entire impact energy consumption area (17) is obtained. Can be flattened.
【0025】この発明の鉄道車両(10)によれば、筒体内
は、筒体の長手方向へ開口(49,50)と重複する所定範囲
を両側から仕切り部材(52)により仕切られており、バッ
クアップ用エネルギー消費部材(53)は、両仕切り部材(5
2)の内側範囲に筒体の長手方向へ所定の隙間を空けて、
収容されている。According to the railway vehicle (10) of the present invention, the cylindrical body is partitioned by the partition members (52) from both sides in a predetermined range overlapping with the openings (49, 50) in the longitudinal direction of the cylindrical body, The energy consuming member for backup (53) is composed of both partition members (5
With a predetermined gap in the longitudinal direction of the cylinder in the inner area of 2),
Is housed.
【0026】開口(49,50)が筒体の端に寄せて穿設され
ているときは、一方の仕切り部材は、筒体の端が取付け
られる被取付け部材であってもよい。When the openings (49, 50) are pierced toward the end of the cylinder, one of the partition members may be a member to which the end of the cylinder is attached.
【0027】筒体における開口(49,50)の範囲の縮小開
始時では、バックアップ用エネルギー消費部材(53)の両
端は、隙間の存在のために、両仕切り部材(52)から圧縮
力を掛けられず、衝突運動エネルギー消費を行わない。
筒体における開口(49,50)の範囲の縮小の進行に伴い、
バックアップ用エネルギー消費部材(53)の両端は、両仕
切り部材(52)に当接し、以降は、筒体における開口(49,
50)の範囲の縮小の進行に伴って、仕切り部材(52)から
長手方向へ縮小されて、衝突運動エネルギー消費を行う
ことになる。こうして、筒体による衝突運動エネルギー
消費のピークに対してバックアップ用エネルギー消費部
材(53)の作動開始時の衝撃エネルギー消費梁(37,38,39)
の長さを適切に設定できる。At the start of the reduction of the range of the openings (49, 50) in the cylindrical body, both ends of the backup energy consuming member (53) apply a compressive force from both partition members (52) due to the existence of the gap. And does not consume collisional kinetic energy.
With the progress of the reduction of the range of the opening (49, 50) in the cylindrical body,
Both ends of the backup energy consuming member (53) are in contact with both partition members (52), and thereafter, the openings (49,
With the progress of the reduction in the range of 50), the partition member (52) is reduced in the longitudinal direction, and the collision kinetic energy is consumed. Thus, the impact energy consuming beam (37, 38, 39) at the start of operation of the backup energy consuming member (53) against the peak of the collision kinetic energy consumption by the cylinder
Length can be set appropriately.
【0028】この発明の鉄道車両(10)によれば、バック
アップ用エネルギー消費部材(53)は管体(53)から成り、
長さの異なる複数個の管体(53)が両仕切り部材(52)の内
側範囲に収容されている。According to the railway vehicle (10) of the present invention, the backup energy consuming member (53) comprises a pipe (53),
A plurality of pipes (53) having different lengths are accommodated in the inner area of both partition members (52).
【0029】管体(53)の荷重−変位特性の最大強度は、
フラットにならず、ピーク後は、変位の増大に連れて、
減少し続ける。長さの異なる管体(53)が両仕切り部材(5
2)の範囲に収容されることにより、各管体(53)が作動開
始する時の衝撃エネルギー消費梁(37,38,39)の長さが相
互にずらされ、管体(53)全体としての荷重−変位特性の
最大強度をフラット化できる。The maximum strength of the load-displacement characteristic of the tubular body (53) is as follows:
It does not become flat, and after the peak, as the displacement increases,
Continue to decrease. Tubes (53) of different lengths are used for both partition members (5
By being accommodated in the range of 2), the length of the impact energy consuming beams (37, 38, 39) at the time when each pipe (53) starts to operate is shifted from each other, and as a whole the pipe (53) The maximum strength of the load-displacement characteristic can be flattened.
【0030】この発明の鉄道車両(10)は、衝突エネルギ
ー消費梁(37)は前後方向へ延びる筒体(47)を備えてい
る。筒体(47)は、その長手方向へ複数個の衝突エネルギ
ー消費部分(60)を有している。各衝突エネルギー消費部
分(60)は、筒体長手方向へ相互に対峙する仕切り部材(5
2)と、筒体長手方向へ両仕切り部材(52)より内側におい
てかつ筒体長手方向へ相互に同一位置で筒体(47)の周壁
部位に穿設された複数個の開口(50)をもつ開口穿設範囲
と、筒体長手方向へ両仕切り部材(52)の内側において筒
体(47)内に収容され筒体長手方向への寸法が両仕切り部
材(52)の対峙距離より短い軸状部材(53)とを有してい
る。各衝突エネルギー消費部分(60)における筒体長手方
向への荷重F−変位δは、0≦δ≦δ2までは開口穿設
範囲のみが筒体長手方向へ縮小し、δ=δ2のときに、
軸状部材(53)の両端が両仕切り部材(52)に当接し、δ=
δ1(ただしδ1<δ2)のとき、Fは開口穿設範囲の
最大強度F1maxであり、δ=δ2のとき、Fは、開口穿
設範囲の荷重F12と軸状部材(53)の荷重F22との和F2
(=F12+F22)であり、かつF2>F1maxとなるよう
に、設定されている。複数個の衝突エネルギー消費部分
(60)の内、F1maxが最大の衝突エネルギー消費部分(60)
のF1maxは、複数個の衝突エネルギー消費部分(60)の
内、F2が最小の衝突エネルギー消費部分(60)のF2よ
り、小さく設定されている。In the railway vehicle (10) of the present invention, the collision energy consuming beam (37) is provided with a cylinder (47) extending in the front-rear direction. The cylinder (47) has a plurality of collision energy consuming portions (60) in its longitudinal direction. Each of the collision energy consuming parts (60) includes a partition member (5) facing each other in the longitudinal direction of the cylinder.
2) and a plurality of openings (50) formed in the peripheral wall portion of the cylinder (47) at the same position in the cylinder longitudinal direction inside the two partition members (52) and in the cylinder longitudinal direction. An opening having a hole and an axis which is accommodated in the cylinder (47) inside the two partition members (52) in the longitudinal direction of the cylinder and whose dimension in the longitudinal direction of the cylinder is shorter than the facing distance of the two partition members (52). (53). The load F-displacement δ in the cylinder longitudinal direction at each collision energy consuming portion (60) is such that only the opening drilling range is reduced in the cylinder longitudinal direction until 0 ≦ δ ≦ δ2, and when δ = δ2,
Both ends of the shaft member (53) abut on both partition members (52), and δ =
When δ1 (where δ1 <δ2), F is the maximum strength F1max of the opening drilling range, and when δ = δ2, F is the load F12 of the opening drilling range and the load F22 of the shaft member (53). Sum F2
(= F12 + F22), and F2> F1max. Multiple collision energy consuming parts
Of (60), F1max is the maximum collision energy consumption part (60)
F1max of the plurality of collision energy consuming portions (60) is set to be smaller than F2 of the collision energy consuming portion (60) having the smallest collision energy consumption portion (60).
【0031】この発明の鉄道車両(10)によれば、軸状部
材(53)は、筒体長手方向への衝突エネルギーを消費する
軸状エネルギー消費部材(53)とされている。各衝突エネ
ルギー消費部分(60)における筒体長手方向への荷重F−
変位δは、δ>δ2の範囲では、Fは、開口穿設範囲の
荷重F1と軸状部材(53)の荷重F2との和Ftであり、F
tは、δが増大するに連れて、漸減するように設定され
ている。According to the railway vehicle (10) of the present invention, the shaft member (53) is a shaft energy consuming member (53) that consumes collision energy in the longitudinal direction of the cylindrical body. Load F− in the cylinder body longitudinal direction at each collision energy consuming part (60)
When the displacement δ is in the range of δ> δ2, F is the sum Ft of the load F1 in the opening drilling range and the load F2 of the shaft member (53), and
t is set so as to gradually decrease as δ increases.
【0032】この発明の衝突エネルギー消費梁(37)は、
鉄道車両(10)の前後方向へ延びる筒体(47)を備えてい
る。筒体(47)は、その長手方向へ複数個の衝突エネルギ
ー消費部分(60)を有している。各衝突エネルギー消費部
分(60)は、筒体長手方向へ相互に対峙する仕切り部材(5
2)と、筒体長手方向へ両仕切り部材(52)より内側におい
てかつ筒体長手方向へ相互に同一位置で筒体(47)の周壁
部位に穿設された複数個の開口(50)をもつ開口穿設範囲
と、筒体長手方向へ両仕切り部材(52)の内側において筒
体(47)内に収容され筒体長手方向への寸法が両仕切り部
材(52)の対峙距離より短い軸状部材(53)とを有してい
る。各衝突エネルギー消費部分(60)における筒体長手方
向への荷重F−変位δは、0≦δ≦δ2までは開口穿設
範囲のみが筒体長手方向へ縮小し、δ=δ2のときに、
軸状部材(53)の両端が両仕切り部材(52)に当接し、δ=
δ1(ただしδ1<δ2)のとき、Fは開口穿設範囲の
最大強度F1maxであり、δ=δ2のとき、Fは、開口穿
設範囲の荷重F12と軸状部材(53)の荷重F22との和F2
(=F12+F22)であり、かつF2>F1maxとなるよう
に、設定されている。複数個の衝突エネルギー消費部分
(60)の内、F1maxが最大の衝突エネルギー消費部分(60)
のF1maxは、複数個の衝突エネルギー消費部分(60)の
内、F2が最小の衝突エネルギー消費部分(60)のF2よ
り、小さく設定されている。The collision energy consuming beam (37) of the present invention comprises:
The vehicle has a tubular body (47) extending in the front-rear direction of the railway vehicle (10). The cylinder (47) has a plurality of collision energy consuming portions (60) in its longitudinal direction. Each of the collision energy consuming parts (60) includes a partition member (5) facing each other in the longitudinal direction of the cylinder.
2) and a plurality of openings (50) formed in the peripheral wall portion of the cylinder (47) at the same position in the cylinder longitudinal direction inside the two partition members (52) and in the cylinder longitudinal direction. An opening having a hole and an axis which is accommodated in the cylinder (47) inside the two partition members (52) in the longitudinal direction of the cylinder and whose dimension in the longitudinal direction of the cylinder is shorter than the facing distance of the two partition members (52). (53). The load F-displacement δ in the cylinder longitudinal direction at each collision energy consuming portion (60) is such that only the opening drilling range is reduced in the cylinder longitudinal direction until 0 ≦ δ ≦ δ2, and when δ = δ2,
Both ends of the shaft member (53) abut on both partition members (52), and δ =
When δ1 (where δ1 <δ2), F is the maximum strength F1max of the opening drilling range, and when δ = δ2, F is the load F12 of the opening drilling range and the load F22 of the shaft member (53). Sum F2
(= F12 + F22), and F2> F1max. Multiple collision energy consuming parts
Of (60), F1max is the maximum collision energy consumption part (60)
F1max of the plurality of collision energy consuming portions (60) is set to be smaller than F2 of the collision energy consuming portion (60) having the smallest collision energy consumption portion (60).
【0033】開口(50)の形状は、筒体の長手方向へ長い
長孔形状に限定されず、円形等、他の形状を含む。同一
組の開口(50)の個数は、2個に限定されず、3個以上で
あってもよいとする。The shape of the opening (50) is not limited to the shape of a long hole elongated in the longitudinal direction of the cylinder, but includes other shapes such as a circle. The number of openings 50 in the same set is not limited to two, and may be three or more.
【0034】ここで、説明の便宜上、衝突エネルギー消
費梁(37)がもつ衝突エネルギー消費部分(60)の個数をn
(nは2以上の整数)とし、n個の衝突エネルギー消費
部分(60)において、筒体長手方向への強度の小さい開口
穿設範囲をもつ衝突エネルギー消費部分(60)から、順番
に第1の衝突エネルギー消費部分(60)、第2の衝突エネ
ルギー消費部分(60)、・・・、第nの衝突エネルギー消
費部分(60)と名付ける。鉄道車両(10)の衝突時では、衝
突エネルギー消費梁(37)に鉄道車両(10)の前後方向、す
なわち筒体長手方向の衝撃が作用する。これにより、最
初に、第1の衝突エネルギー消費部分(60)において、筒
体長手方向への開口穿設範囲の縮小が始まり、その開口
穿設範囲がδ2だけ筒体長手方向へ縮小すると、第1の
衝突エネルギー消費部分(60)における軸状部材(53)が両
端において仕切り部材(52)に当接する。第1の衝突エネ
ルギー消費部分(60)が筒体長手方向へδ2だけ縮小した
ときの第1の衝突エネルギー消費部分(60)のFは、F12
+F22となって、まだ、開口穿設範囲を筒体長手方向へ
縮小されていない他のどの衝突エネルギー消費部分(60)
のFより大きいので、筒体長手方向への縮小は休止す
る。こうして、第1の衝突エネルギー消費部分(60)、第
2の衝突エネルギー消費部分(60)、・・・、第nの衝突
エネルギー消費部分(60)の順番で、各衝突エネルギー消
費部分(60)における軸状部材(53)の両端が仕切り部材(5
2)に当接するまで、筒体長手方向へ縮小する。このよう
に、衝突エネルギー消費梁(37)の各開口穿設範囲の筒体
長手方向強度に製造上等に因る不均衡があっても、全部
の衝突エネルギー消費部分(60)において開口穿設範囲の
筒体長手方向縮小を起こして、開口穿設範囲を有効に利
用できる。なお、軸状部材(53)及び仕切り部材(52)を省
略すると、第1の衝突エネルギー消費部分(60)の開口穿
設範囲が、破断限界まで縮小して、ついには、破断し、
それによって、衝突エネルギー消費梁(37)の衝突エネル
ギー消費が終了してしまい、第2の衝突エネルギー消費
部分(60)以降の開口穿設範囲における衝突エネルギー消
費を発揮することができない問題がある。なお、δ2
は、各衝突エネルギー消費部分(60)において、開口穿設
範囲に破断が生じる前に、軸状部材(53)の両端が仕切り
部材(52)に当接するように、設定してある。Here, for convenience of explanation, the number of collision energy consuming portions (60) of the collision energy consuming beam (37) is represented by n
(N is an integer of 2 or more). In the n collision energy consuming portions (60), the first collision energy consuming portion (60) having an opening perforation range having a small strength in the longitudinal direction of the cylindrical body is used in order. , The second collision energy consuming part (60),..., The n-th collision energy consuming part (60). At the time of the collision of the railway vehicle (10), an impact acts on the collision energy consuming beam (37) in the longitudinal direction of the railway vehicle (10), that is, in the longitudinal direction of the cylindrical body. As a result, first, in the first collision energy consuming portion (60), the reduction of the opening drilling range in the cylinder longitudinal direction starts, and when the opening drilling range is reduced by δ2 in the cylinder longitudinal direction, the second The shaft-like member (53) in the collision energy consuming part (60) of the first abutment contacts the partition member (52) at both ends. When the first collision energy consuming part (60) is reduced by δ2 in the longitudinal direction of the cylinder, F of the first collision energy consuming part (60) is F12
+ F22, any other collision energy consuming part whose opening drilling area has not yet been reduced in the longitudinal direction of the cylinder (60)
, The contraction in the longitudinal direction of the cylinder is stopped. Thus, the first collision energy consuming portion (60), the second collision energy consuming portion (60),..., The n-th collision energy consuming portion (60) are arranged in this order. At both ends of the shaft member (53) are the partition members (5
Reduce in the longitudinal direction of the cylinder until it comes into contact with 2). In this way, even if there is an imbalance due to manufacturing or the like in the cylindrical body longitudinal strength of each opening drilling area of the collision energy consuming beam (37), openings are drilled in all the collision energy consuming parts (60). The area is reduced in the longitudinal direction of the cylinder, and the area of the opening can be effectively used. When the shaft member (53) and the partition member (52) are omitted, the opening perforation range of the first collision energy consuming part (60) is reduced to a breaking limit, and finally, it breaks.
As a result, the collision energy consumption of the collision energy consumption beam (37) ends, and there is a problem that the collision energy consumption in the opening drilling area after the second collision energy consumption part (60) cannot be exhibited. Note that δ2
Is set such that both ends of the shaft-like member (53) abut against the partition member (52) before a break occurs in the opening drilling area in each collision energy consuming portion (60).
【0035】この発明の鉄道車両用衝突エネルギー消費
梁(37)によれば、軸状部材(53)は、筒体長手方向への衝
突エネルギーを消費する軸状エネルギー消費部材(53)と
されている。各衝突エネルギー消費部分(60)における筒
体長手方向への荷重F−変位δは、δ>δ2の範囲で
は、Fは、開口穿設範囲の荷重F1と軸状部材(53)の荷
重F2との和Ftであり、Ftは、δが増大するに連れ
て、漸減するように設定されている。According to the collision energy consuming beam for a railway vehicle (37) of the present invention, the shaft member (53) is a shaft energy consuming member (53) that consumes collision energy in the longitudinal direction of the cylindrical body. I have. The load F-displacement δ in the longitudinal direction of the cylindrical body in each collision energy consuming portion (60) is within a range of δ> δ2, where F is the load F1 in the opening drilling range and the load F2 of the shaft member (53). Ft, which is set so as to gradually decrease as δ increases.
【0036】全部の衝突エネルギー消費部分(60)におい
て、軸状部材(53)の両端が仕切り部材(52)に当接するま
での筒体長手方向への開口穿設範囲の縮小が終了する
と、次は、各衝突エネルギー消費部分(60)において、軸
状部材(53)及び開口穿設範囲が一緒に筒体長手方向へ縮
小開始する。軸状部材(53)の縮小による衝突エネルギー
の消費はδ≧δ2の範囲における開口穿設範囲の衝突エ
ネルギーの低減分を補う。In all of the collision energy consuming parts (60), when the reduction of the opening perforation area in the longitudinal direction of the cylinder until both ends of the shaft member (53) abuts on the partition member (52) is completed, In each of the collision energy consuming portions (60), the shaft-like member (53) and the opening perforation range start to contract together in the longitudinal direction of the cylindrical body. The consumption of the collision energy due to the reduction of the shaft member (53) compensates for the reduction of the collision energy in the opening drilling range in the range of δ ≧ δ2.
【0037】[0037]
【発明の実施の形態】以下、発明の実施の形態について
図面を参照して説明する。図1は鉄道車両10の端部の側
面図である。車体11内は、隔壁14により、客室13と、客
室13に隣接して車体11内の端に配置される端空間12とに
仕切られている。客室13は、車体11内の大部分を占め、
乗客の腰掛ける座席を収容している空間であり、端空間
12は、洗面所や便所等が配置されている空間である。妻
構体15は車体11の端面部を構成し、荷重受け枠16は、内
側に隔壁14を包囲しつつ、車体11の周部を構成する。破
壊域17は、鉄道車両10の前後方向へ妻構体15と荷重受け
枠16との間に形成され、端空間12とほとんど重複してい
る。台枠20は車体11の下面を画定し、連結器21は、ビス
等により基端部を台枠20の下部へ結合し、先端部を妻構
体15の外面から車体11の前後方向へ突出させている。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view of an end portion of the railway vehicle 10. The interior of the vehicle body 11 is partitioned by a partition wall 14 into a passenger compartment 13 and an end space 12 arranged at an end in the vehicle body 11 adjacent to the passenger compartment 13. The cabin 13 occupies most of the interior of the car body 11,
It is a space that accommodates seats for passengers, and is an end space
Reference numeral 12 denotes a space in which a toilet and a toilet are arranged. The wife structure 15 forms an end surface of the vehicle body 11, and the load receiving frame 16 forms a peripheral portion of the vehicle body 11 while surrounding the partition wall 14 inside. The fracture area 17 is formed between the end structure 15 and the load receiving frame 16 in the front-rear direction of the railway vehicle 10 and almost overlaps with the end space 12. The underframe 20 defines the lower surface of the vehicle body 11, and the coupler 21 has a base end coupled to a lower portion of the underframe 20 with screws or the like, and a distal end portion protrudes from the outer surface of the wife structure 15 in the front-rear direction of the vehicle body 11. ing.
【0038】車体11の前後方向へ、破壊域17の強度は、
客室13を囲っている車体11の部分の強度より適当に小さ
く設定される。また、台枠20への連結器21の結合強度
は、台枠20へ連結器21を結合しているビス(図示せず)の
破壊時の剪断力により決まる。この結合強度は、破壊域
17の前後方向強度より適当に小さく設定される。破壊域
17付きの鉄道車両10が連結器21を介して相互に連結され
て、連結された複数個の鉄道車両10により一編成列車が
編成される。In the longitudinal direction of the vehicle body 11, the strength of the destruction zone 17 is
The strength is set appropriately smaller than the strength of the portion of the vehicle body 11 surrounding the guest room 13. The strength of the connection of the coupler 21 to the frame 20 is determined by the shearing force at the time of breaking of the screw (not shown) connecting the coupler 21 to the frame 20. This bond strength is
It is set appropriately smaller than the front-rear strength of 17. Destruction zone
The railcars 10 with 17 are connected to each other via the coupler 21, and a single train is formed by the plurality of connected railcars 10.
【0039】図2は図1の鉄道車両10を妻構体15側から
見た図である。渡り口25は、連結器21を介して連結され
る相手方の鉄道車両との間の移動のために、妻構体15に
形成され、1対の衝突柱24は、妻構体15の要素であり、
渡り口25の左右の縁を画定するとともに、台枠20より下
側に延びて連結器21より下側に達する垂下部23を有し、
鉛直方向へ延びて、上端は車体11の屋根に達している。
幌22は、渡り口25を囲う寸法とされ、端縁を妻構体15の
衝突柱24の隆起縁に取付けられて、隣りの鉄道車両との
連絡通路の周囲を囲うようになっている。FIG. 2 is a view of the railway vehicle 10 shown in FIG. The crossover 25 is formed in the wife structure 15 for movement between the other railway vehicle connected via the connector 21, and a pair of collision pillars 24 are elements of the wife structure 15,
Along with defining the left and right edges of the transfer opening 25, a hanging portion 23 extending below the underframe 20 and reaching below the coupler 21 is provided,
Extending vertically, the upper end reaches the roof of the vehicle body 11.
The hood 22 is dimensioned to surround the crossover 25, and the edge is attached to the raised edge of the collision column 24 of the wive structure 15, so as to surround the periphery of the communication passage with the adjacent railway vehicle.
【0040】図3は破壊域17を画定している構体のフレ
ーム構造を示している。妻構体15は妻構体用フレーム27
を含み、妻構体用フレーム27は、台枠20の高さにおいて
左右方向へ妻構体15の幅一杯に水平に延びる端梁28と、
下端部において端梁28に結合しつつ端梁28よりさらに下
方へ突出し妻構体15の上辺まで延びる1対の衝突柱24
と、端梁28の両端に下端を結合し鉛直方向上方へ延びる
1対の隅柱30とを有している。荷重受け枠16は、左右方
向へ水平に延びる下辺部32及び上辺部33と、下辺部32及
び上辺部33の両端間においてほぽ鉛直方向へ延びている
1対の側辺部34とを有している。かもい31は、1対の衝
突柱24の間を左右方向へ水平に延び、両端部を1対の衝
突柱24に結合し、渡り口25の上辺を画定している。1対
の中梁37は、左右方向へ1対の渡り口25より左右方向内
側の範囲において前後方向へ水平に延び、両端をそれぞ
れ端梁28及び下辺部32へ結合している。1対の側梁38
は、前後方向へ水平に延びて、両端をそれぞれ端梁28及
び下辺部32の端部へ結合している。1対の屋根梁39は、
前後方向へ水平に延び、両端をそれぞれ衝突柱24の上端
部及び上辺部33に結合している。FIG. 3 shows the frame structure of the structure defining the destruction zone 17. Wife structure 15 is frame 27 for wife structure
The end frame 28, which extends horizontally to the full width of the wife structure 15 in the left-right direction at the height of the underframe 20,
A pair of collision columns 24 projecting further below the end beams 28 and extending to the upper side of the wive structure 15 while being connected to the end beams 28 at the lower ends.
And a pair of corner posts 30 having lower ends connected to both ends of the end beam 28 and extending vertically upward. The load receiving frame 16 has a lower side portion 32 and an upper side portion 33 extending horizontally in the left-right direction, and a pair of side portions 34 extending in a substantially vertical direction between both ends of the lower side portion 32 and the upper side portion 33. are doing. The lower end 31 extends horizontally between the pair of collision columns 24 in the left-right direction, and has both ends connected to the pair of collision columns 24 to define the upper side of the crossover 25. The pair of center beams 37 extend horizontally in the front-rear direction in the left-right direction in a range inside the pair of crossovers 25 in the left-right direction, and have both ends connected to the end beam 28 and the lower side 32, respectively. A pair of side beams 38
Extends horizontally in the front-rear direction and has both ends coupled to the ends of the end beams 28 and the lower side 32, respectively. A pair of roof beams 39
It extends horizontally in the front-rear direction and has both ends connected to the upper end and upper side 33 of the collision pillar 24, respectively.
【0041】長手方向の平均強度(平均強度Faは、前
に定義したFmax、及び定数ηを用いると、Fa=η・F
maxと定義される。なお、ηは高々、約2/3であ
る。)について例示すると、例えば、中梁37の平均強度
は0.55MN、側梁38の平均強度は、0.3MN、屋
根梁39の平均強度は0.44MNであり、平均強度の大
きい順(=強度の大きい順)に、中梁37、屋根梁39、及
び側梁38となる。The average strength in the longitudinal direction (the average strength Fa is given by Fmax = F · η · F
Defined as max. Note that η is at most about 2/3. For example, the average strength of the center beam 37 is 0.55 MN, the average strength of the side beams 38 is 0.3 MN, the average strength of the roof beam 39 is 0.44 MN, and the average strength is in descending order (= The middle beam 37, the roof beam 39, and the side beam 38 are arranged in order of the strength.
【0042】図4は一編成列車の衝突時の隣り関係の鉄
道車両10の衝突状態を示している。例えば一編成列車の
前部に衝突事故が起きると、その衝突荷重が一編成列車
の前方の鉄道車両10から後方の鉄道車両10へ順次伝達さ
れる。妻構体15を対峙させている隣り関係の鉄道車両10
同士では、前後方向の強度の関係から連結器21が脱落し
てから、対峙する妻構体15同士が衝突し、一方の鉄道車
両10の台枠20と他方の鉄道車両10の衝突柱24とが相互に
衝突し、この衝突力は、破壊域17へ伝達されて、破壊域
17において衝突運動エネルギーの消費が行われる。衝突
柱24は、上端から垂下部23の下端まで鉛直方向へ十分な
長さを有しているとともに、この衝突力に対して十分な
耐力をもっているので、一方の鉄道車両10の台枠20が他
方の鉄道車両10の衝突柱24へ衝突して、それ以上の前後
方向相対変位を阻止され、隣り関係の鉄道車両同士の台
枠20が、相手方の台枠20への乗り上げたり、潜り込んだ
りするのを防止される。なお、図4の41は、両鉄道車両
10の衝突柱24における剪断力作用範囲である。FIG. 4 shows a state of collision between adjacent railway vehicles 10 at the time of a collision of one train. For example, when a collision accident occurs at the front of one train, the collision load is sequentially transmitted from the train 10 in front of the train to the train 10 behind. A railway car 10 of the neighbor relationship that makes the wife structure 15 confront
With each other, after the coupler 21 falls off due to the strength relationship in the front-rear direction, the confronting wife structures 15 collide with each other, and the underframe 20 of one railway vehicle 10 and the collision pillar 24 of the other railway vehicle 10 They collide with each other, and this collision force is transmitted to the destruction zone 17,
At 17, the expenditure of collision kinetic energy takes place. The collision pillar 24 has a sufficient length in the vertical direction from the upper end to the lower end of the hanging part 23, and has a sufficient resistance to the collision force. Collision with the collision column 24 of the other railway vehicle 10 prevents further relative displacement in the front-rear direction, and the underframe 20 between adjacent railway vehicles climbs into or slides into the other underframe 20. Is prevented. In addition, 41 of FIG.
This is the range of shearing force acting on the ten collision columns 24.
【0043】衝突柱24は、相手方の鉄道車両10の台枠20
との衝突により、特に下端部において大きな衝突荷重を
受ける。衝突柱24への衝突荷重は、衝突柱24の上端部か
ら屋根梁39へ伝達されると友に、端梁28を介して中梁37
及び側梁38へ伝達される。これにより、中梁37、側梁3
8、屋根梁39が、前後方向両側からそれぞれ妻構体用フ
レーム27及び荷重受け枠16から前後方向圧縮力を受け、
前後方向寸法を縮小する変形を行い、衝突運動エネルギ
ーを消費する。これにより、客室13内の衝突荷重は緩和
され、客室13内の乗客の安全が確保される。また、破壊
域17には、洗面所等が配備されており、衝突時の中梁3
7、側梁38、及び屋根梁39の縦寸寸法縮小は、洗面所等
にいるかもしれない人の生存空間を確保できる程度に抑
えられるように、設定される。The collision pillar 24 is formed on the underframe 20 of the other railway vehicle 10.
, A large collision load is applied, particularly at the lower end. When the collision load on the collision column 24 is transmitted from the upper end of the collision column 24 to the roof beam 39, the collision beam is transmitted to the center beam 37 via the end beam 28.
And transmitted to the side beam 38. As a result, the center beam 37 and side beam 3
8, the roof beam 39 receives the compressive force in the front-rear direction from the frame 27 for the wife structure and the load receiving frame 16 from both sides in the front-rear direction,
Performs deformation to reduce the front-back dimension and consumes collision kinetic energy. Thereby, the collision load in the cabin 13 is reduced, and the safety of the passenger in the cabin 13 is ensured. In the destruction area 17, washrooms are installed, and
7. The reduction in the vertical dimension of the side beams 38 and the roof beams 39 is set so that a living space for a person who may be in a washroom or the like can be secured.
【0044】図5、図6、及び図7は中梁37の縦方向所
定範囲の平面図、側面図、及び横断面図である。なお、
中梁37の縦方向は鉄道車両10の前後方向に一致する。中
梁37は、上下左右に上壁部44、下壁部45、及び1対の側
壁部46を有し、これらの壁部により鉄道車両10の左右水
平方向へ長い矩形の中空空間を内部に画定している。中
梁37は、縦方向の同一の所定範囲において、上壁部44及
び下壁部45では長孔49を、また、両側壁部46では長孔50
を穿設されている。長孔49,50は、中梁37の長手方向へ
長くなっている。長孔49,50が穿設される縦方向範囲
は、中梁37において、複数個存在し、鉄道車両10の衝突
時では、縦方向へ押し潰されて、衝撃エネルギーを消費
する。隔壁52は、長孔49,50を内側に含む中梁37の縦方
向範囲を区画するように、中梁37内に固定される。上段
に3個、及び下段に2個の計5個のチューブ53は、上段
のチューブ53と下段のチューブ53とが左右水平方向へ交
互に並ぶように、中梁37内の両隔壁52の間の空間に収容
される。相互に対峙する隔壁52の一方には、円柱状隆起
部54が、チューブ53の配列と同一になるように、形成さ
れ、各チューブ53の端部は、各円柱状隆起部54に嵌合し
て、接着により固定されている。各チューブ53の長さ
は、等しく設定され、かつ両隔壁52の距離より少し短く
なっている。FIGS. 5, 6, and 7 are a plan view, a side view, and a cross-sectional view of a predetermined range of the center beam 37 in the vertical direction. In addition,
The longitudinal direction of the center beam 37 coincides with the front-back direction of the railway vehicle 10. The center beam 37 has an upper wall portion 44, a lower wall portion 45, and a pair of side wall portions 46 on the upper, lower, left and right sides, and a rectangular hollow space that is long in the left and right horizontal direction of the railway vehicle 10 is internally provided by these walls. It is defined. The center beam 37 has a long hole 49 in the upper wall portion 44 and the lower wall portion 45, and a long hole 50 in the both side wall portions 46 in the same predetermined range in the vertical direction.
Has been drilled. The long holes 49 and 50 are elongated in the longitudinal direction of the center beam 37. There are a plurality of longitudinal ranges in which the long holes 49 and 50 are formed in the center beam 37, and when the railway vehicle 10 collides, it is crushed in the vertical direction and consumes impact energy. The partition wall 52 is fixed in the center beam 37 so as to define a vertical range of the center beam 37 including the long holes 49 and 50 inside. A total of five tubes 53, three in the upper part and two in the lower part, are arranged between the two partition walls 52 in the center beam 37 so that the upper part tubes 53 and the lower part tubes 53 are alternately arranged in the left-right horizontal direction. Housed in the space. On one of the partition walls 52 facing each other, a columnar ridge 54 is formed so as to be identical to the arrangement of the tubes 53, and the end of each tube 53 fits into each columnar ridge 54. And are fixed by bonding. The length of each tube 53 is set equal, and is slightly shorter than the distance between both partition walls 52.
【0045】なお、側梁38及び屋根梁39の構造について
は、図示していないが、中梁37とは、縦寸法以外の寸法
が異なるのみで、筒壁に、長孔を穿設されたり、対峙す
る隔壁52により筒体内を仕切って、両隔壁52の間に複数
本のチューブ53を配置したりする構造は中梁37と同一で
ある。The structures of the side beams 38 and the roof beams 39 are not shown, but are different from the center beams 37 only in dimensions other than the vertical dimension. The structure in which the cylindrical body is partitioned by the partition walls 52 facing each other and a plurality of tubes 53 are arranged between the partition walls 52 is the same as that of the center beam 37.
【0046】図8は中梁37の所定の衝突エネルギー消費
部分60(図9)における荷重F−変位δの特性を示した
グラフである。荷重F及び変位δは、中梁37の縦方向の
荷重及び変位であり、C1は中梁37の長孔49,50の押し
潰れに因る特性、C2はチューブ53の縦方向押し潰れに
因る特性、CtはC1及びC2の合計の特性である。以
降、中梁37の縦方向において長孔49,50の穿設されてい
る部分を適宜、「長孔穿設範囲」と呼ぶことにする。中梁
37は、縦方向へ荷重を受けると、長孔49,50が中梁37の
縦方向へ押し潰されて、変位δを増大させる。長孔49,
50の押し潰れによる荷重は、δ=δ1においてピークF
1maxとなり、δがδ1を越えて増大すると、荷重Fは
低下する。中梁37内の両隔壁52の間のチューブ53の縦方
向寸法は、両隔壁52の距離よりδ2だけ短く、δ=δ2
となると、チューブ53の先端が先端側の隔壁52に当接し
て、チューブ53は両端において両隔壁52に当接した状態
となる。δ=δ2のときの長孔49,50の縦方向部分の強
度F12及びチューブ53の縦方向強度F22とすると、衝突
エネルギー消費部分60全体の強度はF2となる。F2>
F1maxである。δ≧δ2となると、長孔穿設範囲と複
数本のチューブ53とが同時に縦方向へ押し潰されて行
き、衝突荷重を消費する。これにより、中梁37全体で
は、δ≧δ2の範囲では、チューブ53の押し潰れに因る
荷重が加わり、中梁37全体のF−δ特性はCtのように
なる。FIG. 8 is a graph showing the characteristics of the load F-displacement δ in the predetermined collision energy consuming portion 60 of the center beam 37 (FIG. 9). The load F and displacement δ are the load and displacement in the longitudinal direction of the center beam 37, C1 is the characteristic due to the crushing of the long holes 49, 50 of the center beam 37, and C2 is the characteristic due to the crushing of the tube 53 in the vertical direction. Ct is a characteristic of the sum of C1 and C2. Hereinafter, the portion where the long holes 49 and 50 are drilled in the longitudinal direction of the center beam 37 will be appropriately referred to as “a long hole drilling range”. Middle beam
When the 37 receives a load in the vertical direction, the long holes 49 and 50 are crushed in the vertical direction of the center beam 37, and the displacement δ increases. Long hole 49,
The load due to the crushing of 50 is the peak F at δ = δ1.
1max, and when δ increases beyond δ1, the load F decreases. The longitudinal dimension of the tube 53 between the partition walls 52 in the center beam 37 is shorter than the distance between the partition walls 52 by δ2, and δ = δ2
Then, the distal end of the tube 53 comes into contact with the partition wall 52 on the distal end side, and the tube 53 comes into contact with both partition walls 52 at both ends. Assuming that the strength F12 of the longitudinal portions of the long holes 49 and 50 and the longitudinal strength F22 of the tube 53 when δ = δ2, the strength of the entire collision energy consuming portion 60 is F2. F2>
F1max. When δ ≧ δ2, the long hole drilling area and the plurality of tubes 53 are simultaneously crushed in the vertical direction, and the collision load is consumed. As a result, in the entire center beam 37, in the range of δ ≧ δ2, a load due to the crushing of the tube 53 is applied, and the F-δ characteristic of the entire center beam 37 becomes Ct.
【0047】図5〜図7では、各チューブ53の長さが等
しく設定されているが、相互に相違させておけば、図8
において、δ2の相違するC2が複数個、存在すること
により、Ctをさらにフラット化することができる。In FIGS. 5 to 7, the lengths of the tubes 53 are set to be equal.
, Ct can be further flattened by the presence of a plurality of C2s having different δ2.
【0048】図9は衝突エネルギー消費部分60を縦方向
へ2個備える中梁37についてその衝突エネルギー消費過
程を(a)〜(c)の順番で示している。図5〜図7を
参照して、中梁37について行った説明と一部重複しつ
つ、図9の中梁37の主要点について、説明する、この中
梁37では、両側壁部46の長孔50は必ず設けられるが、上
壁部44及び下壁部45では長孔49(図5〜図7)は設けら
れていても、省略されていてもよいとする。中梁37にお
いて長孔50が穿設されている長手方向範囲(以下、長手
方向とは中梁37の長手方向と定義する。)を「長孔穿設
範囲」と呼ぶことにする。各衝突エネルギー消費部分60
は、中梁37の縦方向へ両隔壁52を含む範囲とし、1対の
隔壁52の外、長孔穿設範囲、及びチューブ53を備える。
1対の隔壁52は、長手方向へ長孔穿設範囲を内側に含み
つつ、相互に対峙し、間に中梁37の内部空間(以下、相
互に対峙する両隔壁52により仕切られる内部空間「仕切
り空間」と言う。)を仕切って、中梁37内に強固に固定
されている。長手方向への1対の隔壁52の距離L2は、
長孔穿設範囲の長手方向寸法L1に等しいか、又はわず
かに長い距離となる(L2≧L1)。チューブ53は、各
仕切り空間内に少なくとも1個、配設される。長手方向
へのチューブ53の長さは、各仕切り空間内のチューブ53
の配設個数が1個の場合も複数個の場合も、L3に等し
くされ、L2−L3=d(dは図9に図示されてい
る。)とし、d>所定値d1>0する。d1は、長孔穿
設範囲が、その縮小により破断するときの長手方向への
長さである。FIG. 9 shows, in the order of (a) to (c), the collision energy consumption process of the center beam 37 having two collision energy consumption portions 60 in the vertical direction. With reference to FIGS. 5 to 7, the main points of the center beam 37 in FIG. 9 will be described while partially overlapping the description given for the center beam 37. Although the hole 50 is always provided, it is assumed that the long hole 49 (FIGS. 5 to 7) may be provided or omitted in the upper wall portion 44 and the lower wall portion 45. The range in the longitudinal direction in which the elongated hole 50 is formed in the center beam 37 (hereinafter, the longitudinal direction is defined as the longitudinal direction of the center beam 37) is referred to as the “range in which the elongated hole is formed”. Each collision energy consumption part 60
Is a range including both partition walls 52 in the longitudinal direction of the center beam 37, and includes a pair of partition walls 52, an elongated hole drilling range, and a tube 53.
The pair of partition walls 52 face each other and include an inner space of the center beam 37 (hereinafter, an inner space “partitioned by the partition walls 52 facing each other”) while including the elongated hole drilling range inside in the longitudinal direction. Partition space ") and is firmly fixed in the center beam 37. The distance L2 between the pair of partition walls 52 in the longitudinal direction is:
The distance is equal to or slightly longer than the longitudinal dimension L1 of the long hole drilling range (L2 ≧ L1). At least one tube 53 is provided in each partition space. The length of the tube 53 in the longitudinal direction is the length of the tube 53 in each partition space.
Is equal to L3, L2−L3 = d (d is shown in FIG. 9), and d> predetermined value d1> 0. d1 is the length in the longitudinal direction when the slotted area is broken due to its reduction.
【0049】中梁37は、鉄道車両10の衝突前では、図9
の(a)の状態にある。鉄道車両10の衝突に伴い、中梁
37は、長手方向へ衝撃を受ける。中梁37への衝撃の初期
過程では、複数個の衝突エネルギー消費部分60の内、F
1maxの最も小さい衝突エネルギー消費部分60の長孔穿
設範囲(図9では、2個の衝突エネルギー消費部分60の
内、右側のもの。)が長手方向へ圧縮される。この衝突
エネルギー消費部分60の長孔穿設範囲が長手方向へd
(dは図8のδ2に対応する。)だけ圧縮されると、図
9の(b)のように、内部のチューブ53の両端が両側の
隔壁52に当接し、最初に長手方向へ圧縮された長孔穿設
範囲の長手方向寸法縮小量はdに留まる。この後、次に
F1maxの小さい衝突エネルギー消費部分60の長孔穿設
範囲(図9では、2個の衝突エネルギー消費部分60の
内、左側のもの。)が長手方向へ圧縮され、図9の
(c)のように、左側の長孔穿設範囲は、内部の長孔50
が両側の隔壁52に当接するまで、長手方向へdだけ圧縮
され、中梁37全体の長手方向寸法圧縮量は2dとなる。
図9の(c)以降は、図示は省略しているが、各衝突エ
ネルギー消費部分60において、チューブ53及び長孔穿設
範囲が一緒に長手方向へ圧縮されていき、衝突エネルギ
ーを消費する。Before the collision of the railway vehicle 10, the center beam 37 is
(A). Following the collision of railway vehicle 10,
37 receives an impact in the longitudinal direction. In the initial stage of the impact on the center beam 37, of the plurality of collision energy consuming parts 60, F
The longest hole drilling area of the collision energy consuming portion 60 having the smallest value of 1max (the right one of the two collision energy consuming portions 60 in FIG. 9) is compressed in the longitudinal direction. The perforated area of the collision energy consuming portion 60 extends in the longitudinal direction d.
When (d corresponds to δ2 in FIG. 8), both ends of the inner tube 53 come into contact with the partition walls 52 on both sides as shown in FIG. 9B, and are first compressed in the longitudinal direction. The amount of size reduction in the longitudinal direction of the elongated hole drilling area remains at d. Thereafter, the long hole drilling area of the collision energy consuming portion 60 having the next smallest F1max (in FIG. 9, the left side of the two collision energy consuming portions 60) is compressed in the longitudinal direction. As shown in (c), the left hole drilling range is the inner slot 50.
Is compressed by d in the longitudinal direction until it comes into contact with the partition walls 52 on both sides, and the longitudinal dimension compression amount of the entire center beam 37 is 2d.
Although not shown in FIG. 9C and thereafter, in each of the collision energy consuming portions 60, the tube 53 and the elongated hole drilling area are compressed together in the longitudinal direction, and the collision energy is consumed.
【0050】図10は図9の中梁37に対して隔壁52及び
チューブ53を省略した中梁60についてその衝突エネルギ
ー消費過程を(a)〜(c)の順番で示している。中梁
60は、隔壁52及びチューブ53を内部に有していないの
で、図10の(b)までは、図9の(b)と同じである
が、次の長手方向寸法dの圧縮状態としての図10の
(c)では、F1maxの小さい方の長孔穿設範囲がその
まま長手方向圧縮を続け、他の長孔穿設範囲には長手方
向圧縮が起こらない。通常の中梁60では、最初に長手方
向寸法を縮小した長孔穿設範囲においてのみ、長手方向
寸法の縮小が続いて、切断に至り、他の長孔穿設範囲に
おける衝突エネルギー消費を行われないまま、衝突エネ
ルギー消費を終了してしまう。FIG. 10 shows, in the order of (a) to (c), the collision energy consumption process of the center beam 60 in which the partition wall 52 and the tube 53 are omitted from the center beam 37 of FIG. Middle beam
Since FIG. 60 does not have the partition wall 52 and the tube 53 inside, it is the same as FIG. 9B until FIG. 10B, but in a compressed state of the next longitudinal dimension d. In (c) of FIG. 10, the long hole drilling area having the smaller F1max continues to be compressed in the longitudinal direction as it is, and no longitudinal compression occurs in the other long hole drilling areas. In the normal center beam 60, only in the long hole drilling area whose longitudinal dimension has been first reduced, the longitudinal dimension reduction continues, leading to cutting, and the collision energy consumption in the other long hole drilling areas is performed. Without it, the collision energy consumption ends.
【図1】鉄道車両の端部の側面図である。FIG. 1 is a side view of an end of a railway vehicle.
【図2】図1の鉄道車両を妻構体側から見た図である。FIG. 2 is a view of the railway vehicle of FIG. 1 as viewed from a wife structure side.
【図3】破壊域を画定している構体のフレーム構造を示
す図である。FIG. 3 is a diagram showing a frame structure of a structure defining a destruction area.
【図4】一編成列車の衝突時の隣り関係の鉄道車両の衝
突状態を示す図である。FIG. 4 is a diagram showing a collision state of adjacent railway vehicles at the time of a collision of a single train;
【図5】中梁の縦方向所定範囲の平面図である。FIG. 5 is a plan view of a predetermined range in a longitudinal direction of a center beam.
【図6】中梁の縦方向所定範囲の側面図である。FIG. 6 is a side view of a predetermined range in the longitudinal direction of the center beam.
【図7】中梁の縦方向所定範囲の横断面図である。FIG. 7 is a transverse sectional view of a predetermined range in the longitudinal direction of the center beam.
【図8】中梁の所定の衝突エネルギー消費部分における
荷重F−変位δの特性を示したグラフである。FIG. 8 is a graph showing a characteristic of a load F-displacement δ in a predetermined collision energy consuming portion of the center beam.
【図9】2個の縦方向部位において長孔の組が穿設され
ている中梁についてその衝突エネルギー消費過程を
(a)〜(c)の順番で示巣である。FIG. 9 is a view showing the collision energy consumption process of a center beam in which a set of long holes is formed in two longitudinal portions in the order of (a) to (c).
【図10】図9の中梁に対して隔壁及びチューブを省略
した中梁についてその衝突エネルギー消費過程を(a)
〜(c)の順番で示す図である。10 (a) shows the collision energy consumption process of the center beam of FIG. 9 from which the partition wall and the tube are omitted.
It is a figure shown in order of (c).
10 鉄道車両 11 車体 13 客室 15 妻構体 16 荷重受け枠 17 破壊域(衝撃エネルギー消費域) 20 台枠 21 連結器 23 垂下部 24 衝突柱 27 妻構体用フレーム 28 端梁 30 隅柱 37 中梁(衝撃エネルギー消費梁、衝撃エネルギー
消費用中梁、衝突エネルギー消費梁、鉄道車両用衝突エ
ネルギー消費梁) 38 側梁(衝撃エネルギー消費梁、衝撃エネルギー
消費用側梁) 39 屋根梁(衝撃エネルギー消費梁、衝撃エネルギ
ー消費用屋根梁) 49,50 長孔(開口) 52 隔壁(仕切り部材) 53 チューブ(バックアップ用エネルギー消費部材
管体、軸状エネルギー消費部材、軸状部材) 60 衝突エネルギー消費部分DESCRIPTION OF SYMBOLS 10 Railway vehicle 11 Body 13 Guest room 15 Wife structure 16 Load receiving frame 17 Destruction area (impact energy consumption area) 20 Underframe 21 Coupler 23 Hanging part 24 Collision pillar 27 Wife structure frame 28 End beam 30 Corner pillar 37 Middle beam Shock energy consuming beam, middle beam for crushing energy consumption, collision energy consuming beam, collision energy consuming beam for railway vehicles 38 Side beam (shock energy consuming beam, side beam for crushing energy consumption) 39 Roof beam (shock energy consuming beam, Roof beams for impact energy consumption) 49, 50 Slots (openings) 52 Partition walls (partition members) 53 Tubes (backup energy consuming member tubes, axial energy consuming members, axial members) 60 Collision energy consuming portion
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武藤 康司 東京都渋谷区代々木2丁目2番2号 東日 本旅客鉄道株式会社内 (72)発明者 松岡 茂樹 神奈川県横浜市金沢区大川3番1号 東急 車輛製造株式会社内 (72)発明者 麻生 和夫 神奈川県横浜市金沢区大川3番1号 東急 車輛製造株式会社内 (72)発明者 西垣 昌司 神奈川県横浜市金沢区大川3番1号 東急 車輛製造株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Muto, Inventor Koji Tsutomu 2-2-2, Yoyogi, Shibuya-ku, Tokyo East Japan Railway Company (72) Shigeki Matsuoka 3-1 Okawa, Kanazawa-ku, Yokohama-shi, Kanagawa No. Tokyu Vehicle Manufacturing Co., Ltd. (72) Kazuo Aso, Inventor 3-1, Okawa, Kanazawa-ku, Yokohama, Kanagawa Prefecture Tokyu Vehicle Manufacturing Co., Ltd. (72) Shoji Nishigaki 3-1, Okawa, Kanazawa-ku, Yokohama, Kanagawa Tokyu Vehicle Manufacturing Co., Ltd.
Claims (14)
(27)から所定距離、離されてかつ客室(13)に隣接して設
けられる荷重受け枠(16)、 前記妻構体用フレーム(27)と前記荷重受け枠(16)との間
に設定される衝撃エネルギー消費域(17)、及び前記衝撃
エネルギー消費域(17)の車体部分において前後方向へ水
平に延びて両端をそれぞれ前記妻構体用フレーム(27)及
び前記荷重受け枠(16)に結合する複数個の衝撃エネルギ
ー消費梁(37,38,39)、を有していることを特徴とする鉄
道車両。1. A frame for a wife structure in the front-rear direction of a vehicle body (11).
A load receiving frame (16) provided at a predetermined distance from (27) and adjacent to the cabin (13), and is set between the wive structure frame (27) and the load receiving frame (16). Impact energy consuming area (17), and a body portion of the impact energy consuming area (17), which extends horizontally in the front-rear direction and has both ends coupled to the frame (27) and the load receiving frame (16), respectively, for the wife structure. A plurality of impact energy consuming beams (37, 38, 39).
って左右水平方向に延びる端梁(28)と、下端部において
前記端梁(28)に結合し前記端梁(28)の両端部から起立す
る左右1対の隅柱(30)と、前記1対の隅柱(30)より左右
方向内側に配置され下端部において前記端梁(28)に結合
し前記端梁(28)から起立する衝突柱(24)とを有している
ことを特徴とする請求項1記載の鉄道車両。2. The end body frame (27) includes an end beam (28) extending in the left-right horizontal direction along a lower side, and a lower end coupled to the end beam (28). A pair of left and right corner pillars (30) standing up from both ends, and a pair of corner pillars (30) arranged at the inner side in the left-right direction with respect to the pair of corner pillars (30); The railway vehicle according to claim 1, further comprising a collision column (24) standing upright.
体(11)の屋根部の高さに達し、前記衝撃エネルギー消費
梁としての衝撃エネルギー消費用屋根梁(39)は、妻構体
用フレーム側において前記衝突柱(24)の上端部に結合し
ていることを特徴とする請求項2記載の鉄道車両。3. The collision pillar (24) reaches the height of the roof of the vehicle body (11) at the upper end, and the impact energy consuming roof beam (39) as the impact energy consuming beam is used for a wrist structure. The railway vehicle according to claim 2, wherein the railcar is connected to an upper end of the collision pillar (24) on a frame side.
へ延びる垂下部(23)を一体に有していることを特徴とす
る請求項3記載2又は3記載の鉄道車両。4. The railway according to claim 2, wherein the collision pillar (24) integrally has a hanging part (23) extending below the end beam (28). vehicle.
エネルギー消費用中梁(37)及び衝撃エネルギー消費用側
梁(38)は前記端梁(28)の高さにおいて延び、前記衝撃エ
ネルギー消費用中梁(37)は妻構体用フレーム側において
前記端梁(28)の中間部に結合し、前記衝撃エネルギー消
費用側梁(38)は、妻構体用フレーム側において前記端梁
(28)の両端部に結合し、衝撃エネルギー消費用中梁(37)
の強度は前記衝撃エネルギー消費用屋根梁(39)及び前記
衝撃エネルギー消費用側梁(38)の強度より大きく設定さ
れていることを特徴とする請求項2〜4のいずれかに記
載の鉄道車両。5. The impact energy consuming beam (37) and the impact energy consuming side beam (38) as the impact energy consuming beam extend at the height of the end beam (28), and The beam (37) is connected to the intermediate portion of the end beam (28) on the side of the frame for the wife structure, and the side beam (38) for impact energy consumption is connected to the end beam on the frame side of the wife structure.
It is connected to both ends of (28) and has a middle beam for impact energy consumption (37)
The railcar according to any one of claims 2 to 4, wherein the strength of the impact energy consuming roof beam (39) and the impact energy consuming side beam (38) is set to be greater than the strength of the impact energy consuming roof beam (39). .
る前記衝撃エネルギー消費域(17)の強度は、前記一編成
列車の端側の鉄道車両(10)における前記衝撃エネルギー
消費域(17)の強度より低く設定されていることを特徴と
する請求項1〜5のいずれかに記載の鉄道車両。6. The strength of the impact energy consumption area (17) in the railcar (10) in the middle of a single train is determined by the impact energy consumption area (17) in the railcar (10) at the end of the one train. The railway vehicle according to any one of claims 1 to 5, wherein the strength is set to be lower than the strength of (1).
7)より前後方向外側へ突出しつつ、車体(11)の台枠(20)
に取付けられ、前記台枠(20)への前記連結器(21)の結合
強度は、前記衝撃エネルギー消費域(17)の強度より小さ
く設定されていることを特徴とする請求項1〜6のいず
れかに記載の鉄道車両。7. A coupling (21) is provided in the frame (2) for the wife structure.
7) The underframe (20) of the vehicle body (11) while projecting more outward in the front-rear direction
The coupling strength of the coupler (21) to the underframe (20) is set to be smaller than the strength of the impact energy consumption area (17). The railway vehicle according to any of the above.
は、筒壁に開口(49,50)を穿設されて前記衝撃エネルギ
ー消費梁(37,38,39)の両端範囲にわたり延びる筒体と、
前記衝撃エネルギー消費梁(37,38,39)内に収容されて前
記筒体が最大強度のピークを越えた寸法まで縮小してか
ら縮小開始してエネルギーを消費するバックアップ用エ
ネルギー消費部材(53)とを有していることを特徴とする
請求項1〜7のいずれかに記載の鉄道車両。8. The impact energy consuming beam (37, 38, 39).
A cylindrical body having openings (49, 50) formed in the cylindrical wall and extending over both end ranges of the impact energy consuming beams (37, 38, 39);
A backup energy consuming member (53) that is housed in the impact energy consuming beam (37, 38, 39), and the cylinder body shrinks to a size exceeding the peak of maximum strength and then starts to shrink and consume energy. The railway vehicle according to any one of claims 1 to 7, comprising:
記開口(49,50)と重複する所定範囲を両側から仕切り部
材(52)により仕切られており、前記バックアップ用エネ
ルギー消費部材(53)は、前記両仕切り部材(52)の内側範
囲に前記筒体の長手方向へ所定の隙間を空けて、収容さ
れていることを特徴とする請求項8記載の鉄道車両。9. The cylindrical body is partitioned by a partition member (52) from both sides in a predetermined range overlapping with the openings (49, 50) in the longitudinal direction of the cylindrical body, and the backup energy consuming member ( The railway vehicle according to claim 8, wherein the (53) is accommodated in a range inside the two partition members (52) with a predetermined gap in a longitudinal direction of the cylindrical body.
材(53)は管体(53)から成り、長さの異なる複数個の管体
(53)が前記両仕切り部材(52)の内側範囲に収容されてい
ることを特徴とする請求項9記載の鉄道車両。10. The backup energy consuming member (53) comprises a tube (53), and a plurality of tubes having different lengths.
The railway vehicle according to claim 9, wherein the (53) is accommodated in a region inside the two partition members (52).
方向へ延びる筒体(47)を備え、 前記筒体(47)は、その長手方向へ複数個の衝突エネルギ
ー消費部分(60)を有し、 各衝突エネルギー消費部分(60)は、筒体長手方向へ相互
に対峙する仕切り部材(52)と、筒体長手方向へ両仕切り
部材(52)より内側においてかつ筒体長手方向へ相互に同
一位置で前記筒体(47)の周壁部位に穿設された複数個の
開口(50)をもつ開口穿設範囲と、筒体長手方向へ両仕切
り部材(52)の内側において前記筒体(47)内に収容され筒
体長手方向への寸法が両仕切り部材(52)の対峙距離より
短い軸状部材(53)とを有し、 各衝突エネルギー消費部分(60)における筒体長手方向へ
の荷重F−変位δは、0≦δ≦δ2までは開口穿設範囲
のみが筒体長手方向へ縮小し、δ=δ2のときに、前記
軸状部材(53)の両端が両仕切り部材(52)に当接し、δ=
δ1(ただしδ1<δ2)のとき、Fは前記開口穿設範
囲の最大強度F1maxであり、δ=δ2のとき、Fは、開
口穿設範囲の荷重F12と軸状部材(53)の荷重F22との和
F2(=F12+F22)であり、かつF2>F1maxとなる
ように、設定され、 前記複数個の衝突エネルギー消費部分(60)の内、F1max
が最大の衝突エネルギー消費部分(60)のF1maxは、前記
複数個の衝突エネルギー消費部分(60)の内、F2が最小
の衝突エネルギー消費部分(60)のF2より、小さく設定
されていることを特徴とする請求項1〜7のいずれかに
記載の鉄道車両。11. The collision energy consuming beam (37) includes a cylinder (47) extending in the front-rear direction, and the cylinder (47) has a plurality of collision energy consuming portions (60) in a longitudinal direction thereof. Each of the collision energy consuming portions (60) includes a partition member (52) facing each other in the longitudinal direction of the cylindrical body, and a partition member (52) inside the partition members (52) in the longitudinal direction of the cylindrical body and mutually in the longitudinal direction of the cylindrical body. An opening perforation range having a plurality of openings (50) perforated in the peripheral wall portion of the cylindrical body (47) at the same position, and the cylindrical body (52) inside the two partition members (52) in the longitudinal direction of the cylindrical body. 47) and a shaft member (53) whose length in the longitudinal direction of the cylinder is shorter than the distance between the two partition members (52). The load F-displacement δ of the shaft member (53) is reduced only in the opening drilling range in the longitudinal direction of the cylinder until 0 ≦ δ ≦ δ2, and when δ = δ2. Both ends contact with both the partition member (52), δ =
When δ1 (where δ1 <δ2), F is the maximum strength F1max of the opening drilling range, and when δ = δ2, F is the load F12 of the opening drilling range and the load F22 of the shaft member (53). F2 (= F12 + F22) and F2> F1max, and among the plurality of collision energy consuming parts (60), F1max
F1max of the largest collision energy consuming portion (60) is set to be smaller than F2 of the smallest collision energy consuming portion (60) among the plurality of collision energy consuming portions (60). The railway vehicle according to any one of claims 1 to 7, wherein:
の衝突エネルギーを消費する軸状エネルギー消費部材(5
3)とされ、 各衝突エネルギー消費部分(60)における筒体長手方向へ
の荷重F−変位δは、δ>δ2の範囲では、Fは、開口
穿設範囲の荷重F1と軸状部材(53)の荷重F2との和Ft
であり、Ftは、δが増大するに連れて、漸減するよう
に設定されていることを特徴とする請求項11記載の鉄
道車両。12. The shaft-like energy consuming member (5), which consumes collision energy in the longitudinal direction of the cylindrical body, is provided.
In the collision energy consuming portion (60), the load F-displacement δ in the longitudinal direction of the cylindrical body in the range of δ> δ2, F is the load F1 in the opening drilling range and the shaft member (53). Ft) with the load F2
The railway vehicle according to claim 11, wherein Ft is set so as to gradually decrease as δ increases.
(47)を備え、 前記筒体(47)は、その長手方向へ複数個の衝突エネルギ
ー消費部分(60)を有し、 各衝突エネルギー消費部分(60)は、筒体長手方向へ相互
に対峙する仕切り部材(52)と、筒体長手方向へ両仕切り
部材(52)より内側においてかつ筒体長手方向へ相互に同
一位置で前記筒体(47)の周壁部位に穿設された複数個の
開口(50)をもつ開口穿設範囲と、筒体長手方向へ両仕切
り部材(52)の内側において前記筒体(47)内に収容され筒
体長手方向への寸法が両仕切り部材(52)の対峙距離より
短い軸状部材(53)とを有し、 各衝突エネルギー消費部分(60)における筒体長手方向へ
の荷重F−変位δは、0≦δ≦δ2までは開口穿設範囲
のみが筒体長手方向へ縮小し、δ=δ2のときに、前記
軸状部材(53)の両端が両仕切り部材(52)に当接し、δ=
δ1(ただしδ1<δ2)のとき、Fは前記開口穿設範
囲の最大強度F1maxであり、δ=δ2のとき、Fは、開
口穿設範囲の荷重F12と軸状部材(53)の荷重F22との和
F2(=F12+F22)であり、かつF2>F1maxとなる
ように、設定され、 前記複数個の衝突エネルギー消費部分(60)の内、F1max
が最大の衝突エネルギー消費部分(60)のF1maxは、前記
複数個の衝突エネルギー消費部分(60)の内、F2が最小
の衝突エネルギー消費部分(60)のF2より、小さく設定
されていることを特徴とする鉄道車両用衝突エネルギー
消費梁。13. A tubular body extending in the front-rear direction of a railway vehicle (10).
(47), wherein the cylindrical body (47) has a plurality of collision energy consuming parts (60) in the longitudinal direction thereof, and each of the collision energy consuming parts (60) faces each other in the longitudinal direction of the cylindrical body. Partition member (52), and a plurality of perforations formed in the peripheral wall portion of the cylinder (47) at the same position in the cylinder longitudinal direction inside the two partition members (52) and at the same position in the cylinder longitudinal direction. An opening perforation range having an opening (50), and inside the two partition members (52) in the longitudinal direction of the tubular body, both dimensions are accommodated in the tubular body (47) in the longitudinal direction of the tubular body and both partition members (52). And a load F-displacement δ in the longitudinal direction of the cylinder in each of the collision energy consuming portions (60) is limited to an opening drilling range up to 0 ≦ δ ≦ δ2. Is reduced in the longitudinal direction of the cylindrical body, and when δ = δ2, both ends of the shaft-shaped member (53) abut both partition members (52), and δ = δ2.
When δ1 (where δ1 <δ2), F is the maximum strength F1max of the opening drilling range, and when δ = δ2, F is the load F12 of the opening drilling range and the load F22 of the shaft member (53). F2 (= F12 + F22) and F2> F1max, and among the plurality of collision energy consuming parts (60), F1max
F1max of the largest collision energy consuming part (60) is set to be smaller than F2 of the minimum collision energy consuming part (60) among the plurality of collision energy consuming parts (60). Features Collision energy consumption beams for railway vehicles.
の衝突エネルギーを消費する軸状エネルギー消費部材(5
3)とされ、 各衝突エネルギー消費部分(60)における筒体長手方向へ
の荷重F−変位δは、δ>δ2の範囲では、Fは、開口
穿設範囲の荷重F1と軸状部材(53)の荷重F2との和Ft
であり、Ftは、δが増大するに連れて、漸減するよう
に設定されていることを特徴とする請求項13記載の鉄
道車両用衝突エネルギー消費梁。14. The shaft-shaped energy consuming member (5), which consumes collision energy in the longitudinal direction of the cylinder, is provided.
In the collision energy consuming portion (60), the load F-displacement δ in the longitudinal direction of the cylindrical body in the range of δ> δ2, F is the load F1 in the opening drilling range and the shaft member (53). Ft) with the load F2
14. The collision energy consumption beam for a railway vehicle according to claim 13, wherein Ft is set so as to gradually decrease as δ increases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19887599A JP4318151B2 (en) | 1999-07-13 | 1999-07-13 | Railway vehicles and collision energy consuming beams for railway vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19887599A JP4318151B2 (en) | 1999-07-13 | 1999-07-13 | Railway vehicles and collision energy consuming beams for railway vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001026268A true JP2001026268A (en) | 2001-01-30 |
JP4318151B2 JP4318151B2 (en) | 2009-08-19 |
Family
ID=16398384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19887599A Expired - Fee Related JP4318151B2 (en) | 1999-07-13 | 1999-07-13 | Railway vehicles and collision energy consuming beams for railway vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4318151B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003002192A (en) * | 2001-06-20 | 2003-01-08 | Hitachi Ltd | Vehicle |
JP2003095094A (en) * | 2002-09-11 | 2003-04-03 | Hitachi Ltd | Rail vehicle |
JP2005239160A (en) * | 2005-05-09 | 2005-09-08 | Hitachi Ltd | Rail vehicle |
JP2005280704A (en) * | 2005-05-09 | 2005-10-13 | Hitachi Ltd | Railroad car |
JP2007326552A (en) * | 2006-05-10 | 2007-12-20 | Hitachi Ltd | Collision energy absorbing device and rail vehicle equipped with the same |
JP2007326550A (en) * | 2006-05-10 | 2007-12-20 | Hitachi Ltd | Collision energy absorbing device and rail vehicle equipped with the same |
JP2008062817A (en) * | 2006-09-08 | 2008-03-21 | Hitachi Ltd | Railway vehicle |
JP2008126856A (en) * | 2006-11-21 | 2008-06-05 | Hitachi Ltd | vehicle |
JP2009241772A (en) * | 2008-03-31 | 2009-10-22 | Hitachi Ltd | Rail vehicle |
JP2011201369A (en) * | 2010-03-25 | 2011-10-13 | Hitachi Ltd | Railway vehicle including impact absorbing structure |
WO2011142208A1 (en) * | 2010-05-10 | 2011-11-17 | 日本車輌製造株式会社 | Railroad vehicle |
JP2011235732A (en) * | 2010-05-10 | 2011-11-24 | Nippon Sharyo Seizo Kaisha Ltd | Railroad vehicle |
JP2011235731A (en) * | 2010-05-10 | 2011-11-24 | Nippon Sharyo Seizo Kaisha Ltd | Railroad car |
JP2013028291A (en) * | 2011-07-28 | 2013-02-07 | Kinki Sharyo Co Ltd | Structure for absorbing impact on head of rolling stock |
CN103180192A (en) * | 2010-11-19 | 2013-06-26 | 川崎重工业株式会社 | Impact energy absorbers for railway vehicles |
WO2013161610A1 (en) * | 2012-04-25 | 2013-10-31 | 株式会社 日立製作所 | Railroad vehicle body structure having shock absorbing structure |
JP2015030295A (en) * | 2013-07-31 | 2015-02-16 | 川崎重工業株式会社 | Railway vehicle collision energy absorbing device and railway vehicle |
US9421989B2 (en) | 2012-01-27 | 2016-08-23 | Nippon Sharyo, Ltd. | Rolling stock |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104512429B (en) * | 2013-09-30 | 2017-05-03 | 中车青岛四方机车车辆股份有限公司 | End wall structure of railway vehicle and processing method of end wall structure |
-
1999
- 1999-07-13 JP JP19887599A patent/JP4318151B2/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003002192A (en) * | 2001-06-20 | 2003-01-08 | Hitachi Ltd | Vehicle |
JP4736247B2 (en) * | 2001-06-20 | 2011-07-27 | 株式会社日立製作所 | vehicle |
JP2003095094A (en) * | 2002-09-11 | 2003-04-03 | Hitachi Ltd | Rail vehicle |
JP2005239160A (en) * | 2005-05-09 | 2005-09-08 | Hitachi Ltd | Rail vehicle |
JP2005280704A (en) * | 2005-05-09 | 2005-10-13 | Hitachi Ltd | Railroad car |
JP2007326552A (en) * | 2006-05-10 | 2007-12-20 | Hitachi Ltd | Collision energy absorbing device and rail vehicle equipped with the same |
JP2007326550A (en) * | 2006-05-10 | 2007-12-20 | Hitachi Ltd | Collision energy absorbing device and rail vehicle equipped with the same |
JP2008062817A (en) * | 2006-09-08 | 2008-03-21 | Hitachi Ltd | Railway vehicle |
JP2008126856A (en) * | 2006-11-21 | 2008-06-05 | Hitachi Ltd | vehicle |
JP2009241772A (en) * | 2008-03-31 | 2009-10-22 | Hitachi Ltd | Rail vehicle |
JP2011201369A (en) * | 2010-03-25 | 2011-10-13 | Hitachi Ltd | Railway vehicle including impact absorbing structure |
JP2011235732A (en) * | 2010-05-10 | 2011-11-24 | Nippon Sharyo Seizo Kaisha Ltd | Railroad vehicle |
WO2011142208A1 (en) * | 2010-05-10 | 2011-11-17 | 日本車輌製造株式会社 | Railroad vehicle |
JP2011235731A (en) * | 2010-05-10 | 2011-11-24 | Nippon Sharyo Seizo Kaisha Ltd | Railroad car |
US9090266B2 (en) | 2010-05-10 | 2015-07-28 | Nippon Sharyo, Ltd. | Railway vehicle |
CN103180192A (en) * | 2010-11-19 | 2013-06-26 | 川崎重工业株式会社 | Impact energy absorbers for railway vehicles |
US9242655B2 (en) | 2010-11-19 | 2016-01-26 | Kawasaki Jukogyo Kabushiki Kaisha | Crash energy absorber of railcar |
JP2013028291A (en) * | 2011-07-28 | 2013-02-07 | Kinki Sharyo Co Ltd | Structure for absorbing impact on head of rolling stock |
US9421989B2 (en) | 2012-01-27 | 2016-08-23 | Nippon Sharyo, Ltd. | Rolling stock |
WO2013161610A1 (en) * | 2012-04-25 | 2013-10-31 | 株式会社 日立製作所 | Railroad vehicle body structure having shock absorbing structure |
GB2515422A (en) * | 2012-04-25 | 2014-12-24 | Hitachi Ltd | Railroad vehicle body structure having shock absorbing structure |
JPWO2013161610A1 (en) * | 2012-04-25 | 2015-12-24 | 株式会社日立製作所 | Railway vehicle structure with shock absorbing structure |
GB2515422B (en) * | 2012-04-25 | 2019-12-11 | Hitachi Ltd | Railroad vehicle body structure having shock absorbing structure |
JP2015030295A (en) * | 2013-07-31 | 2015-02-16 | 川崎重工業株式会社 | Railway vehicle collision energy absorbing device and railway vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP4318151B2 (en) | 2009-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001026268A (en) | Railway vehicles and collision energy consuming beams for railway vehicles | |
CA2831986C (en) | Rail vehicle having an attached deformation zone | |
US6871599B2 (en) | Railway car | |
CN108495777A (en) | Front part structure of vehicle | |
KR100496486B1 (en) | Rail vehicle | |
EP2371651B1 (en) | Railway vehicle having shock absorbing structures | |
WO2020047924A1 (en) | Collision energy absorption structure and rail vehicle having same | |
JP2009096459A (en) | Automotive body reinforcement with excellent bending crush characteristics | |
JP2002012107A (en) | Bump pasty | |
JPH11170935A (en) | Structural members | |
CN101274635B (en) | Conveyor | |
JP2001048016A (en) | Structural body for rolling stock | |
CN109094602B (en) | Energy absorption beam, cab underframe structure of railway vehicle and railway vehicle | |
JP2001341567A (en) | Seat mounting structure | |
CN112373576A (en) | Front floor assembly structure | |
JP2008030535A (en) | Bumper beam of car body, and shock absorbing member for car body | |
JP4297810B2 (en) | Bumper stay and bumper structure | |
CN112977525B (en) | Rail vehicle and vehicle body end part structure thereof | |
CN214240562U (en) | Be applied to road construction operation's anticollision buffer car | |
JP4736247B2 (en) | vehicle | |
JP2003040136A (en) | Front underrun protector | |
CN219524036U (en) | Sill inner panel, sill assembly and vehicle | |
CN217994560U (en) | Front side member and vehicle | |
CN114644056B (en) | Connection structure, frame and vehicle | |
JP2002012108A (en) | Shock absorbing member and bump pasty using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060525 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060928 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20060928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090520 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090520 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120605 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4318151 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120605 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130605 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130605 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |