JP2001023482A - Contact material for vacuum valve - Google Patents
Contact material for vacuum valveInfo
- Publication number
- JP2001023482A JP2001023482A JP11199343A JP19934399A JP2001023482A JP 2001023482 A JP2001023482 A JP 2001023482A JP 11199343 A JP11199343 A JP 11199343A JP 19934399 A JP19934399 A JP 19934399A JP 2001023482 A JP2001023482 A JP 2001023482A
- Authority
- JP
- Japan
- Prior art keywords
- contact material
- component
- vacuum valve
- arc
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 75
- 235000013619 trace mineral Nutrition 0.000 claims abstract description 36
- 239000011573 trace mineral Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 34
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 14
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 238000005245 sintering Methods 0.000 claims description 27
- 239000002994 raw material Substances 0.000 claims description 19
- 239000012298 atmosphere Substances 0.000 claims description 18
- 238000002844 melting Methods 0.000 claims description 17
- 230000008018 melting Effects 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 17
- 239000007790 solid phase Substances 0.000 claims description 11
- 238000001764 infiltration Methods 0.000 claims description 10
- 230000008595 infiltration Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000012300 argon atmosphere Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000003832 thermite Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 150000001247 metal acetylides Chemical class 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 239000000470 constituent Substances 0.000 abstract 7
- 238000003886 thermite process Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 68
- 230000000052 comparative effect Effects 0.000 description 48
- 229910017813 Cu—Cr Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- 101000650817 Homo sapiens Semaphorin-4D Proteins 0.000 description 1
- 102100027744 Semaphorin-4D Human genes 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000001778 solid-state sintering Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、真空中で電流の遮
断導通を行う真空遮断器等に使用される真空バルブに係
り、特に前記電流を遮断導通する接点を形成する真空バ
ルブ用接点材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve used for a vacuum circuit breaker or the like for interrupting and conducting a current in a vacuum, and more particularly to a contact material for a vacuum valve for forming a contact for interrupting and conducting the current. .
【0002】[0002]
【従来の技術】従来から真空バルブの接点材料に要求さ
れる特性としては、遮断特性,耐溶着特性,耐電圧特性
に対する各性能で示される基本三要件と、この他に電気
抵抗(バルク抵抗と接触抵抗)と温度上昇が低く安定し
ていることが重要な要件となっている。2. Description of the Related Art Conventionally, characteristics required for a contact material of a vacuum valve include three basic requirements represented by performances such as a breaking characteristic, a welding resistance characteristic, and a withstand voltage characteristic. It is an important requirement that the contact resistance) and the temperature rise are low and stable.
【0003】しかしながら、これらの要件の中には相反
するものがある関係上、単一の金属種によって全ての要
件を満足させることは不可能である。このため、実用化
されている多くの接点材料においては、不足する性能を
相互に補えるような2種類以上の元素、例えば導電成分
と耐弧成分を組合せて大電流用又は高電圧用等のように
特定の用途に合った接点材料の開発が行われ、それなり
に優れた特性を有するものが開発されている。開閉器と
いう使用目的から、高確率で電流の開閉が可能であるこ
とは言うまでもない。[0003] However, since some of these requirements are contradictory, it is impossible to satisfy all the requirements with a single metal species. For this reason, in many contact materials that have been put into practical use, two or more types of elements that can mutually compensate for the insufficient performance, such as a combination of a conductive component and an arc-resistant component, such as for a large current or a high voltage. Contact materials suitable for specific applications have been developed, and materials having excellent properties have been developed. It goes without saying that current can be opened and closed with a high probability from the purpose of use as a switch.
【0004】[0004]
【発明が解決しようとする課題】このような真空バルブ
の遮断特性を向上させるには、接点材料中のAl等の微
量成分を制御する必要があり、この接点材料中のAl等
の微量成分を規定することは公知の技術である。In order to improve the shut-off characteristics of such a vacuum valve, it is necessary to control a trace component such as Al in the contact material. Specifying is a known technique.
【0005】しかし、接点材料中のAl等の微量成分を
規定するために、従来のようにAl粉末の形態で添加す
ると、Al粉末表面が酸化し易いこと、また微量である
ために偏析し易いこと等の理由によって、接点材料とし
ての性能が安定しないという問題点があった。[0005] However, if a small amount of Al or the like in the contact material is added in the form of Al powder as in the prior art, the surface of the Al powder is easily oxidized, and segregation is liable to occur due to the small amount. For this reason, there is a problem that the performance as a contact material is not stable.
【0006】更にAlの添加により、導電率が極端に低
下してしまうという問題点があった。Further, there is a problem that the conductivity is extremely lowered by the addition of Al.
【0007】このように、導電成分と耐弧成分(更に必
要により補助成分)だけの組成を制御した接点材料及び
微量元素をただ単に添加した従来の接点材料では、安定
した遮断特性を得ることが困難であり、更に導電率を低
下させずに遮断特性を向上することが困難であるという
問題があった。As described above, in the case of a contact material in which the composition of only the conductive component and the arc-resistant component (and, if necessary, the auxiliary component) is controlled and a conventional contact material in which a trace element is simply added, stable breaking characteristics can be obtained. There is a problem that it is difficult, and furthermore, it is difficult to improve the blocking characteristics without lowering the conductivity.
【0008】本発明は、上述の如き従来の課題を解決す
るためになされたもので、その目的は、真空遮断器等に
使用される真空バルブの接点材料に要求される特性の
内、遮断特性と導電率の両方を安定に向上させることが
できる真空バルブ用接点材料を提供することである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide, among the characteristics required for a contact material of a vacuum valve used in a vacuum circuit breaker or the like, a breaking characteristic. And to provide a contact material for a vacuum valve that can stably improve both the conductivity and the conductivity.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明の特徴は、真空内で接点の開閉を行
うことにより、電流の遮断、導通を行う真空バルブの前
記接点を形成する真空バルブ用接点材料において、導電
成分と耐弧成分及び必要に応じて添加される補助成分と
で構成され、前記耐弧成分の原料中の微量元素の含有率
が異なる2種類以上の耐弧原料を使用することにより製
造することにある。In order to achieve the above object, a feature of the invention of claim 1 is that the contacts of a vacuum valve for interrupting and conducting current by opening and closing the contacts in a vacuum. The contact material for a vacuum valve to be formed is composed of a conductive component, an arc-resistant component and an auxiliary component added as needed, and two or more types of the anti-arc component having different trace element contents in the material of the arc-resistant component. It is to produce by using arc raw material.
【0010】請求項2の発明の前記耐弧成分の2種類以
上の耐弧原料中の微量元素の含有率は、5倍〜1000
倍異なる。The content of the trace element in two or more kinds of the arc-resistant materials of the arc-resistant component according to the invention of claim 2 is 5 to 1000 times.
Times different.
【0011】請求項3の発明の前記耐弧成分の原料中の
含有率が異なる微量元素は、Fe,Al,Si,Cの
内、少なくとも1種類以上である。According to the third aspect of the present invention, the trace elements having different contents of the arc resistant component in the raw material are at least one or more of Fe, Al, Si, and C.
【0012】請求項4の発明の前記耐弧成分は、Crを
主成分とする。According to a fourth aspect of the present invention, the arc resistant component contains Cr as a main component.
【0013】請求項5の発明の前記耐弧成分の主成分で
あるCrの原料は、電解法で製造したCrとテルミット
法で製造したCrの2種類である。According to a fifth aspect of the present invention, there are two kinds of raw materials of Cr, which are the main components of the arc resistant component, of Cr produced by an electrolytic method and Cr produced by a thermite method.
【0014】請求項6の発明の前記耐弧成分の主成分で
あるCrの原料中の含有率が異なる微量元素は、Al又
はSiの内、少なくとも1種類以上である。The trace elements having different contents of Cr, which is the main component of the arc resistant component according to the sixth aspect of the present invention, are at least one of Al and Si.
【0015】請求項7の発明の特徴は、前記耐弧成分の
主成分であるCrの原料には、Alを含有するCr粒子
とAlを含有しないCr粒子の両方が存在することにあ
る。請求項8の発明の特徴は、前記耐弧成分の主成分で
あるCrの原料には、Siを含有するCr粒子とSiを
含有しないCr粒子の両方が存在することにある。請求
項9の発明の前記耐弧成分の原料中の含有率が異なる微
量成分は、Alが10ppm〜1000ppmであり、
Siが50ppm〜2000ppmである。[0015] A feature of the invention of claim 7 is that both Cr particles containing Al and Cr particles not containing Al are present in the raw material of Cr which is the main component of the arc resistant component. A feature of the invention of claim 8 resides in that in the raw material of Cr which is the main component of the arc resistant component, both Cr particles containing Si and Cr particles not containing Si exist. The trace component having a different content of the arc resistant component in the raw material according to the invention of claim 9 has Al of 10 ppm to 1000 ppm,
Si is 50 ppm to 2000 ppm.
【0016】請求項10の発明の前記接点材料は、焼結
溶浸法、固相焼結法又は溶解法で製造する。The contact material according to the tenth aspect of the present invention is manufactured by a sintering infiltration method, a solid phase sintering method or a melting method.
【0017】請求項11の発明の前記接点材料を焼結溶
浸法、固相焼結法又は溶解法で製造する際の焼結時又は
溶解時の雰囲気は、非酸化性雰囲気である。The atmosphere during sintering or melting when the contact material of the invention of claim 11 is manufactured by a sintering infiltration method, a solid phase sintering method or a melting method is a non-oxidizing atmosphere.
【0018】請求項12の発明の前記非酸化性雰囲気
は、好ましくは水素雰囲気、アルゴン雰囲気又は真空雰
囲気である。The non-oxidizing atmosphere of the twelfth aspect is preferably a hydrogen atmosphere, an argon atmosphere or a vacuum atmosphere.
【0019】請求項13の発明の前記固相焼結法での製
造時における焼結温度は、導電成分の溶融温度以下、好
ましくは、導電成分の溶融温度より100℃以内であ
る。The sintering temperature during the production by the solid-phase sintering method according to the thirteenth aspect of the present invention is not higher than the melting temperature of the conductive component, preferably within 100 ° C. from the melting temperature of the conductive component.
【0020】請求項14の発明の前記接点材料の耐弧成
分は、主耐弧成分のCrと、副耐弧成分としてのW,N
b,Ta,Ti,Mo及びこれらの炭化物の内の少なく
とも1種類以上を含有する。The arc resistance component of the contact material according to the fourteenth aspect of the present invention includes a main arc resistance component Cr and W and N as sub arc resistance components.
b, Ta, Ti, Mo and at least one of these carbides.
【0021】請求項15の発明の前記接点材料の導電成
分は、少なくともCu又はAgのいずれか一方を主成分
とする。According to a fifteenth aspect of the present invention, the conductive component of the contact material contains at least one of Cu and Ag as a main component.
【0022】請求項16の発明の前記接点材料の補助成
分は、Bi,Te,Se,Sb,Coの内の少なくとも
1種類以上を含有している。The auxiliary component of the contact material according to the invention of claim 16 contains at least one of Bi, Te, Se, Sb, and Co.
【0023】請求項17の発明の特徴は、前記接点材料
の補助成分の含有率の合計量が5重量%以下であること
にある。A feature of the invention of claim 17 is that the total content of the auxiliary components of the contact material is 5% by weight or less.
【0024】前述したように、真空バルブ用接点材料、
例えばCu−Cr接点の遮断特性を向上させるには、接
点材料中のAl等の微量元素を制御する必要がある。そ
こで、本例は導電率を極端に低下させずに遮断特性を向
上させる為に、Al含有率が異なる2種類以上のCrを
耐弧原料として使用している。As described above, a contact material for a vacuum valve,
For example, in order to improve the cut-off characteristics of a Cu-Cr contact, it is necessary to control a trace element such as Al in the contact material. Therefore, in this example, two or more types of Cr having different Al contents are used as the arc-resistant raw material in order to improve the cutoff characteristics without extremely lowering the conductivity.
【0025】例えば、Alをほとんど含有していない
(5ppm以下の)Cr粉末とAlを1000ppm程
度含んだCr粉末を、同量使用してCu−50wt%C
r接点を製造すると、接点中のAl含有率は250pp
m程度になり、更に接点材料中の多数のCr粒子は、A
lを含んでいないCr粒子とAlを含んだCr粒子が同
重量ずつ存在する。For example, using the same amount of a Cr powder containing almost no Al (5 ppm or less) and a Cr powder containing about 1000 ppm of Al, the Cu-50 wt% C
When an r-contact is manufactured, the Al content in the contact is 250 pp.
m, and many Cr particles in the contact material are A
Cr particles not containing l and Cr particles containing Al are present in the same weight.
【0026】この場合、表面が酸化し易いAl粉末とい
う形態で添加していないので、接点中の酸素量が抑制で
き、Alを250ppm含有していることで遮断特性は
向上し、更に巨視的にはAlは均一に分布しているが、
微視的にはAlは偏在しているので、導電率の低下を抑
制出来る。また、上記のようなことは、Cu−W接点に
おける微量元素Feの場合についても同様なことがいえ
る。In this case, since the surface is not added in the form of Al powder, which is easily oxidized, the amount of oxygen in the contact can be suppressed. Al is uniformly distributed,
Since Al is unevenly distributed microscopically, a decrease in conductivity can be suppressed. The same can be said for the trace element Fe at the Cu-W contact.
【0027】本発明により、接点材料中の微量元素の含
有率と分布を制御することが出来、導電率を極端に低下
させずに遮断特性を向上させることを可能とした。According to the present invention, it is possible to control the content and distribution of the trace elements in the contact material, and it is possible to improve the cutoff characteristics without extremely lowering the conductivity.
【0028】[0028]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は、本発明の真空バルブ用接
点材料を用いた真空バルブの一実施の形態を示した構成
図である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of a vacuum valve using the vacuum valve contact material of the present invention.
【0029】遮断室1は、絶縁材料によりほぼ円筒状に
形成された絶縁容器2と、この両端に封着金具3a,3
bを介して設けた金属性の蓋体4a,4bとで真空気密
に構成されている。更に、遮断室1内には、導電棒5,
6の対向する端部に取り付けられた一対の電極7,8が
配設され、上部の電極7を固定電極、下部の電極8を可
動電極としている。また、この可動電極8の電極棒6に
は、ベローズ9が取り付けられて遮断室1内を真空気密
に保持しながら電極8の軸方向の移動を可能にし、この
ベローズ9上部には金属性のアークシールド10が設け
られ、ベローズ9がアーク蒸気で覆われることを防止し
ている。アークシールド11は、上記電極7,8を覆う
ようにして遮断室1内に設けられ、絶縁容器2がアーク
蒸気で覆われることを防止している。更に、電極8は、
図2に拡大して示すように、導電棒6にロウ付け部12
によって固定されるか、または、かしめによって圧着接
続されている。接点13aは、電極8にロウ付け部14
で固着されている。尚、固定電極7には接点13bが固
定側接点として圧着接続されている。The shut-off chamber 1 comprises an insulating container 2 formed of an insulating material in a substantially cylindrical shape, and sealing fittings 3a, 3 at both ends thereof.
b and the metallic lids 4a and 4b provided through the airtight b. Furthermore, in the shut-off chamber 1, conductive rods 5,
A pair of electrodes 7 and 8 attached to the opposite ends of 6 are provided, and the upper electrode 7 is a fixed electrode and the lower electrode 8 is a movable electrode. A bellows 9 is attached to the electrode rod 6 of the movable electrode 8 to enable the electrode 8 to move in the axial direction while keeping the inside of the shut-off chamber 1 vacuum-tight. An arc shield 10 is provided to prevent the bellows 9 from being covered with arc vapor. The arc shield 11 is provided in the shut-off chamber 1 so as to cover the electrodes 7 and 8 to prevent the insulating container 2 from being covered with the arc vapor. Further, the electrode 8
As shown in an enlarged manner in FIG.
Or crimped by crimping. The contact 13a is connected to the brazing portion 14
It is fixed with. A contact 13b is crimped to the fixed electrode 7 as a fixed contact.
【0030】次に本実施の形態の真空バルブで用いられ
る真空バルブ用接点13a,13bを構成する材料につ
いて図3の図表を参照して説明する。Next, the material constituting the vacuum valve contacts 13a and 13b used in the vacuum valve of the present embodiment will be described with reference to the table of FIG.
【0031】実施例1〜2 実施例1では、微量成分Alの含有率が異なる2種類の
Cr粉末を使用して、焼結溶浸法でCu−Cr接点を製
造した。Alを350ppm,1800ppm含んだ2
種類のテルミットCr粉末を同重量ずつ混合して使用
し、Crを50wt%,微量元素Alを530ppm含
んだCu−Cr接点を製造した。この接点の導電率と最
大遮断電流は、若干向上し、両方共後述する比較例1の
1.1倍であった。Examples 1 and 2 In Example 1, Cu-Cr contacts were manufactured by sintering infiltration using two types of Cr powders having different contents of the minor component Al. 2 containing 350ppm and 1800ppm of Al
Cu-Cr contacts containing 50 wt% of Cr and 530 ppm of a trace element Al were produced by mixing and using the same type of thermite Cr powder by the same weight. The conductivity and the maximum breaking current of this contact were slightly improved, and both were 1.1 times that of Comparative Example 1 described later.
【0032】実施例2では、微量成分Alの含有率が異
なる3種類のCr粉末を使用して焼結溶浸法でCu−C
r接点を製造した。Alを30ppm含んだ電解Cr粉
末,Alを250ppm含んだ電解Cr粉末,Alを2
000ppm含んだテルミットCr粉末を、それぞれ
1:2:7の重量比で使用し、Crを50wt%,微量
元素Alを480ppm含んだCuーCr接点を製造し
た。この接点の導電率と最大遮断電流は、若干向上し、
それぞれ後述する比較例1の1.1倍と1.2倍であっ
た。In Example 2, three types of Cr powders having different contents of the minor component Al were used and Cu-C
An r-contact was manufactured. Electrolytic Cr powder containing 30 ppm Al, electrolytic Cr powder containing 250 ppm Al, 2 Al
Thermit Cr powder containing 000 ppm was used at a weight ratio of 1: 2: 7, respectively, to produce a Cu-Cr contact containing 50 wt% of Cr and 480 ppm of a trace element Al. The conductivity and the maximum breaking current of this contact are slightly improved,
They were 1.1 times and 1.2 times that of Comparative Example 1 described later, respectively.
【0033】一方、比較例1では、焼結溶浸法でCu−
Cr接点を製造した。微量成分Alを1000ppm含
んだテルミットCr粉末を加圧成形した後、水素雰囲気
中で、1150℃×1時間の条件で焼結して製造したC
rスケルトンと溶浸材Cuを坩堝内で上下に配置し、水
素雰囲気中で1150℃で加熱し、導電成分であるCu
を溶浸させることにより、Crを50wt%,微量元素
Alを500ppm含んだCu−Cr合金を製造した。
このCu−Cr合金を所定の接点形状(φ50mm,t
5mm)に加工した後、渦電流測定法により導電率を測
定し、更に真空バルブに組み込んで遮断試験を実施し
た。遮断試験は、5KAから徐々に電流値を上げていく
方法で最大遮断電流を測定した。この比較例1の測定結
果を基準とし、その他の測定結果は相対値で示した。On the other hand, in Comparative Example 1, Cu-
A Cr contact was manufactured. Thermitite Cr powder containing 1000ppm of a trace component Al is press-formed, and then sintered in a hydrogen atmosphere at 1150 ° C for 1 hour.
The r skeleton and the infiltrant Cu are placed one above the other in a crucible and heated at 1150 ° C. in a hydrogen atmosphere to remove Cu as a conductive component.
Was infiltrated to produce a Cu-Cr alloy containing 50 wt% of Cr and 500 ppm of a trace element Al.
This Cu—Cr alloy is formed into a predetermined contact shape (φ50 mm, t
After processing to 5 mm), the conductivity was measured by an eddy current measurement method, and further incorporated into a vacuum valve to perform a cutoff test. In the interruption test, the maximum interruption current was measured by gradually increasing the current value from 5 KA. Based on the measurement results of Comparative Example 1, the other measurement results are shown as relative values.
【0034】比較例2では、焼結溶浸法でCu−Cr接
点を製造した。Alを10ppm含んだ電解Cr粉末に
Al粉末を微量添加し、微量成分Alを1000ppm
含んだCr粉末によりCrスケルトンを製造し、比較例
1と同一方法でCu−Cr接点を製造した。この接点の
導電率と遮断特性を評価した結果、導電率,最大遮断電
流は、比較例1の結果のそれぞれ0.95倍,0.90
倍と低下していた。これは表面が酸化し易いAl粉末を
使用したために、酸素含有率が増大(比較例1の2倍程
度に増大)したことに起因する。In Comparative Example 2, Cu-Cr contacts were manufactured by the sintering infiltration method. A small amount of Al powder is added to electrolytic Cr powder containing 10 ppm of Al, and a trace component Al is 1000 ppm.
A Cr skeleton was produced from the contained Cr powder, and a Cu-Cr contact was produced in the same manner as in Comparative Example 1. As a result of evaluating the conductivity and the breaking characteristics of this contact, the conductivity and the maximum breaking current were 0.95 times and 0.90 times the results of Comparative Example 1, respectively.
It was twice as low. This is because the oxygen content increased (about twice as large as that of Comparative Example 1) due to the use of Al powder whose surface is easily oxidized.
【0035】以上のように、Cu−50Cr接点材料中
の微量成分Alの含有量が500ppm程度の接点材料
を比較した結果、実施例1、2のように微量元素が異な
る2種類以上の原料粉末を使用することにより、導電率
と遮断特性を向上させることができた。As described above, as a result of comparing a contact material having a minor component Al content of about 500 ppm in the Cu-50Cr contact material, as shown in Examples 1 and 2, two or more kinds of raw material powders having different trace elements were used. By using, the electric conductivity and the cutoff characteristics could be improved.
【0036】実施例3〜5 実施例3〜5では、微量元素Alの含有率が、それぞれ
30ppmと160ppm(含有率の比は5.3),2
0ppmと1200ppm(含有率の比は60),10
ppmと8000ppm(含有率の比は800)の2種
類の原料Cr粉末を使用して、Cu−50Cr接点を製
造し、導電率と遮断特性を評価した結果、実施例3では
比較例3の1.1倍と1.1倍、実施例4では比較例3
の1.1倍と1.2倍、実施例5では比較例3の1.0
倍と1.1倍であった。Examples 3 to 5 In Examples 3 to 5, the content of the trace element Al was 30 ppm and 160 ppm (the ratio of the content was 5.3) and 2 ppm, respectively.
0 ppm and 1200 ppm (content ratio is 60), 10 ppm
As a result of manufacturing a Cu-50Cr contact using two kinds of raw material Cr powders of ppm and 8000 ppm (content ratio is 800) and evaluating the electric conductivity and the blocking characteristics, Example 3 shows Comparative Example 3 1 .1 times and 1.1 times, Example 4 is Comparative Example 3
1.1 times and 1.2 times larger than that of Comparative Example 3 in Example 5.
And 1.1 times.
【0037】一方、比較例3では、微量元素Alを30
ppmと100ppm含んだ2種類のCr粉末、即ち含
有率比は3.3を使用し、Cu−50Cr接点を製造
し、導電率と最大遮断電流を測定した結果、両特性共比
較例1と同等であった。On the other hand, in Comparative Example 3, the trace element Al
Two types of Cr powders containing ppm and 100 ppm, that is, the content ratio was 3.3, Cu-50Cr contacts were manufactured, and the conductivity and the maximum breaking current were measured. As a result, both characteristics were equivalent to Comparative Example 1. Met.
【0038】比較例4では、微量元素Alを5ppm以
下と6000ppm含んだ2種類のCr粉末、即ち含有
率の比は1200以上を使用し、Cu−50Cr接点を
製造し、導電率と最大遮断電流を測定した結果、それぞ
れ0.95倍と1.0倍であった。これはAlの偏在が
極端だった為に導電率が低下し、その結果,遮断特性が
向上しなかったと思われる。In Comparative Example 4, two types of Cr powder containing trace element Al of 5 ppm or less and 6000 ppm, that is, a content ratio of 1200 or more were used to produce Cu-50Cr contacts, and the conductivity and the maximum breaking current were measured. Was 0.95 times and 1.0 times, respectively. This is presumably because the distribution of Al was extremely low and the conductivity was lowered, and as a result, the blocking characteristics were not improved.
【0039】以上のように、Cu−50Cr接点材料中
のAlの含有量が10〜30ppm前後程度の接点材料
を比較した結果、実施例3〜5のように微量元素が異な
る2種類以上の原料粉末を使用することにより、導電率
と遮断特性を向上させることができた。As described above, as a result of comparing a contact material having an Al content of about 10 to 30 ppm in the Cu-50Cr contact material, as shown in Examples 3 to 5, two or more kinds of raw materials having different trace elements were used. By using the powder, the conductivity and the cutoff characteristics could be improved.
【0040】実施例6〜10 前記実施例1〜5及び前記比較例1〜4では、微量元素
としてAlに着目した事例について述べたが、本発明の
主旨はこれに限るものではない。Examples 6 to 10 In Examples 1 to 5 and Comparative Examples 1 to 4, cases were described in which attention was paid to Al as a trace element, but the gist of the present invention is not limited to this.
【0041】実施例6〜9では、それぞれFe,Si,
C,AlとSiの微量元素が異なる2種類の原料Cr粉
末を使用し、Cu−50Cr接点を製造し、導電率と遮
断特性を評価した。In Examples 6 to 9, Fe, Si,
Cu-50Cr contacts were manufactured using two types of raw Cr powders having different trace elements of C, Al and Si, and the electrical conductivity and the breaking characteristics were evaluated.
【0042】実施例6では、微量元素Feを150pp
mと2000ppm含んだ2種類のCr粉末を使用した
ところ、導電率と最大遮断電流は比較例1のそれぞれ
1.1倍と1.2倍になった。In the sixth embodiment, the trace element Fe was added at 150 pp.
When two types of Cr powders containing m and 2000 ppm were used, the conductivity and the maximum breaking current were 1.1 times and 1.2 times that of Comparative Example 1, respectively.
【0043】実施例7では、微量元素Siを50ppm
と700ppm含んだ2種類のCr粉末を使用したとこ
ろ、導電率と最大遮断電流は、両特性共に比較例1の
1.1倍となった。In Example 7, the trace element Si was added at 50 ppm.
When the two types of Cr powders containing 700 ppm and 700 ppm were used, the conductivity and the maximum breaking current were 1.1 times that of Comparative Example 1 in both characteristics.
【0044】実施例8では、微量元素Cを30ppmと
200ppm含んだ2種類のCr粉末を使用したとこ
ろ、導電率と最大遮断電流は、それぞれ比較例1の1.
1倍と1.2倍になった。In Example 8, two types of Cr powder containing 30 ppm and 200 ppm of trace element C were used.
It increased by a factor of 1 and 1.2.
【0045】実施例9では、微量元素AlとSiの含有
率が、それぞれ20ppmと50ppmのCr粉末と、
微量元素AlとSiの含有率が、それぞれ100ppm
と300ppmのCr粉末の2種類を使用したところ、
導電率と最大遮断電流は、それぞれ比較例1の1.1倍
と1.3倍になった。In Example 9, the content of the trace elements Al and Si was 20 ppm and 50 ppm, respectively.
The content of trace elements Al and Si is 100 ppm respectively
And two types of 300ppm Cr powder,
The conductivity and the maximum breaking current were 1.1 times and 1.3 times that of Comparative Example 1, respectively.
【0046】実施例10では、微量成分Feの含有率が
異なる2種類のNb粉末を使用して、焼結溶浸法でCu
−Nb接点を製造した。Feを50ppm,300pp
m含んだ2種類のNb粉末を使用して、Cu−50wt
%Nb接点を製造した。この接点の導電率と最大遮断電
流は、若干向上し、それぞれ比較例1の1.1倍と1.
3倍であった。In Example 10, two types of Nb powder having different contents of the minor component Fe were used, and Cu was used for the sintering infiltration method.
A -Nb contact was manufactured. Fe 50ppm, 300pp
using two types of Nb powder containing Cu
% Nb contacts were produced. The conductivity and the maximum breaking current of this contact are slightly improved, and are 1.1 times and 1.times.
It was three times.
【0047】実施例11 実施例11では、製造方法が異なり且つ微量成分Alの
含有率が異なる2種類のCr粉末を使用して、Cu−5
0Cr接点を製造した。Alを30ppm含んだ電解C
r粉末(記号はE)とAlを500ppm含んだテルミ
ットCr粉末(記号はT)の2種類を使用した結果、導
電率と最大遮断電流は、それぞれ比較例1の1.1倍と
1.2倍であった。Example 11 In Example 11, two types of Cr powders having different production methods and different trace element Al contents were used, and Cu-5 was used.
An 0Cr contact was manufactured. Electrolysis C containing 30 ppm of Al
As a result of using two types of r powder (symbol: E) and thermite Cr powder (symbol: T) containing 500 ppm of Al, the conductivity and the maximum breaking current were 1.1 times and 1.2 times, respectively, of Comparative Example 1. It was twice.
【0048】実施例12では、微量成分Alをほとんど
含んでいない(10ppm以下の)Cr粉末と微量成分
Alを1000ppm含んだCr粉末を使用して、Cu
−50Cr接点を製造し、接点中のAlの分布をEDX
付き電子顕微鏡で観察して分析した結果、Alを含んだ
Cr粒子とAlを含まないCr粒子の2種類のCr粒子
が存在していた。この接点材料の導電率と遮断特性を評
価した結果、導電率と最大遮断電流値は両特性共、比較
例1の1.2倍であった。In Example 12, a Cu powder containing almost no trace component Al (10 ppm or less) and a Cr powder containing 1000 ppm trace component Al were used to obtain Cu powder.
Manufacture -50Cr contacts and check the distribution of Al in the contacts by EDX
As a result of observation and analysis with a scanning electron microscope, there were two types of Cr particles: Cr particles containing Al and Cr particles not containing Al. As a result of evaluating the conductivity and the breaking characteristics of the contact material, the conductivity and the maximum breaking current value were 1.2 times those of Comparative Example 1 for both properties.
【0049】実施例13では、微量成分Siをほとんど
含んでいない(20ppm以下の)Cr粉末と微量成分
Siを1000ppm含んだCr粉末を使用して、Cu
−50Cr接点を製造して評価した結果、Siを含んだ
Cr粒子とSi含まないCr粒子の2種類のCr粒子が
存在し、導電率と最大遮断電流値は両特性共、比較例1
の1.2倍であった。In Example 13, a Cu powder containing almost no trace component Si (20 ppm or less) and a Cr powder containing 1000 ppm trace component Si were used,
As a result of manufacturing and evaluating a -50Cr contact, there were two types of Cr particles including Cr particles containing Si and Cr particles not containing Si, and the conductivity and the maximum breaking current value were both characteristics.
1.2 times of
【0050】実施例14〜16 実施例14〜16では、微量成分AlとSiの含有率が
次の値を示す3種類の粉末A〜Cの内の2種類を使用し
てCu−50Cr接点を製造し、導電率と遮断特性を評
価した。Examples 14 to 16 In Examples 14 to 16, Cu-50Cr contacts were formed by using two of the three types of powders A to C whose contents of the trace components Al and Si exhibited the following values. Manufactured and evaluated for conductivity and barrier properties.
【0051】 粉末A:Al 30ppm,Si100ppm 粉末B:Al 200ppm,Si100ppm 粉末C:Al 200ppm,Si500ppm 実施例14では、原料Cr粉末として粉末Aと粉末B
(両粉末の微量成分の含有率の比はAlが6.7でSi
が1.0)を使用した結果、導電率と最大遮断電流は、
比較例1のそれぞれ1.1倍と1.2倍であった。Powder A: Al 30 ppm, Si 100 ppm Powder B: Al 200 ppm, Si 100 ppm Powder C: Al 200 ppm, Si 500 ppm In Example 14, powder A and powder B were used as raw Cr powders.
(The ratio of the contents of the trace components in both powders is as follows.
As a result of using 1.0), the conductivity and the maximum breaking current are
It was 1.1 times and 1.2 times that of Comparative Example 1, respectively.
【0052】実施例15では,原料Cr粉末として粉末
Bと粉末C(両粉末の微量成分の含有率の比はAlが
1.0でSiが5.0)を使用した結果、導電率と最大
遮断電流は、両特性共に比較例1の1.1倍であった。In Example 15, as a result of using powder B and powder C (the ratio of the content of trace components in both powders was 1.0 for Al and 5.0 for Si) as the raw material Cr powder, the conductivity and the maximum The breaking current was 1.1 times that of Comparative Example 1 in both characteristics.
【0053】実施例16では,原料Cr粉末として粉末
Aと粉末C(両粉末の微量成分の含有率の比はAlが
6.7でSiが5.0)を使用した結果、導電率と最大
遮断電流は、両特性共に比較例1の1.2倍であった。In Example 16, as a result of using powder A and powder C (the ratio of the content of the trace components in both powders was 6.7 for Al and 5.0 for Si) as the raw material Cr powder, the conductivity and the maximum The breaking current was 1.2 times that of Comparative Example 1 in both characteristics.
【0054】実施例17〜21 実施例17〜19と比較例5〜6では、微量成分として
Alに着目して、Al含有量が異なる2種類のCr粉末
を使用して、Cu−50Cr接点を製造し、接点中のA
l量を測定し、導電率と遮断特性を評価した。Examples 17 to 21 In Examples 17 to 19 and Comparative Examples 5 and 6, focusing on Al as a minor component, two types of Cr powders having different Al contents were used to form Cu-50Cr contacts. A in the contact
The amount of 1 was measured, and the conductivity and the cutoff characteristics were evaluated.
【0055】実施例17では、Alを10ppmと50
ppm含んだCr粉末を同重量使用したところ、接点中
のAl量は15ppmで、導電率と最大遮断電流は、そ
れぞれ比較例1の1.2倍と1.2倍であった。In Example 17, Al was added at 10 ppm and 50 ppm.
When the same weight of Cr powder containing ppm was used, the amount of Al in the contact was 15 ppm, and the electrical conductivity and the maximum breaking current were 1.2 times and 1.2 times that of Comparative Example 1, respectively.
【0056】実施例18では、Alを100ppmと3
00ppm含んだCr粉末を同重量使用したところ、接
点中のAl量は100ppmで、導電率と最大遮断電流
は、それぞれ比較例1の1.1倍と1.3倍であった。In Example 18, 100 ppm of Al
When the same weight of Cr powder containing 00 ppm was used, the amount of Al in the contact was 100 ppm, and the electrical conductivity and the maximum breaking current were 1.1 times and 1.3 times that of Comparative Example 1, respectively.
【0057】実施例19では、Alを200ppmと2
000ppm含んだCr粉末を2:8の重量比で使用し
たところ、接点中のAl量は820ppmで、導電率と
最大遮断電流は、それぞれ比較例1の1.0倍と1.1
倍であった。In Example 19, Al was added at 200 ppm and 2 ppm.
When 2,000 ppm of Cr powder was used at a weight ratio of 2: 8, the Al content in the contact was 820 ppm, and the conductivity and the maximum breaking current were 1.0 times and 1.1 times that of Comparative Example 1, respectively.
It was twice.
【0058】一方、比較例5では、Alを5ppm以下
と30ppm含んだCr粉末を同重量使用したところ、
接点中のAl量は10ppm以下で、導電率と最大遮断
電流は、それぞれ比較例1の1.2倍と0.95倍で、
遮断特性が若干低下した。On the other hand, in Comparative Example 5, the same weight of Cr powder containing 5 ppm or less of Al and 30 ppm of Al was used.
The amount of Al in the contact was 10 ppm or less, and the conductivity and the maximum breaking current were 1.2 times and 0.95 times that of Comparative Example 1, respectively.
The cutoff characteristics were slightly reduced.
【0059】比較例6では、Alを200ppmと25
00ppm含んだCr粉末を1:9の重量比で使用した
ところ、接点中のAl量は1200ppmで、導電率と
最大遮断電流は、それぞれ比較例1の0.95倍と0.
90倍であり、微量元素の過剰添加により、両特性共に
低下した。In Comparative Example 6, Al was 200 ppm and 25 ppm.
When Cr powder containing 00 ppm was used at a weight ratio of 1: 9, the amount of Al in the contact was 1200 ppm, and the conductivity and the maximum breaking current were 0.95 times and 0.1%, respectively, of Comparative Example 1.
It was 90 times, and both properties were reduced by excessive addition of trace elements.
【0060】実施例20、21 実施例20〜21と比較例7〜8では、微量成分として
Siに着目して、Si含有量が異なる2種類のCr粉末
を使用して、Cu−50Cr接点を製造し、接点中のS
i量を測定し、導電率と遮断特性を評価した。Examples 20 and 21 In Examples 20 and 21 and Comparative Examples 7 and 8, focusing on Si as a trace component, two types of Cr powders having different Si contents were used to form Cu-50Cr contacts. Manufactured and S in the contact
The i amount was measured, and the electrical conductivity and the cutoff characteristics were evaluated.
【0061】実施例20では、Siを60ppmと35
0ppm含んだCr粉末を同重量使用したところ、接点
中のSi量は100ppmで、導電率と最大遮断電流
は、それぞれ比較例1の1.2倍と1.1倍であった。In Example 20, 60 ppm of Si was added to 35 ppm of Si.
When the same weight of Cr powder containing 0 ppm was used, the amount of Si in the contact was 100 ppm, and the conductivity and the maximum breaking current were 1.2 times and 1.1 times that of Comparative Example 1, respectively.
【0062】実施例21では、Siを500ppmと3
000ppm含んだCr粉末を3:7の重量比で使用し
たところ、接点中のSi量は1800ppmで、導電率
と最大遮断電流は、それぞれ比較例1の1.0倍と1.
1倍であった。In Example 21, 500 ppm of Si and 3 ppm
When Cr powder containing 000 ppm was used at a weight ratio of 3: 7, the amount of Si in the contact was 1800 ppm, and the conductivity and the maximum breaking current were 1.0 times and 1.times.
It was one time.
【0063】比較例8では、Siを500ppmと40
00ppm含んだCr粉末を1:9の重量比で使用した
ところ、接点中のSi量は2100ppmで、導電率と
最大遮断電流は、両特性共に比較例1の0.95倍であ
り、微量元素の過剰添加により、両特性とも低下した。In Comparative Example 8, 500 ppm of Si and 40 ppm
When Cr powder containing 00 ppm was used at a weight ratio of 1: 9, the Si content in the contact was 2100 ppm, the conductivity and the maximum breaking current were 0.95 times that of Comparative Example 1 for both characteristics, Both properties were degraded by excessive addition of.
【0064】比較例7では、Siを30ppm以下と1
50ppm含んだCr粉末を同重量使用したところ、接
点中のSi量は40ppmで、導電率と最大遮断電流は
それぞれ比較例1の1.2倍と0.95倍で遮断特性が
低下した。In Comparative Example 7, the content of Si was 30 ppm or less and 1 ppm.
When the same weight of the Cr powder containing 50 ppm was used, the amount of Si in the contact was 40 ppm, and the electrical conductivity and the maximum breaking current were 1.2 times and 0.95 times that of Comparative Example 1, respectively.
【0065】実施例22、23 実施例1〜21と前記比較例1〜6では、接点材料を水
素雰囲気中の焼結溶浸法で製造した事例について述べた
が、本発明の主旨はこれに限るものではない。実施例2
2では、真空雰囲気中の固相焼結法により、Cu−50
Cr接点を製造した。Alを350ppmと1800p
pm含んだ2種類のCr粉末を同重量ずつ混合して使用
した。このCr粉末にCu粉末を重量比1:1となるよ
うに混合してφ60mmの坩堝に充填した後、10−3
Paオーダの真空中で、1030℃×2時間の条件で焼
結した。得られた焼結体をφ60mmの金型で10t/
cm2 で成形した後、再度同一条件で焼結し、Cu−
50Cr合金を得た。Embodiments 22 and 23 In Embodiments 1-21 and Comparative Examples 1-6, the case where the contact material was manufactured by the sintering and infiltration method in a hydrogen atmosphere was described. It is not limited. Example 2
In No. 2, Cu-50 was obtained by a solid phase sintering method in a vacuum atmosphere.
A Cr contact was manufactured. Al with 350ppm and 1800p
Two types of Cr powder containing pm were mixed and used by the same weight. The Cr powder weight of Cu powder in ratio 1: After filling the crucible φ60mm were mixed so that the 1, 10 -3
Sintering was performed in a vacuum of the order of Pa at 1030 ° C. for 2 hours. The obtained sintered body was subjected to 10 t /
After forming in cm 2, and sintered under the same condition again, Cu-
A 50Cr alloy was obtained.
【0066】このCu−50Cr合金を所定の形状(φ
50mm,t5mm)に加工し、接点材料とした。この
接点材料の導電率と最大遮断電流値を測定した結果、両
特性共に比較例1の1.1倍であった。更に固相焼結時
の雰囲気を真空ではなく、水素雰囲気またはアルゴン雰
囲気等の非酸化性雰囲気で実施しても、同様の効果が得
られた。This Cu-50Cr alloy was formed into a predetermined shape (φ
(50 mm, t5 mm) to obtain a contact material. As a result of measuring the conductivity and the maximum breaking current value of this contact material, both properties were 1.1 times those of Comparative Example 1. Further, the same effect was obtained even when the solid phase sintering was performed in a non-oxidizing atmosphere such as a hydrogen atmosphere or an argon atmosphere instead of a vacuum.
【0067】実施例23では、アルゴン雰囲気中のアー
ク溶解法によりCu−50Cr接点を製造した。Alを
350ppmと1800ppm含んだ2種類の同形状の
Cr板(10×50×1000)と、Cr板と同重量の
Cu板(9.7×50×1000)2枚の合計4枚の金
属板を重ねたものを電極とし、アルゴン雰囲気中でアー
ク溶解して得たCu−50Cr合金を所定の形状(φ5
0mm,t5mm)に加工して接点材料とした。この接
点材料の導電率と最大遮断電流値を測定した結果、それ
ぞれ比較例1の1.1倍と1.2倍であった。In Example 23, a Cu-50Cr contact was manufactured by an arc melting method in an argon atmosphere. A total of four metal plates including two Cr plates (10 × 50 × 1000) of the same shape containing 350 ppm and 1800 ppm of Al and two Cu plates (9.7 × 50 × 1000) having the same weight as the Cr plate Are stacked on each other as electrodes, and a Cu-50Cr alloy obtained by arc melting in an argon atmosphere is formed into a predetermined shape (φ5
(0 mm, t5 mm) to obtain a contact material. As a result of measuring the conductivity and the maximum breaking current value of the contact material, they were 1.1 times and 1.2 times that of Comparative Example 1, respectively.
【0068】実施例23では溶解法の一例としてアーク
溶解法を挙げたが、本発明の主旨はこれに限るものでは
なく、Cu−10wt%Cr等のCr含有率が低い接点
では、誘導溶解法を用いても同様の効果が得られる。更
に焼結法(焼結溶浸法,固相焼結法)で製造した接点の
表面を溶融させる方法でも、同様の効果が得られる。In the embodiment 23, the arc melting method is mentioned as an example of the melting method. However, the gist of the present invention is not limited to this. For the contact having a low Cr content such as Cu-10 wt% Cr, the induction melting method is used. The same effect can be obtained by using. Further, a similar effect can be obtained by melting the surface of the contact manufactured by the sintering method (sintering infiltration method, solid phase sintering method).
【0069】更に、前記実施例22では、固相焼結の温
度を1030℃、即ち導電成分Cuの融点(1083
℃)より53℃低い温度で、実施している事例について
述べたが、本発明の主旨はこれに限るものではない。Further, in Example 22, the temperature of the solid phase sintering was 1030 ° C., that is, the melting point of the conductive component Cu (1083
(° C.), a case where the temperature is 53 ° C. lower is described, but the gist of the present invention is not limited to this.
【0070】実施例24、25 実施例24〜25と比較例9では、固相焼結の温度を、
それぞれ1080℃,1000℃,920℃でCu−5
0Cr接点を製造し、導電率と遮断特性を評価した。Examples 24 and 25 In Examples 24 and 25 and Comparative Example 9, the temperature of the solid phase sintering was
Cu-5 at 1080 ° C, 1000 ° C and 920 ° C respectively
0Cr contacts were fabricated and evaluated for conductivity and blocking characteristics.
【0071】その結果、実施例24では、導電率と最大
遮断電流はそれぞれ比較例1の1.1倍と1.3倍,実
施例25では比較例1の1.1倍と1.1倍,比較例9
では比較例1の1.0倍と0.95倍であった。尚、C
u−Cr接点の製造には、微量元素Alの含有率が35
0ppmと1800ppm2種類のCr粉末を使用し
た。As a result, in Example 24, the conductivity and the maximum breaking current were 1.1 times and 1.3 times that of Comparative Example 1, and in Example 25, 1.1 times and 1.1 times that of Comparative Example 1. , Comparative Example 9
Were 1.0 times and 0.95 times that of Comparative Example 1. Note that C
For the production of u-Cr contacts, a trace element Al content of 35
Two types of Cr powders, 0 ppm and 1800 ppm, were used.
【0072】前記実施例1〜25と比較例1〜9では、
Cu−Cr系またはCu−Nb系の二元系の接点材料の
事例について述べたが、本発明の主旨はこれに限るもの
ではない。In Examples 1 to 25 and Comparative Examples 1 to 9,
Although the case of the binary contact material of Cu-Cr or Cu-Nb has been described, the gist of the present invention is not limited to this.
【0073】実施例25では、主耐弧成分をCr,副耐
弧成分をWとしたCu−20wt%Crー10wt%W
接点を、微量元素Feの含有量が50ppmと300p
pmのW粉末を使用して、真空雰囲気中の焼結溶浸法で
製造し、導電率と遮断特性を評価した結果、導電率と最
大遮断電流は、両特性共に比較例1の1.1倍であっ
た。In Example 25, the main arc resistance component was Cr and the sub arc resistance component was W, Cu-20 wt% Cr-10 wt% W
The contact point was determined to be 300 ppm with a trace element Fe content of 50 ppm.
pm W powder was manufactured by a sintering infiltration method in a vacuum atmosphere, and the conductivity and the breaking characteristics were evaluated. As a result, the conductivity and the maximum breaking current were both 1.1 characteristics of Comparative Example 1. It was twice.
【0074】実施例26、27 実施例26では、耐弧成分をCr,補助成分をBiとし
たCu−25wt%Cr−5wt%W接点を、微量元素
Alの含有量が350ppmと1800ppmのCr粉
末を使用して、水素雰囲気中の固相焼結法で製造して導
電率と遮断特性を評価した結果、導電率と最大遮断電流
は、それぞれ比較例1の1.2倍と1.1倍であった。Embodiments 26 and 27 In Embodiment 26, a Cu-25 wt% Cr-5 wt% W contact having Cr as an arc resistant component and Bi as an auxiliary component was used to form a Cr powder having trace element Al contents of 350 ppm and 1800 ppm. As a result of evaluating the electric conductivity and the breaking characteristics by using the solid-state sintering method in a hydrogen atmosphere by using the method, the electric conductivity and the maximum breaking current were 1.2 times and 1.1 times of Comparative Example 1, respectively. Met.
【0075】以上の結果が示すように、本発明によって
真空バルブ用接点材料の遮断特性と導電率を向上させる
ことが可能となる。As shown by the above results, the present invention makes it possible to improve the breaking characteristics and the conductivity of the contact material for a vacuum valve.
【0076】尚、Crを主耐弧成分とした時の副耐弧成
分については、本実施の形態では、Wでの記載しかない
が、W,Nb,Ta,Ti,Mo及びこれらの炭化物の
内の少なくとも1つを副耐弧成分として使用しても、同
様の効果が得られる。In the present embodiment, there is only a description of W as the sub-arc-proof component when Cr is used as the main arc-proof component. However, W, Nb, Ta, Ti, Mo, and carbides of these materials are described. The same effect can be obtained even if at least one of them is used as an auxiliary arc resistant component.
【0077】また導電成分については、本実施の形態で
は、Cuでの記載しかないが、CuまたはAgを主成分
としても、同様の効果が得られる。In the present embodiment, the conductive component is described only in Cu, but the same effect can be obtained by using Cu or Ag as a main component.
【0078】さらに補助成分については、本実施の形態
では、Biでの記載しかないが、Bi,Te,Se,S
b,Coの内の少なくとも1つを補助成分としても、同
様の効果が得られる。Further, in this embodiment, the auxiliary component is described only in Bi, but Bi, Te, Se, S
Similar effects can be obtained by using at least one of b and Co as an auxiliary component.
【0079】[0079]
【発明の効果】以上詳細に説明したように、本発明の真
空バルブ用接点材料によれば、微量元素含有率が異なる
2種類以上のCrを耐弧原料として使用することによ
り、真空遮断器等に使用される真空バルブの接点材料に
要求される特性の内、遮断特性と導電率の両方を安定に
向上させることができる。As described above in detail, according to the contact material for a vacuum valve of the present invention, a vacuum circuit breaker or the like can be obtained by using two or more types of Cr having different trace element contents as arc-resistant materials. Among the characteristics required for the contact material of the vacuum valve used in the present invention, it is possible to stably improve both the cutoff characteristic and the conductivity.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の真空バルブ用接点材料を用いた真空バ
ルブの一実施の形態を示した断面図である。FIG. 1 is a cross-sectional view showing one embodiment of a vacuum valve using a contact material for a vacuum valve of the present invention.
【図2】図1に示した接点部分の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a contact portion shown in FIG.
【図3】図1に示した真空バルブ用接点の材料を構成す
る導電成分、耐孤成分、補助成分、製造方法及びこれら
条件で製造した際の試験結果を実施例1〜27、比較例
1〜9について一覧として示した表図である。FIG. 3 shows conductive components, isolated components, auxiliary components, manufacturing methods, and test results when manufactured under these conditions, which constitute the material of the vacuum valve contact shown in FIG. FIG. 10 is a table diagram showing a list of 99.
1 遮断室 2 絶縁容器 3a、3b 封着金具 4a、4b 蓋体 5、6 導電棒 7 固定電極 8 可動電極 9 ベローズ 10、11 アークシールド 12、14 ロウ付け部 13a 可動側接点 13b 固定側接点 DESCRIPTION OF SYMBOLS 1 Shutoff room 2 Insulating container 3a, 3b Sealing fitting 4a, 4b Lid 5, 6 Conductive rod 7 Fixed electrode 8 Movable electrode 9 Bellows 10, 11 Arc shield 12, 14 Brazing part 13a Movable contact 13b Fixed contact
───────────────────────────────────────────────────── フロントページの続き (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 西村 隆宣 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 Fターム(参考) 5G026 BA01 BA07 BB02 BB04 BB05 BB08 BB11 BB12 BB13 BB14 BB15 BB16 BB17 BB18 BB21 BB24 BB25 BB27 BC02 BC04 BC08 BC09 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Kusano 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Plant, Inc. 72) Inventor Atsushi Yamamoto 1 Toshiba-cho, Fuchu-shi, Tokyo F-term in the Fuchu Plant of Toshiba Corporation 5G026 BA01 BA07 BB02 BB04 BB05 BB08 BB11 BB12 BB13 BB14 BB15 BB16 BB17 BB18 BB21 BB24 BB25 BB27 BC09 BC08 BC08 BC08 BC08
Claims (17)
電流の遮断、導通を行う真空バルブの前記接点を形成す
る真空バルブ用接点材料において、 導電成分と耐弧成分及び必要に応じて添加される補助成
分とで構成され、前記耐弧成分の原料中の微量元素の含
有率が異なる2種類以上の耐弧原料を使用することによ
り製造することを特徴とする真空バルブ用接点材料。1. By opening and closing contacts in a vacuum,
In a vacuum valve contact material forming the above-mentioned contact of a vacuum valve for interrupting and conducting a current, the contact material for a vacuum valve comprises a conductive component, an arc-resistant component and an auxiliary component added as necessary, and A contact material for a vacuum valve characterized by being manufactured by using two or more kinds of arc-resistant raw materials having different trace element contents.
の微量元素の含有率は、5倍〜1000倍異なることを
特徴とする請求項1記載の真空バルブ用接点材料。2. The contact material for a vacuum valve according to claim 1, wherein the contents of the trace elements in two or more kinds of the arc-resistant materials of the arc-resistant components differ from 5 to 1000 times.
微量元素は、Fe,Al,Si,Cの内、少なくとも1
種類以上であることを特徴とする請求項1又は2記載の
真空バルブ用接点材料。3. The trace element having a different content of the arc resistant component in the raw material is at least one of Fe, Al, Si, and C.
3. The contact material for a vacuum valve according to claim 1, wherein the material is at least one kind.
とを特徴とする請求項1乃至3いずれかに記載の真空バ
ルブ用接点材料。4. The contact material for a vacuum valve according to claim 1, wherein the arc-resistant component contains Cr as a main component.
は、電解法で製造したCrとテルミット法で製造したC
rの2種類であることを特徴とする請求項4記載の真空
バルブ用接点材料。5. The raw material of Cr, which is the main component of the arc resistant component, is composed of Cr produced by an electrolytic method and C produced by a thermite method.
5. The contact material for a vacuum valve according to claim 4, wherein r is two kinds.
中の含有率が異なる微量元素は、Al又はSiの内、少
なくとも1種類以上であることを特徴とする請求項4又
は5記載の真空バルブ用接点材料。6. The trace element having a different content of Cr, which is a main component of the arc-resistant component, in the raw material is at least one kind of Al or Si. Contact material for vacuum valves.
には、Alを含有するCr粒子とAlを含有しないCr
粒子の両方が存在することを特徴とする請求項6記載の
真空バルブ用接点材料。7. The raw material of Cr, which is a main component of the arc-resistant component, includes Cr particles containing Al and Cr not containing Al.
7. The contact material for a vacuum valve according to claim 6, wherein both particles are present.
には、Siを含有するCr粒子とSiを含有しないCr
粒子の両方が存在することを特徴とする請求項6記載の
真空バルブ用接点材料。8. The raw material of Cr which is a main component of the arc resistant component includes Cr particles containing Si and Cr not containing Si.
7. The contact material for a vacuum valve according to claim 6, wherein both particles are present.
微量成分は、Alが10ppm〜1000ppmであ
り、Siが50ppm〜2000ppmであることを特
徴とする請求項6乃至8いずれかに記載の真空バルブ用
接点材料。9. The trace component having a different content of the arc-resistant component in the raw material, wherein Al has a content of 10 ppm to 1000 ppm and Si has a content of 50 ppm to 2,000 ppm. Contact material for vacuum valves.
結法又は溶解法で製造することを特徴とする請求項1乃
至9いずれかに記載の真空バルブ用接点材料。10. The contact material for a vacuum valve according to claim 1, wherein the contact material is manufactured by a sintering infiltration method, a solid-phase sintering method, or a melting method.
法又は溶解法で製造する際の焼結時又は溶解時の雰囲気
は、非酸化性雰囲気であることを特徴とする請求項10
記載の真空バルブ用接点材料。11. The atmosphere during sintering or melting when manufacturing the contact material by a sintering infiltration method, a solid phase sintering method or a melting method is a non-oxidizing atmosphere. Item 10
The contact material for a vacuum valve as described in the above.
素雰囲気、アルゴン雰囲気又は真空雰囲気であることを
特徴とする請求項11記載の真空バルブ用接点材料。12. The contact material for a vacuum valve according to claim 11, wherein the non-oxidizing atmosphere is preferably a hydrogen atmosphere, an argon atmosphere, or a vacuum atmosphere.
結温度は、導電成分の溶融温度以下、好ましくは、導電
成分の溶融温度より100℃以内であることを特徴とす
る請求項11又は12記載の真空バルブ用接点材料。13. The sintering temperature during the production by the solid phase sintering method is not higher than the melting temperature of the conductive component, preferably within 100 ° C. from the melting temperature of the conductive component. Or a contact material for a vacuum valve according to item 12.
分のCrと、副耐弧成分としてのW,Nb,Ta,T
i,Mo及びこれらの炭化物の内の少なくとも1種類以
上を含有することを特徴とする請求項4乃至13いずれ
かに記載の真空バルブ用接点材料。14. The arc resistance component of the contact material includes Cr as a main arc resistance component and W, Nb, Ta, and T as sub arc resistance components.
The contact material for a vacuum valve according to any one of claims 4 to 13, further comprising at least one of i, Mo, and these carbides.
もCu又はAgのいずれか一方を主成分とすることを特
徴とする請求項1乃至14いずれかに記載の真空バルブ
用接点材料。15. The contact material for a vacuum valve according to claim 1, wherein a conductive component of the contact material mainly contains at least one of Cu and Ag.
e,Se,Sb,Coの内の少なくとも1種類以上を含
有していることを特徴とする請求項1乃至15いずれか
に記載の真空バルブ用接点材料。16. An auxiliary component of the contact material is Bi, T
The contact material for a vacuum valve according to any one of claims 1 to 15, comprising at least one of e, Se, Sb, and Co.
計量が5重量%以下であることを特徴とする請求項16
記載の真空バルブ用接点材料。17. The contact material according to claim 16, wherein the total content of the auxiliary components is 5% by weight or less.
The contact material for a vacuum valve as described in the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19934399A JP3810955B2 (en) | 1999-07-13 | 1999-07-13 | Manufacturing method of contact material for vacuum valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19934399A JP3810955B2 (en) | 1999-07-13 | 1999-07-13 | Manufacturing method of contact material for vacuum valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001023482A true JP2001023482A (en) | 2001-01-26 |
JP3810955B2 JP3810955B2 (en) | 2006-08-16 |
Family
ID=16406207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19934399A Expired - Lifetime JP3810955B2 (en) | 1999-07-13 | 1999-07-13 | Manufacturing method of contact material for vacuum valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3810955B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008212946A (en) * | 2007-02-28 | 2008-09-18 | Toshiba Corp | Manufacturing method of contact material for vacuum circuit breaker |
CN103635982A (en) * | 2011-05-27 | 2014-03-12 | Abb技术股份公司 | Contact material for vacuum interrupter, and method of making a contact material |
CN118127499A (en) * | 2023-12-01 | 2024-06-04 | 东莞市精微新材料有限公司 | Method for manufacturing high conductivity CuCr alloy contact with gradient composition structure |
-
1999
- 1999-07-13 JP JP19934399A patent/JP3810955B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008212946A (en) * | 2007-02-28 | 2008-09-18 | Toshiba Corp | Manufacturing method of contact material for vacuum circuit breaker |
CN103635982A (en) * | 2011-05-27 | 2014-03-12 | Abb技术股份公司 | Contact material for vacuum interrupter, and method of making a contact material |
CN118127499A (en) * | 2023-12-01 | 2024-06-04 | 东莞市精微新材料有限公司 | Method for manufacturing high conductivity CuCr alloy contact with gradient composition structure |
Also Published As
Publication number | Publication date |
---|---|
JP3810955B2 (en) | 2006-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4759987B2 (en) | Electrode and electrical contact and its manufacturing method | |
GB2061319A (en) | Electrical contact composition for a vacuum type circuit interrupter | |
EP0610018B1 (en) | Contact material for a vacuum switch | |
CN102064026A (en) | Electric contact for vacuum valve and vacuum interrupter using the same | |
EP0668599B1 (en) | Contact material for vacuum valve and method of manufacturing the same | |
JP3597544B2 (en) | Contact material for vacuum valve and manufacturing method thereof | |
JP3441331B2 (en) | Manufacturing method of contact material for vacuum valve | |
JP2001023482A (en) | Contact material for vacuum valve | |
JP2003077375A (en) | Contact material for vacuum valve and vacuum valve | |
JP2006032036A (en) | Contact material for vacuum valve | |
JP4619821B2 (en) | Contact material and vacuum valve | |
JP2007066753A (en) | Contact material for vacuum valve, and manufacturing method therefor | |
JPH0435545B2 (en) | ||
JP3443516B2 (en) | Manufacturing method of contact material for vacuum valve | |
JP3859393B2 (en) | Method for manufacturing vacuum valve contact material | |
JP3039552B2 (en) | Electrode material for vacuum interrupter and method for manufacturing the same | |
JPH02117033A (en) | Electrode material of vacuum interrupter | |
JPH08291350A (en) | Contact material for vacuum valve | |
JP2001222934A (en) | Contact material for vacuum valve | |
JPH0973846A (en) | Contact material for vacuum bulb and its manufacture | |
JPH04206122A (en) | Vacuum value | |
JPH11260209A (en) | Component for breaker | |
JPH02117032A (en) | Electrode material of vacuum interrupter | |
JPH02117036A (en) | Electrode material of vacuum interrupter | |
JP2003203544A (en) | Contact point material for vacuum valve and method of manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060525 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3810955 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090602 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100602 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100602 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110602 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120602 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120602 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130602 Year of fee payment: 7 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313122 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |