JP2001021400A - Heating resistor type air flow measurement device - Google Patents
Heating resistor type air flow measurement deviceInfo
- Publication number
- JP2001021400A JP2001021400A JP11190717A JP19071799A JP2001021400A JP 2001021400 A JP2001021400 A JP 2001021400A JP 11190717 A JP11190717 A JP 11190717A JP 19071799 A JP19071799 A JP 19071799A JP 2001021400 A JP2001021400 A JP 2001021400A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- temperature
- support member
- air flow
- type air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 68
- 238000005259 measurement Methods 0.000 title claims abstract description 20
- 238000011144 upstream manufacturing Methods 0.000 claims description 23
- 238000005452 bending Methods 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 230000020169 heat generation Effects 0.000 claims 2
- 230000008602 contraction Effects 0.000 claims 1
- 238000000034 method Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 22
- 230000000191 radiation effect Effects 0.000 abstract description 3
- 239000000446 fuel Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
(57)【要約】
【課題】 小型化と低コスト化が容易で、多様な温度環
境のもとでも常に高精度の保持が可能な発熱抵抗体式空
気流量測定装置を提供すること。
【解決手段】 空気通路の壁面に取付けられた各々の支
持部材6a、6b、7a、7bにより、発熱抵抗体4と
感温抵抗体5を空気の流通方向Bに対してほぼ直角に配
置した発熱抵抗体式空気流量測定装置において、少なく
とも支持部材7bに、感温抵抗体5を支持する部分7b
1から独立した部分7b2を設け、この部分7b2が空
気流に晒されることにより得られる放熱作用により、感
温抵抗体5が空気通路の壁面から受ける熱の影響が、こ
の感温抵抗体5の一方の端部と他方の端部で独立に変え
られるようにしたもの。
【効果】 感温抵抗体5の両端での熱バランスが保てる
ので、空気通路の壁面温度が変化したときでも温度補正
が変わる虞れが抑えられ、高い測定精度を保持できる。
(57) [Problem] To provide a heating resistor type air flow measuring device which can be easily reduced in size and cost and can always maintain high accuracy even in various temperature environments. SOLUTION: Heat is generated by disposing a heating resistor 4 and a temperature-sensitive resistor 5 at a right angle to a flow direction B of air by respective supporting members 6a, 6b, 7a, 7b attached to a wall surface of an air passage. In the resistor type air flow measuring device, at least the support member 7b has a portion 7b for supporting the temperature-sensitive resistor 5
1 and a portion 7b2 independent of the first portion 1 is provided, and a heat radiation effect obtained by exposing the portion 7b2 to the air flow causes an effect of heat received by the temperature-sensitive resistor 5 from the wall surface of the air passage. One that can be changed independently at one end and the other. [Effect] Since the heat balance at both ends of the temperature-sensitive resistor 5 can be maintained, even when the wall temperature of the air passage changes, the possibility that the temperature correction changes can be suppressed, and high measurement accuracy can be maintained.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、発熱抵抗を用いた
空気流量測定装置に係り、特に自動車用エンジンの吸気
流量の計測に好適な発熱抵抗体式空気流量測定装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow measuring device using a heating resistor, and more particularly to a heating resistor type air flow measuring device suitable for measuring an intake air flow of an automobile engine.
【0002】[0002]
【従来の技術】発熱抵抗式空気流量測定装置は、可動部
分がなく、且つ温度補正された質量流量が直接計測でき
るため、内燃機関の吸入空気流量測定装置として従来か
ら広く使用されているが、このとき、その計測素子とな
る発熱抵抗体と感温抵抗体が、計測対象である吸気(吸
入空気)以外から温度の影響を受けないようにする必要
があり、これが計測精度上重要な要件になる。2. Description of the Related Art A heating resistance type air flow rate measuring apparatus has been widely used as an intake air flow rate measuring apparatus for an internal combustion engine because it has no moving parts and can directly measure a mass flow whose temperature has been corrected. At this time, it is necessary to prevent the heating resistor and the temperature-sensitive resistor serving as the measuring elements from being affected by the temperature other than the intake air (intake air) to be measured, which is an important requirement for measurement accuracy. Become.
【0003】そこで、例えば特開昭60−36916号
公報では、発熱抵抗体と感温抵抗体が、それらの支持部
材を介して生じる熱伝導や熱放散の影響をバランスさせ
るために、感温抵抗体の支持部材を保持するハウジング
のモールド部材にざぐりを入れた発熱抵抗体式空気流量
測定装置について提案している。For example, in Japanese Patent Application Laid-Open No. 60-36916, a heat-generating resistor and a temperature-sensitive resistor are used to balance the effects of heat conduction and heat dissipation generated through their supporting members. A heating resistor type air flow measuring device in which a molded member of a housing holding a body supporting member is counterbore is proposed.
【0004】これは、吸気管路の外部の温度と吸入空気
の温度が異なる状態においても、支持部材を介して生じ
る両抵抗体への熱影響をバランスさせることによって、
前記のような温度環境下における発熱抵抗体式空気流量
測定装置の測定誤差の低減を意図したものである。[0004] This is because even when the temperature outside the intake pipe and the temperature of the intake air are different from each other, the thermal effect on both resistors generated through the support member is balanced.
The purpose of the present invention is to reduce the measurement error of the heating resistor type air flow measuring device under the above-mentioned temperature environment.
【0005】また、例えば特開平10−281836号
公報では、発熱抵抗体と感温抵抗体を各々の支持部材に
平行になるように配置した発熱抵抗体式空気流量測定装
置について提案しているが、これは、支持部材と抵抗体
を吸入空気の主方向に対して平行に配置することによ
り、支持部材と抵抗体を内部に配置している副空気通路
の幅が小さくて済み、圧力損失の低減が得られるように
したものである。For example, Japanese Patent Application Laid-Open No. 10-281836 proposes a heating resistor type air flow measuring device in which a heating resistor and a temperature sensitive resistor are arranged so as to be parallel to respective support members. This is because, by arranging the support member and the resistor parallel to the main direction of the intake air, the width of the auxiliary air passage in which the support member and the resistor are arranged can be reduced, and the pressure loss can be reduced. Is obtained.
【0006】[0006]
【発明が解決しようとする課題】上記従来技術は、発熱
抵抗体と感温抵抗体の熱バランスについて充分な配慮が
されているとは言えず、計測精度の保持と、装置の小型
化に問題があった。すなわち、まず特開60−3691
6号公報による装置では、発熱抵抗体と感温抵抗体の支
持部材の長さを同じにし、これにより、各抵抗体が各支
持部材により受ける熱の影響が同じになるようにしたも
のであるが、このとき、ハウジングの壁温の影響を低減
するため、発熱抵抗体と感温抵抗体の位置を調整した
り、感温抵抗体の支持部材を保持するモールド部材にざ
ぐりを入れたりしていた。However, the above prior art does not give sufficient consideration to the heat balance between the heating resistor and the temperature-sensitive resistor, and has problems in maintaining measurement accuracy and miniaturizing the apparatus. was there. That is, first, JP-A-60-3691
In the device according to Japanese Patent Publication No. 6, the length of the supporting members of the heating resistor and the temperature-sensitive resistor is made the same so that each resistor has the same effect of the heat received by each supporting member. However, at this time, in order to reduce the influence of the wall temperature of the housing, the positions of the heat generating resistor and the temperature sensitive resistor are adjusted, or a counterbore is formed in a mold member holding a support member of the temperature sensitive resistor. Was.
【0007】しかし、そのため、各抵抗体の支持部材
は、各抵抗体に対して垂直になるように支持し、更にこ
れらの支持部材が吸入空気中に晒されている部分の長さ
を十分に確保する必要があり、この結果、これらを収容
している副空気通路に充分な大きさが必要になるので、
圧力損失の低減と支持部材構造の簡略化及び小型化の促
進に問題が生じてしまうのである。However, for this reason, the supporting members of the respective resistors are supported so as to be perpendicular to the respective resistors, and the length of the portion where these supporting members are exposed to the intake air is sufficiently long. It is necessary to secure them, and as a result, the auxiliary air passage containing them needs to be large enough.
This causes a problem in reducing the pressure loss and promoting the simplification and downsizing of the support member structure.
【0008】一方、特開平10−281836号公報の
装置のように、各抵抗体を各支持部材と平行になるよう
にした場合には、抵抗支持部材が吸気中に晒されている
部分の長さの充分な確保が困難な上、抵抗体の両端の支
持部材で、それらの長さが異なってしまうため、各抵抗
体が受ける熱の影響が両端で等しくならず、両端での熱
バランスの崩れによる計測誤差や、短い支持部材を介し
てのハウジングと抵抗体間の熱伝導による計測誤差が問
題となる。On the other hand, when each resistor is made parallel to each support member as in the device disclosed in Japanese Patent Application Laid-Open No. 10-281836, the length of the portion where the resistance support member is exposed to the intake air is reduced. In addition, it is difficult to ensure sufficient resistance, and the length of the supporting members at both ends of the resistor is different, so that the effects of heat on each resistor are not equal at both ends, and the heat balance at both ends is not balanced. A measurement error due to collapse and a measurement error due to heat conduction between the housing and the resistor via the short support member become problems.
【0009】しかして、この対策として、特開60−3
6916号公報のように、両抵抗体の支持部材を保持す
るモールド部材にざぐりを入れた構造とすると、発熱抵
抗体設置部の通路断面積の急変等による流れの変化を招
いてしまうなどの問題が生じ、且つ小型化に対して障害
となる。As a countermeasure against this, Japanese Patent Laid-Open No. 60-3
As described in Japanese Patent Application Laid-Open No. 6916, if a counterbore is formed in a mold member that holds the supporting members of both resistors, a problem such as a sudden change in the cross-sectional area of the passage of the heating resistor installation portion may cause a change in flow. Occurs, and is an obstacle to miniaturization.
【0010】さらに、各抵抗体と各支持部材を平行にす
ると、支持部材による空気流への影響が問題になる。例
えば発熱抵抗体の上流に、支持部材又は感温抵抗体が位
置したとすると、それらにより生じた乱流域に発熱抵抗
体が入ってしまう虞れがあり、計測精度の悪化、出力ノ
イズの増加などの問題が生じてしまう。Further, when each resistor and each support member are made parallel, the influence of the support member on the air flow becomes a problem. For example, if a support member or a temperature-sensitive resistor is located upstream of the heat-generating resistor, the heat-generating resistor may enter a turbulent flow region generated by the support member or the temperature-sensitive resistor, which deteriorates measurement accuracy and increases output noise. Problem arises.
【0011】本発明の目的は、小型化と低コスト化が容
易で、多様な温度環境のもとでも常に高精度の保持が可
能な発熱抵抗体式空気流量測定装置を提供することにあ
る。An object of the present invention is to provide a heating resistor type air flow measuring device which can be easily reduced in size and cost and can always maintain high accuracy even in various temperature environments.
【0012】[0012]
【課題を解決するための手段】上記目的は、流量を測定
すべき空気が通流する通路の壁面に取付けた各2個の支
持部材を用いることにより、前記空気の流通方向と直角
に設置した略円筒状の発熱抵抗体と感温抵抗体とを備
え、前記発熱抵抗体により流量を検出し、前記感温抵抗
体により温度を補償するようにした発熱抵抗体式空気流
量測定装置において、少なくとも前記感温抵抗体の支持
部材に、抵抗体の支持部とは独立した突出部分を設け、
該突出部分による放熱作用により前記抵抗体の両端での
温度バランスが与えられるようにして達成される。The above object is achieved by using two support members attached to the wall of a passage through which air whose flow rate is to be measured is installed at right angles to the direction of air flow. A heating resistor type air flow measuring device comprising a substantially cylindrical heating resistor and a temperature-sensitive resistor, detecting a flow rate by the heating resistor, and compensating for the temperature by the temperature-sensitive resistor; The support member of the temperature-sensitive resistor is provided with a protruding portion independent of the support portion of the resistor,
This is achieved by providing a temperature balance at both ends of the resistor by the heat radiation effect of the projecting portion.
【0013】実施の形態に則していえば、本発明では、
発熱抵抗体と感温抵抗体の支持部材について以下のよう
にしたものである。 (1) 抵抗体の両端の支持部材の長さが異なっても、両者
の熱影響の差を低減でき、また、短い支持部材の熱伝導
量を低減できるように、短い支持部材に途中で分岐し空
気中に晒される放熱板を設けた。According to the embodiment, in the present invention,
The supporting members for the heating resistor and the temperature-sensitive resistor are as follows. (1) Even if the lengths of the support members at both ends of the resistor are different, it is possible to reduce the difference in thermal effects between the two and to branch off into short support members in the middle so as to reduce the heat conduction of the short support members. A radiator plate exposed to the air was provided.
【0014】これにより、支持部材のハウジングへの固
定部から抵抗体固定部までの距離を長く取らずとも、支
持部材を介した熱影響を低減でき、さらに、途中で分岐
した支持部材の抵抗体固定側よりも、放熱板側の断面積
あるいは表面積を大きくすることにより、放熱効果の向
上を可能とした。[0014] Accordingly, the thermal effect via the support member can be reduced without increasing the distance from the fixing portion of the support member to the housing to the resistor fixing portion. By increasing the cross-sectional area or surface area on the heat sink side compared to the fixed side, the heat dissipation effect can be improved.
【0015】(2) 放熱板或いは長い支持部材の空気への
熱伝達を高めるため、放熱板或いは長い支持部材を感温
抵抗体の下流で、吸入空気が感温抵抗体によって乱れる
乱流域に置く構成にした。また、逆に支持部材の下流に
感温抵抗体を配し、支持部材により生じる乱流により、
感温抵抗体の熱伝達を向上し空気温検出の高精度化を図
った。(2) In order to enhance the heat transfer of the heat radiating plate or the long supporting member to the air, the heat radiating plate or the long supporting member is placed downstream of the temperature-sensitive resistor in a turbulent flow region where the intake air is disturbed by the temperature-sensitive resistor. It was configured. Conversely, a temperature-sensitive resistor is arranged downstream of the support member, and turbulence generated by the support member causes
The heat transfer of the temperature sensitive resistor was improved, and the air temperature detection was made more accurate.
【0016】(3) 支持部材にその近傍の空気の流れ方向
と平行な板状部分を設け、抵抗体の近傍の流れの整流化
を図った。また、支持部材の板状部分を略くの字形、又
は略円弧状に曲げることにより、空気の流れ方向の最適
化、縮流化による抵抗体近傍の整流を図った。(3) The support member is provided with a plate-like portion parallel to the direction of air flow in the vicinity thereof, so that the flow in the vicinity of the resistor is rectified. In addition, by bending the plate-like portion of the support member into a substantially rectangular shape or a substantially arc shape, the direction of air flow is optimized, and the flow near the resistor is rectified by reducing the flow rate.
【0017】(4) 曲がりのある空気通路内に、支持部材
の板状部分を曲がり方向に傾けて配置する等により、空
気の流れをスムーズに曲げるための案内板とした。(4) A guide plate for smoothly bending the flow of air is provided, for example, by arranging the plate-like portion of the support member in the bent direction in the bent air passage.
【0018】この結果、以下のことが可能になった。 (1) 構造簡略化、小型化、低コスト化。As a result, the following has become possible. (1) Simplified structure, miniaturization, and cost reduction.
【0019】(2) 高精度化、温度特性の改善。(2) Higher accuracy and improved temperature characteristics.
【0020】(3) 出力ノイズの低減。(3) Reduction of output noise.
【0021】[0021]
【発明の実施の形態】以下、本発明による発熱抵抗体式
空気流量測定装置について、図示の実施の形態により詳
細に説明する。まず、図1〜図4は本発明の第1の実施
形態で、図1は横断面図、図2は正面図で、ここで、図
1は図2のA−A線による断面図で、図2は、図1の矢
印B方向から見た図になり、さらに、図1の矢印Bは吸
気流通方向も表わしている。そして、図3は、図2のC
部分を吸気流通方向Bからみて拡大した図で、図4は、
図1のC部分をそのまま拡大した図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a heating resistor type air flow measuring device according to the present invention will be described in detail with reference to the illustrated embodiments. First, FIGS. 1 to 4 show a first embodiment of the present invention. FIG. 1 is a cross-sectional view, FIG. 2 is a front view, and FIG. 1 is a cross-sectional view taken along line AA of FIG. FIG. 2 is a view as seen from the direction of arrow B in FIG. 1, and arrow B in FIG. 1 also represents the direction of intake air flow. Then, FIG.
FIG. 4 is an enlarged view of the portion viewed from the intake air flow direction B. FIG.
FIG. 2 is an enlarged view of a portion C in FIG. 1 as it is.
【0022】これらの図に示されているように、この実
施形態では、まず空気流量計ボディ3により主空気通路
1が形成されており、この主空気通路1の中に副空気通
路2が設けてあり、この副空気通路2の内部に吸気流量
検出用の素子となる発熱抵抗体4と感温抵抗体5が設け
てある。As shown in these figures, in this embodiment, first, the main air passage 1 is formed by the air flow meter body 3, and the sub air passage 2 is provided in the main air passage 1. A heating resistor 4 and a temperature-sensitive resistor 5 serving as elements for detecting the flow rate of intake air are provided inside the auxiliary air passage 2.
【0023】ここで、発熱抵抗体4は、吸気流通方向B
に沿って前方にある前支持部材6aと後方にある後支持
部材6bにより、また感温抵抗体5は、同じく前方にあ
る前支持部材7aと後方にある後支持部材7bにより、
それぞれ副空気通路2内で吸気流通方向Bと直角になる
ようにして支持されている。Here, the heating resistor 4 is moved in the intake air flow direction B
Along the front support member 6a at the front and the rear support member 6b at the rear, and the temperature-sensitive resistor 5 is also at the front support member 7a at the front and the rear support member 7b at the rear,
Each is supported in the auxiliary air passage 2 so as to be perpendicular to the intake air flow direction B.
【0024】これらの支持部材6a、6b、7a、7b
は、例えばステンレス鋼などの導電材料で作られてい
て、電子回路8の所定の回路に接続され、これにより、
発熱抵抗体4と感温抵抗体5は、夫々、これらの支持部
材6a、6b、7a、7bを介して電子回路8に電気的
に接続されるようになっている。These support members 6a, 6b, 7a, 7b
Is made of a conductive material such as stainless steel, and is connected to a predetermined circuit of the electronic circuit 8, thereby
The heating resistor 4 and the temperature-sensitive resistor 5 are electrically connected to the electronic circuit 8 via these support members 6a, 6b, 7a, 7b, respectively.
【0025】この電子回路8はハウジング9に収容され
ているが、このハウジング9は副空気通路2と一体に形
成された上で、図1に示されているように、空気流量計
ボディ3に挿入して取付けられている。The electronic circuit 8 is housed in a housing 9 which is formed integrally with the auxiliary air passage 2 and, as shown in FIG. Inserted and mounted.
【0026】発熱抵抗体4と感温抵抗体5は、副空気通
路2の内部では、図1と図4から明らかなように、吸気
流通方向Bに沿って、感温抵抗体5を前にして前後に配
置してあり、且つ、さらに、図3から明らかなように、
副空気通路2の内部で、吸気流通方向Bと直角な方向に
相互にずれて配置されるようになっている。As is clear from FIGS. 1 and 4, the heating resistor 4 and the temperature-sensitive resistor 5 are arranged in front of the temperature-sensitive resistor 5 in the intake air flow direction B inside the auxiliary air passage 2. 3, and furthermore, as is clear from FIG.
Inside the sub air passage 2, they are arranged so as to be mutually shifted in a direction perpendicular to the intake air flow direction B.
【0027】そして、それぞれの支持部材6a、6bと
支持部材7a、7bは、特に図3と図4に詳細に示され
ているように、何れも発熱抵抗体4と感温抵抗体5に平
行に取付けられており、このため前支持部材6a、7a
と後支持部材6b、7bは副空気通路2に対する取付け
部分までの長さが異なっており、前支持部6aと後支持
部材7bのほうが短くなっている。Each of the support members 6a and 6b and the support members 7a and 7b are parallel to the heating resistor 4 and the temperature-sensitive resistor 5, as shown in detail in FIGS. , So that the front support members 6a, 7a
The rear support members 6b and 7b have different lengths up to the attachment portion to the auxiliary air passage 2, and the front support portion 6a and the rear support member 7b are shorter.
【0028】また、発熱抵抗体4の後支持部材6bに
は、特に図3に明らかに示されているように、途中に曲
がり部6b1が形成してあり、これにより、発熱抵抗体
4から吸気流通方向Bと直角に、感温抵抗体5側にずれ
た位置をとるようにしてある。The rear support member 6b of the heating resistor 4 is formed with a bent portion 6b1 in the middle, as clearly shown in FIG. At right angles to the flow direction B, a position shifted toward the temperature-sensitive resistor 5 is taken.
【0029】さらに感温抵抗体5の支持部材7bには、
そのまま延びて片持ち梁状になった突出部分7b2が形
成してあり、その途中に、直角に突き出た部分7b1が
形成してあり、これに感熱抵抗体5の一方が支持されて
いる。つまり部分7b1が感熱抵抗体5の支持部にな
り、この支持部とは独立に突出部分7b2が形成されて
いることになる。Further, the support member 7b of the temperature-sensitive resistor 5 includes
A protruding portion 7b2 extending as it is and having a cantilever shape is formed, and a portion 7b1 protruding at a right angle is formed in the middle of the protruding portion 7b2, on which one of the thermal resistors 5 is supported. That is, the portion 7b1 serves as a support for the thermal resistor 5, and the protruding portion 7b2 is formed independently of this support.
【0030】この突出部分7b2は放熱用で、このため
特に図3に明瞭に示されているように、発熱抵抗体4と
は反対側に、部分7b1が突き出た部分で曲げられ、吸
気通流方向Bと直角に、感温抵抗体5からずれた位置を
取るようにしてあり、これにより、副空気通路2内を流
れる空気に良く晒されるようにしてある。The protruding portion 7b2 is for heat dissipation, and therefore, as clearly shown in FIG. 3, is bent at the portion where the portion 7b1 protrudes, on the side opposite to the heating resistor 4, to allow the intake air flow. At right angles to the direction B, a position deviated from the temperature-sensitive resistor 5 is taken, so as to be well exposed to the air flowing through the sub air passage 2.
【0031】次に、この実施形態の動作について、図5
により説明する。この図5は、図4を拡大して示したも
ので、ここで2aは副空気通路2の壁面で、支持部材が
保持されている部分を表わしている。そして、この壁面
2aの温度を壁温Twとし、吸入されてくる空気の温度
を吸気温Taとする。ここで壁温Twは、この空気流量
測定装置が適用されたエンジンの温度の影響を強く受け
るので、通常は吸気温度Taより高く、一般に(Tw≧
Ta)となっている。Next, the operation of this embodiment will be described with reference to FIG.
This will be described below. FIG. 5 is an enlarged view of FIG. 4, where 2a denotes a wall surface of the auxiliary air passage 2 where a support member is held. The temperature of the wall surface 2a is referred to as a wall temperature Tw, and the temperature of the intake air is referred to as an intake air temperature Ta. Here, since the wall temperature Tw is strongly affected by the temperature of the engine to which the air flow measuring device is applied, the wall temperature Tw is usually higher than the intake air temperature Ta, and generally (Tw ≧
Ta).
【0032】次に、発熱抵抗体4の両端での熱バランス
と感温抵抗体5の両端での熱バランスについて説明す
る。まず発熱抵抗体4について説明すると、この発熱抵
抗体4は、吸気温Taよりも所定の温度だけ高い温度を
保つように制御されるので、動作中での熱バランスは、
前支持部材6aと後支持部材6bを通って壁面2aに熱
伝導される熱量q1a、q1bと前支持部材6aと後支
持部材6bから吸気中に熱放散される熱量q2a、q2
bとで保たれる。Next, the heat balance at both ends of the heating resistor 4 and the heat balance at both ends of the temperature-sensitive resistor 5 will be described. First, the heating resistor 4 will be described. Since the heating resistor 4 is controlled to maintain a temperature higher than the intake air temperature Ta by a predetermined temperature, the heat balance during operation is as follows.
Heat amounts q1a, q1b that are thermally conducted to the wall surface 2a through the front support member 6a and the rear support member 6b, and heat amounts q2a, q2 that are dissipated into the intake air from the front support member 6a and the rear support member 6b.
b.
【0033】次に、感温抵抗体5は、実用上無視できる
程度の発熱しか生じないようし、これにより、その温度
が吸気温度Taにより支配されるようにして使用され
る。従って、その熱バランスが、上記したように、空気
流量の計測精度に大きな影響を及ぼし、常に同じ熱バラ
ンスを保つことが高い計測精度の保持のための大きな要
件になっている。Next, the temperature-sensitive resistor 5 is used in such a manner that it generates only negligible heat in practical use, so that its temperature is controlled by the intake air temperature Ta. Therefore, as described above, the heat balance greatly affects the measurement accuracy of the air flow rate, and maintaining the same heat balance at all times is a great requirement for maintaining high measurement accuracy.
【0034】そこで、以下、この実施形態における感温
抵抗体5での熱バランスについて説明する。まず図5
(a)に示すTw=Taのとき、すなわち壁温Twと吸気
温Taが等しいときは、感温抵抗体5の温度も壁温Tw
に等しくなる。従って、このときは、壁面2aと感温抵
抗体5に温度差がないので、支持部材7a、7bを介し
ての熱の出入りがなく、このため、感温抵抗体5の両端
での温度は同じになり、熱バランスが保たれた状態にな
る。Therefore, the heat balance in the temperature-sensitive resistor 5 in this embodiment will be described below. First, FIG.
When Tw = Ta shown in (a), that is, when the wall temperature Tw is equal to the intake air temperature Ta, the temperature of the temperature-sensitive resistor 5 is also changed to the wall temperature Tw.
Is equal to Therefore, at this time, since there is no temperature difference between the wall surface 2a and the temperature-sensitive resistor 5, there is no heat flow through the support members 7a and 7b, and therefore, the temperature at both ends of the temperature-sensitive resistor 5 is It will be the same and the heat balance will be maintained.
【0035】次に、図5(b)に示すTa<Twのとき、
すなわち壁温Twが吸気温Taよりも高くなったときに
ついて説明すると、この場合、図示のように、前支持部
材7aを介して熱量q4aの流れが、そして後支持部材
7bを介して熱量q4bの流れが、夫々生じる。Next, when Ta <Tw shown in FIG.
That is, the case where the wall temperature Tw becomes higher than the intake air temperature Ta will be described. In this case, as shown, the flow of the heat quantity q4a via the front support member 7a and the flow of the heat quantity q4b via the rear support member 7b are shown. Flows respectively occur.
【0036】ここで、いま、仮に部分7b2が設けて無
かったとすると、感温抵抗体5の一方の端部(図では下
端部)を保持している前支持部材7aと、感温抵抗体5
の他方の端部(同、上端部)を保持している後支持部材7
の長さが異なっていることから熱量q4aと熱量q4b
に差ができ、感温抵抗体5の両端で温度が異なってしま
い、具体的には、熱量q4bの方が多くなり、感温抵抗
体5の上端部の温度の方が高くなって、熱バランスが崩
れてしまう。Here, if it is assumed that the portion 7b2 is not provided, the front support member 7a holding one end (the lower end in the figure) of the temperature-sensitive resistor 5 and the temperature-sensitive resistor 5
The rear support member 7 holding the other end (the upper end) of the
Calories q4a and q4b
And the temperature at both ends of the temperature-sensitive resistor 5 is different. Specifically, the calorific value q4b increases, and the temperature at the upper end of the temperature-sensitive resistor 5 increases. You lose your balance.
【0037】しかして、この実施形態では、後支持部材
7bに部分7b2が設けてあり、これが吸気流に晒され
ているので、放熱板として働くので、この部分7b2に
流れる熱量q4b2が生じ、感温抵抗体5の上端部に流
れる熱量は、熱量q4bから熱量q4b2を差し引いた
熱量q4b1になる。In this embodiment, however, the rear support member 7b is provided with the portion 7b2, which is exposed to the intake air flow, and thus functions as a radiator plate, so that the amount of heat q4b2 flowing through this portion 7b2 is generated. The amount of heat flowing to the upper end of the thermal resistor 5 is the amount of heat q4b1 obtained by subtracting the amount of heat q4b2 from the amount of heat q4b.
【0038】そこで、この実施形態では、この後支持部
材7bに設けてある部分7b2の大きさや形状を所定の
状態にすることにより、壁温Twが吸気温Taよりも高
くなったときでも、壁温Twと吸気温Taが等しいとき
と同様に、常に両端での熱バランスが取れた状態に保つ
ことができる。この結果、この実施形態によれば、環境
状態が変化した時にでも、発熱抵抗体と感温抵抗体が各
々の支持体を通して受けるトータルの熱量をほぼ等しく
することが可能かつ容易となり、常に計測精度を高く保
持することができる。Therefore, in this embodiment, the size and shape of the portion 7b2 provided on the support member 7b are set to a predetermined state, so that even when the wall temperature Tw becomes higher than the intake air temperature Ta, the wall 7B2 can be used. As in the case where the temperature Tw is equal to the intake air temperature Ta, it is possible to always maintain a state where the heat balance at both ends is maintained. As a result, according to this embodiment, even when the environmental condition changes, the total amount of heat received by the heating resistor and the temperature-sensitive resistor through each of the supports can be made substantially equal, and the measurement accuracy is always improved. Can be kept high.
【0039】つまり、Ta=Twの時に発熱抵抗体が支
持体を通して放熱する熱量と、Ta<Twの時に発熱抵
抗体が支持体を通して放熱する熱量及び感温抵抗体が支
持体を通してうける熱量をほぼ同じにするために、実施
例では、感温抵抗体両端での熱バランスが取れた状態に
保つことで、容易に可能にしている。That is, the amount of heat dissipated by the heating resistor through the support when Ta = Tw, the amount of heat dissipated by the heating resistor through the support when Ta <Tw, and the amount of heat received by the temperature-sensitive resistor through the support are substantially equal. In order to make them the same, in the embodiment, it is possible to easily achieve this by keeping the heat balance at both ends of the temperature-sensitive resistor.
【0040】上記実施形態において、放熱板として働く
部分7b2について、更に詳しく説明すると、この部分
7b2は、感温抵抗体5の後方で、この感温抵抗体5が
保持されている位置の分岐点付近で曲げられ、吸気流の
流通方向Bに対して、感温抵抗体5とずれた位置で、感
温抵抗体5により吸気流が乱れている乱流領域に配置し
てある。In the above embodiment, the portion 7b2 functioning as a heat radiating plate will be described in more detail. The portion 7b2 is located behind the temperature-sensitive resistor 5 and is a branch point at a position where the temperature-sensitive resistor 5 is held. It is bent in the vicinity and is arranged in a turbulent flow region where the intake air flow is disturbed by the temperature-sensitive resistor 5 at a position shifted from the temperature-sensitive resistor 5 with respect to the flow direction B of the intake air flow.
【0041】このように、放熱板として働く部分7b2
を乱流域に置くことにより、吸気流に対する熱伝達を高
めことができ、この結果、後支持部材7bが短いことに
よる熱バランスの崩れを更に充分に低減することができ
る。As described above, the portion 7b2 serving as a heat radiating plate
In the turbulent flow region, the heat transfer to the intake air flow can be increased, and as a result, the collapse of the heat balance due to the short length of the rear support member 7b can be further reduced.
【0042】また、この実施形態で、放熱板として働く
部分7b2を感温抵抗体5の支持部材7a、7bと感温
抵抗体5自体及び副空気通路2の中心に対して発熱抵抗
体4と反対側に、吸入空気の通流方向で重ならない構造
としているのは、部分7b2が吸入空気にさらされる面
積を広くすることができるようにするためである。Further, in this embodiment, the portion 7b2 serving as a heat sink is connected to the supporting members 7a and 7b of the temperature-sensitive resistor 5 and the heating resistor 4 with respect to the temperature-sensitive resistor 5 itself and the center of the auxiliary air passage 2. The structure on the opposite side that does not overlap in the flow direction of the intake air is to increase the area where the portion 7b2 is exposed to the intake air.
【0043】そのため、感温抵抗体4の後方支持部材7
bが、感温抵抗体5に与える熱伝達や熱伝導の影響を更
に低減可能とした。Therefore, the rear support member 7 of the temperature-sensitive resistor 4
b can further reduce the influence of heat transfer and heat conduction on the temperature-sensitive resistor 5.
【0044】また、この実施形態で、吸入空気の通流方
向に対して部分7b2を支持部材7bと平行な構造とし
ているのは、これによる放熱効果を充分保ちながら、副
空気通路2の幅を小さくすることができるためであり、
そのため、圧力損失の低減可能とした。In this embodiment, the portion 7b2 has a structure parallel to the supporting member 7b with respect to the flow direction of the intake air. This is because the width of the auxiliary air passage 2 can be reduced while sufficiently maintaining the heat radiation effect. Because it can be made smaller,
Therefore, the pressure loss can be reduced.
【0045】また、同じく、発熱抵抗体4の支持部材で
ハウジングから発熱抵抗体までの距離が長い後支持部材
6bが、途中に曲がり部6b1を持ち、発熱抵抗体4及
び感温抵抗体5と吸入空気の流れ方向に対して重ならな
い位置になっていることより、発熱抵抗体4が放熱する
熱の影響を受けないようにしている。Similarly, after the distance from the housing to the heat-generating resistor in the support member for the heat-generating resistor 4 is long, the support member 6b has a bent portion 6b1 in the middle, and the heat-generating resistor 4 and the temperature-sensitive resistor 5 The position that does not overlap with the flow direction of the intake air prevents the heat generated by the heat generating resistor 4 from being affected by the heat radiated.
【0046】最後に、この実施形態による上記支持部材
構造にすると、支持部材の一体成形性を上げることがで
き、更に、従来の支持部材形状では形状が複雑なために
困難であったモールド成形の自動化を可能にし、製品部
品単価の低減を可能にすることができる。Finally, the support member structure according to this embodiment can improve the integral molding property of the support member, and furthermore, it is difficult to form the mold by the conventional support member having a complicated shape. Automation can be achieved, and the unit price of product parts can be reduced.
【0047】次に、本発明の他の実施形態について説明
する。まず、図6と図7は、本発明の他の一実施形態
で、ここで、図6は吸入空気に対して上流から見た外観
図で、図7は、図6の側面図であり、これらの図におい
て、10は長さが短い方の支持部材で、11は抵抗体
を、そして12は長さが長い方の支持部材である。Next, another embodiment of the present invention will be described. First, FIGS. 6 and 7 show another embodiment of the present invention. Here, FIG. 6 is an external view of intake air as viewed from upstream, and FIG. 7 is a side view of FIG. In these figures, 10 is a shorter supporting member, 11 is a resistor, and 12 is a longer supporting member.
【0048】ここで、この実施形態における支持部材1
0は、例えば図1〜図5で説明した実施形態における支
持部材6a又は支持部材7bに対応し、抵抗体11は同
じく発熱抵抗体4又は感温抵抗体5に対応し、更に、支
持部材12は同じく支持部材6b又は支持部材7aに対
応する。Here, the support member 1 in this embodiment is
0 corresponds to, for example, the support member 6a or the support member 7b in the embodiment described with reference to FIGS. 1 to 5, the resistor 11 also corresponds to the heating resistor 4 or the temperature-sensitive resistor 5, and further, the support member 12 Also corresponds to the support member 6b or the support member 7a.
【0049】そして、図6と図7に示した実施形態は、
抵抗体11を矩形とし、抵抗体11は支持部材10、1
2と平行で、放熱板として働く部分10bと同一平面上
に作られる。従って、この実施形態によれば、図1〜図
4に示した実施形態と同様の効果を得る効果とができ
る。The embodiment shown in FIGS. 6 and 7
The resistor 11 has a rectangular shape, and the resistor 11 is
2 and is formed on the same plane as the portion 10b serving as a heat sink. Therefore, according to this embodiment, an effect similar to that of the embodiment shown in FIGS. 1 to 4 can be obtained.
【0050】図8、図9は本発明の他の一実施形態で、
図8は吸入空気に対して上流から見た外観図で、図9は
図8の側面図である。図8、図9に示した実施形態は、
抵抗体11を板形とし、抵抗体11は、抵抗体支持部材
10における抵抗体11の一方の端部を支持する支持部
となる部分10aと、放熱板として働く部分10b及び
支持部材12と平行で同一平面上に作られている。FIGS. 8 and 9 show another embodiment of the present invention.
FIG. 8 is an external view of the intake air as viewed from upstream, and FIG. 9 is a side view of FIG. The embodiment shown in FIGS.
The resistor 11 is formed in a plate shape, and the resistor 11 is parallel to a portion 10a serving as a support portion for supporting one end of the resistor 11 in the resistor support member 10, and a portion 10b serving as a heat sink and the support member 12. And are made on the same plane.
【0051】従って、この実施形態によれば、図1〜図
4に示した実施形態と同様の効果が得られると共に、セ
ンサ幅を小さくすることで、副空気通路2の幅を更に小
さくすることができ、更なる圧力損失の低減を可能にし
ている。Therefore, according to this embodiment, the same effects as those of the embodiment shown in FIGS. 1 to 4 can be obtained, and the width of the auxiliary air passage 2 can be further reduced by reducing the sensor width. And the pressure loss can be further reduced.
【0052】図10、図12は、本発明の一実施形態
で、図10は吸入空気に対して上流から見た外観図で、
図11は図10の側面図である。FIGS. 10 and 12 show an embodiment of the present invention. FIG. 10 is an external view of the intake air as viewed from upstream.
FIG. 11 is a side view of FIG.
【0053】これら図10と図11に示した実施形態
は、抵抗体支持部材10における抵抗体11の一方の端
部を支持する支持部となる部分10aについて、その幅
よりも、放熱板として働く部分10bの幅の方を広くし
た場合の実施形態であり、従って、この実施形態を、図
1〜図4に示した後支持部材として採用することによ
り、図1〜図4に示した実施形態と同様の作用効果を得
ることができる。In the embodiments shown in FIGS. 10 and 11, the portion 10a of the resistor support member 10 serving as a support portion for supporting one end of the resistor 11 functions as a heat sink rather than its width. This is an embodiment in which the width of the portion 10b is made wider. Therefore, by adopting this embodiment as the rear support member shown in FIGS. 1 to 4, the embodiment shown in FIGS. The same operation and effect as described above can be obtained.
【0054】そして、この図10、図11に示した実施
形態によれば、放熱板となる部分10bが吸入空気に晒
される面積が充分に広くすることができ、そのため、後
支持部材が感温抵抗体に与える熱伝達や熱伝導の影響を
更に低減することができる。According to the embodiment shown in FIGS. 10 and 11, the area where the portion 10b serving as the heat radiating plate is exposed to the intake air can be made sufficiently large. The effect of heat transfer and heat conduction on the resistor can be further reduced.
【0055】図12と図13は、本発明の他の一実施形
態で、ここで、図12は、左側が吸気流の上流方向に位
置するものとして示した正面図で、図13は、図12の
矢印X方向から見た側面図である。この実施形態では、
まず支持部材10、12が、吸入空気の流れの方向に対
して平行方向が長い断面形状に作られている。FIGS. 12 and 13 show another embodiment of the present invention. FIG. 12 is a front view in which the left side is positioned upstream of the intake flow, and FIG. It is the side view seen from the arrow X direction of twelve. In this embodiment,
First, the support members 10 and 12 are formed to have a cross section that is long in a direction parallel to the direction of the flow of the intake air.
【0056】そして、これらの支持部材10、12は、
吸入空気の流れの方向に沿って同一円弧を成すように全
体が曲げられた状態でハウジング9に取付けられてお
り、抵抗体11は、これらの支持部材10、12と平行
で、且つ吸入空気の流れ方向に同一円弧上に延びている
部分に、流れの方向と直角に取付けられている。The support members 10 and 12 are
It is attached to the housing 9 in a state where the whole is bent so as to form the same arc along the direction of the flow of the intake air, and the resistor 11 is parallel to the support members 10 and 12, and At a portion extending on the same arc in the flow direction, it is mounted at right angles to the flow direction.
【0057】従って、この実施形態によれば、図1〜図
4に示した実施形態と同様の効果が得られると共に、更
に支持部材が全体として円弧状になっているため、吸入
空気の流れが支持部材12に乱されることなく抵抗体1
1に達し、その後、同じく同一円弧状に曲げられている
支持部材10に沿って流れるので、空気流に剥離が現れ
る領域を、図示のように、抵抗体11の後方に移すこと
ができる。Therefore, according to this embodiment, the same effects as those of the embodiment shown in FIGS. 1 to 4 can be obtained, and the flow of the intake air can be reduced because the support member has a circular arc shape as a whole. Resistor 1 without being disturbed by support member 12
1 and then flows along the support member 10 which is also bent in the same arc, so that the area where the air flow appears to be separated can be moved to the rear of the resistor 11 as shown.
【0058】従って、この実施形態によれば、抵抗体1
1を通るときの空気流の乱れが抑えられるので、検出信
号のノイズが充分に低減でき、この結果、容易に高い計
測精度が保てるという効果を得ることができる。Therefore, according to this embodiment, the resistor 1
Since the turbulence of the air flow when passing through 1 is suppressed, the noise of the detection signal can be sufficiently reduced, and as a result, the effect of easily maintaining high measurement accuracy can be obtained.
【0059】次に、図14と図15は、本発明の更に別
の一実施形態で、ここで、図14は図の左側が吸気の上
流側になるようにして示した正面図で、図15は、図1
4のY−Y線による断面図である。Next, FIGS. 14 and 15 show still another embodiment of the present invention. Here, FIG. 14 is a front view in which the left side of FIG. 15 is FIG.
FIG. 4 is a sectional view taken along line YY of FIG.
【0060】この実施形態は、抵抗体11の上流側に放
熱板となる部分10bを有する短い支持部材10を設け
たもので、更に、この放熱板となる部分10bは吸入空
気の流通方向に対して立ち上がってゆく形で傾けてあ
り、その傾きの角度θは、抵抗体11に向かう空気の流
速を高めるのに有効な角度にしてある。In this embodiment, a short supporting member 10 having a portion 10b serving as a heat radiating plate is provided on the upstream side of the resistor 11, and the portion 10b serving as a heat radiating plate is further provided in the flow direction of the intake air. The angle θ of the inclination is an angle effective to increase the flow velocity of the air toward the resistor 11.
【0061】従って、この実施形態によれば、図1〜図
4に示した実施形態と同様に、壁温が高くなったときで
も、常温状態と同じ熱バランスを取り易くすることがで
きるので、高い計測精度を容易に保持することができる
と共に、更に放熱板として働く部分10bが抵抗体11
に流れ込む空気の流速を上げ、流れを安定化する働きも
するので、低流量時での検出感度の低下が抑えられ、且
つ出力ノイズの低減も得られるという効果がある。Therefore, according to this embodiment, similarly to the embodiment shown in FIGS. 1 to 4, even when the wall temperature becomes high, the same heat balance as in the normal temperature state can be easily achieved. A high measurement accuracy can be easily maintained, and a portion 10b serving as a heat sink further includes a resistor 11b.
It also has the effect of increasing the flow velocity of the air flowing into the chamber and stabilizing the flow, so that a decrease in detection sensitivity at low flow rates is suppressed and output noise is also reduced.
【0062】次に、図16と図17も本発明の一実施形
態で、図16は左側が吸気の上流方向になるようにして
示した正面図で、図17は、図16のZ−Z線による断
面図である。Next, FIGS. 16 and 17 show another embodiment of the present invention. FIG. 16 is a front view in which the left side is in the upstream direction of the intake air, and FIG. It is sectional drawing by a line.
【0063】この実施形態は、抵抗体11の上流側にに
短い方の支持部材10を設け、この支持部材10を、長
い方の支持部材12と共に、抵抗体11と平行に配置し
たという点では、図10と図11に示した実施形態と同
じであるが、ここでは、更に短い方の支持部材10に、
吸入空気の上流側に延びた部分10b1と、抵抗体11
の下側を通って長い方の支持部材12の近傍まで達する
ようにした部分10b2とを設けたものである。This embodiment is different from the first embodiment in that a shorter supporting member 10 is provided on the upstream side of the resistor 11 and the supporting member 10 is arranged in parallel with the resistor 11 together with the longer supporting member 12. , 10 and 11, but here the shorter support member 10
A portion 10b1 extending upstream of the intake air;
And a portion 10b2 which reaches the vicinity of the longer support member 12 through the lower side of the support member 12.
【0064】ここで、上流側に延びた部分10b1は、
図示のように、下側に角度θで傾いた形で折り曲げられ
ており、この結果、後方に延びた部分10b2と共に、
上流側から流れてくる空気の流速を高めながら抵抗体1
1の方向に導いて行く働きをする。Here, the portion 10b1 extending to the upstream side is
As shown, it is bent downward at an angle θ, and as a result, together with the rearwardly extending portion 10b2,
While increasing the flow velocity of the air flowing from the upstream side, the resistor 1
It works to guide you in one direction.
【0065】従って、この実施形態によっても、図1〜
図4に示した実施形態と同様な効果が得られると共に、
これら部分10b1、10b2を設けたことにより、副
空気通路2を縮流構造にしたときと同じ効果が得られる
ことになり、この結果、副空気通路2の形状を簡略化な
がら、縮流構造にしたことによる利点を得ることができ
る。Therefore, according to this embodiment, FIGS.
The same effects as those of the embodiment shown in FIG. 4 can be obtained.
By providing these portions 10b1 and 10b2, the same effect as when the sub-air passage 2 is formed in the contracted flow structure can be obtained. The benefits of doing so can be obtained.
【0066】次に、図18は、図の左側が空気流の上流
側になるようにして、副空気通路2の内部を示した断面
図で、これは、副空気通路2が、図示のように、ほぼ直
角になった曲がり部2aを有し、その上流側の近傍に抵
抗体11を配置した場合の本発明の一実施形態である。Next, FIG. 18 is a cross-sectional view showing the inside of the sub air passage 2 with the left side of the drawing being on the upstream side of the air flow. This is an embodiment of the present invention in which a bent portion 2a having a substantially right angle is provided, and a resistor 11 is arranged near the upstream side.
【0067】この実施形態は、長い方の支持部材12を
抵抗体11の上流側に、そして、短い方の支持部材10
を下流側に配置し、この短い方の支持部材10に放熱板
として働く部分10bが設けられているという点では、
図1〜図4で説明した実施形態と同じであるが、ここで
は、更にこの部分10bを副空気通路2の下流側に延ば
し、曲がり部2aの中にまで入り込むようにしたもので
ある。In this embodiment, the longer support member 12 is placed upstream of the resistor 11 and the shorter support member 10
Is disposed downstream, and the shorter support member 10 is provided with a portion 10b serving as a heat sink.
This embodiment is the same as the embodiment described with reference to FIGS. 1 to 4, but here, this portion 10 b is further extended to the downstream side of the auxiliary air passage 2 so as to enter the bent portion 2 a.
【0068】この部分10bは、図示のように、途中で
曲がり部2aに合わせて折り曲げてあり、このときの折
り曲げ角度θは、副空気通路2内を流れる吸入空気が、
曲がり部2aの中で流れ易くなるような角度に選らんで
ある。As shown in the figure, the portion 10b is bent along the bent portion 2a on the way, and the bending angle θ at this time is such that the intake air flowing through the sub air passage 2 is
The angle is selected so that it can easily flow in the bent portion 2a.
【0069】従って、この実施形態によれば、副空気通
路2に曲がり部2aがあっても、この曲がり部2a内で
の空気の流れが、部分10bの働きにより滑らかにされ
るので、曲がり部2aを流れるときに受ける管路抵抗が
低減され、この結果、図1〜図4に示した実施形態と同
様の効果が得られると共に、副空気通路2内を流れる空
気の流速を速めることができる。Therefore, according to this embodiment, even if the auxiliary air passage 2 has the bent portion 2a, the flow of air in the bent portion 2a is smoothed by the action of the portion 10b, so that the bent portion 2a is smoothed. 2a is reduced, and as a result, the same effects as in the embodiment shown in FIGS. 1 to 4 can be obtained, and the flow velocity of the air flowing in the sub air passage 2 can be increased. .
【0070】ところで、本発明による発熱抵抗式空気流
量測定装置は、自動車用エンジンの吸気流量計測用に好
適であるが、このときは、絞り弁を備えたエンジンの吸
気通路に設置して使用されることになる。そこで、自動
車用エンジンに本発明を適用した場合の一実施形態を図
15に示す。The heating resistance type air flow rate measuring apparatus according to the present invention is suitable for measuring the intake air flow rate of an automobile engine. In this case, the apparatus is installed and used in an intake path of an engine provided with a throttle valve. Will be. FIG. 15 shows an embodiment in which the present invention is applied to an automobile engine.
【0071】この図19において、14はスロットルボ
ディ、15はスロットルバルブ(絞り弁)であり、その他
は図1〜図4に示した実施形態と同じである。スロット
ルボディ14には、図1の実施形態と同様に、副空気通
路2が一体化された空気流量測定装置のハウジング9が
挿入して取付けられており、その下流側にスロットルバ
ルブ15が配置されている。In FIG. 19, reference numeral 14 denotes a throttle body, reference numeral 15 denotes a throttle valve (throttle valve), and the other components are the same as those of the embodiment shown in FIGS. As in the embodiment of FIG. 1, the housing 9 of the air flow measuring device in which the auxiliary air passage 2 is integrated is inserted and attached to the throttle body 14, and a throttle valve 15 is disposed downstream of the housing 9. ing.
【0072】ここで、副空気通路2に配置される発熱抵
抗体4と感熱抵抗体5の支持については、図1〜図18
で説明した実施形態の何れも適用することができる。従
って、この実施形態によれば、上記した図1〜図18で
説明した実施形態と同等の効果が得られると共に、スロ
ットルボディとの一体化による構成の簡略化と、取り扱
いの簡便化を得ることができる。Here, the support of the heating resistor 4 and the thermal resistor 5 arranged in the sub air passage 2 will be described with reference to FIGS.
Any of the embodiments described above can be applied. Therefore, according to this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 18 can be obtained, and the structure can be simplified by integration with the throttle body and the handling can be simplified. Can be.
【0073】次に、図20は、本発明を、更にエンジン
ルーム内に配置されているエアクリーナと一体化した場
合の一実施形態で、図において、16はエアクリーナ
で、上流側ケース部材16aと下流側ケース部材16b
でフィルタ部材16cを挟み込んで固定することにより
組立てられている。Next, FIG. 20 shows an embodiment in which the present invention is further integrated with an air cleaner disposed in an engine room. In the drawing, reference numeral 16 denotes an air cleaner, which is connected to an upstream case member 16a and a downstream case member 16a. Side case member 16b
Are assembled by sandwiching and fixing the filter member 16c.
【0074】上流側ケース部材16aには吸入空気を取
り込むための導入ダクト17が設けてあり、これから導
入された吸入空気はフィルタ部材16cを通ることによ
り、それに含まれている塵埃(ダスト)が除去されて下流
側ケース部材16bに導入される。The upstream case member 16a is provided with an introduction duct 17 for taking in intake air, and the intake air introduced therefrom passes through a filter member 16c to remove dust contained therein. Then, it is introduced into the downstream side case member 16b.
【0075】そして、この下流側ケース部材16bに設
けられている吸気ダクト18によりエンジンの吸気管に
導入される。そこで、この実施形態では、この吸気ダク
ト18に、図1〜図18で説明した空気流量測定装置の
ハウジング9を取付けることにより、エアクリーナ16
に空気流量測定装置が一体化されるようにしたものであ
る。Then, the air is introduced into an intake pipe of the engine by an intake duct 18 provided in the downstream case member 16b. Therefore, in this embodiment, by attaching the housing 9 of the air flow measuring device described with reference to FIGS.
The air flow measuring device is integrated with the device.
【0076】従って、この実施形態によっても、上記し
た図1〜図18で説明した実施形態と同等の効果が得ら
れると共に、エアクリーナとの一体化による構成の簡略
化、及び取り扱いの簡便化を得ることができる。Therefore, according to this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 18 can be obtained, and the structure can be simplified and the handling can be simplified by integration with the air cleaner. be able to.
【0077】次に、図21は、電子燃料噴射方式の内燃
機関に、本発明を適用した場合の一実施形態で、この図
において、空気流量計ボディ3が図1〜図13で説明し
た実施形態による空気流量測定装置である。エアクリー
ナ19から取り込まれた吸入空気は、空気流量計ボディ
3、吸気ダクト20、スロットルボディ15及び燃料噴
射用のインジェクタ21を備えたマニホールド22を経
て、エンジンのシリンダ23に吸入される。Next, FIG. 21 shows an embodiment in which the present invention is applied to an internal combustion engine of the electronic fuel injection type. In this figure, the air flow meter body 3 is the same as that shown in FIGS. It is an air flow measuring device according to a form. The intake air taken in from the air cleaner 19 passes through an air flow meter body 3, an intake duct 20, a throttle body 15, and a manifold 22 having an injector 21 for fuel injection, and is sucked into a cylinder 23 of the engine.
【0078】一方、エンジンのシリンダ23で発生した
ガスは排気マニホールド24を経て排出される。On the other hand, gas generated in the cylinder 23 of the engine is discharged through the exhaust manifold 24.
【0079】このとき、発熱抵抗体式空気流量測定装置
の電子回路から空気流量信号が出力され、スロットル角
度センサ25からスロットルバルブ角度信号が出力さ
れ、排気マニホールド24に設けられている酸素濃度計
26から酸素濃度信号が出力され、そして回転角度計2
7からは回転速度信号が出力される。At this time, an air flow signal is output from the electronic circuit of the heating resistor type air flow measurement device, a throttle valve angle signal is output from the throttle angle sensor 25, and an oxygen concentration meter 26 provided in the exhaust manifold 24 is output. An oxygen concentration signal is output, and the rotation angle meter 2
7 outputs a rotation speed signal.
【0080】そこで、これらの信号はコントロールユニ
ット28に入力され、ここで演算された結果がインジェ
クタ21とアイドルエアコントロールバルブ29に出力
されることにより、エンジンの燃料噴射量とアイドル空
気量が最適な状態になるように制御されることになる。Therefore, these signals are input to the control unit 28, and the results calculated here are output to the injector 21 and the idle air control valve 29, so that the fuel injection amount and the idle air amount of the engine are optimized. It will be controlled to be in a state.
【0081】従って、この実施形態によれば、空気流量
信号が高精度で得られるので、エンジンを常に最適な状
態に制御することができ、自動車の燃費向上と排ガスの
充分な浄化を容易に得ることができる。Therefore, according to this embodiment, since the air flow rate signal can be obtained with high accuracy, the engine can always be controlled to an optimum state, and the improvement of the fuel efficiency of the automobile and the sufficient purification of the exhaust gas can be easily obtained. be able to.
【0082】[0082]
【発明の効果】本発明によれば、副空気通路の幅を小さ
くする場合に問題となる壁温の影響を充分に低減できる
と共に、空気流量信号に含まれるノイズの低減と副空気
通路内の流速増加が得られるので、発熱式空気流量測定
装置の計測精度向上を充分に図ることができ、且つ使い
勝手のよい発熱式空気流量測定装置を容易に提供するこ
とができる。According to the present invention, the effect of the wall temperature, which is a problem when the width of the sub air passage is reduced, can be sufficiently reduced, the noise included in the air flow signal can be reduced, and the air in the sub air passage can be reduced. Since the flow velocity can be increased, it is possible to sufficiently improve the measurement accuracy of the heat-generating air flow measuring device, and to easily provide a user-friendly heat-generating air flow measuring device.
【図1】本発明による発熱抵抗式空気流量測定装置の第
1の実施形態を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of a heating resistance type air flow measuring device according to the present invention.
【図2】本発明による発熱抵抗式空気流量測定装置の第
1の実施形態を示す正面図である。FIG. 2 is a front view showing a first embodiment of a heating resistance type air flow measuring device according to the present invention.
【図3】本発明による発熱抵抗式空気流量測定装置の第
1の実施形態における要部の拡大図である。FIG. 3 is an enlarged view of a main part of the first embodiment of the heating resistance type air flow measuring device according to the present invention.
【図4】本発明による発熱抵抗式空気流量測定装置の第
1の実施形態における要部の拡大図である。FIG. 4 is an enlarged view of a main part of the first embodiment of the heating resistance type air flow measuring device according to the present invention.
【図5】本発明の第1の実施形態の動作説明用の要部拡
大図である。FIG. 5 is an enlarged view of a main part for explaining the operation of the first embodiment of the present invention.
【図6】本発明の第2の実施形態における要部の拡大正
面図である。FIG. 6 is an enlarged front view of a main part according to a second embodiment of the present invention.
【図7】本発明の第2の実施形態における要部の拡大側
面図である。FIG. 7 is an enlarged side view of a main part according to a second embodiment of the present invention.
【図8】本発明の第3の実施形態における要部の拡大正
面図である。FIG. 8 is an enlarged front view of a main part according to a third embodiment of the present invention.
【図9】本発明の第3の実施形態における要部の拡大側
面図である。FIG. 9 is an enlarged side view of a main part according to a third embodiment of the present invention.
【図10】本発明の第4の実施形態における要部の拡大
正面図である。FIG. 10 is an enlarged front view of a main part according to a fourth embodiment of the present invention.
【図11】本発明の第4の実施形態における要部の拡大
側面図である。FIG. 11 is an enlarged side view of a main part according to a fourth embodiment of the present invention.
【図12】本発明の第5の実施形態における要部の拡大
側面図である。FIG. 12 is an enlarged side view of a main part according to a fifth embodiment of the present invention.
【図13】本発明の第5の実施形態における要部の拡大
上面図である。FIG. 13 is an enlarged top view of a main part according to a fifth embodiment of the present invention.
【図14】本発明の第6の実施形態における要部の拡大
側面図である。FIG. 14 is an enlarged side view of a main part according to a sixth embodiment of the present invention.
【図15】本発明の第6の実施形態における要部の拡大
上面図である。FIG. 15 is an enlarged top view of a main part according to a sixth embodiment of the present invention.
【図16】本発明の第7の実施形態における要部の拡大
側面図である。FIG. 16 is an enlarged side view of a main part according to a seventh embodiment of the present invention.
【図17】本発明の第7の実施形態における要部の拡大
上面図である。FIG. 17 is an enlarged top view of a main part according to a seventh embodiment of the present invention.
【図18】本発明の第8の実施形態を示す断面図であ
る。FIG. 18 is a sectional view showing an eighth embodiment of the present invention.
【図19】本発明の第9の実施形態を示す断面図であ
る。FIG. 19 is a sectional view showing a ninth embodiment of the present invention.
【図20】本発明の第10の実施形態を示す断面図であ
る。FIG. 20 is a sectional view showing a tenth embodiment of the present invention.
【図21】本発明の第11の実施形態を示すシステム構
成図である。FIG. 21 is a system configuration diagram showing an eleventh embodiment of the present invention.
1 主空気通路 2 副空気通路 3 空気流量計ボディ 4 発熱抵抗体 5 感温抵抗体 6a 前支持部材 6b 後支持部材 7a 前支持部材 7b 後支持部材 7b1、7b2 支持部材から分岐された部分 8 電子回路 9 ハウジング 10 短い抵抗体支持部材 10a、10b 支持部材から分岐された部分 11 抵抗体 12 長い抵抗体支持部材 13 放熱板の曲げ角度 14 スロットルボディ 15 スロットルバルブ 16 エアクリーナ 16a 上流側ケース 16b 下流側ケース 16c フィルタ部材 17 導入ダクト 18 吸気ダクト 19 エアクリーナ 20 吸気ダクト 21 インジェクタ 22 マニホールド 23 エンジンのシリンダ 24 排気マニホールド 25 スロットル角度センサ 26 酸素濃度計 27 回転角度計 28 コントロールユニット 29 アイドルエアコントロールバルブ DESCRIPTION OF SYMBOLS 1 Main air passage 2 Sub air passage 3 Air flow meter body 4 Heating resistor 5 Temperature sensitive resistor 6a Front support member 6b Rear support member 7a Front support member 7b Rear support members 7b1, 7b2 Part branched from support member 8 Electron Circuit 9 Housing 10 Short resistor support member 10a, 10b Portion branched from support member 11 Resistor 12 Long resistor support member 13 Bending angle of heat sink 14 Throttle body 15 Throttle valve 16 Air cleaner 16a Upstream case 16b Downstream case 16c Filter member 17 Introductory duct 18 Intake duct 19 Air cleaner 20 Intake duct 21 Injector 22 Manifold 23 Engine cylinder 24 Exhaust manifold 25 Throttle angle sensor 26 Oxygen concentration meter 27 Rotation angle meter 28 Control unit 29 A Idle air control valve
───────────────────────────────────────────────────── フロントページの続き (72)発明者 五十嵐 信弥 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 Fターム(参考) 2F035 AA02 EA03 EA04 3G084 DA04 DA13 FA08 ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Shinya Igarashi 2477 Takaba, Hitachinaka-shi, Ibaraki F-term in Hitachi Car Engineering Co., Ltd. (Reference) 2F035 AA02 EA03 EA04 3G084 DA04 DA13 FA08
Claims (21)
壁面に取付けた各2個の支持部材を用いることにより、
前記空気の流通方向と直角に設置した発熱抵抗体と感温
抵抗体とを備え、前記発熱抵抗体により流量を検出し、
前記感温抵抗体により温度を補償するようにした発熱抵
抗体式空気流量測定装置において、 少なくとも前記感温抵抗体の支持部材に、抵抗体の支持
部とは独立した突出部分を設け、 該突出部分による放熱作用により前記抵抗体の両端での
温度バランスが与えられるように構成したことを特徴と
する発熱抵抗体式空気流量測定装置。1. By using two support members each mounted on the wall of a passage through which the air whose flow rate is to be measured flows,
It comprises a heating resistor and a temperature-sensitive resistor installed at right angles to the flow direction of the air, and detects a flow rate by the heating resistor,
In the heating resistor type air flow rate measuring device wherein the temperature is compensated by the temperature-sensitive resistor, at least a supporting member of the temperature-sensitive resistor is provided with a projecting portion independent of a supporting portion of the resistor, and the projecting portion is provided. A heat-generating resistor-type air flow measuring device, characterized in that a temperature balance at both ends of the resistor is given by a heat radiating action of the heating element.
固定した一対の支持部材は、前記抵抗体の長手方向と略
平行に延びた部分を有し、一方は先端部付近で曲がって
おり、他方は途中で分岐した枝状の部分を有し、前記一
方の部分と前記他方の部分に前記抵抗体の両端が支持さ
れた抵抗体支持構造を有することを特徴とする発熱抵抗
体式空気流量測定装置。2. The invention according to claim 1, wherein the pair of support members to which at least one of both ends of the heating resistor and the temperature-sensitive resistor are fixed extend in a direction substantially parallel to the longitudinal direction of the resistor. One is bent in the vicinity of the tip, the other has a branch-like portion branched in the middle, and the resistor support has both ends of the resistor supported by the one portion and the other portion. A heating resistor type air flow measuring device having a structure.
がり分岐後の部分よりも大きな断面積を有する形状に作
られていることを特徴とする発熱抵抗体式空気流量測定
装置。3. The invention according to claim 2, wherein a portion of the support member extending substantially in parallel with the resistor is formed in a shape having a larger cross-sectional area than the bent portion. Features a heating resistor type air flow measurement device.
り、前記曲がり分岐後の部分よりもその幅が広い形状に
作られていることを特徴とする発熱抵抗体式空気流量測
定装置。4. The invention according to claim 2, wherein the portion of the support member extending substantially in parallel with the resistor has a plate-like shape, and has a width wider than that of the bent portion. A heating resistor type air flow measuring device, characterized in that:
傍を流れる空気の主流方向に対して略垂直方向に延びて
いることを特徴とする発熱抵抗体式空気流量測定装置。5. The invention according to claim 2, wherein the portion of the support member substantially parallel to the resistor extends in a direction substantially perpendicular to the main flow direction of the air flowing in the vicinity thereof. Heating resistor type air flow measurement device.
その近傍を流れる空気の主流方向に対して板状の面が略
平行に形成されていることを特徴とする発熱抵抗体式空
気流量測定装置。6. The invention according to claim 4, wherein the plate-shaped portion of the support member extending substantially in parallel with the resistor is provided.
A heating resistor type air flow measuring device, wherein a plate-like surface is formed substantially parallel to a main flow direction of air flowing in the vicinity thereof.
かにおいて、 前記感温抵抗体と略平行に形成された一対の支持部材の
一方は、その近傍を流れる空気の主流方向に対して前記
感温抵抗体より上流に配置され、且つ、前記感温抵抗体
はその周囲が前記上流に配置された支持部材によって生
じる乱流域となる位置に形成されていることを特徴とす
る発熱抵抗体式空気流量測定装置。7. The method according to claim 2, wherein one of the pair of support members formed substantially parallel to the temperature-sensitive resistor is arranged in a main flow direction of air flowing in the vicinity thereof. Heat generation is characterized by being arranged upstream of the temperature-sensitive resistor, the temperature-sensitive resistor being formed in a position where the periphery thereof becomes a turbulent flow region generated by the support member arranged at the upstream. Resistor type air flow measurement device.
かにおいて、 前記感温抵抗体と略平行に形成された一対の支持部材の
一方は、その近傍を流れる空気の主流方向に対して前記
感温抵抗体より下流に配置され、且つ、その支持部材の
周囲は前記感温抵抗体によって生じる乱流域となる位置
に形成されていることを特徴とする発熱抵抗体式空気流
量測定装置。8. The invention according to claim 2, wherein one of the pair of support members formed substantially parallel to the temperature-sensitive resistor is arranged in a main flow direction of the air flowing in the vicinity thereof. A heating resistor-type air flow measuring device, which is disposed downstream of the temperature-sensitive resistor, and the periphery of the supporting member is formed at a position serving as a turbulent flow region generated by the temperature-sensitive resistor. .
基板に形成された抵抗体であり、 この板状の抵抗体が前記支持部材の抵抗体と略平行に延
びた板状部分とほぼ同一平面上に並べて配置されている
ことを特徴とする発熱抵抗体式空気流量測定装置。9. The invention according to claim 6, wherein at least one of the heating resistor and the temperature-sensitive resistor is a resistor formed on a plate-shaped substrate, and the plate-shaped resistor is the support member. A heating resistor-type air flow measuring device, which is arranged substantially on the same plane as a plate-like portion extending substantially parallel to the resistor.
流れる空気の流通方向に対して略平行に、ほぼ同一平面
上に並べて配置されていることを特徴とする発熱抵抗体
式空気流量測定装置。10. The invention according to claim 9, wherein the plate-shaped resistor and the plate-shaped portion of the support member are arranged substantially on the same plane in a direction substantially parallel to a flow direction of air flowing in the vicinity thereof. A heating resistor type air flow measuring device, characterized in that:
は、その近傍を流れる空気の流通方向に対して前記抵抗
体より上流に配置され、 その板状の面が前記流通方向に対して前記抵抗体の中心
付近を軸として傾斜していることを特徴とする発熱抵抗
体式空気流量測定装置。11. The invention according to claim 4, wherein one of the plate-like portions of the support member extending substantially parallel to the resistor is located upstream of the resistor with respect to a flow direction of air flowing near the resistor. A heating resistor type air flow measuring device, wherein the plate-shaped surface is inclined with respect to the flow direction in the vicinity of the center of the resistor as an axis.
の近傍を流れる空気の流通方向に対して、上流端の部分
が傾斜した略くの字形に曲げて形成され、 前記抵抗体はその曲がりの外側に配置されていることを
特徴とする発熱抵抗体式空気流量測定装置。12. The invention according to claim 4, wherein the plate-like portion of the support member extending substantially parallel to the resistor has an upstream end portion inclined with respect to a flow direction of air flowing in the vicinity thereof. A heating resistor type air flow measuring device, which is formed by bending in a substantially rectangular shape, wherein the resistor is arranged outside the bend.
円弧状に曲げられて形成され、 前記円弧状の支持部材とその近傍を流れる空気の流通方
向に沿った接線との交点よりも上流に前記抵抗体が配置
されていることを特徴とする発熱抵抗体式空気流量測定
装置。13. The invention according to claim 4, wherein a plate-like portion of the support member extending substantially parallel to the resistor is formed by being bent in a substantially arc shape, and the arc-shaped support member and its vicinity. A heating resistor-type air flow measuring device, wherein the resistor is disposed upstream of an intersection with a tangent along a flow direction of air flowing through the heating element.
り、 その板状部分がその近傍を流れる空気の流通方向に対し
て略平行で且つ並列に形成され、前記抵抗体は前記並列
に形成された支持部材部分に挟まれた空間に配置されて
いることを特徴とする発熱抵抗体式空気流量測定装置。14. The invention according to claim 2, wherein the portion of the support member extending substantially parallel to the resistor has a plate-like shape, and the plate-like portion is substantially in the flow direction of the air flowing in the vicinity thereof. A heating resistor-type air flow measuring device, which is formed in parallel and in parallel, wherein the resistor is disposed in a space sandwiched by the support members formed in parallel.
記支持部材の曲がり部或いは分岐した部分によりほぼ全
周が囲まれて配置されていることを特徴とする発熱抵抗
体式空気流量測定装置。15. The invention according to claim 14, wherein the resistor is disposed so as to be substantially entirely surrounded by the support member portion formed in parallel and a bent portion or a branched portion of the support member. A heating resistor type air flow measuring device characterized by the following.
何れかにおいて、 前記抵抗体と前記支持部材は、それらの長手方向が長辺
となる略長方形或いは楕円形断面を有する副空気通路内
に配置されていることを特徴とする発熱抵抗体式空気流
量測定装置。16. The auxiliary air passage according to any one of claims 2 to 15, wherein the resistor and the support member have a substantially rectangular or elliptical cross section whose longitudinal direction is a long side. A heating resistor type air flow measuring device, which is disposed in the inside.
明の何れかにおいて、 前記支持部材は副空気通路内に
配置され、 この副空気通路内を流れる空気の流通方向に対して前記
支持部材の板状部分の上流端となる部分を、前記副空気
通路の内壁にほぼ接触するように配置することにより、
前記抵抗体配置部での空気の流速を早めるための縮流構
造が与えられるように構成したことを特徴とする発熱抵
抗体式空気流量測定装置。17. The support member according to claim 12, wherein the support member is disposed in a sub air passage, and the support member is arranged in a flow direction of air flowing through the sub air passage. By arranging the portion to be the upstream end of the plate-shaped portion so as to substantially contact the inner wall of the auxiliary air passage,
A heat-generating resistor type air flow measuring device, characterized in that a flow contraction structure for increasing a flow velocity of air in the resistor disposing portion is provided.
に沿って傾斜或いは曲げられて配置されることにより、 前記副空気通路の曲がり部での流れをスムーズに流すた
めの案内板として機能するように構成したことを特徴と
する発熱抵抗体式空気流量測定装置。18. The invention according to claim 16, wherein the auxiliary air passage has a bend at at least one position, and the support member is inclined or bent along the bending direction in the vicinity of the bent portion. The heating resistor-type air flow measuring device is characterized in that it is arranged to function as a guide plate for smoothly flowing the flow at the bent portion of the sub air passage.
おいて、 前記感温抵抗体と発熱抵抗体に電気的に接続され、吸入
空気の流量に応じた信号を出力する電子回路と、 この電子回路を内装保護するハウジングと、 このハウジングの枠体の一辺に配置した外部機器と電気
的に接続するためのコネクタとを設け、 このコネクタの反対側の辺に前記支持部材及び前記発熱
抵抗体と前記感温抵抗体を配することにより、 被測定空気が流れる吸気管路の内部に前記支持部材及び
前記発熱抵抗体と前記感温抵抗体が位置し、外部に前記
コネクタが位置するように構成すると共に、 前記ハウジング内の電子回路の平坦面とは垂直な前記ハ
ウジングの壁面が、前記吸気管路の流通方向と略垂直と
なるように固定されていることを特徴とする発熱抵抗体
式空気流量測定装置。19. An electronic circuit according to claim 1, wherein said electronic circuit is electrically connected to said temperature-sensitive resistor and said heating resistor, and outputs a signal corresponding to a flow rate of intake air. A housing for internally protecting the electronic circuit; and a connector disposed on one side of the frame of the housing for electrically connecting to an external device. The support member and the heating resistor are provided on the opposite side of the connector. And the temperature-sensitive resistor, so that the support member, the heat-generating resistor, and the temperature-sensitive resistor are located inside an intake pipe through which the air to be measured flows, and the connector is located outside. The heat-generating resistor-type air conditioner is characterized in that a wall surface of the housing, which is perpendicular to a flat surface of an electronic circuit in the housing, is fixed to be substantially perpendicular to a flow direction of the intake pipe. Air flow measurement device.
いて、 空気流量計ボディが、エアクリーナ、ダクト、スロット
ルボディなどのエンジンの吸気系部品と一体に構成され
ていることを特徴とする発熱抵抗体式空気流量測定装
置。20. The heat generation apparatus according to claim 1, wherein the air flow meter body is integrally formed with an intake system component of the engine such as an air cleaner, a duct, and a throttle body. Resistor type air flow measurement device.
抗体式空気流量測定装置を用いたことを特徴とする内燃
機関の制御システム。21. A control system for an internal combustion engine, wherein the heating resistor type air flow measuring device according to claim 1 is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19071799A JP3378833B2 (en) | 1999-07-05 | 1999-07-05 | Heating resistor type air flow measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19071799A JP3378833B2 (en) | 1999-07-05 | 1999-07-05 | Heating resistor type air flow measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001021400A true JP2001021400A (en) | 2001-01-26 |
JP3378833B2 JP3378833B2 (en) | 2003-02-17 |
Family
ID=16262660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19071799A Expired - Lifetime JP3378833B2 (en) | 1999-07-05 | 1999-07-05 | Heating resistor type air flow measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3378833B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007132745A (en) * | 2005-11-09 | 2007-05-31 | Hitachi Ltd | Pressure detector with temperature detection function |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102269103B1 (en) * | 2017-03-30 | 2021-06-23 | 가부시키가이샤 후지킨 | A mass flow sensor, a mass flow meter having the mass flow sensor, and a mass flow controller having the mass flow sensor |
-
1999
- 1999-07-05 JP JP19071799A patent/JP3378833B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007132745A (en) * | 2005-11-09 | 2007-05-31 | Hitachi Ltd | Pressure detector with temperature detection function |
Also Published As
Publication number | Publication date |
---|---|
JP3378833B2 (en) | 2003-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1146320B1 (en) | Thermal-type air flow measuring instrument | |
US6182639B1 (en) | Thermal-type airflow meter, intake air system for an internal combustion engine, and control system for the same | |
JP4929333B2 (en) | Sensor structure | |
CN101319952A (en) | Suction air flow measuring device | |
KR20010013464A (en) | Measuring device for measuring the mass of a flowing medium | |
KR20010006630A (en) | Thermo-sensitive flow rate sensor | |
JP3260552B2 (en) | Heating resistance type air flow measurement device | |
US7051589B2 (en) | Heating resistor flow rate measuring instrument | |
JP3378833B2 (en) | Heating resistor type air flow measurement device | |
JP4707412B2 (en) | Gas flow measuring device | |
KR20020033492A (en) | Heat-sensitive flow rate sensor | |
JP3356990B2 (en) | Heating resistor type air flow measurement device | |
JP3064128B2 (en) | Air flow meter | |
JP3144943B2 (en) | Air flow measurement device | |
JPH08297039A (en) | Heat resistance type air flow rate measuring device | |
JP3387372B2 (en) | Flow sensor | |
JPH1123334A (en) | Heating resistor type air flow measuring device and its measurement error correction method and device | |
JP2002061526A (en) | Heating resistance type air flow measurement device | |
JP4512616B2 (en) | Air flow measurement module | |
JP2001059759A (en) | Heating resistance type flow measurement device | |
JP3793765B2 (en) | Heat generation resistance type air flow measurement module | |
JP4006463B2 (en) | Flow rate measuring module and internal combustion engine control method | |
JP2981058B2 (en) | Flowmeter | |
JP2000002568A (en) | Air flow measurement device | |
JP2000162011A (en) | Heating resistance type air flow measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3378833 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101206 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101206 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121206 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131206 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |