[go: up one dir, main page]

JP2001019562A - Sintered flat plate and its burning method - Google Patents

Sintered flat plate and its burning method

Info

Publication number
JP2001019562A
JP2001019562A JP11183580A JP18358099A JP2001019562A JP 2001019562 A JP2001019562 A JP 2001019562A JP 11183580 A JP11183580 A JP 11183580A JP 18358099 A JP18358099 A JP 18358099A JP 2001019562 A JP2001019562 A JP 2001019562A
Authority
JP
Japan
Prior art keywords
firing
fired
setter
thickness
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11183580A
Other languages
Japanese (ja)
Inventor
Kiyoshi Araki
清 新木
Tsutomu Imai
勉 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP11183580A priority Critical patent/JP2001019562A/en
Publication of JP2001019562A publication Critical patent/JP2001019562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a burning method for producing a sintered ceramic plate having high flatness at a low cost without causing defects such as crack. SOLUTION: Flat ceramic plates 1 for burning are placed on setters 5 assembled in the form of shelves with supporting posts 3 and burned to obtain a sintered material. In the above process for burning a flat sintered plate, the post 3 has a thickness thicker than the thickness of the burning object 1 before burning, the upper surface of the burning object 1 is maintained in a state free from contact with the lower surface of the setter 5 above the object during the burning process before almost finishing the burning shrinkage of the object and the thickness of the post is decreased after almost finishing the burning shrinkage of the object by the high-temperature deformation of the post 3 by its own weight to bring the upper surface of the burning object into contact with the lower surface of the setter 5 above the burning object 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、電子部品搭載用
に使用される平板セラミック基板のような高い平面度が
要求される平板焼結体を製造するための焼成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a firing method for manufacturing a flat plate sintered body requiring high flatness, such as a flat ceramic substrate used for mounting electronic components.

【0002】[0002]

【従来の技術】 電子部品搭載用に使用される平板セラ
ミック基板のようなセラミックスの平板焼結体には、そ
の見かけ強度の観点などから高い平面度が要求される。
一般にセラミックスの平板状成形体を焼成すると、成形
歪みにより反りが生じるので、従来、前記のような高い
平面度が要求される平板焼結体を得ようとする場合、焼
成後に研削加工を実施して反りの修正を行っていた。ま
た、他の方法として、セッター等の平板で被焼成体(成
形体)を挟み込んで焼成することにより、焼成時の反り
の発生を防止する方法も知られている。
2. Description of the Related Art A flat sintered body of ceramics such as a flat ceramic substrate used for mounting electronic components is required to have high flatness from the viewpoint of apparent strength and the like.
In general, when a flat molded body of ceramics is fired, warpage occurs due to molding distortion, so conventionally, when trying to obtain a flat sintered body requiring high flatness as described above, grinding is performed after firing. The warpage was corrected. Further, as another method, a method is known in which a body to be fired (molded body) is sandwiched between flat plates such as setters and fired to prevent the occurrence of warpage during firing.

【0003】[0003]

【発明が解決しようとする課題】 しかしながら、焼成
後に研削加工を施して反りを修正する方法は、製造コス
トが高くなるという問題があった。また、被焼成体をセ
ッター等に挟み込んで焼成を行う方法においては、被焼
成体の焼成時の収縮が、これを挟み込んでいるセッター
等によって妨げられるので、緻密化の過程で被焼成体に
クラックが生じやすく、歩留まりが悪いという問題があ
った。
However, the method of correcting the warpage by performing a grinding process after firing has a problem that the manufacturing cost is increased. In the method in which the object to be fired is sandwiched between setters or the like and firing is performed, since the shrinkage of the object to be fired during firing is hindered by the setter or the like sandwiching the object, cracks occur in the process of densification. And the yield is poor.

【0004】 本発明は、このような従来の事情に鑑み
てなされたものであり、その目的とするところは、高い
平面度を有するセラミックスの平板焼結体を、クラック
等の欠陥を生じさせることなく安価に得られるような焼
成方法を提供することにある。
The present invention has been made in view of such conventional circumstances, and an object of the present invention is to provide a flat sintered body of ceramics having high flatness to cause defects such as cracks. It is an object of the present invention to provide a sintering method which can be obtained without any cost.

【0005】[0005]

【課題を解決するための手段】 本発明によれば、支柱
を介して棚組されたセッター上にセラミックスからなる
平板状の被焼成体を載置して焼成することにより焼結体
を得る平板焼結体の焼成方法であって、前記支柱が、焼
成前には前記被焼成体の厚みより厚い厚みを持ち、焼成
過程において前記被焼成体の焼成収縮がほぼ終了するま
では、前記被焼成体の上面とその上方のセッターの下面
とを非接触状態に保ち、前記被焼成体の焼成収縮がほぼ
終了ししてからは、前記支柱自身がそれに加わる重量圧
力で高温変形して厚みを減じることによって、前記被焼
成体の上面とその上方のセッターの下面とを接触状態に
せしめることを特徴とする平板焼結体の焼成方法(第一
の焼成方法)、が提供される。
Means for Solving the Problems According to the present invention, a flat plate-shaped object to be fired is placed on a setter set up on a shelf via a column and fired by mounting the plate-shaped object to be fired on the setter. A method of firing a sintered body, wherein the support has a thickness larger than the thickness of the fired body before firing, and the firing is performed until the firing shrinkage of the fired body is substantially completed in a firing process. The upper surface of the body and the lower surface of the setter above it are kept in a non-contact state, and after the firing contraction of the fired body is almost finished, the strut itself is deformed at a high temperature by the weight pressure applied thereto to reduce the thickness. Thereby, there is provided a firing method (first firing method) of the flat plate sintered body, wherein the upper surface of the object to be fired is brought into contact with the lower surface of the setter thereabove.

【0006】 また、本発明によれば、支柱を介して棚
組されたセッター上にセラミックスからなる平板状の被
焼成体を載置して焼成することにより焼結体を得る平板
焼結体の焼成方法であって、前記支柱が、焼成前には前
記被焼成体の厚みとほぼ同等の厚みを持つとともに、前
記被焼成体よりも高温で焼成収縮を始めるものであり、
焼成過程において前記被焼成体の焼成収縮が開始してか
ら焼成収縮がほぼ終了するまでは、前記支柱の前記被焼
成体に対する焼成収縮の遅れによって、前記被焼成体の
上面とその上方のセッターの下面とを非接触状態に保
ち、被焼成体の焼成収縮がほぼ終了してからは、前記支
柱が前記被焼成体の厚み以下の厚みまで焼成収縮するこ
とによって、前記被焼成体の上面とその上方のセッター
の下面とを接触状態にせしめることを特徴とする平板焼
結体の焼成方法(第二の焼成方法)、が提供される。
Further, according to the present invention, there is provided a flat sintered body obtained by placing a flat plate-shaped body to be fired made of ceramics on a setter arranged on a shelf via a support and firing the sintered body. A firing method, wherein the pillars have a thickness substantially equal to the thickness of the object to be fired before firing, and start firing shrinkage at a higher temperature than the object to be fired,
In the firing process, from the start of firing contraction of the object to be fired to the end of firing contraction substantially, the delay in firing shrinkage of the columns with respect to the object to be fired causes the upper surface of the object to be fired and the setter thereabove. The lower surface is kept in a non-contact state, and after the firing shrinkage of the fired body is substantially completed, the support pillar shrinks to a thickness equal to or less than the thickness of the fired body, thereby the upper surface of the fired body and its upper surface. A sintering method (second sintering method) for a flat plate sintered body, wherein a lower surface of an upper setter is brought into contact with the lower surface of the setter is provided.

【0007】 更に、本発明によれば、支柱を介して棚
組されたセッター上にセラミックスからなる平板状の被
焼成体を載置して焼成することにより焼結体を得る平板
焼結体の焼成方法であって、前記支柱が、焼成前には前
記被焼成体の厚みより厚い厚みを持つとともに、前記被
焼成体よりも焼成収縮が大きいものであり、焼成過程に
おいて前記被焼成体の焼成収縮が開始してから焼成収縮
がほぼ終了するまでは、前記支柱が前記被焼成体よりも
厚い厚みを持つことによって、前記被焼成体の上面とそ
の上方のセッターの下面とを非接触状態に保ち、被焼成
体の焼成収縮がほぼ終了してからは、前記支柱が前記被
焼成体の厚み以下の厚みまで焼成収縮することによっ
て、前記被焼成体の上面とその上方のセッターの下面と
を接触状態にせしめることを特徴とする平板焼結体の焼
成方法(第三の焼成方法)、が提供される。
Further, according to the present invention, there is provided a plate-shaped sintered body obtained by placing a plate-shaped body to be fired made of ceramics on a setter arranged on a shelf via a support and firing the sintered body. In a firing method, the support has a thickness larger than the thickness of the object to be fired before firing, and the shrinkage of firing is larger than that of the object to be fired. From the start of shrinkage to the end of firing shrinkage, the column has a thickness greater than that of the object to be fired, so that the upper surface of the object to be fired and the lower surface of the setter thereabove are in a non-contact state. Keeping, after the firing contraction of the fired object is substantially completed, the support pillar shrinks to a thickness equal to or less than the thickness of the fired object, so that the upper surface of the fired object and the lower surface of the setter thereabove. Make contact A method for firing a flat plate sintered body (third firing method) is provided.

【0008】 更にまた、本発明によれば、前記の何れ
かの焼成方法により得られたことを特徴とする平板焼結
体、が提供される。この平板焼結体は、前記焼成方法に
よる焼成過程において、高温変形により、板厚方向に圧
縮変形が加えられ、焼成収縮の際に生じた反りが矯正さ
れている場合もある。
Further, according to the present invention, there is provided a flat plate sintered body obtained by any one of the above-described firing methods. In the sintering process by the above-described sintering method, the flat plate sintered body may be subjected to compression deformation in the thickness direction due to high-temperature deformation, and the warpage generated during firing shrinkage may be corrected.

【0009】 なお、本発明において、「被焼成体の焼
成収縮がほぼ終了する」とは、被焼成体の焼成収縮量
が、焼成過程全体における焼成収縮量の70%に達した
状態を言うものとする。
In the present invention, “the firing shrinkage of the object to be fired is almost finished” refers to a state in which the firing shrinkage of the object to be fired reaches 70% of the firing shrinkage in the entire firing process. And

【0010】[0010]

【発明の実施の形態】 まず、第一の焼成方法について
説明する。図1は、支柱3を介して棚組みされたセッタ
ー5上に被焼成体(成形体)1を載置した焼成開始前の
状態を示している。本発明で焼成される被焼成体1は、
窒化珪素、窒化アルミニウム、炭化珪素等のセラミック
スの粉末を、プレス成形法、ドクターブレード法等の成
形法により成形して得られる平板状の成形体である。支
柱3は成形体であるのが通常であるが、被焼成体1の焼
成温度にて非常に大きく高温変形するような焼結体であ
ってもよい。支柱3はセッターの外周付近に所定の間隔
で複数配置され、それらの内部において被焼成体1がセ
ッター5上に載置されている。1枚のセッター上に被焼
成体を複数載置する場合には、それらが重ならないよう
に並列に並べる。
First, a first firing method will be described. FIG. 1 shows a state before firing starts in which a fired body (molded body) 1 is placed on a setter 5 assembled on a shelf via a column 3. The object 1 to be fired in the present invention is:
It is a flat molded body obtained by molding a ceramic powder such as silicon nitride, aluminum nitride, or silicon carbide by a molding method such as a press molding method or a doctor blade method. The support 3 is usually a molded body, but may be a sintered body that undergoes a very large high-temperature deformation at the firing temperature of the body 1 to be fired. A plurality of columns 3 are arranged at predetermined intervals near the outer periphery of the setter, and the object 1 to be fired is placed on the setter 5 inside them. When a plurality of objects to be fired are placed on one setter, they are arranged in parallel so that they do not overlap.

【0011】 焼成前において、支柱3は被焼成体1の
厚みtより厚い厚みTを持ち、被焼成体1の上面とその
上方に位置するセッターの下面とが接触しないようにセ
ッター5の間隔を保持している。このように棚組された
構成物を炉内に設置して焼成し、焼成が充分に進むと、
焼結の終了した支柱3はそれ以上収縮はしないが、その
支持する重量圧力により高温変形(クリープ変形)を起
こす。
Before firing, the column 3 has a thickness T larger than the thickness t of the object 1 to be fired, and the interval between the setters 5 is set so that the upper surface of the object 1 and the lower surface of the setter located above the object 1 do not come into contact with each other. keeping. The components assembled in such a manner are placed in a furnace and fired, and when firing proceeds sufficiently,
The post 3 after sintering does not shrink anymore, but undergoes high-temperature deformation (creep deformation) due to its supporting weight pressure.

【0012】 この高温変形では、通常、支柱3が上下
方向(厚さ方向)につぶれて、その厚みを減じて行くの
で、高温変形が進行すると、セッター5間の間隔が次第
に狭くなって行き、やがては図2に示すように支柱3で
支持していたセッター5aの下面が被焼成体1の上面と
接触して、被焼成体1は、それが載置されているセッタ
ー5bとその上面に接触したセッター5aとにより挟ま
れた状態となる。
In this high-temperature deformation, the columns 3 are usually crushed in the vertical direction (thickness direction) and the thickness thereof is reduced. Therefore, as the high-temperature deformation progresses, the interval between the setters 5 gradually decreases. Eventually, as shown in FIG. 2, the lower surface of the setter 5a supported by the column 3 comes into contact with the upper surface of the fired object 1, and the fired object 1 is brought into contact with the setter 5b on which it is mounted and the upper surface thereof. The state is sandwiched between the setters 5a in contact with each other.

【0013】 第一の焼成方法では、被焼成体1の焼成
収縮(緻密化)がほぼ終了するまでは、被焼成体1の上
面とその上方のセッターの下面とを非接触状態に保ち、
被焼成体1の焼成収縮がほぼ終了ししてから、前記のよ
うに支柱3の高温変形によって、被焼成体1の上面とそ
の上方のセッター5aの下面とを接触状態にせしめるよ
うにする。このため、第一の焼成方法においては、被焼
成体1は、その焼成収縮がほぼ終了するまでは、セッタ
ーの荷重が加わらず、前述の従来方法のようにセッター
によって焼成収縮を妨げられてクラックが生じることが
無い。
In the first firing method, the upper surface of the fired object 1 and the lower surface of the setter above the fired object 1 are kept in a non-contact state until firing shrinkage (densification) of the fired object 1 is almost completed.
After the firing contraction of the fired body 1 is almost completed, the upper surface of the fired body 1 and the lower surface of the setter 5a above the fired body 1 are brought into contact with each other by the high-temperature deformation of the columns 3 as described above. Therefore, in the first firing method, the load of the setter is not applied until the firing shrinkage is substantially completed, and the firing shrinkage is prevented by the setter as in the above-described conventional method. Does not occur.

【0014】 そして、被焼成体1がほぼ焼成収縮を終
了してからは、被焼成体1は、それが載置されているセ
ッター5bとその上方のセッター5aとに挟まれつつ更
に高温に曝されることにより、焼成収縮の過程で生じて
いた反りが矯正され、反りの無い平板焼結体となる。
After the firing target 1 has substantially finished firing shrinkage, the firing target 1 is exposed to a higher temperature while being sandwiched between the setter 5b on which the firing target 1 is placed and the setter 5a thereabove. By doing so, the warpage generated in the process of firing shrinkage is corrected, and a flat sintered body without warpage is obtained.

【0015】 なお、支柱の高温変形による被焼成体の
上面とセッターの下面との接触時期は、支柱の材質、寸
法、使用本数、支持物により加えられる面圧等を適宜設
定することにより制御することができる。支柱の面圧を
所望の値に調整するために、必要に応じセッター上に重
りを載せるようにしてもよい。
The contact timing between the upper surface of the object to be fired and the lower surface of the setter due to the high-temperature deformation of the support is controlled by appropriately setting the material, dimensions, the number of the support, the surface pressure applied by the support, and the like. be able to. In order to adjust the surface pressure of the support to a desired value, a weight may be placed on the setter as needed.

【0016】 次に、第二の焼成方法について説明す
る。第二の焼成方法も前記第一の焼成方法と同様に、被
焼成体がほぼ焼成収縮を終了してから被焼成体の上面と
その上方のセッターの下面とを接触状態にせしめて反り
の矯正を行うものであるが、そのための手法として、支
柱の高温変形を利用する代わりに、支柱の焼成収縮を利
用する。
Next, the second firing method will be described. In the second firing method, similarly to the first firing method, the upper surface of the fired object and the lower surface of the setter above the fired object are brought into contact with each other after the fired object has almost finished firing shrinkage, thereby correcting warpage. However, as a method for that, instead of using the high-temperature deformation of the columns, the firing shrinkage of the columns is used.

【0017】 すなわち、第二の焼成方法では、焼成前
には前記被焼成体の厚みとほぼ同等の厚みを持つ支柱で
あって、被焼成体と同様に焼成収縮するが、被焼成体よ
りも高温で収縮し、焼成過程において被焼成体に対し時
間差をもって焼成収縮が始まるようなものを用いる。
In other words, in the second firing method, before firing, the post has a thickness substantially equal to the thickness of the object to be fired, and shrinks as in the case of the object to be fired. A material that shrinks at a high temperature and starts firing shrinkage with a time difference with respect to the object to be fired in the firing process is used.

【0018】 このような支柱をセッター間に介在させ
て焼成を行うと、昇温中に、まず、被焼成体の方が支柱
よりも低い温度で先に焼成収縮を開始する。この被焼成
体の焼成収縮開始時点では、支柱は未だ焼成収縮を開始
していないので、この段階では、被焼成体の上面とその
上方のセッターの下面とが非接触状態となっている。更
に焼成が進むと、被焼成体に遅れて支柱が焼成収縮を開
始し、やがて被焼成体の厚み以下の厚みまで収縮する。
そして、この支柱の収縮によって、先に焼成収縮がほぼ
終了した被焼成体の上面とその上方のセッターの下面と
を接触状態にせしめる。
When the support is interposed between the setters and sintering is performed, during firing, the object to be fired first starts firing shrinkage at a lower temperature than the support. Since the columns have not yet started firing shrinkage at the time of the start of firing shrinkage of the fired body, at this stage, the upper surface of the fired body and the lower surface of the setter thereabove are in a non-contact state. As firing proceeds further, the support starts shrinking and shrinking later than the object to be fired, and eventually contracts to a thickness equal to or less than the thickness of the object to be fired.
Then, the shrinkage of the pillars brings the upper surface of the fired body, which has almost completely finished shrinking in advance, into contact with the lower surface of the setter thereabove.

【0019】 このように、第二の焼成方法において
も、被焼成体は、焼成収縮が開始してから焼成収縮がほ
ぼ終了するまでは、セッターの荷重が加わらず、前述の
従来方法のようセッターによって焼成収縮を妨げられて
クラックが生じることが無い。そして、被焼成体がほぼ
焼成収縮を終了してからは、被焼成体は、それが載置さ
れているセッターとその上方のセッターとに挟まれつつ
更に高温に曝されることにより、焼成収縮の過程で生じ
ていた反りが矯正され、反りの無い平板焼結体となる。
なお、支柱が焼成収縮を開始する温度や焼成収縮量は、
支柱の材質、成形方法等により制御することができる。
As described above, also in the second firing method, the load of the setter is not applied to the object to be fired from the start of the firing shrinkage to the end of the firing shrinkage. Thus, cracks are not generated by preventing shrinkage during firing. After the fired body has almost finished firing shrinkage, the fired body is exposed to a higher temperature while being sandwiched between the setter on which the fired body is placed and the setter thereabove. The warpage that has occurred during the process is corrected, and a flat sintered body without warpage is obtained.
The temperature at which the support starts firing shrinkage and the firing shrinkage amount are as follows:
It can be controlled by the material of the support, the molding method, and the like.

【0020】 続いて、第三の焼成方法について説明す
る。第三の焼成方法も前記第一の焼成方法と同様に、被
焼成体がほぼ焼成収縮を終了してから被焼成体の上面と
その上方のセッターの下面とを接触状態にせしめて反り
の矯正を行うものであるが、そのための手法として、支
柱の高温変形を利用する代わりに、前記第二の焼成方法
と同様に支柱の焼成収縮を利用する。ただし、前記第二
の焼成方法が、被焼成体と支柱との焼成収縮開始時期の
時間差を利用していたのに対し、第三の焼成方法では、
被焼成体と支柱との焼成収縮の差を利用する。
Subsequently, a third firing method will be described. In the third firing method, similarly to the first firing method, the upper surface of the object to be fired and the lower surface of the setter thereabove are brought into contact with each other after the object to be fired substantially completes shrinkage, thereby correcting warpage. As a method for that, instead of utilizing the high-temperature deformation of the columns, the firing shrinkage of the columns is used in the same manner as in the second firing method. However, while the second firing method utilizes a time difference between firing shrinkage start times of the object to be fired and the pillars, the third firing method includes:
The difference in firing shrinkage between the object to be fired and the column is utilized.

【0021】 すなわち、第三の焼成方法では、焼成前
には前記被焼成体の厚みよりも厚い厚みを持つ支柱であ
って、被焼成体と同様に焼成収縮するが、被焼成体より
も焼成収縮が大きいものを用いる。
That is, in the third firing method, before firing, the support pillar has a thickness larger than the thickness of the object to be fired and shrinks in firing in the same manner as the object to be fired. Use a material with large shrinkage.

【0022】 このような支柱をセッター間に介在させ
て焼成を行うと、支柱は被焼成体より焼成収縮が大きい
ものの、その当初の厚みが被焼成体の厚みより厚いた
め、焼成後しばらくの間は、支柱の厚みが被焼成体の厚
みを上回り、被焼成体の上面とその上方に位置するセッ
ターの下面とが接触しないようにセッターの間隔を保持
する。更に焼成が進むと、支柱の焼成収縮が進行し、や
がて支柱は被焼成体の厚み以下の厚みまで収縮する。そ
して、この支柱の収縮によって、焼成収縮がほぼ終了し
た被焼成体の上面とその上方のセッターの下面とを接触
状態にせしめる。
When sintering is performed with such a support interposed between the setters, although the support shrinks more than the object to be fired, its initial thickness is larger than the thickness of the object to be fired. Maintains the interval between the setters so that the thickness of the columns exceeds the thickness of the object to be fired, and the upper surface of the object to be fired does not contact the lower surface of the setter located above the object. As firing proceeds further, firing shrinkage of the struts progresses, and the struts eventually shrink to a thickness equal to or less than the thickness of the object to be fired. Then, due to the contraction of the pillars, the upper surface of the fired object whose firing shrinkage is almost completed is brought into contact with the lower surface of the setter thereabove.

【0023】 このように、第三の焼成方法において
も、被焼成体は、焼成収縮が開始してから焼成収縮がほ
ぼ終了するまでは、セッターの荷重が加わらず、前述の
従来方法のようセッターによって焼成収縮を妨げられて
クラックが生じることが無い。そして、被焼成体がほぼ
焼成収縮を終了してからは、被焼成体は、それが載置さ
れているセッターとその上方のセッターとに挟まれつつ
更に高温に曝されることにより、焼成収縮の過程で生じ
ていた反りが矯正され、反りの無い平板焼結体となる。
なお、支柱の焼成収縮の大きさは、支柱の材質、成形方
法等により制御することができる。
As described above, also in the third firing method, the load of the setter is not applied to the object to be fired from the start of firing shrinkage until the firing shrinkage is substantially completed, and the setter is set as in the above-described conventional method. Thus, cracks are not generated by preventing shrinkage during firing. After the fired body has almost finished firing shrinkage, the fired body is exposed to a higher temperature while being sandwiched between the setter on which the fired body is placed and the setter thereabove. The warpage that has occurred during the process is corrected, and a flat sintered body without warpage is obtained.
In addition, the magnitude of the firing shrinkage of the support can be controlled by the material of the support, the molding method, and the like.

【0024】 第一ないし第三の焼成方法により得られ
た平板焼結体は、前記のように反りやクラックが無く、
後加工を施さなくても高い平面度を有する。
The flat plate sintered body obtained by the first to third firing methods has no warpage or cracks as described above,
High flatness without post-processing.

【0025】[0025]

【実施例】 以下、本発明を実施例に基づいて更に詳細
に説明するが、本発明はこれらの実施例に限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

【0026】(実施例1)比表面積11g/cm2の市販の
窒化珪素粉末92重量部と、市販のY23粉末5重量部
と、市販のMgO粉末3重量部とを、水溶媒の湿式アト
ライターで4時間混合粉砕した後、適量の有機バインダ
ーを混合し、スプレードライヤーにて乾燥造粒し成形用
粉末とした。この粉末を成形用プレス機に充填し、15
0MPaで一軸プレスすることにより、60mm×50mm
×0.8mm厚の窒化珪素成形体(被焼成体)を作製し
た。また、前記成形体とは別に、同一の成形用粉末を用
いて、10mm×10mm×1.0mm厚の窒化珪素成形体
(支柱)を、同様にプレス成形により作製した。
Example 1 92 parts by weight of a commercially available silicon nitride powder having a specific surface area of 11 g / cm 2 , 5 parts by weight of a commercially available Y 2 O 3 powder, and 3 parts by weight of a commercially available MgO powder were mixed with an aqueous solvent. After mixing and grinding with a wet attritor for 4 hours, an appropriate amount of an organic binder was mixed and dried and granulated with a spray drier to obtain a molding powder. This powder was filled into a molding press, and 15
60mm x 50mm by uniaxial pressing at 0MPa
A silicon nitride molded body (a body to be fired) having a thickness of 0.8 mm was produced. Separately from the above-mentioned molded product, a silicon nitride molded product (support) having a thickness of 10 mm × 10 mm × 1.0 mm was similarly produced by press molding using the same molding powder.

【0027】 直径230mm、厚さ5mmで平面度40ミ
クロンに加工した市販の窒化硼素(BN)セッター(第
一のBNセッター)の上に、前記60mm×50mm×0.
8mm厚の成形体を重ならないように並列に10枚敷き詰
め、このBNセッター上の外周には前記10mm×10mm
×1.0mm厚の支柱を12枚並列に同心円上に配置し
た。次いで、前記第一のBNセッターと同寸法で、片面
を平面度40ミクロンに加工した第二のBNセッターを
用意し、平面度40ミクロンに加工した面を前記支柱及
び成形体側に向け、支柱の上に設置した。この第二のB
Nセッター上には、重りとして前記成形体に用いたのと
同一の窒化珪素粉末より作製した窒化珪素焼結体を設置
し、支柱の面圧が0.016MPa(160gf/cm2)に
なるように設定した。このとき、60mm×50mm×0.
8mm厚の成形体は第二のBNセッターには接触していな
かった。
On a commercially available boron nitride (BN) setter (first BN setter) having a diameter of 230 mm, a thickness of 5 mm and a flatness of 40 μm, the above-mentioned 60 mm × 50 mm × 0.
Ten pieces of 8 mm thick compacts were laid in parallel so as not to overlap, and the outer circumference on this BN setter was 10 mm x 10 mm.
Twelve columns having a thickness of 1.0 mm were arranged in parallel on a concentric circle. Next, a second BN setter having the same dimensions as the first BN setter and having one surface processed to a flatness of 40 microns is prepared, and the surface processed to a flatness of 40 microns is directed toward the support and the molded body. Installed above. This second B
A silicon nitride sintered body made of the same silicon nitride powder as that used for the compact was installed as a weight on the N-setter, and the surface pressure of the support was adjusted to 0.016 MPa (160 gf / cm 2 ). Set to. At this time, 60 mm × 50 mm × 0.
The 8 mm thick compact did not contact the second BN setter.

【0028】 次いで、前記の構成物を、カーボン炉に
設置し、窒素1MPaの雰囲気下、1900℃に昇温し
て6時間の焼成を行った。冷却後に前記構成物を取り出
したところ、前記の支柱は高温変形して円形につぶれて
おり、かつ第二のBNセッターは、その外周に配置した
高温変形した支柱のみならず、焼成前は接触していなか
った内部に配置した成形体にも接触していた。
Next, the above-mentioned constituent was placed in a carbon furnace, and heated to 1900 ° C. in an atmosphere of 1 MPa of nitrogen and baked for 6 hours. When the component was taken out after cooling, the column was deformed at a high temperature and collapsed in a circular shape, and the second BN setter was in contact with not only the column deformed at a high temperature arranged on the outer periphery but also before firing. It was in contact with the molded body that had not been placed inside.

【0029】 これらの成形体は焼結し、約50mm×4
0mm×0.7mm厚の平板焼結体になっていた。これら1
0枚の平板焼結体は、何れにもクラックは認められなか
ったが、四隅が若干突出したように変形しており、僅か
ながら厚み方向に高温変形を受けていた。これら10枚
の平板焼結体の平面度を測定したところ、最大で55ミ
クロンであった。
These compacts are sintered to about 50 mm × 4
It was a flat sintered body having a thickness of 0 mm × 0.7 mm. These one
No cracks were observed in any of the 0 plate sintered bodies, but the plate was deformed so that the four corners slightly protruded, and slightly deformed at a high temperature in the thickness direction. When the flatness of these ten plate sintered bodies was measured, it was 55 microns at the maximum.

【0030】 また、これらをサンドブラスト処理して
表面粗さRaを0.8ミクロンにし、外周を研磨した。
平面度はサンドブラスト処理後もほとんど変化が無かっ
た。これらについて30mmスパンにて見かけの3点曲げ
強度を測定したところ、10枚の平均値は680MPa
であった。この結果を表1に示す。
Further, these were subjected to sand blasting to have a surface roughness Ra of 0.8 μm and the outer periphery thereof was polished.
The flatness remained almost unchanged after the sandblasting. When the apparent three-point bending strength of these was measured at a span of 30 mm, the average value of ten pieces was 680 MPa.
Met. Table 1 shows the results.

【0031】(比較例1)支柱の厚みを1.2mm厚とし
たことと、昇温して1900℃に達すると同時に焼成を
中断したこと以外は実施例1と同様に試験を行った。冷
却後に構成物を取り出したところ、支柱は焼結していた
ものの、高温変形によるつぶれはほとんど無く、第二の
BNセッターは外周に配置した支柱のみに接触してお
り、内部に配置した成形体とはほとんど接触していなか
った。内部の成形体は焼結して平板焼結体となっていた
が、これら平板焼結体は見た目に反りが大きく、平面度
の最大は200ミクロンであった。また、見かけの3点
曲げ強度の平均値は460MPaであった。この結果を
表1に示す。
(Comparative Example 1) A test was conducted in the same manner as in Example 1 except that the thickness of the column was 1.2 mm, and the temperature was raised to 1900 ° C and the firing was interrupted at the same time. When the components were taken out after cooling, the pillars were sintered, but there was almost no collapse due to high-temperature deformation, and the second BN setter was in contact with only the pillars arranged on the outer periphery, and the molded body placed inside Had little contact with him. The internal compact was sintered to form a flat plate sintered body. These flat plate sintered bodies had a large warp in appearance, and had a maximum flatness of 200 microns. The average value of the apparent three-point bending strength was 460 MPa. Table 1 shows the results.

【0032】(実施例2)第二のセッター上に設置する
窒化珪素焼結体(重り)の重量を調節して支柱の面圧を
0.010MPaにしたこと以外は、実施例1と同様に
試験を行った。冷却後に構成物を取り出したところ、第
二のBNセッターは外周に配置した高温変形した支柱の
みならず、焼成前は接触していなかった内部に配置した
成形体にも接触していた。内部の成形体は焼結して平板
焼結体となっており、これら10枚の平板焼結体の何れ
にもクラックは認められなかった。これら平板焼結体の
平面度の最大は75ミクロンであった。また、見かけの
3点曲げ強度の平均値は658MPaであった。この結
果を表1に示す。
(Example 2) As in Example 1, except that the surface pressure of the column was adjusted to 0.010 MPa by adjusting the weight of the silicon nitride sintered body (weight) placed on the second setter. The test was performed. When the component was taken out after cooling, the second BN setter was in contact with not only the high-temperature deformed struts arranged on the outer periphery but also the molded body arranged inside, which was not in contact before firing. The inner compact was sintered into a flat plate sintered body, and no crack was observed in any of these ten flat plate sintered bodies. The maximum flatness of these flat plate sintered bodies was 75 microns. The average value of the apparent three-point bending strength was 658 MPa. Table 1 shows the results.

【0033】(実施例3)支柱の厚みを1.2mm厚とし
たことと、第二のBNセッター上に設置する窒化珪素焼
結体(重り)の重量を調節して支柱の面圧を0.030
MPaとしたこと以外は実施例1と同様に試験を行っ
た。冷却後に構成物を取り出したところ、第二のBNセ
ッターは外周に配置した高温変形した支柱のみならず、
焼成前は接触していなかった内部に配置した成形体にも
接触していた。内部の成形体は焼結して平板焼結体とな
っており、これら10枚の平板焼結体の何れにもクラッ
クは認められなかった。これら平板焼結体の平面度の最
大は40ミクロンであった。また、見かけの3点曲げ強
度の平均値は700MPaであった。この結果を表1に
示す。
(Example 3) The thickness of the column was set to 1.2 mm, and the surface pressure of the column was reduced to 0 by adjusting the weight of the silicon nitride sintered body (weight) installed on the second BN setter. .030
The test was performed in the same manner as in Example 1 except that the pressure was changed to MPa. When the components were taken out after cooling, the second BN setter was not only the high-temperature deformed struts arranged on the outer periphery, but also
Before the firing, the molded body disposed inside, which was not in contact, was also in contact. The inner compact was sintered into a flat plate sintered body, and no crack was observed in any of these ten flat plate sintered bodies. The maximum flatness of these flat plate sintered bodies was 40 microns. The average value of the apparent three-point bending strength was 700 MPa. Table 1 shows the results.

【0034】(実施例4)第二のBNセッターの両面を
平面度40ミクロンに加工していたことと、第二のBN
セッターの上面に更に前記60mm×50mm×0.8mm厚
の窒化珪素成形体を重ならないように並列に10枚敷き
詰め、第二のBNセッターの外周に前記10mm×10mm
×1.0mm厚の支柱を8枚並列に同心円上に配置し、第
一のBNセッターと同寸法で、片面を平面度40ミクロ
ンに加工した第三のBNセッターを用意し、平面度40
ミクロンに加工した面を前記支柱及び成形体側に向けて
支柱の上に設置し、第一と第二のBNセッターの間の支
柱の面圧を0.016MPa、第二と第三のBNセッタ
ー間の支柱の面圧を0.015MPaに各々調整したこ
と以外は、実施例1と同様に試験を行った。
(Embodiment 4) Both surfaces of the second BN setter were processed to a flatness of 40 μm, and
10 silicon nitride molded bodies having a thickness of 60 mm x 50 mm x 0.8 mm are further laid in parallel on the upper surface of the setter so as not to overlap with each other, and the outer periphery of the second BN setter is 10 mm x 10 mm.
A third BN setter, in which eight columns each having a thickness of 1.0 mm are arranged in parallel on a concentric circle and having the same dimensions as the first BN setter and having one surface processed to have a flatness of 40 microns, is prepared.
The surface processed to a micron is placed on the support with the support and the molded body facing the support, and the surface pressure of the support between the first and second BN setters is 0.016 MPa, and the pressure between the second and third BN setters. The test was performed in the same manner as in Example 1 except that the surface pressure of the support was adjusted to 0.015 MPa.

【0035】 冷却後に前記構成物を取り出したとこ
ろ、第一と第二のBNセッター間の支柱及び第二と第三
のBNセッター間の支柱は何れも高温変形して円形につ
ぶれており、かつ第二、第三のBNセッターとも外周に
配置した高温変形した支柱のみならず、焼成前は接触し
ていなかった内部に配置した成形体にも接触していた。
内部の成形体は焼結して平板焼結体となっており、これ
ら20枚の平板焼結体の何れにもクラックは認められな
かった。これら平板焼結体の平面度の最大は50ミクロ
ンであった。また、これらをサンドブラスト処理して表
面粗さRaを0.8ミクロンにし、外周を研磨したもの
について、見かけの3点曲げ強度を測定したところ20
枚の平均値は690MPaであった。この結果を表1に
示す。
When the above-mentioned components were taken out after cooling, the columns between the first and second BN setters and the columns between the second and third BN setters were all deformed at a high temperature and collapsed into a circle, and Both the second and third BN setters were in contact with not only the high-temperature deformed struts arranged on the outer periphery but also the molded bodies arranged inside which were not in contact before firing.
The inner compact was sintered into a flat plate sintered body, and no crack was observed in any of these 20 flat plate sintered bodies. The maximum flatness of these plate sintered bodies was 50 microns. In addition, the three-point bending strength of those obtained by sandblasting them to a surface roughness Ra of 0.8 μm and polishing the outer periphery was measured.
The average value of the sheets was 690 MPa. Table 1 shows the results.

【0036】(比較例2)支柱を設置せず、10枚の成
形体の上に直に第二のBNセッターを載置したことと、
第二のBNセッターの上面に重りを設置しなかったこと
以外は実施例1と同様に試験を行った。冷却後に構成物
を取り出したところ、成形体は焼結して平板焼結体とな
っていたが、10枚中3枚に、中央部に縦に走るクラッ
クが認められた。残りの7枚の平面度は最大で65ミク
ロンであった。また、これら7枚の見かけの3点曲げ強
度は680MPaであった。この結果を表1に示す。
(Comparative Example 2) A second BN setter was directly mounted on ten molded bodies without setting up columns,
The test was performed in the same manner as in Example 1 except that no weight was set on the upper surface of the second BN setter. When the component was taken out after cooling, the molded body was sintered to be a flat plate sintered body, but cracks running vertically in the center were observed in three out of ten sheets. The remaining seven had a flatness of at most 65 microns. The apparent three-point bending strength of these seven sheets was 680 MPa. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】(実施例5)平均粒径0.8ミクロンの市
販の窒化アルミニウム粉末95重量部と、市販のY23
粉末5重量部とを、アクリル系有機バインダー及び可塑
剤を適量加えた上で、トルエン溶媒でモノボールにより
ボールミル混合しスラリーを作製した。更に、このスラ
リーからドクターブレード法により0.5mm厚及び0.
7mm厚のグリーンテープを作製した。乾燥後打ち抜きに
より、0.5mm厚のグリーンテープからは60mm×50
mm×0.5mm厚の成形体(被焼成体)を作製した。ま
た、同様に、0.7mm厚のグリーンテープからは10mm
×10mm×0.7mm厚の成形体(支柱)を作製した。
Example 5 95 parts by weight of a commercially available aluminum nitride powder having an average particle size of 0.8 μm and a commercially available Y 2 O 3
An appropriate amount of an acrylic organic binder and a plasticizer were added to 5 parts by weight of the powder, and the mixture was ball-milled with a toluene solvent using a monoball to prepare a slurry. Further, the slurry was 0.5 mm thick and 0.1 mm thick by a doctor blade method.
A 7 mm thick green tape was produced. By punching after drying, 60mm x 50mm from 0.5mm thick green tape
A molded body (a body to be fired) having a thickness of 0.5 mm × 0.5 mm was produced. Similarly, 10 mm from a 0.7 mm thick green tape
A molded body (support) having a thickness of 10 mm x 0.7 mm was produced.

【0039】 直径230mm、厚さ5mmで平面度40ミ
クロンに加工した市販のBNセッター(第一のBNセッ
ター)の上に、前記60mm×50mm×0.5mm厚の成形
体を重ならないように並列に10枚敷き詰め、このBN
セッター上の外周には前記10mm×10mm×0.7mm厚
の支柱を12枚並列に同心円上に配置した。次いで、前
記第一のBNセッターと同寸法で、片面を平面度40ミ
クロンに加工した第二のBNセッターを用意し、平面度
40ミクロンに加工した面を前記支柱及び成形体側に向
け、支柱の上に設置した。この第二のBNセッター上に
は、重りとしてBN焼結体を設置し、支柱の面圧が0.
020MPaになるように設定した。このとき、60mm
×50mm×0.5mm厚の成形体は第二のBNセッターに
は接触していなかった。
A 60 mm × 50 mm × 0.5 mm thick molded body is arranged in parallel on a commercially available BN setter (first BN setter) having a diameter of 230 mm, a thickness of 5 mm and a flatness of 40 μm, without overlapping. 10 sheets on the BN
On the outer periphery of the setter, twelve columns of 10 mm × 10 mm × 0.7 mm were arranged in parallel on a concentric circle. Next, a second BN setter having the same dimensions as the first BN setter and having one surface processed to a flatness of 40 microns is prepared, and the surface processed to a flatness of 40 microns is directed toward the support and the molded body. Installed above. On this second BN setter, a BN sintered body is installed as a weight, and the surface pressure of the column is set to 0.
It was set to be 020 MPa. At this time, 60mm
The molded body having a thickness of 50 mm x 0.5 mm was not in contact with the second BN setter.

【0040】 次いで、前記の構成物を、カーボン炉に
設置し、窒素0.1MPaの雰囲気下、1800℃に昇
温して4時間の焼成を行った。冷却後に前記構成物を取
り出したところ、前記の支柱は高温変形して円形につぶ
れており、かつ第二のBNセッターは、その外周に配置
した高温変形した支柱のみならず、焼成前は接触してい
なかった内部に配置した成形体にも接触していた。
Next, the above-mentioned constituent was placed in a carbon furnace, and heated to 1800 ° C. in an atmosphere of nitrogen of 0.1 MPa and baked for 4 hours. When the component was taken out after cooling, the column was deformed at a high temperature and collapsed in a circular shape, and the second BN setter was in contact with not only the column deformed at a high temperature arranged on the outer periphery but also before firing. It was in contact with the molded body that had not been placed inside.

【0041】 これらの成形体は焼結し、約45mm×3
5mm×0.3mm厚の平板焼結体になっていた。これら1
0枚の平板焼結体は、何れにもクラックは認められなか
ったが、四隅が若干突出したように変形しており、僅か
ながら厚み方向に高温変形を受けていた。これら10枚
の平板焼結体の平面度を測定したところ、最大で50ミ
クロンであった。
These compacts are sintered to about 45 mm × 3
It was a 5 mm x 0.3 mm thick plate sintered body. These one
No cracks were observed in any of the 0 plate sintered bodies, but the plate was deformed so that the four corners slightly protruded, and slightly deformed at a high temperature in the thickness direction. When the flatness of these ten plate sintered bodies was measured, it was 50 microns at the maximum.

【0042】 また、これらをサンドブラスト処理して
表面粗さRaを0.8ミクロンにし、外周を研磨した。
平面度はサンドブラスト処理後もほとんど変化が無かっ
た。これらについて見かけの3点曲げ強度を測定したと
ころ、10枚の平均値は260MPaであった。この結
果を表2に示す。
Further, these were subjected to a sandblast treatment to a surface roughness Ra of 0.8 μm, and the outer periphery was polished.
The flatness remained almost unchanged after the sandblasting. When the apparent three-point bending strength was measured for these, the average value of ten sheets was 260 MPa. Table 2 shows the results.

【0043】(実施例6)ドクターブレード法と打ち抜
きにより作製した10mm×10mm×0.7mm厚の窒化ア
ルミニウム成形体(支柱)の代わりに、実施例1で使用
した10mm×10mm×1.0mm厚の窒化珪素成形体
(支柱)を使用したことと、焼成雰囲気を窒素1MPa
にしたことと、焼成条件を1900℃に昇温して4時間
焼成することにしたこと以外は実施例5と同様に試験を
行った。冷却後に構成物を取り出したところ、前記の支
柱は高温変形して円形につぶれており、かつ第二のBN
セッターは外周に配置した高温変形した支柱のみなら
ず、焼成前は接触していなかった内部に配置した成形体
にも接触していた。
Example 6 A 10 mm × 10 mm × 1.0 mm thickness used in Example 1 was used in place of a 10 mm × 10 mm × 0.7 mm aluminum nitride formed body (post) manufactured by a doctor blade method and punching. And the firing atmosphere was 1 MPa of nitrogen.
A test was conducted in the same manner as in Example 5, except that the temperature was raised to 1900 ° C. and firing was performed for 4 hours. When the component was taken out after cooling, the column was deformed at a high temperature and collapsed into a circle, and the second BN
The setter was in contact with not only the high-temperature deformed struts arranged on the outer periphery, but also the molded bodies arranged inside which were not in contact before firing.

【0044】 これらの成形体は焼結して約45mm×3
5mm×0.3mm厚の平板焼結体となっており、これら1
0枚の平板焼結体の何れにもクラックは認められなかっ
た。これら10枚の平板焼結体の平面度を測定したとこ
ろ、最大で75ミクロンであった。
These compacts are sintered to about 45 mm × 3
It is a 5mm x 0.3mm thick plate sintered body.
No crack was observed in any of the zero plate sintered bodies. When the flatness of these ten flat plate sintered bodies was measured, it was at most 75 microns.

【0045】 また、これらをサンドブラスト処理して
表面粗さRaを0.8ミクロンにし、外周を研磨した。
平面度はサンドブラスト処理後もほとんど変化が無かっ
た。これらについて見かけの3点曲げ強度を測定したと
ころ、10枚の平均値は240MPaであった。この結
果を表2に示す。
Further, these were subjected to sand blast treatment to make the surface roughness Ra 0.8 μm, and the outer periphery was polished.
The flatness remained almost unchanged after the sandblasting. When the apparent three-point bending strength was measured for these, the average value of the ten sheets was 240 MPa. Table 2 shows the results.

【0046】(実施例7)平均粒径0.8ミクロンの市
販の窒化アルミニウム粉末95重量部と、市販のY23
粉末5重量部とを、アクリル系有機バインダー及び可塑
剤を適量加えた上で、トルエン溶媒でジルコニアボール
により24時間ボールミル混合しスラリーを作製した。
更に、このスラリーからドクターブレード法により0.
7mm厚のグリーンテープを作製した。乾燥後打ち抜きに
より、このグリーンテープから60mm×50mm×0.7
mm厚の成形体(被焼成体)を作製した。
Example 7 95 parts by weight of a commercially available aluminum nitride powder having an average particle diameter of 0.8 μm and a commercially available Y 2 O 3
5 parts by weight of the powder and an appropriate amount of an acrylic organic binder and a plasticizer were added, and the mixture was ball-milled with a zirconia ball in a toluene solvent for 24 hours to prepare a slurry.
Further, the slurry was added to the slurry by a doctor blade method.
A 7 mm thick green tape was produced. By punching after drying, from this green tape 60 mm x 50 mm x 0.7
A molded body (a body to be fired) having a thickness of mm was produced.

【0047】 また、同様に、平均粒径0.8ミクロン
の市販の窒化アルミニウム粉末95重量部と、市販のY
23粉末5重量部とを、アクリル系有機バインダー及び
可塑剤を適量加えた上で、トルエン溶媒でモノボールに
よりボールミル混合しスラリーを作製した。更に、この
スラリーからドクターブレード法により0.7mm厚のグ
リーンテープを作製した。乾燥後打ち抜きにより、この
グリーンテープから10mm×10mm×0.7mmの成形体
(支柱)を作製した。
Similarly, 95 parts by weight of a commercially available aluminum nitride powder having an average particle size of 0.8 μm and a commercially available Y
After adding an appropriate amount of an acrylic organic binder and a plasticizer to 5 parts by weight of 2 O 3 powder, a ball mill was mixed with a toluene solvent using a monoball to prepare a slurry. Further, a green tape having a thickness of 0.7 mm was prepared from the slurry by a doctor blade method. By punching after drying, a molded product (support) of 10 mm × 10 mm × 0.7 mm was produced from the green tape.

【0048】 なお、事前に実施した焼成試験から、前
者のジルコニアボール粉砕品は1650℃で緻密化し、
後者のモノボール粉砕品は1700℃でないと緻密化し
ないことが判っていた。すなわち、前者の方が焼成収縮
のタイミングが早いことになる。これは、ジルコニアボ
ールで粉砕することによって窒化アルミニウム粉末がよ
り微粉になることと、微量のジルコニアが窒化アルミニ
ウム粉末に混入することによって焼結助剤として働くこ
ととによるものと推察される。
From the firing test conducted in advance, the former zirconia ball pulverized product was densified at 1650 ° C.
It has been found that the latter pulverized monoball does not densify unless it is at 1700 ° C. In other words, the former has the earlier firing shrinkage timing. This is presumed to be due to the fact that the aluminum nitride powder becomes finer by pulverizing with zirconia balls and that a small amount of zirconia mixes into the aluminum nitride powder to act as a sintering aid.

【0049】 直径230mm、厚さ5mmで平面度40ミ
クロンに加工した市販のBNセッター(第一のBNセッ
ター)の上に、前記60mm×50mm×0.7mm厚の成形
体を重ならないように並列に10枚敷き詰め、このBN
セッター上の外周には前記10mm×10mm×0.7mm厚
の支柱を12枚並列に同心円上に配置した。次いで、前
記BNセッターと同寸法で、片面を平面度40ミクロン
に加工した第二のBNセッターを用意し、平面度40ミ
クロンに加工した面を前記支柱及び成形体側に向け、支
柱の上に設置した。このとき、第二のBNセッターは成
形体にも支柱にも接触していたが、仮に支柱のみに荷重
がかかると仮定した場合の支柱の面圧が0.020MP
aになるように、第二のBNセッター上に、重りとして
BN焼結体を設置した。
A 60 mm × 50 mm × 0.7 mm thick molded body is arranged in parallel on a commercially available BN setter (first BN setter) having a diameter of 230 mm, a thickness of 5 mm and a flatness of 40 μm, without overlapping. 10 sheets on the BN
On the outer periphery of the setter, twelve columns of 10 mm × 10 mm × 0.7 mm were arranged in parallel on a concentric circle. Next, a second BN setter having the same dimensions as the BN setter and having one surface processed to a flatness of 40 microns is prepared, and the surface processed to a flatness of 40 microns is placed on the support with the surface processed to the support and the molded body side. did. At this time, the second BN setter was in contact with both the formed body and the support, but the surface pressure of the support was 0.020MP, assuming that the load was applied only to the support.
A BN sintered body was set as a weight on the second BN setter so as to be a.

【0050】 次いで、前記の構成物を、カーボン炉に
設置し、窒素0.1MPaの雰囲気下、1800℃に昇
温して4時間の焼成を行った。冷却後に前記構成物を取
り出したところ、前記の支柱も内部の成形体も同じ厚み
となっており、両者とも第二のBNセッターに接触して
いた。
Next, the above-mentioned component was placed in a carbon furnace, and heated to 1800 ° C. in an atmosphere of 0.1 MPa of nitrogen and baked for 4 hours. When the component was taken out after cooling, both the support and the internal compact had the same thickness, and both were in contact with the second BN setter.

【0051】 成形体は焼結し、約45mm×35mm×
0.5mm厚の平板焼結体になっていた。これら10枚の
平板焼結体は、何れにもクラックは認められなかった。
これら10枚の平板焼結体の平面度を測定したところ、
最大で45ミクロンであった。
The molded body is sintered to about 45 mm × 35 mm ×
It was a 0.5 mm thick flat plate sintered body. No cracks were observed in any of these ten flat plate sintered bodies.
When the flatness of these ten plate sintered bodies was measured,
The maximum was 45 microns.

【0052】 また、これらをサンドブラスト処理して
表面粗さRaを0.8ミクロンにし、外周を研磨した。
平面度はサンドブラスト処理後もほとんど変化が無かっ
た。これらについて見かけの3点曲げ強度を測定したと
ころ、10枚の平均値は320MPaであった。この結
果を表2に示す。
Further, these were subjected to sand blast treatment to make the surface roughness Ra 0.8 μm, and the outer periphery was polished.
The flatness remained almost unchanged after the sandblasting. When the apparent three-point bending strength was measured for these, the average value of ten sheets was 320 MPa. Table 2 shows the results.

【0053】(比較例3)60mm×50mm×0.7mm厚
の成形体も、10mm×10mm×0.7mmの支柱も、モノ
ボールによりボールミル混合したスラリーから作製した
グリーンテープを打ち抜いて作製した以外は、実施例7
と同様に試験を行った。冷却後に構成物を取り出したと
ころ、前記の支柱も内部の成形体も同じ厚みとなってお
り、両者とも第二のBNセッターに接触していた。成形
体は焼結して平板焼結体となっていたが、10枚中4枚
に、中央部に縦に走るクラックが認められた。残りの6
枚の平面度は最大で50ミクロンであった。また、これ
ら6枚の見かけの3点曲げ強度は310MPaであっ
た。この結果を表2に示す。
(Comparative Example 3) A molded product having a thickness of 60 mm x 50 mm x 0.7 mm and a support having a size of 10 mm x 10 mm x 0.7 mm were produced by punching a green tape made from a slurry mixed with a ball mill using a monoball. Example 7
The test was performed in the same manner as in the above. When the component was taken out after cooling, both the support and the internal compact had the same thickness, and both were in contact with the second BN setter. Although the formed body was sintered to be a flat plate sintered body, cracks running vertically in the center were observed in four out of ten sheets. Remaining 6
The flatness of the sheet was at most 50 microns. The apparent three-point bending strength of these six sheets was 310 MPa. Table 2 shows the results.

【0054】(比較例4)支柱を設置せず、10枚の成
形体の上に直に第二のBNセッターを載置したこと以外
は実施例7と同様に試験を行った。冷却後に構成物を取
り出したところ、成形体は焼結して平板焼結体となって
いたが、10枚中3枚に、中央部に縦に走るクラックが
認められた。残りの7枚の平面度は最大で55ミクロン
であった。また、これら7枚の見かけの3点曲げ強度は
320MPaであった。この結果を表2に示す。
(Comparative Example 4) A test was performed in the same manner as in Example 7 except that the second BN setter was directly mounted on the ten molded bodies without setting the columns. When the component was taken out after cooling, the molded body was sintered to be a flat plate sintered body, but cracks running vertically in the center were observed in three out of ten sheets. The flatness of the remaining seven sheets was at most 55 microns. The apparent three-point bending strength of these seven sheets was 320 MPa. Table 2 shows the results.

【0055】[0055]

【表2】 [Table 2]

【0056】(実施例8)比表面積15g/cm2の市販の
炭化珪素粉末91重量部と、市販のAl23粉末5重量
部と、市販のY23粉末4重量部とを、水溶媒の湿式ア
トライターで2時間混合粉砕した後、適量の有機バイン
ダーを混合し、スプレードライヤーにて乾燥造粒し成形
用粉末とした。この粉末を成形用プレス機に充填し、1
50MPaで一軸プレスすることにより、外径120mm
×内径30mm×2mm厚の穴あき円板型成形体(被焼成
体)を作製した。また、前記成形体とは別に、同一の成
形用粉末を用いて、10mm×10mm×3mm厚の炭化珪素
成形体(支柱)を、同様にプレス成形により作製した。
Example 8 91 parts by weight of a commercially available silicon carbide powder having a specific surface area of 15 g / cm 2 , 5 parts by weight of a commercially available Al 2 O 3 powder, and 4 parts by weight of a commercially available Y 2 O 3 powder After mixing and grinding for 2 hours with a water solvent wet attritor, an appropriate amount of an organic binder was mixed and dried and granulated with a spray dryer to obtain a molding powder. This powder is filled into a molding press, and
Outer diameter 120mm by uniaxial pressing at 50MPa
X A 30 mm x 2 mm thick perforated disk-shaped molded product (subject to be fired) was prepared. Separately from the above-mentioned molded body, a silicon carbide molded body (support) having a thickness of 10 mm × 10 mm × 3 mm was similarly produced by press molding using the same molding powder.

【0057】 直径230mm、厚さ5mmで平面度40ミ
クロンに加工した市販のBNセッター(第一のBNセッ
ター)の上に、前記外径120mm×内径30mm×2mm厚
の穴あき円板型成形体を1枚敷き、BNセッター上の外
周には前記10mm×10mm×3mm厚の支柱を12枚並列
に同心円上に配置した。次いで、前記BNセッターと同
寸法で、片面を平面度40ミクロンに加工した第二のB
Nセッターを用意し、平面度40ミクロンに加工した面
を前記支柱及び成形体側に向け、支柱の上に設置した。
この第二のBNセッター上には、重りとして前記成形体
に用いたのと同一の炭化珪素粉末より作製した成形体を
設置し、支柱の面圧が0.040MPaになるように設
定した。このとき、前記の穴あき円板型成形体は第二の
BNセッターには接触していなかった。
On a commercially available BN setter (first BN setter) having a diameter of 230 mm, a thickness of 5 mm and a flatness of 40 μm, a perforated disk-shaped molded article having an outer diameter of 120 mm × inner diameter of 30 mm × 2 mm And 12 columns of the 10 mm × 10 mm × 3 mm thickness were arranged in a concentric circle on the outer periphery of the BN setter. Next, a second B having the same dimensions as the BN setter and having one surface processed to a flatness of 40 microns.
An N setter was prepared and placed on the support with the surface processed to a flatness of 40 microns facing the support and the molded body.
On this second BN setter, a compact formed from the same silicon carbide powder as that used for the compact was installed as a weight, and the surface pressure of the support was set to 0.040 MPa. At this time, the perforated disk-shaped molded product was not in contact with the second BN setter.

【0058】 次いで、前記の構成物を、カーボン炉に
設置し、アルゴン1MPaの雰囲気下、2000℃に昇
温して5時間の焼成を行った。冷却後に前記構成物を取
り出したところ、前記の支柱は高温変形して円形につぶ
れており、かつ第二のBNセッターは、その外周に配置
した高温変形した支柱のみならず、焼成前は接触してい
なかった内部に配置した成形体にも接触していた。
Next, the above-mentioned constituent was placed in a carbon furnace, and heated to 2000 ° C. in an atmosphere of 1 MPa of argon and fired for 5 hours. When the component was taken out after cooling, the column was deformed at a high temperature and collapsed in a circular shape, and the second BN setter was in contact with not only the column deformed at a high temperature arranged on the outer periphery but also before firing. It was in contact with the molded body that had not been placed inside.

【0059】 この成形体は焼結し、外径97mm×内径
19mm×1.5mm厚の穴あき円板型焼結体になってい
た。この穴あき円板型焼結体には、クラックは認められ
なかったが、若干内外径方向に変形しており、僅かなが
ら厚み方向に高温変形を受けていた。この穴あき円板型
平板焼結体の平面度を測定したところ、70ミクロンで
あった。
This compact was sintered to form a perforated disk-shaped sintered body having an outer diameter of 97 mm × an inner diameter of 19 mm × 1.5 mm. Although no cracks were observed in the perforated disk-shaped sintered body, the sintered body was slightly deformed in the inner and outer radial directions, and slightly deformed in the thickness direction at a high temperature. The flatness of the perforated disc-shaped flat plate was measured and found to be 70 microns.

【0060】 また、これをサンドブラスト処理して表
面粗さRaを0.8ミクロンにし、外周及び内周を研磨
した。平面度はサンドブラスト処理後もほとんど変化が
無かった。この穴あき円板型焼結体より40mm×4mm×
1.4mm厚の試験片を切り取り、見かけの3点曲げ強度
を測定したところ、10枚の平均値は420MPaであ
った。この結果を表3に示す。
Further, this was subjected to sand blasting to make the surface roughness Ra 0.8 μm, and the outer periphery and the inner periphery were polished. The flatness remained almost unchanged after the sandblasting. 40mm × 4mm ×
A test piece having a thickness of 1.4 mm was cut out, and the apparent three-point bending strength was measured. The average value of the ten pieces was 420 MPa. Table 3 shows the results.

【0061】(比較例5)支柱を設置せず、穴あき円板
型成形体の上に直に第二のBNセッターを載置したこと
以外は実施例8と同様に試験を行った。冷却後に構成物
を取り出したところ、成形体は焼結して穴あき円板型焼
結体となっていたが、焼結体を二分するように走るクラ
ックが認められた。この結果を表3に示す。
(Comparative Example 5) A test was conducted in the same manner as in Example 8 except that the column was not provided, and the second BN setter was directly mounted on the perforated disk-shaped molded product. When the component was taken out after cooling, the compact was sintered to form a disc-shaped sintered body with holes, but cracks running so as to bisect the sintered body were observed. Table 3 shows the results.

【0062】(実施例9)焼結助剤として硼素及び炭素
が適量配合されており、有機バインダーを10重量%含
む市販の炭化珪素スプレードライ造粒粉を成形用粉末と
して用いたことと、焼成条件を2400℃に昇温して5
時間焼成することにしたこと以外は実施例8と同様に試
験を行った。冷却後に構成物を取り出したところ、第二
のBNセッターは外周に配置した高温変形した支柱のみ
ならず、焼成前は接触していなかった内部に配置した成
形体にも接触していた。成形体は焼結して穴あき円板型
焼結体となっており、その平面度は75ミクロンであっ
た。また、この穴あき円板型焼結体から、実施例8と同
様に試験片を切り取り、見かけの3点曲げ強度を測定し
たところ、10枚の平均値は410MPaであった。こ
の結果を表3に示す。
Example 9 A commercially available silicon carbide spray-dried granulated powder containing an appropriate amount of boron and carbon as a sintering aid and containing 10% by weight of an organic binder was used as a molding powder. The temperature was raised to 2400 ° C and 5
The test was performed in the same manner as in Example 8, except that the firing was performed for an hour. When the component was taken out after cooling, the second BN setter was in contact with not only the high-temperature deformed struts arranged on the outer periphery but also the molded body arranged inside, which was not in contact before firing. The compact was sintered to form a disc-shaped sintered body with holes, and the flatness was 75 microns. Further, a test piece was cut out from this perforated disc-shaped sintered body in the same manner as in Example 8, and the apparent three-point bending strength was measured. The average value of the ten pieces was 410 MPa. Table 3 shows the results.

【0063】(実施例10)比表面積15g/cm2の炭化
珪素粉末に焼結助剤として硼素及び炭素が適量配合され
ており、有機バインダーを10重量%含む市販の炭化珪
素スプレードライ造粒粉を成形用粉末として用いた。こ
の粉末を成形用プレス機に充填し、100MPaで一軸
プレス後、680MPaでコールドアイソスタティック
成形(CIP)することにより、外径115mm×内径2
7mm×2mm厚の穴あき円板型成形体(被焼成体)を作製
した。また、前記成形体とは別に、同一の成形用粉末を
100MPaで一軸プレス後、厚みを調整加工すること
により、10mm×10mm×2.05mm厚の炭化珪素成形
体(支柱)を作製した。
Example 10 Commercially available silicon carbide spray-dried granulated powder containing silicon carbide powder having a specific surface area of 15 g / cm 2, an appropriate amount of boron and carbon as a sintering aid, and containing 10% by weight of an organic binder. Was used as a molding powder. This powder is filled in a molding press, and is uniaxially pressed at 100 MPa, and then cold isostatically molded (CIP) at 680 MPa to obtain an outer diameter of 115 mm and an inner diameter of 2 mm.
A 7 mm x 2 mm thick perforated disk-shaped molded body (a body to be fired) was produced. Separately from the above-mentioned molded body, the same molding powder was uniaxially pressed at 100 MPa, and the thickness was adjusted and processed to produce a silicon carbide molded body (support) having a thickness of 10 mm × 10 mm × 2.05 mm.

【0064】 なお、事前に実施した焼成試験から、前
者の680MPaでコールドアイソスタティック成形し
たCIP成形体の成形体密度は1.87g/cm3であり、
2300℃で5時間焼成した後には線収縮率16.4%
の焼成収縮を生ずることが判っていた。また、後者の1
00MPaで一軸プレス成形した一軸プレス成形体の成
形体密度は1.63g/cm3であり、2300℃で5時間
焼成した後には線収縮率20.0%の焼成収縮を生ずる
ことが判っていた。
From the firing test conducted in advance, the density of the former CIP molded article cold-statically molded at 680 MPa is 1.87 g / cm 3 ,
After firing at 2300 ° C. for 5 hours, the linear shrinkage is 16.4%.
Has been found to cause firing shrinkage. In addition, the latter 1
The compact density of the uniaxial press-formed body which was uniaxially press-formed at 00 MPa was 1.63 g / cm 3 , and it was found that firing at 2300 ° C. for 5 hours caused firing shrinkage with a linear shrinkage of 20.0%. .

【0065】 直径230mm、厚さ5mmで平面度40ミ
クロンに加工した市販のBNセッター(第一のBNセッ
ター)の上に、前記外径115mm×内径27mm×2mm厚
の穴あき円板型成形体を1枚敷き、BNセッター上の外
周には前記10mm×10mm×2.05mm厚の支柱を12
枚並列に同心円上に配置した。次いで、前記BNセッタ
ーと同寸法で、片面を平面度40ミクロンに加工した第
二のBNセッターを用意し、平面度40ミクロンに加工
した面を前記支柱及び成形体側に向け、支柱の上に設置
した。この第二のBNセッター上には、重りとして前記
成形体に用いたのと同一の炭化珪素粉末より作製した成
形体を設置し、支柱の面圧が0.040MPaになるよ
うに設定した。このとき、前記の穴あき円板型成形体は
第二のBNセッターには接触していなかった。
On a commercially available BN setter (first BN setter) having a diameter of 230 mm, a thickness of 5 mm and a flatness of 40 μm, a perforated disk-shaped molded body having an outer diameter of 115 mm × inner diameter of 27 mm × 2 mm On the BN setter and 12 columns of 10 mm x 10 mm x 2.05 mm thick
They were arranged on concentric circles in parallel. Next, a second BN setter having the same dimensions as the BN setter and having one surface processed to a flatness of 40 microns is prepared, and the surface processed to a flatness of 40 microns is placed on the support with the surface processed to the support and the molded body side. did. On this second BN setter, a compact formed from the same silicon carbide powder as that used for the compact was installed as a weight, and the surface pressure of the support was set to 0.040 MPa. At this time, the perforated disk-shaped molded product was not in contact with the second BN setter.

【0066】 次いで、前記の構成物を、カーボン炉に
設置し、アルゴン1MPaの雰囲気下、2300℃に昇
温して5時間の焼成を行った。冷却後に前記構成物を取
り出したところ、前記の支柱は焼結していたが高温変形
はほとんど認められなかった。また、第二のBNセッタ
ーは、焼成前は接触していなかった内部に配置した成形
体に接触していた。
Next, the above-mentioned constituent was placed in a carbon furnace, and heated to 2300 ° C. in an atmosphere of 1 MPa of argon and baked for 5 hours. When the component was taken out after cooling, the column was sintered, but almost no high-temperature deformation was observed. In addition, the second BN setter was in contact with the compact disposed inside which was not in contact before firing.

【0067】 この成形体は焼結し、外径95mm×内径
17mm×1.5mm厚の穴あき円板型焼結体になってい
た。この穴あき円板型焼結体には、クラックは認められ
なかったが、若干内外径方向に変形しており、僅かなが
ら厚み方向に高温変形を受けていた。この穴あき円板型
平板焼結体の平面度を測定したところ、65ミクロンで
あった。
This compact was sintered to form a perforated disc-shaped sintered body having an outer diameter of 95 mm, an inner diameter of 17 mm and a thickness of 1.5 mm. Although no cracks were observed in the perforated disk-shaped sintered body, the sintered body was slightly deformed in the inner and outer radial directions, and slightly deformed in the thickness direction at a high temperature. The flatness of the perforated disc-shaped flat plate was measured and found to be 65 microns.

【0068】 また、これをサンドブラスト処理して表
面粗さRaを0.8ミクロンにし、外周及び内周を研磨
した。平面度はサンドブラスト処理後もほとんど変化が
無かった。この穴あき円板型焼結体より40mm×4mm×
1.4mm厚の試験片を切り取り、見かけの3点曲げ強度
を測定したところ、10枚の平均値は405MPaであ
った。この結果を表3に示す。
Further, this was subjected to sand blasting to make the surface roughness Ra 0.8 μm, and the outer and inner circumferences were polished. The flatness remained almost unchanged after the sandblasting. 40mm × 4mm ×
A test piece having a thickness of 1.4 mm was cut out, and the apparent three-point bending strength was measured. The average value of the ten pieces was 405 MPa. Table 3 shows the results.

【0069】[0069]

【表3】 [Table 3]

【0070】[0070]

【発明の効果】 以上説明したように、本発明の焼成方
法においては、被焼成体の焼成収縮が開始してから焼成
収縮がほぼ終了するまでは、被焼成体の上面にセッター
が接触しない、すなわち被焼成体に荷重が加わらず、被
焼成体の焼成収縮がほぼ終了してから上下のセッターの
挟み込みによる反りの修正が行なわれるので、従来のよ
うに焼成収縮の過程でクラックが発生することが無く、
反りやクラックの無い平板焼結体を安価に得られる。ま
た、本発明の方法により得られた平板焼結体は、前記の
ように反りやクラックが無く、後加工を施さなくても高
い平面度を有する。
As described above, in the firing method of the present invention, the setter does not come into contact with the upper surface of the object to be fired until the firing shrinkage of the object to be fired is substantially completed after the shrinkage of the object to be fired. That is, since a load is not applied to the object to be fired, and the shrinkage of the object to be fired is almost completed, the warpage is corrected by pinching the upper and lower setters. Without
A flat plate sintered body without warpage or cracks can be obtained at low cost. Moreover, the flat plate sintered body obtained by the method of the present invention has no warpage or cracks as described above, and has a high flatness without post-processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 支柱を介して棚組みされたセッター上に被焼
成体(成形体)を載置した焼成開始前の状態を示す説明
図である。
FIG. 1 is an explanatory diagram showing a state before starting firing, in which an object to be fired (a molded body) is placed on a setter assembled on a shelf via a support.

【図2】 被焼成体が、セッターにより挟まれた状態を
示す説明図である。
FIG. 2 is an explanatory view showing a state in which a body to be fired is sandwiched by setters.

【符号の説明】[Explanation of symbols]

1…被焼成体、3…支柱、5…セッター。 Reference numeral 1 denotes an object to be fired, 3 a support, and 5 a setter.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 支柱を介して棚組されたセッター上にセ
ラミックスからなる平板状の被焼成体を載置して焼成す
ることにより焼結体を得る平板焼結体の焼成方法であっ
て、 前記支柱が、焼成前には前記被焼成体の厚みより厚い厚
みを持ち、焼成過程において前記被焼成体の焼成収縮が
ほぼ終了するまでは、前記被焼成体の上面とその上方の
セッターの下面とを非接触状態に保ち、前記被焼成体の
焼成収縮がほぼ終了ししてからは、前記支柱自身がそれ
に加わる重量圧力で高温変形して厚みを減じることによ
って、前記被焼成体の上面とその上方のセッターの下面
とを接触状態にせしめることを特徴とする平板焼結体の
焼成方法。
1. A method for firing a flat plate sintered body, wherein a sintered body is obtained by placing a flat plate-shaped body to be fired made of ceramics on a setter arranged on a shelf via a column and firing the same. The support has a thickness greater than the thickness of the object to be fired before firing, and the upper surface of the object to be fired and the lower surface of the setter thereabove until firing shrinkage of the object to be fired is substantially completed in the firing process. Is kept in a non-contact state, and after the firing contraction of the fired body is almost completed, the strut itself is deformed at a high temperature by the weight pressure applied thereto to reduce its thickness, thereby reducing the thickness of the upper surface of the fired body. A method for firing a flat plate sintered body, comprising bringing a lower surface of a setter above the setter into a contact state.
【請求項2】 支柱を介して棚組されたセッター上にセ
ラミックスからなる平板状の被焼成体を載置して焼成す
ることにより焼結体を得る平板焼結体の焼成方法であっ
て、 前記支柱が、焼成前には前記被焼成体の厚みとほぼ同等
の厚みを持つとともに、前記被焼成体よりも高温で焼成
収縮を始めるものであり、焼成過程において前記被焼成
体の焼成収縮が開始してから焼成収縮がほぼ終了するま
では、前記支柱の前記被焼成体に対する焼成収縮の遅れ
によって、前記被焼成体の上面とその上方のセッターの
下面とを非接触状態に保ち、被焼成体の焼成収縮がほぼ
終了してからは、前記支柱が前記被焼成体の厚み以下の
厚みまで焼成収縮することによって、前記被焼成体の上
面とその上方のセッターの下面とを接触状態にせしめる
ことを特徴とする平板焼結体の焼成方法。
2. A method for firing a flat sintered body, wherein a flat sintered body made of ceramics is placed on a setter set up on a shelf via a column and fired to obtain a sintered body, The support has a thickness substantially equal to the thickness of the object to be fired before firing, and starts firing shrinkage at a higher temperature than the object to be fired. From the start until the firing shrinkage is almost completed, the upper surface of the firing object and the lower surface of the setter thereabove are kept in a non-contact state due to the delay in firing shrinkage of the support with respect to the firing object. After the firing shrinkage of the body is substantially completed, the support pillar shrinks to a thickness equal to or less than the thickness of the fired body, thereby bringing the upper surface of the fired body into contact with the lower surface of the setter thereabove. It is characterized by Method for firing flat sintered body that.
【請求項3】 支柱を介して棚組されたセッター上にセ
ラミックスからなる平板状の被焼成体を載置して焼成す
ることにより焼結体を得る平板焼結体の焼成方法であっ
て、 前記支柱が、焼成前には前記被焼成体の厚みより厚い厚
みを持つとともに、前記被焼成体よりも焼成収縮が大き
いものであり、焼成過程において前記被焼成体の焼成収
縮が開始してから焼成収縮がほぼ終了するまでは、前記
支柱が前記被焼成体よりも厚い厚みを持つことによっ
て、前記被焼成体の上面とその上方のセッターの下面と
を非接触状態に保ち、被焼成体の焼成収縮がほぼ終了し
てからは、前記支柱が前記被焼成体の厚み以下の厚みま
で焼成収縮することによって、前記被焼成体の上面とそ
の上方のセッターの下面とを接触状態にせしめることを
特徴とする平板焼結体の焼成方法。
3. A method for firing a flat sintered body, wherein a flat sintered body made of ceramics is placed on a setter arranged on a shelf via a support and fired to obtain a sintered body, The pillar has a thickness greater than the thickness of the object to be fired before firing, and has a larger firing shrinkage than the object to be fired, and after the firing shrinkage of the object to be fired starts in the firing process. Until the firing shrinkage is almost completed, the pillars have a thickness greater than that of the fired body, so that the upper surface of the fired body and the lower surface of the setter thereabove are kept in a non-contact state. After the firing shrinkage is substantially completed, by firing the shrinkage to a thickness equal to or less than the thickness of the fired body, the upper surface of the fired body is brought into contact with the lower surface of the setter thereabove. Characteristic flat plate A firing method of the sintered body.
【請求項4】 請求項1ないし3の何れか1項に記載の
焼成方法により得られたことを特徴とする平板焼結体。
4. A flat plate sintered body obtained by the firing method according to any one of claims 1 to 3.
【請求項5】 高温変形により、板厚方向に圧縮変形が
加えられている請求項4記載の平板焼結体。
5. The flat plate sintered body according to claim 4, wherein compression deformation is applied in a thickness direction by high-temperature deformation.
JP11183580A 1999-06-29 1999-06-29 Sintered flat plate and its burning method Pending JP2001019562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11183580A JP2001019562A (en) 1999-06-29 1999-06-29 Sintered flat plate and its burning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11183580A JP2001019562A (en) 1999-06-29 1999-06-29 Sintered flat plate and its burning method

Publications (1)

Publication Number Publication Date
JP2001019562A true JP2001019562A (en) 2001-01-23

Family

ID=16138311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11183580A Pending JP2001019562A (en) 1999-06-29 1999-06-29 Sintered flat plate and its burning method

Country Status (1)

Country Link
JP (1) JP2001019562A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306672A (en) * 2004-04-22 2005-11-04 Tdk Corp Method for manufacturing laminated ceramic board
KR20120046562A (en) * 2010-11-02 2012-05-10 삼성전기주식회사 A device for sintering a ceramic board and a method of sintering a ceramic board by using the same
KR20160068205A (en) * 2014-12-05 2016-06-15 주식회사 엘지화학 Solid oxide fuel cell and method for manufacturing the same
KR101842319B1 (en) * 2014-12-05 2018-05-14 주식회사 엘지화학 Solid oxide fuel cell and method for manufacturing the same
CN111837271A (en) * 2018-08-22 2020-10-27 株式会社Lg化学 Apparatus and method for firing solid oxide fuel cells
CN115077256A (en) * 2022-04-25 2022-09-20 君原电子科技(海宁)有限公司 Auxiliary machining device and method for ceramic plate of electrostatic chuck
WO2023184934A1 (en) * 2022-04-02 2023-10-05 中材高新氮化物陶瓷有限公司 Dynamic sintering method for nitride ceramic substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306672A (en) * 2004-04-22 2005-11-04 Tdk Corp Method for manufacturing laminated ceramic board
KR20120046562A (en) * 2010-11-02 2012-05-10 삼성전기주식회사 A device for sintering a ceramic board and a method of sintering a ceramic board by using the same
KR20160068205A (en) * 2014-12-05 2016-06-15 주식회사 엘지화학 Solid oxide fuel cell and method for manufacturing the same
KR101842319B1 (en) * 2014-12-05 2018-05-14 주식회사 엘지화학 Solid oxide fuel cell and method for manufacturing the same
CN111837271A (en) * 2018-08-22 2020-10-27 株式会社Lg化学 Apparatus and method for firing solid oxide fuel cells
US20210018268A1 (en) * 2018-08-22 2021-01-21 Lg Chem, Ltd. Apparatus and method for plasticizing solid oxide fuel cell
CN111837271B (en) * 2018-08-22 2022-05-06 株式会社Lg化学 Apparatus and method for firing unit cells for solid oxide fuel cells
US11946695B2 (en) 2018-08-22 2024-04-02 Lg Chem, Ltd. Apparatus and method for plasticizing solid oxide fuel cell
WO2023184934A1 (en) * 2022-04-02 2023-10-05 中材高新氮化物陶瓷有限公司 Dynamic sintering method for nitride ceramic substrate
CN115077256A (en) * 2022-04-25 2022-09-20 君原电子科技(海宁)有限公司 Auxiliary machining device and method for ceramic plate of electrostatic chuck

Similar Documents

Publication Publication Date Title
US4806295A (en) Ceramic monolithic structure having an internal cavity contained therein and a method of preparing the same
KR101996706B1 (en) Method for manufacturing alumina sintered body and alumina sintered body
JP2005281862A (en) Cylindrical sputtering target, ceramic sintered body, and manufacturing method thereof
CN111056825B (en) Bending-resistant high-temperature composite load bearing board and preparation method thereof
JP2001019562A (en) Sintered flat plate and its burning method
TW202105590A (en) Member for semiconductor manufacturing apparatus, method for manufacturing the same, and mold
JP6676835B1 (en) Manufacturing method of wafer mounting table
JP2017191910A (en) Substrate holding device and manufacturing method thereof
JP6196492B2 (en) Manufacturing method of alumina ceramic joined body
KR102487220B1 (en) Uniformly doped plasma resistant material and manufacturing method thereof
CN111848199A (en) High-thermal-shock long-service-life sagger and preparation method thereof
JP2012071995A (en) Alumina ceramic joined body and method for manufacturing the same
CN116217241B (en) Ceramic sintering method and application thereof
WO2021106533A1 (en) Oxide-containing ceramic sintered body production method and release sheet
JPH10324574A (en) Method for firing ceramic element
TWI839171B (en) Member for semiconductor manufacturing apparatus
WO2022158072A1 (en) Plate-shaped firing jig
JP3182094B2 (en) Manufacturing method of ceramic
JPS6138148B2 (en)
JPH03271164A (en) Production of silicon carbide-based sintered material
CN113402281A (en) Heating element and preparation method and application thereof
JPH059076A (en) Production of aluminum nitride substrate
JPH0234568A (en) Method for manufacturing aluminum nitride substrate
JP6705202B2 (en) Oxide sintered body and manufacturing method thereof
JP2000026155A (en) Production of ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120