[go: up one dir, main page]

JP2001004763A - Analog electronic clock - Google Patents

Analog electronic clock

Info

Publication number
JP2001004763A
JP2001004763A JP11171746A JP17174699A JP2001004763A JP 2001004763 A JP2001004763 A JP 2001004763A JP 11171746 A JP11171746 A JP 11171746A JP 17174699 A JP17174699 A JP 17174699A JP 2001004763 A JP2001004763 A JP 2001004763A
Authority
JP
Japan
Prior art keywords
signal
pulse signal
drive
back electromotive
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11171746A
Other languages
Japanese (ja)
Inventor
Fumio Sugano
文雄 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP11171746A priority Critical patent/JP2001004763A/en
Publication of JP2001004763A publication Critical patent/JP2001004763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electromechanical Clocks (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an analog electronic clock with less current consumption that does not malfunction even if a disk or a second hand with a large inertial moment is mounted to a second hand shaft. SOLUTION: The analog electronic clock is provided with a bias means 7 that is connected to one end of a drive coil and bypasses a potential level to nearly the middle potential of a power supply voltage, a back electromotive voltage detection circuit 9 that is connected to the other end of the drive coil and detects a back electromotive voltage due to the rotation of a rotor, and a magnetic pole detection means 12 for detecting the magnetic pole position of a rotor being rotated for a stator based on a back electromotive voltage being generated at the back electromotive voltage detection circuit 9. Then, the magnetic pole detection means 12 stops the output of a drive pulse signal based on a detection signal from the back electromotive voltage detection circuit 9, thus obtaining an analog electronic clock with less consumption current that does not malfunction even if a disk or a second hand with a large inertia moment is mounted to a second hand shaft.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はステップモータを有
するアナログ電子時計に関する。
The present invention relates to an analog electronic timepiece having a step motor.

【0002】[0002]

【従来の技術】最近のステップモータを有するアナログ
電子時計の電池寿命は従来に比し大幅に長くなってい
る。これは電池の高容量化、回路の低消費電流化もある
がステップモータの負荷補償機能による低消費電流化に
負う所が大である。ここで言う負荷補償機能とは、通常
は小駆動力でステップモータを駆動し、負荷が増大した
時のみ大駆動力でステップモータを駆動する方式を指
す。
2. Description of the Related Art The battery life of a recent analog electronic timepiece having a stepping motor is significantly longer than in the past. This is due to an increase in the capacity of the battery and a reduction in the current consumption of the circuit, but it largely depends on the reduction in the current consumption by the load compensation function of the step motor. The load compensation function referred to here refers to a method in which the step motor is normally driven with a small driving force, and the step motor is driven with a large driving force only when the load increases.

【0003】上記の負荷補償機能は、通常駆動パルス印
加終了後にステップモータのコイルを含むループを断続
的に開閉し、この時のロータの自由振動によりコイルに
発生する誘起電圧を検出し、この検出信号によりロータ
の回転、非回転検出を行い、非回転検出時には大駆動力
の補正駆動パルスによりロータを正常回転させるように
しているのが一般的である。
The above-described load compensation function intermittently opens and closes a loop including a coil of a step motor after the application of a normal driving pulse, detects an induced voltage generated in the coil by free vibration of the rotor at this time, and detects the detected voltage. Generally, the rotation and non-rotation of the rotor are detected by a signal, and when the rotation is detected, the rotor is normally rotated by a correction drive pulse of a large driving force.

【0004】ところで一般的なアナログ電子時計は図6
に示すように時針61、分針62、秒針63の3本の指
針で時刻を表示するが、図7に示すように秒針の替わり
に透明な円盤73を取り付けた特殊デザインの時計もあ
る。この円盤73(以下秒円盤と記載)は慣性モーメン
トが通常の秒針に比較してかなり大きく、上記に示した
負荷補償機能を有する時計に使用するとロータの回転、
非回転検出が正確に行われずに時計に遅れが生じてしま
う。この理由としてはロータが正常に回転できなかった
にもかかわらず慣性モーメントの大きな秒円盤73があ
るために大きく跳ね返され、正常に回転した時と類似し
た誘起電圧が発生するためである。これは秒円盤73に
限らず慣性モーメントの大きな秒針でも同様な結果が生
ずる。従って上記に示した負荷補償機能を秒円盤73を
有する時計に適用することが出来ず、そのため秒円盤7
3を有する時計の消費電流は大きくなり、電池寿命は非
常に短くなっている。
A general analog electronic timepiece is shown in FIG.
As shown in FIG. 7, the time is displayed by three hands of an hour hand 61, a minute hand 62, and a second hand 63. As shown in FIG. 7, there is a specially designed timepiece in which a transparent disk 73 is attached instead of the second hand. This disk 73 (hereinafter referred to as a second disk) has a moment of inertia considerably larger than that of a normal second hand, and when used in a timepiece having the load compensation function described above, the rotation of the rotor,
The non-rotation detection is not accurately performed, causing a delay in the clock. The reason for this is that despite the fact that the rotor could not rotate normally, the second disk 73 having a large moment of inertia caused a large rebound, and an induced voltage similar to that at the time of normal rotation was generated. This is not limited to the second disk 73, and the same result is obtained with the second hand having a large moment of inertia. Therefore, the load compensation function described above cannot be applied to the timepiece having the second disk 73, and therefore the second disk 7
The power consumption of a watch with a 3 is large and the battery life is very short.

【0005】本出願人は大きな慣性モーメントの秒針ま
たは秒円盤を有する時計において、ロータの磁極位置検
出手段を設け、この磁極位置検出手段検出からの検出信
号に基づいて駆動パルスの出力を停止させることにより
消費電流を大幅に低減出来ることを見い出した。この技
術に関連する技術を開示した文献例としては本出願人の
出願であるWO96/18237号公報、WO97/3
8487号公報を挙げることができる。
The present applicant provides a timepiece having a second hand or a second disk having a large moment of inertia, provided with a magnetic pole position detecting means for a rotor, and stopping the output of a driving pulse based on a detection signal from the detection of the magnetic pole position detecting means. It has been found that the current consumption can be greatly reduced by using this method. Examples of documents that disclose technologies related to this technology include WO96 / 18237 and WO97 / 3 filed by the present applicant.
No. 8487 can be cited.

【0006】しかしながら上記WO96/18237号
公報、WO97/38487号公報をに開示された技術
はいずれもステップモータのロータの高速駆動技術に関
するものであり、大きな慣性モーメントの秒針または秒
円盤を駆動する技術に関するものではない。
However, the techniques disclosed in the above-mentioned WO 96/18237 and WO 97/38487 are all related to a high-speed driving technique for a rotor of a step motor, and are techniques for driving a second hand or a second disk having a large moment of inertia. It is not about.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は上記従
来の欠点を除去し、大きな慣性モーメントの秒針または
秒円盤を取り付けても正常に動作し、且つ消費電流を大
幅に低減できるアナログ電子時計を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned disadvantages of the prior art, to operate normally even when a second hand or a second disk having a large moment of inertia is attached, and to greatly reduce the current consumption. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明によるアナログ電
子時計は、請求項1として、ステータと少なくとも2極
の永久磁石を有するロータと前記ステータと磁気的に結
合した駆動コイルとで構成されたステップモータと、該
ステップモータを駆動するためのパルス信号を出力する
駆動パルス発生手段と、該駆動パルス発生手段からの信
号に基づき前記駆動コイルに駆動電流を供給するための
駆動回路とを有するアナログ電子時計において、前記駆
動コイルの一端に接続され、電位レベルを電源電圧のほ
ぼ中間の電位にバイアスするためのバイアス手段と、前
記駆動コイルの他端に接続され、前記ロータの回転によ
って生ずる逆起電圧を検出する逆起電圧検出回路と、前
記逆起電圧検出回路に生ずる逆起電圧に基づいて前記ス
テータに対する回転中のロータの磁極位置を検出する磁
極位置検出手段とを備え、前記磁極位置検出手段は、第
一の前記駆動パルス信号の出力期間中に検出した前記逆
起電圧検出回路からの前記検出信号に基づいて前記第一
駆動パルス信号の出力を停止させるとともに、前記第一
駆動パルス信号の十分な停止期間後に前記第一駆動パル
ス信号と逆相の第二駆動パルス信号を出力させ、さらに
前記磁極位置検出手段は、前記第二駆動パルス信号の出
力期間中に検出した前記逆起電圧検出回路からの前記検
出信号に基づいて前記第二駆動パルス信号の出力を停止
させるとともに、前記第二駆動パルス信号の十分な停止
期間後に前記第二駆動パルス信号と逆相の第一駆動パル
ス信号を出力させることを特徴とする。
An analog electronic timepiece according to the present invention comprises, as a first aspect, a step comprising a rotor having a stator, a permanent magnet having at least two poles, and a drive coil magnetically coupled to the stator. An analog electronic device comprising: a motor; a driving pulse generating means for outputting a pulse signal for driving the stepping motor; and a driving circuit for supplying a driving current to the driving coil based on a signal from the driving pulse generating means. In a timepiece, a bias means connected to one end of the drive coil for biasing a potential level to a substantially intermediate potential of a power supply voltage, and a back electromotive voltage connected to the other end of the drive coil and caused by rotation of the rotor A back electromotive force detection circuit for detecting the back electromotive force, and a circuit for the stator based on the back electromotive force generated in the back electromotive force detection circuit. Magnetic pole position detecting means for detecting the magnetic pole position of the rotor inside, wherein the magnetic pole position detecting means detects the detection signal from the back electromotive voltage detection circuit detected during the output period of the first drive pulse signal. Stopping the output of the first drive pulse signal based on the first drive pulse signal and outputting a second drive pulse signal having a phase opposite to that of the first drive pulse signal after a sufficient stop period of the first drive pulse signal. Detecting means for stopping the output of the second drive pulse signal based on the detection signal from the back electromotive voltage detection circuit detected during the output period of the second drive pulse signal; After a sufficient stop period, the first driving pulse signal having the opposite phase to the second driving pulse signal is outputted.

【0009】また、請求項2として、請求項1におい
て、前記駆動パルス発生手段は複数の休止期間を有する
間欠的なパルス群で構成された駆動パルス信号を出力す
るとともに、前記磁極位置検出手段は、前記複数の休止
期間中に検出した前記電圧検出回路からの検出信号と前
記中間電位との比較結果に基づいて前記駆動パルス信号
を停止させることを特徴とする。
According to a second aspect of the present invention, in the first aspect, the driving pulse generating means outputs a driving pulse signal composed of an intermittent pulse group having a plurality of idle periods, and the magnetic pole position detecting means comprises: And stopping the drive pulse signal based on a comparison result between the detection signal from the voltage detection circuit detected during the plurality of pause periods and the intermediate potential.

【0010】また、請求項3として、請求項1におい
て、前記磁極位置検出手段は、前記パルス信号の出力期
間中に前記逆起電圧検出回路から前記検出信号を検出出
来なかった場合には予め定められた所定時間後に前記駆
動パルス信号の出力を停止させることを特徴とする。
According to a third aspect of the present invention, in the first aspect, the magnetic pole position detecting means determines in advance if the detection signal cannot be detected from the back electromotive voltage detection circuit during the output period of the pulse signal. The output of the drive pulse signal is stopped after a predetermined period of time.

【0011】また、請求項4として、請求項1におい
て、前記十分な停止期間は前記駆動パルス発生手段から
の前記駆動パルス信号を含めて0.5秒間または1秒間
であることを特徴とする。
According to a fourth aspect of the present invention, in the first aspect, the sufficient stop period is 0.5 seconds or 1 second including the driving pulse signal from the driving pulse generating means.

【0012】[0012]

【発明の実施の形態】以下図面に沿って本発明を詳細に
説明する。図1は本発明の実施形態の一例を示す駆動シ
ステムのブロック図、図2は本発明の実施形態の一例を
示す駆動回路、ステップモータ、逆起電圧検出回路の詳
細図、図3は図1の駆動システムの動作を示す波形図、
図4は図1の駆動システムの動作を示す拡大波形図、図
5は図1の駆動システムの動作を示す拡大波形図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram of a drive system showing an example of the embodiment of the present invention, FIG. 2 is a detailed diagram of a drive circuit, a step motor, and a back electromotive voltage detection circuit showing an example of the embodiment of the present invention, and FIG. Waveform diagram showing the operation of the drive system of
FIG. 4 is an enlarged waveform diagram showing the operation of the drive system of FIG. 1, and FIG. 5 is an enlarged waveform diagram showing the operation of the drive system of FIG.

【0013】図1において、1は発振回路、2は分周回
路で、この分周回路2の種々の出力段の出力を組み合わ
せて時計駆動に必要な信号が作成される。3は波形成形
回路で、ステップモータ6を駆動する駆動パルス信号の
基となる図3に示す如き信号OEを出力する。図3での
信号OEの分割パルス数は4個であるが、後記するパル
ス制御回路14により制御されてその数が変動し、点線
で示したパルスを含め最大で8個の分割パルスを出力す
る。4は信号OEに基づいて駆動パルス信号としての信
号O1inまたは信号O2inを出力する駆動制御回路
であり、5は信号O1inおよび信号O2inに基づい
て信号drv1または信号drv2を出力する駆動回路
で、図2に示すモータドライバ5a、5bから成る。モ
ータドライバ5a、5bは、信号OEが“H”レベルの
ときはそれぞれO1in、O2inの入力信号をバッフ
ァ出力し、信号OEが“L”レベルのときは出力をハイ
インピーダンスにする。
In FIG. 1, reference numeral 1 denotes an oscillation circuit, and 2 denotes a frequency dividing circuit. By combining outputs from various output stages of the frequency dividing circuit 2, a signal necessary for clock driving is created. Reference numeral 3 denotes a waveform shaping circuit which outputs a signal OE as shown in FIG. 3, which is a basis of a drive pulse signal for driving the step motor 6. Although the number of divided pulses of the signal OE in FIG. 3 is four, the number is varied by being controlled by the pulse control circuit 14 described later, and a maximum of eight divided pulses including the pulse indicated by the dotted line are output. . 4 is a drive control circuit that outputs a signal O1in or O2in as a drive pulse signal based on the signal OE, and 5 is a drive circuit that outputs a signal drv1 or a signal drv2 based on the signal O1in and the signal O2in. The motor drivers 5a and 5b shown in FIG. The motor drivers 5a and 5b buffer input signals of O1in and O2in when the signal OE is at "H" level, and make the output high impedance when the signal OE is at "L" level.

【0014】6はステップモータで、図2に示す駆動コ
イル6a、ステータ6b、ロータ6cにより構成され、
駆動コイル6aに実線矢印方向、または点線矢印方向に
電流が流れるたびにロータ6cが180度づつ回転し、
輪列(図示せず)を介して図7に示した時針71、分針
72、秒円盤73を駆動する。7はバイアス手段(図2
参照)で、このバイアス手段7はスイッチ手段7a、7
b、同抵抗値を持つバイアス抵抗7c、7dから成り、
インバータ8から出力される信号SEが“L”レベルの
ときオフ、“H”レベルのときオンする。9は逆起電圧
検出回路で、図2で示す駆動回路5に接続された電圧検
出回路10、電圧検出回路10に接続されたヒステリシ
スコンパレータ11とにより構成されている。尚、電圧
検出回路10はインバータ10a、帰還抵抗10b、入
力抵抗10cから成り、ヒステリシスコンパレータ11
は入力抵抗11a、帰還抵抗11b、、インバータ11
c、11dから成っている。このヒステリシスコンパレ
ータ11は基準電位となるバイアス電圧を逆起電圧がよ
ぎったかどうかの検出タイミングに遅延を持たせ、外部
からの磁界等の影響による誤動作を防止する効果を持
つ。
Reference numeral 6 denotes a step motor, which comprises a driving coil 6a, a stator 6b, and a rotor 6c shown in FIG.
Each time a current flows through the drive coil 6a in the direction of the solid arrow or in the direction of the dotted arrow, the rotor 6c rotates by 180 degrees,
The hour hand 71, the minute hand 72, and the second disk 73 shown in FIG. 7 are driven via a train wheel (not shown). 7 is a bias means (FIG. 2)
The bias means 7 is provided with switch means 7a, 7
b, bias resistors 7c and 7d having the same resistance value,
It turns off when the signal SE output from the inverter 8 is at "L" level, and turns on when it is at "H" level. Reference numeral 9 denotes a back electromotive voltage detection circuit, which includes a voltage detection circuit 10 connected to the drive circuit 5 shown in FIG. 2 and a hysteresis comparator 11 connected to the voltage detection circuit 10. The voltage detection circuit 10 includes an inverter 10a, a feedback resistor 10b, and an input resistor 10c.
Represents an input resistor 11a, a feedback resistor 11b, an inverter 11
c, 11d. The hysteresis comparator 11 has a delay in the detection timing of whether or not the back electromotive voltage crosses the bias voltage serving as the reference potential, and has an effect of preventing a malfunction due to an external magnetic field or the like.

【0015】12は磁極位置検出回路で、逆起電圧検出
回路9で検出した信号Aoutがバイアス電圧Vbを正
方向(負から正の方向)によぎったとき正エッジ検出信
号PEを出力する正エッジ検出回路12aと信号Aou
tがバイアス電圧Vbを負方向(正から負の方向)によ
ぎったとき負エッジ検出信号NEを出力する負エッジ検
出回路12bから成る。13は正エッジ検出信号PEと
負エッジ検出信号NEとをOR出力するOR回路であ
る。
Reference numeral 12 denotes a magnetic pole position detection circuit which outputs a positive edge detection signal PE when the signal Aout detected by the back electromotive voltage detection circuit 9 crosses the bias voltage Vb in the positive direction (from negative to positive). The detection circuit 12a and the signal Aou
A negative edge detection circuit 12b outputs a negative edge detection signal NE when t crosses the bias voltage Vb in the negative direction (from positive to negative). An OR circuit 13 outputs the positive edge detection signal PE and the negative edge detection signal NE in an OR manner.

【0016】14はパルス制御回路であり、図3で示す
分周回路2からの立ち下がり信号Psetが供給される
たびに(実施例では1秒毎)、信号Ptrgを出力して
波形成形回路3から信号OEを出力させ始める。15は
信号OEが“L”になってから所定時間を計時し、この
所定時間内に正エッジ検出信号PEまたは負エッジ検出
信号NEを受けていない場合に信号Tupを出力するタ
イマ回路であり、16は信号Tupを受けるたびに出力
信号Qを反転するフリップフロップ回路である。
A pulse control circuit 14 outputs a signal Ptrg and outputs a signal Ptrg every time the falling signal Pset is supplied from the frequency dividing circuit 2 shown in FIG. Starts outputting the signal OE. Reference numeral 15 denotes a timer circuit which measures a predetermined time after the signal OE becomes "L" and outputs a signal Tup when the positive edge detection signal PE or the negative edge detection signal NE is not received within the predetermined time. Reference numeral 16 denotes a flip-flop circuit that inverts the output signal Q every time the signal Tup is received.

【0017】次に動作について説明するが、直径20m
m、厚み0.1mm、比重1.4(約2200ミリグラ
ム平方ミリメータの慣性モーメント)の秒円盤を取り付
け、これを1秒毎に駆動する場合の動作について説明す
る。
Next, the operation will be described.
An operation in which a second disk having a thickness of 0.1 mm and a specific gravity of 1.4 (moment of inertia of about 2200 milligram square millimeters) is mounted and driven every second will be described.

【0018】図1において、分周回路2から信号Pse
tがパルス制御回路14に入力されると、パルス制御回
路14から信号Ptrgが出力されて波形成形回路3に
入力され、波形成形回路3からは信号OEが出力する。
信号OEは図4に示す如く期間tbに“H”となる。信
号OEは、フリップフロップ16の出力信号Qが“L”
レベルの場合には信号O1inに出力され、出力信号Q
が“H”レベルの場合には信号O2inに出力される。
図3では信号Psetが出力された直後に出力信号Qは
“L”レベルであるのでこの場合は信号OEは信号O1
inに出力される。そのためモータドライバ5aから
“H”レベルの駆動パルス信号が出力されて駆動コイル
6aに実線矢印方向の電流が流れ、ロータ6cは回転を
始める。この間、スイッチ手段7a、7bは信号SEが
“L”レベルであるためともにオフ状態になっている。
図4において信号OEが出力されたtbの後のt2の期
間では信号OEが“L”であるからモータドライバ5
a、5bの出力はハイインピーダンス状態になってお
り、スイッチ手段7a、7bがオンするため、駆動コイ
ル6aの一端であるX端子は電源電圧の1/2の電圧で
あるバイアス電圧Vbに分圧される。
In FIG. 1, the signal Pse from the frequency divider 2
When t is input to the pulse control circuit 14, the signal Ptrg is output from the pulse control circuit 14 and input to the waveform shaping circuit 3, and the signal OE is output from the waveform shaping circuit 3.
The signal OE becomes “H” during the period tb as shown in FIG. The signal OE indicates that the output signal Q of the flip-flop 16 is “L”.
In the case of the level, it is output to the signal O1in and the output signal Q
Is "H" level, the signal is output as a signal O2in.
In FIG. 3, the output signal Q is at the "L" level immediately after the output of the signal Pset, and in this case, the signal OE becomes the signal O1.
output to in. Therefore, an “H” level drive pulse signal is output from the motor driver 5a, a current flows in the drive coil 6a in the direction of the solid line arrow, and the rotor 6c starts rotating. During this time, the switch means 7a and 7b are both off because the signal SE is at the "L" level.
In FIG. 4, the signal OE is “L” in the period of t2 after the output of the signal OE, and thus the motor driver 5
Since the outputs of a and 5b are in a high impedance state and the switch means 7a and 7b are turned on, the X terminal which is one end of the drive coil 6a is divided into a bias voltage Vb which is a half of the power supply voltage. Is done.

【0019】ここで、図4のt2の期間に駆動コイル6
aの一端であるY端子に現れる電圧波形について説明す
る。
Here, during the period t2 in FIG.
A voltage waveform appearing at the Y terminal, which is one end of a, will be described.

【0020】モータドライバ5a、5bの出力がハイイ
ンピーダンス状態で、スイッチ手段7a、7bがオンし
ており、バイアス抵抗7c、7dによって、X端子の電
圧がバイアス電圧Vbのレベルになっている場合、Y端
子の電圧値はロータ6cの回転やモータドライバ5a、
5bの影響がなければ、X端子と同様にバイアス電圧V
bとなる。しかしながら図4のtbの期間で駆動パルス
信号の出力直後は、駆動コイル6aに流れる電流が切ら
れることにより誘導電圧が図4のVrの如く発生し、ま
た駆動パルス信号の出力によるロータ6cの回転によっ
て逆起電圧Vgが図4の如く発生する。これらの発生電
圧の合成波形がY端子に現れ、このY端子に現れる電圧
波形を電圧検出回路10で増幅し、さらにヒステリシス
コンパレータ11で遅延したものが図4のAoutに示
す波形となる。
When the outputs of the motor drivers 5a and 5b are in a high impedance state, the switch means 7a and 7b are on, and the voltage of the X terminal is at the level of the bias voltage Vb by the bias resistors 7c and 7d. The voltage value of the Y terminal depends on the rotation of the rotor 6c and the motor driver 5a,
5b, there is no influence of the bias voltage V as in the case of the X terminal.
b. However, immediately after the output of the drive pulse signal during the period tb in FIG. 4, the current flowing through the drive coil 6a is cut off to generate an induced voltage as shown in Vr in FIG. 4, and the rotation of the rotor 6c due to the output of the drive pulse signal. As a result, a back electromotive voltage Vg is generated as shown in FIG. A composite waveform of these generated voltages appears at the Y terminal, and the voltage waveform appearing at the Y terminal is amplified by the voltage detection circuit 10 and further delayed by the hysteresis comparator 11 to become the waveform shown by Aout in FIG.

【0021】図4のt2の期間では信号O1inが
“L”になった直後では誘導電圧Vrが支配的であり、
誘導電圧Vrの影響が時間の経過とともになくなると逆
起電圧Vgが観測されるようになる。逆起電圧Vgの電
位レベルがバイアス電圧Vbよりも上にあるt2の期
間、すなわちロータ6cが約180度回転していない場
合では、信号Aoutの波形が誘導電圧Vrの影響がな
くなる過程で必ずバイアス電圧Vbの電位を負から正の
方向でよぎっている(図4におけるP1の時点)。
In the period t2 in FIG. 4, the induced voltage Vr is dominant immediately after the signal O1in becomes "L",
When the influence of the induced voltage Vr disappears over time, the back electromotive voltage Vg is observed. During the period t2 when the potential level of the back electromotive voltage Vg is higher than the bias voltage Vb, that is, when the rotor 6c is not rotated by about 180 degrees, the waveform of the signal Aout is necessarily biased in a process where the influence of the induced voltage Vr is eliminated. The potential of the voltage Vb crosses from the negative direction to the positive direction (at the point P1 in FIG. 4).

【0022】タイマ回路15は、信号OEが“L”にな
るとタイマ動作を開始する。フリップフロップ回路16
の出力信号Qが“L”であることから正エッジ検出回路
12aは信号OEが“L”の期間に動作状態となる。正
エッジ検出回路12aは、図4のt2の期間のP1の時
点で、信号Aoutの波形がバイアス電圧Vbを負から
正方向によぎったことを観測すると、正エッジ検出信号
PEを出力する。また、タイマ回路15は信号PEをO
R回路13を介して受けるとタイマ動作を停止し、一方
パルス制御回路14は、所定の時間(t2)の間、 タ
イマ回路15からの信号がこない場合、所定時間経過後
に信号Ptrgを出力する。波形成形回路3は信号Pt
rgを受けるとtcの期間だけ信号OEを“H”出力
し、その後t3の期間でt2の期間と同様の逆起電圧の
検出を行う。以降、期間td、teでは前記tb、tc
と同様の動作が行われ、期間t4、t5では前記t2、
t3と同様の動作が行われる。
The timer circuit 15 starts a timer operation when the signal OE becomes "L". Flip-flop circuit 16
Is positive, the positive edge detection circuit 12a is in the operating state during the period when the signal OE is "L". The positive edge detection circuit 12a outputs the positive edge detection signal PE when observing that the waveform of the signal Aout crosses the bias voltage Vb from the negative direction to the positive direction at the point P1 in the period t2 in FIG. Further, the timer circuit 15 outputs the signal PE as O.
When received via the R circuit 13, the timer operation is stopped. On the other hand, the pulse control circuit 14 outputs the signal Ptrg after the lapse of a predetermined time if no signal is received from the timer circuit 15 for a predetermined time (t2). The waveform shaping circuit 3 outputs the signal Pt
When rg is received, the signal OE is output at "H" for the period of tc, and thereafter, the same back electromotive voltage is detected in the period of t3 as in the period of t2. Thereafter, in the periods td and te, the above-mentioned tb and tc
The same operation as described above is performed. In the periods t4 and t5, the above-mentioned t2,
The same operation as at t3 is performed.

【0023】図4におけるt2、t3、t4の期間で
は、それぞれP1、P2、P3の時点で信号Aoutの
波形がバイアス電圧Vbの電位を負から正の方向でよぎ
るので、信号Ptrgが出力され、信号OEに“H”信
号が出力される。逆起電圧Vgの電位レベルがバイアス
電圧Vbよりも下にある期間、すなわち図4のt5の期
間では、ロータ6cが約180度回転しており、信号A
outの波形がバイアス電圧Vbの電位を負から正の方
向でよぎることはない。したがってt5の期間では、こ
の間に正エッジ検出回路12aから正エッジ検出信号P
Eを出力することはない。
In the periods t2, t3, and t4 in FIG. 4, the waveform of the signal Aout crosses the potential of the bias voltage Vb from negative to positive at the points P1, P2, and P3, respectively, so that the signal Ptrg is output. "H" signal is output as signal OE. In a period in which the potential level of the back electromotive voltage Vg is lower than the bias voltage Vb, that is, in a period of t5 in FIG. 4, the rotor 6c is rotated by about 180 degrees, and the signal A
The waveform of out does not cross the potential of the bias voltage Vb from negative to positive. Therefore, during the period of t5, the positive edge detection signal P
E is not output.

【0024】タイマ回路15はt5の期間に正エッジ検
出信号PEを受けないで所定の時間(t5)を経過する
と信号Tupを出力する。パルス制御回路14は信号T
upを受けると信号Ptrgを出力せず、その結果波形
成形回路3から信号OEは出力せず、ロータ6cの駆動
は停止する。このとき信号Tupによりフリップフロッ
プ回路16の信号Qは“L”から“H”になる。
The timer circuit 15 outputs a signal Tup when a predetermined time (t5) has elapsed without receiving the positive edge detection signal PE during the time t5. The pulse control circuit 14 receives the signal T
When receiving the up, the signal Ptrg is not output, and as a result, the signal OE is not output from the waveform shaping circuit 3, and the driving of the rotor 6c is stopped. At this time, the signal Q of the flip-flop circuit 16 changes from “L” to “H” by the signal Tup.

【0025】次にロータ6cが回転を停止してから十分
な時間経過後である1秒が経過し、分周回路2からのP
set信号の立ち下がり信号がパルス制御回路14に入
力されると、パルス制御回路14から信号Ptrgが波
形成形回路3に出力され、波形成形回路3から信号OE
が出力され始める。今度はフリップフロップ回路16の
信号Qは“H”になっているので、駆動制御回路4から
は信号O2in側に駆動パルス信号が出力される。以降
の動作は前述したと同様であるが、逆起電圧検出回路9
の出力信号Aoutを受ける磁極位置検出回路12で
は、今度は負エッジ検出回路12bが動作することにな
る。負エッジ検出回路12bは、図5のt2の期間のP
1の時点で、信号Aoutの波形がバイアス電圧Vbを
正から負方向によぎったことを観測すると、負エッジ検
出信号NEを出力する。また、タイマ回路15は信号N
EをOR回路13を介して受けるとタイマ動作を停止
し、一方パルス制御回路14は、所定の時間(t2)の
間、タイマ回路15からの信号がこない場合、所定時間
経過後に信号Ptrgを出力する。波形成形回路3は信
号Ptrgを受けるとtcの期間信号OEを“H”出力
し、その後t3の期間でt2の期間と同様の逆起電圧の
検出を行う。以降、期間td、teでは前記tb、tc
と同様の動作が行われ、期間t4、t5では前記t2、
t3と同様の動作が行われる。
Next, after a lapse of a sufficient time from the stop of the rotation of the rotor 6c, one second elapses.
When the falling signal of the set signal is input to the pulse control circuit 14, the signal Ptrg is output from the pulse control circuit 14 to the waveform shaping circuit 3, and the signal OE is output from the waveform shaping circuit 3.
Starts to be output. Since the signal Q of the flip-flop circuit 16 is now “H”, the drive control circuit 4 outputs a drive pulse signal to the signal O2in. The subsequent operation is the same as described above, except that the back electromotive voltage detection circuit 9
In the magnetic pole position detection circuit 12 receiving the output signal Aout, the negative edge detection circuit 12b operates. The negative edge detection circuit 12b is connected to the P in the period t2 in FIG.
At a time point 1, when it is observed that the waveform of the signal Aout crosses the bias voltage Vb from the positive direction to the negative direction, a negative edge detection signal NE is output. The timer circuit 15 outputs the signal N
When E is received via the OR circuit 13, the timer operation is stopped. On the other hand, when no signal is received from the timer circuit 15 for a predetermined time (t2), the pulse control circuit 14 outputs the signal Ptrg after the predetermined time has elapsed. I do. When receiving the signal Ptrg, the waveform shaping circuit 3 outputs the signal OE at “H” during the period tc, and thereafter detects the back electromotive voltage during the period t3 as in the period t2. Thereafter, in the periods td and te, the above-mentioned tb and tc
The same operation as described above is performed. In the periods t4 and t5, the above-mentioned t2,
The same operation as at t3 is performed.

【0026】逆起電圧Vgの電位レベルがバイアス電圧
Vbよりも上にある期間、すなわち図5のt5の期間で
は、ロータ6cが約180度回転しており、信号Aou
tの波形がバイアス電圧Vbの電位を正から負の方向で
よぎることはない。したがってt5の期間では、この間
に負エッジ検出回路12bから負エッジ検出信号NEを
出力することはない。
In a period in which the potential level of the back electromotive voltage Vg is higher than the bias voltage Vb, that is, in a period t5 in FIG. 5, the rotor 6c is rotated by about 180 degrees, and the signal Aou
The waveform t does not cross the potential of the bias voltage Vb in the positive to negative direction. Therefore, during the period of t5, the negative edge detection signal NE is not output from the negative edge detection circuit 12b during this period.

【0027】タイマ回路15はt5の期間に負エッジ検
出信号NEを受けないで所定の時間(t5)を経過する
と信号Tupを出力する。パルス制御回路14は信号T
upを受けると信号Ptrgを出力せず、その結果波形
成形回路3から信号OEは出力せず、ロータ6cの駆動
は停止する。従来は8個の分割駆動パルス信号でロータ
6cを駆動していたのに対し、本発明では4個の分割駆
動パルス信号でロータ6cを駆動できるので、消費電流
は大幅に低減する。
The timer circuit 15 outputs a signal Tup when a predetermined time (t5) has elapsed without receiving the negative edge detection signal NE during the time t5. The pulse control circuit 14 receives the signal T
When receiving the up, the signal Ptrg is not output, and as a result, the signal OE is not output from the waveform shaping circuit 3, and the driving of the rotor 6c is stopped. Conventionally, the rotor 6c is driven by eight divided drive pulse signals, but in the present invention, the rotor 6c can be driven by four divided drive pulse signals, so that the current consumption is greatly reduced.

【0028】上記の説明では直径20mmの秒円盤を駆
動した場合について説明したが、秒円盤の直径が20m
m未満の場合には負荷が軽くなり、ロータ6cが約18
0度回転するのに要する時間は短くなるため分割駆動パ
ルス信号の数は4個未満で済み、逆に、秒円盤の直径が
20mmを超えるの場合には負荷が重くなり、ロータ6
cが約180度回転するのに要する時間は長くなるため
分割駆動パルス信号の数は5個以上となる。尚、分割駆
動パルス信号の数は最大でも8個であり、どんなに負荷
が重くても8個を超えることがないように予め設定され
ている。また、秒円盤を1秒毎ではなく、0.5秒毎に
駆動するようにしてもよい。この場合には1秒毎の駆動
の場合に比して消費電流が増加するので、あらかじめス
テップモータの仕様を変更して消費電流があまり増加し
ないようにしておく必要がある。
In the above description, the case where the second disk having a diameter of 20 mm is driven has been described.
m, the load becomes lighter, and the rotor 6c becomes approximately 18
Since the time required to rotate 0 degrees is short, the number of divided drive pulse signals is less than four. Conversely, if the diameter of the second disk exceeds 20 mm, the load becomes heavy and the rotor 6
Since the time required for c to rotate about 180 degrees becomes longer, the number of divided drive pulse signals becomes five or more. Note that the number of divided drive pulse signals is a maximum of eight, and is set in advance so that the number does not exceed eight even if the load is heavy. Further, the second disk may be driven every 0.5 seconds instead of every second. In this case, the current consumption increases as compared with the case of driving every one second. Therefore, it is necessary to change the specification of the step motor in advance so that the current consumption does not increase so much.

【0029】[0029]

【発明の効果】上記の説明で明らかなように、本発明に
よれば通常の秒針はもちろん、慣性モーメントの大きな
秒針または慣性モーメントの大きな秒円盤を取り付けて
も自動的に最適な駆動パルス幅に設定されるため、消費
電流の少ないアナログ電子時計を得ることができ、その
効果大なるものがある。
As is apparent from the above description, according to the present invention, the optimum driving pulse width is automatically set to the optimum driving pulse width even if a second hand having a large moment of inertia or a second disk having a large moment of inertia is attached. Since the setting is performed, an analog electronic timepiece with low current consumption can be obtained, and some of the effects can be greatly enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の一例を示す駆動システムの
ブロック図である。
FIG. 1 is a block diagram of a drive system showing an example of an embodiment of the present invention.

【図2】本発明の実施形態の一例を示す駆動回路、ステ
ップモータ、バイアス手段、逆起電圧検出回路の詳細図
である。
FIG. 2 is a detailed diagram of a drive circuit, a step motor, a bias unit, and a back electromotive voltage detection circuit according to an embodiment of the present invention.

【図3】図1の駆動システムの動作を示す波形図であ
る。
FIG. 3 is a waveform chart showing an operation of the drive system of FIG.

【図4】図1の駆動システムの動作を示す拡大波形図で
ある。
FIG. 4 is an enlarged waveform diagram illustrating an operation of the drive system of FIG. 1;

【図5】図1の駆動システムの動作を示す拡大波形図で
ある。
FIG. 5 is an enlarged waveform diagram illustrating an operation of the drive system of FIG. 1;

【図6】従来及び本発明に係わる通常の秒針を取り付け
たアナログ電子時計の外観平面図である。
FIG. 6 is an external plan view of an analog electronic timepiece to which a conventional second hand according to the related art and the present invention is attached.

【図7】本発明に係わる大きな慣性モーメントの秒円盤
を取り付けたアナログ電子時計の外観平面図である。
FIG. 7 is an external plan view of an analog electronic timepiece to which the second disk having a large moment of inertia according to the present invention is attached.

【符号の説明】[Explanation of symbols]

1 発振回路 2 分周回路 3 波形成形回路 4 駆動制御回路 5 駆動回路 6 ステップモータ 6a ステップモータの駆動コイル 6c ステップモータのロータ 7 バイアス手段 9 逆起電圧検出回路 10 電圧検出回路 11 ヒステリシスコンパレータ 12 磁極位置検出回路 12a 正エッジ検出回路 12b 負エッジ検出回路 14 パルス制御回路 15 タイマ回路 16 フリップフロップ回路 DESCRIPTION OF SYMBOLS 1 Oscillation circuit 2 Divider circuit 3 Waveform shaping circuit 4 Drive control circuit 5 Drive circuit 6 Step motor 6a Step motor drive coil 6c Step motor rotor 7 Bias means 9 Back electromotive voltage detection circuit 10 Voltage detection circuit 11 Hysteresis comparator 12 Magnetic pole Position detection circuit 12a Positive edge detection circuit 12b Negative edge detection circuit 14 Pulse control circuit 15 Timer circuit 16 Flip-flop circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ステータと少なくとも2極の永久磁石を
有するロータと前記ステータと磁気的に結合した駆動コ
イルとで構成されたステップモータと、該ステップモー
タを駆動するためのパルス信号を出力する駆動パルス発
生手段と、該駆動パルス発生手段からの信号に基づき前
記駆動コイルに駆動電流を供給するための駆動回路とを
有するアナログ電子時計において、前記駆動コイルの一
端に接続され、電位レベルを電源電圧のほぼ中間の電位
にバイアスするためのバイアス手段と、前記駆動コイル
の他端に接続され、前記ロータの回転によって生ずる逆
起電圧を検出する逆起電圧検出回路と、前記逆起電圧検
出回路に生ずる逆起電圧に基づいて前記ステータに対す
る回転中のロータの磁極位置を検出する磁極位置検出手
段とを備え、前記磁極位置検出手段は、第一の前記駆動
パルス信号の出力期間中に検出した前記逆起電圧検出回
路からの前記検出信号に基づいて前記第一駆動パルス信
号の出力を停止させるとともに、前記第一駆動パルス信
号の十分な停止期間後に前記第一駆動パルス信号と逆相
の第二駆動パルス信号を出力させ、さらに前記磁極位置
検出手段は、前記第二駆動パルス信号の出力期間中に検
出した前記逆起電圧検出回路からの前記検出信号に基づ
いて前記第二駆動パルス信号の出力を停止させるととも
に、前記第二駆動パルス信号の十分な停止期間後に前記
第二駆動パルス信号と逆相の第一駆動パルス信号を出力
させることを特徴とするアナログ電子時計。
1. A step motor comprising a stator, a rotor having at least two poles of permanent magnets, and a drive coil magnetically coupled to the stator, and a drive for outputting a pulse signal for driving the step motor. An analog electronic timepiece having a pulse generator and a drive circuit for supplying a drive current to the drive coil based on a signal from the drive pulse generator, wherein the analog electronic timepiece is connected to one end of the drive coil and changes a potential level to a power supply voltage. A bias means for biasing to a substantially intermediate potential, a back electromotive voltage detection circuit connected to the other end of the drive coil and detecting a back electromotive voltage generated by rotation of the rotor, and a back electromotive voltage detection circuit. Magnetic pole position detecting means for detecting a magnetic pole position of the rotating rotor with respect to the stator based on the generated back electromotive voltage. The pole position detection means stops output of the first drive pulse signal based on the detection signal from the back electromotive voltage detection circuit detected during an output period of the first drive pulse signal, and After a sufficient stop period of the drive pulse signal, a second drive pulse signal having a phase opposite to that of the first drive pulse signal is output, and the magnetic pole position detecting means detects the output during the output period of the second drive pulse signal. Stopping the output of the second drive pulse signal based on the detection signal from the back electromotive voltage detection circuit, and after a sufficient stop period of the second drive pulse signal, An analog electronic timepiece which outputs a drive pulse signal.
【請求項2】 前記駆動パルス発生手段は複数の休止期
間を有する間欠的なパルス群で構成された駆動パルス信
号を出力するとともに、前記磁極位置検出手段は、前記
複数の休止期間中に検出した前記電圧検出回路からの検
出信号と前記中間電位との比較結果に基づいて前記駆動
パルス信号を停止させることを特徴とする請求項1に記
載のアナログ電子時計。
2. The driving pulse generating means outputs a driving pulse signal composed of an intermittent pulse group having a plurality of pause periods, and the magnetic pole position detecting means detects the driving pulse signal during the plurality of pause periods. 2. The analog electronic timepiece according to claim 1, wherein the drive pulse signal is stopped based on a comparison result between the detection signal from the voltage detection circuit and the intermediate potential.
【請求項3】 前記磁極位置検出手段は、前記パルス信
号の出力期間中に前記逆起電圧検出回路から前記検出信
号を検出出来なかった場合には予め定められた所定時間
後に前記駆動パルス信号の出力を停止させることを特徴
とする請求項1に記載のアナログ電子時計。
3. The method according to claim 2, wherein the magnetic pole position detecting means detects the drive pulse signal after a predetermined time if the counter electromotive voltage detection circuit fails to detect the detection signal during the output period of the pulse signal. The analog electronic timepiece according to claim 1, wherein output is stopped.
【請求項4】 前記十分な停止期間は、前記駆動パルス
発生手段からの前記駆動パルス信号を含めて0.5秒間
または1秒間であることを特徴とする請求項1に記載の
アナログ電子時計。
4. The analog electronic timepiece according to claim 1, wherein the sufficient stop period is 0.5 seconds or 1 second including the driving pulse signal from the driving pulse generating means.
JP11171746A 1999-06-18 1999-06-18 Analog electronic clock Pending JP2001004763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11171746A JP2001004763A (en) 1999-06-18 1999-06-18 Analog electronic clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11171746A JP2001004763A (en) 1999-06-18 1999-06-18 Analog electronic clock

Publications (1)

Publication Number Publication Date
JP2001004763A true JP2001004763A (en) 2001-01-12

Family

ID=15928931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11171746A Pending JP2001004763A (en) 1999-06-18 1999-06-18 Analog electronic clock

Country Status (1)

Country Link
JP (1) JP2001004763A (en)

Similar Documents

Publication Publication Date Title
US6163126A (en) Electronic device
WO2005119377A1 (en) Analog electronic clock and motor control circuit
US20120287759A1 (en) Stepping motor control circuit and analogue electronic timepiece
EP1083653B1 (en) Motor driving apparatus
US6262554B1 (en) Electronic device and method of controlling the same
JP3258125B2 (en) Electronic device with vibration alarm
US6091221A (en) Motor driving apparatus for perfoming high-speed rotation by phase detection control
JP2003004872A (en) Analog electronic clock
WO2020008918A1 (en) Step motor driving device
JP2001004763A (en) Analog electronic clock
JPH09266697A (en) Control method of stepping motor for timekeeping, control device, and timekeeping device
JP2004260875A (en) Stepping-motor control device and electronic clock
JP2019174362A (en) Timepiece drive device
JP3593899B2 (en) Electronic device and control method thereof
JP4343549B2 (en) Step motor control device and electronic timepiece
JPS6142234B2 (en)
JP3239858B2 (en) Electronic device and control method thereof
JP3489862B2 (en) Analog clock
JP2000139098A (en) Electronic apparatus
JP2023182168A (en) clock
JP2004045082A (en) Stepping motor driving gear and electronic clock
JPH11101880A (en) Generator for controlling electronically controlled mechanical watches
JP2002159199A (en) Control method and controller of stepping motor
JPS6373181A (en) Apparatus for detecting driving of motor in electronic timepiece
JPH10262393A (en) Electronic equipment with motor