JP2001002402A - How to collect bromine - Google Patents
How to collect bromineInfo
- Publication number
- JP2001002402A JP2001002402A JP11168048A JP16804899A JP2001002402A JP 2001002402 A JP2001002402 A JP 2001002402A JP 11168048 A JP11168048 A JP 11168048A JP 16804899 A JP16804899 A JP 16804899A JP 2001002402 A JP2001002402 A JP 2001002402A
- Authority
- JP
- Japan
- Prior art keywords
- bromine
- gas
- collecting
- aqueous solution
- hydrogen bromide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 title claims abstract description 177
- 229910052794 bromium Inorganic materials 0.000 title claims abstract description 175
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 title claims abstract description 158
- 239000007789 gas Substances 0.000 claims abstract description 108
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 claims abstract description 76
- 238000000034 method Methods 0.000 claims abstract description 59
- 238000010521 absorption reaction Methods 0.000 claims abstract description 41
- 239000007864 aqueous solution Substances 0.000 claims abstract description 41
- 229910000042 hydrogen bromide Inorganic materials 0.000 claims abstract description 38
- -1 bromine ions Chemical class 0.000 claims abstract description 23
- 239000007800 oxidant agent Substances 0.000 claims abstract description 21
- 230000009467 reduction Effects 0.000 claims abstract description 19
- 230000003647 oxidation Effects 0.000 claims abstract description 17
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 17
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims abstract description 16
- 230000009257 reactivity Effects 0.000 claims abstract description 10
- 239000011541 reaction mixture Substances 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 239000000460 chlorine Substances 0.000 claims description 13
- 229910052801 chlorine Inorganic materials 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 3
- 125000001309 chloro group Chemical group Cl* 0.000 claims 1
- 239000013535 sea water Substances 0.000 abstract description 22
- 239000002994 raw material Substances 0.000 abstract description 11
- 239000012267 brine Substances 0.000 abstract description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 abstract description 5
- 239000003814 drug Substances 0.000 abstract 1
- 229940079593 drug Drugs 0.000 abstract 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 18
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 18
- 238000006722 reduction reaction Methods 0.000 description 13
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000004821 distillation Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 238000012856 packing Methods 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 5
- 239000003595 mist Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000006479 redox reaction Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- SISAYUDTHCIGLM-UHFFFAOYSA-N bromine dioxide Inorganic materials O=Br=O SISAYUDTHCIGLM-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- RJZPGZKGMSVLSP-UHFFFAOYSA-N S(=O)=O.[Br] Chemical compound S(=O)=O.[Br] RJZPGZKGMSVLSP-UHFFFAOYSA-N 0.000 description 1
- YWIBETYWGSNTAE-UHFFFAOYSA-N [Br].Br Chemical compound [Br].Br YWIBETYWGSNTAE-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 1
- 229940005991 chloric acid Drugs 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 229940077239 chlorous acid Drugs 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 235000011226 hei shi Nutrition 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007130 inorganic reaction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001256 steam distillation Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/09—Bromine; Hydrogen bromide
- C01B7/096—Bromine
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Removal Of Specific Substances (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Abstract
(57)【要約】
【課題】資源量として豊富なかん水や海水を原料とし、
コンパクトな設備で、使用する薬剤量も少なく、また、
排ガスの発生が皆無かまたは極少量でその除去も容易と
なる臭素の採取方法を提供する。
【解決の手段】(1)臭素イオンを含む水溶液に酸化剤
を加えて臭素イオンを臭素に転化する酸化工程、(2)
酸化工程で臭素に転化された水溶液に臭素との反応性が
ないガスを接触させて臭素ガスを放散させる発生工程、
(3)発生工程で放散された臭素ガスに亜硫酸ガスを混
合し、臭素を臭化水素に転化する還元工程及び、(4)
還元工程で転化された臭化水素を含む反応混合物をフィ
ラメントから構成された比表面積が100〜500m2
/m3のエリミネータで捕捉する吸収工程、の4工程を
少なくとも経る臭素の採取方法を用いる。(57) [Summary] [Problem] Using abundant brine or seawater as a raw material,
Compact equipment, small amount of drug used, and
Provided is a method for collecting bromine in which no exhaust gas is generated or a small amount of the exhaust gas is easily removed. (1) An oxidation step of adding an oxidizing agent to an aqueous solution containing bromine ions to convert bromine ions to bromine, (2)
A generation step of contacting a gas having no reactivity with bromine to the aqueous solution converted to bromine in the oxidation step to diffuse the bromine gas,
(3) a reduction step of mixing sulfur dioxide gas with bromine gas released in the generation step to convert bromine into hydrogen bromide; and (4)
The reaction mixture containing hydrogen bromide converted in the reduction step is mixed with a filament having a specific surface area of 100 to 500 m 2.
/ M 3 , an absorption step of capturing with an eliminator is used.
Description
【0001】[0001]
【発明の属する技術分野】本発明は改良された臭素の採
取方法に関するものである。さらに詳しくは、希薄な臭
素イオン含有水溶液から、酸化還元反応により、工業的
に効率よく、さらに純度よく、臭素を採取する方法に関
する。The present invention relates to an improved bromine sampling method. More specifically, the present invention relates to a method for industrially and efficiently purifying bromine from a dilute bromine ion-containing aqueous solution by a redox reaction.
【0002】[0002]
【従来の技術】臭素は、酸化力を有し、無機、有機の反
応薬品として広く、大量に用いられている重要な基幹化
学製品であり、従来より、臭素は、かん水や海水から採
取されている。2. Description of the Related Art Bromine is an important basic chemical product which has oxidizing power, is widely used as an inorganic and organic reaction chemical, and is used in large quantities. Conventionally, bromine has been extracted from brackish water or seawater. I have.
【0003】かん水を原料として臭素を採取する場合
は、通常その原料中の臭素イオン濃度が高いことから、
塩素等の酸化剤によって臭素を遊離させた後、直接水蒸
気蒸留によって臭素を採取している。この方法はクビル
スキー法として文献に記載されている(例えば、「ハロ
ゲン」,無機化学全書,丸善発行などの文献が挙げられ
る)が、この方法では、臭素イオン濃度が高いかん水が
資源量としては有限であり、臭素を採取するにつれて資
源が枯渇していくという課題があった。[0003] When bromine is collected from brackish water, the bromine ion concentration in the raw material is usually high.
After bromine is liberated by an oxidizing agent such as chlorine, bromine is collected by direct steam distillation. This method is described in the literature as the Kubirski method (for example, literatures such as “Halogen”, Inorganic Chemistry, and Maruzen), but in this method, brine having a high bromine ion concentration has a finite resource amount. However, there is a problem that resources are depleted as bromine is collected.
【0004】また、臭素イオンが通常50〜70mg/
リットル含まれる海水や、臭素イオン濃度が0.3g/
リットル以下の比較的低濃度のかん水を原料として臭素
を採取する場合、資源量としては極めて多いものの、そ
の臭素イオン濃度が低いことから、臭素を採取するプロ
セスが複雑でかつ大型になり、さらに臭素の採取効率が
低くなることから、工業化に際しての大きな課題となっ
ていた。In addition, bromine ions usually contain 50 to 70 mg /
Liters of seawater and bromine ion concentration 0.3g /
When bromine is collected from a relatively low concentration of brackish water of less than 1 liter as a raw material, the amount of bromine is extremely large, but the low bromine ion concentration makes the process of collecting bromine complicated and large, and furthermore bromine is collected. This has been a major issue in industrialization due to the low sampling efficiency.
【0005】一方、低濃度の臭素イオン含有液から臭素
を採取する方法としては、NaOH法と、亜硫酸ガス法
すなわちSO2法が知られている。ここで、NaOH法
が遊離臭素の中和反応を原理として臭素を採取している
のに対して、SO2法は酸化還元反応を原理として臭素
を採取している。これら両者の採取効率を比較すると、
SO2法はNaOH法に比べ反応性に優れ、採取が容易
であることが知られている。On the other hand, as a method for collecting bromine from a bromine ion-containing liquid having a low concentration, a NaOH method and a sulfur dioxide gas method, that is, an SO 2 method are known. Here, the NaOH method collects bromine based on the principle of neutralization reaction of free bromine, while the SO 2 method collects bromine based on the oxidation-reduction reaction. Comparing the sampling efficiency of these two,
It is known that the SO 2 method is superior in reactivity to the NaOH method and is easy to collect.
【0006】そこで、反応性に優れ、臭素の採取が容易
であり、工業的に有利なSO2法を、その構成される発
生工程、吸収工程及び蒸留工程の工程面から説明する。Therefore, the SO 2 method which is excellent in reactivity and easy to collect bromine and is industrially advantageous will be described in terms of the steps of the generation step, absorption step and distillation step which are constituted.
【0007】SO2法における発生工程では、塩素等の
酸化剤によって海水などから臭素を遊離させ、この遊離
した臭素を空気等により放散させて臭素を含んだ発生ガ
スとする。次に吸収工程において発生ガスから臭素を分
離・捕捉するが、その方法として、亜硫酸ガスを遊離し
た臭素に対して等モルないしは若干過剰に添加し、気相
で酸化還元反応により臭化水素と硫酸に転化させ、これ
らを循環水により吸収し、その後循環水を抜き出す。そ
して、蒸留工程では、この循環水中の臭化水素を塩素等
の酸化剤により臭素に転化させ、蒸留により濃縮、精製
して臭素製品を得るものである。In the generation step in the SO 2 method, bromine is liberated from seawater or the like by an oxidizing agent such as chlorine, and the liberated bromine is diffused by air or the like to produce a generated gas containing bromine. Next, in the absorption step, bromine is separated and trapped from the generated gas. As a method, sulfur dioxide gas is added in an equimolar amount or a slight excess to the liberated bromine, and hydrogen bromide and sulfuric acid are added by a redox reaction in the gas phase. And these are absorbed by the circulating water, after which the circulating water is withdrawn. In the distillation step, hydrogen bromide in the circulating water is converted into bromine by an oxidizing agent such as chlorine, and the bromine product is obtained by concentration and purification by distillation.
【0008】殊に、吸収工程では臭素の吸収効率を高め
るために、充填物として、ラシヒリング、コーク、ガラ
スウール等が用いられている。なお、臭素吸収後、吸収
塔から排出される空気は洗浄工程で海水にて洗浄され、
洗浄液は臭素発生原料の海水に循環・添加して、吸収に
用いた過剰の亜硫酸ガス及び未反応の臭素分は塩素等の
酸化剤により除去及び採取されている(米国特許第21
43224号)。In particular, Raschig ring, coke, glass wool and the like are used as fillers in the absorption step in order to increase the bromine absorption efficiency. After bromine absorption, the air discharged from the absorption tower is washed with seawater in the washing step,
The washing liquid is circulated and added to seawater as a bromine-generating raw material, and excess sulfurous acid gas and unreacted bromine used for absorption are removed and collected by an oxidizing agent such as chlorine (US Patent No. 21).
43224).
【0009】しかしながら、この方法によると、吸収工
程における臭素と亜硫酸ガスの反応が十分に進行せず、
臭素の採取率を上げるためには、SO2ガスを過剰量添
加する必要があり、経済性が低下してしまうことにな
る。またこの時、過剰分のSO2は吸収排ガスに同伴す
るので、これを除去するための洗浄設備等も必要となっ
てしまうことにもなる。さらに、この洗浄を海水で行う
際には、洗浄海水の処理として一般に発生工程に循環利
用するが、海水に洗浄吸収された、過剰分のSO2を酸
化するための塩素等の酸化剤量が必要となって、その経
済性はさらに低下してしまうことになってしまうのであ
る。However, according to this method, the reaction between bromine and sulfur dioxide in the absorption step does not proceed sufficiently,
In order to increase the bromine collection rate, it is necessary to add an excessive amount of SO 2 gas, which lowers the economic efficiency. Also, at this time, since the excess SO 2 is entrained in the absorbed exhaust gas, a cleaning facility or the like for removing the SO 2 becomes necessary. Furthermore, when performing this washed with seawater, generally will be recycled to the generation process as the process of cleaning the seawater, oxidant amount of chlorine such as to oxidize was washed absorbed in seawater, the excess of SO 2 If needed, the economics would be further reduced.
【0010】[0010]
【発明が解決しようとする課題】本発明の目的は、上記
の従来の臭素採取における課題を鑑み、臭素イオン濃度
が0.3g/リットル以下の臭素イオンの含有量が低い
かん水や海水から、効率的、効果的に臭素を純度よく採
取する方法を提供することにある。すなわち、資源量と
して豊富な低臭素イオン濃度かん水や無尽蔵の海水を原
料とすることができ、吸収効率が高いために設備を極め
てコンパクトとすることができ、使用する薬剤量も少な
くて済むために経済的であり、また、排ガスの発生が皆
無かまたは極少量でその除去も容易となる臭素の採取方
法を提供することにある。SUMMARY OF THE INVENTION In view of the above-mentioned problems in the conventional bromine collection, an object of the present invention is to reduce the efficiency of brine or seawater containing bromine ions having a bromine ion concentration of 0.3 g / liter or less and low content. It is an object of the present invention to provide a method for effectively and effectively collecting bromine with high purity. In other words, it is possible to use abundant low bromine ion concentration brackish water or inexhaustible seawater as a raw material, to make the equipment extremely compact due to high absorption efficiency, and to use a small amount of chemicals. It is an object of the present invention to provide a bromine sampling method which is economical and which does not generate any exhaust gas or which can be easily removed with a very small amount.
【0011】[0011]
【課題を解決するための手段】本発明者らは、上記の課
題を解決するために、従来のSO2法のかかる問題点が
吸収工程における臭素とSO2との反応が十分でないこ
とに起因すると考え、臭素とSO2との反応機構、反応
方法等について鋭意検討したところ、1)臭素とSO2
との反応で生成する臭化水素と硫酸はガスではなく微細
ミストであること、2)このミストは循環水等を用いた
従来のガス吸収方式では十分に捕捉できず、排ガスに同
伴すること、3)臭素ガスとSO2ガスの混合も均一混
合が難しく反応が不完全になることを把み、この対策と
して、フィラメントから構成された比表面積が100〜
500m2/m3のエリミネータを吸収工程に用いること
で、臭素とSO2との反応がほぼ定量的に進み、生成し
た臭化水素と硫酸とを効率的、効果的に捕捉でき、この
ことによってSO2の利用効率が向上し、装置のコンパ
クト化が図れ、さらに吸収工程からの排ガスに有害成分
が含まれないか含まれたとしても微量であり、その除去
も容易となることを見い出し、遂に本発明を完成するに
至った。Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have found that the problem of the conventional SO 2 method is that the reaction between bromine and SO 2 in the absorption step is not sufficient. Then, the inventors studied the reaction mechanism and reaction method between bromine and SO 2 intensively, and found that 1) bromine and SO 2
2) Hydrogen bromide and sulfuric acid generated by the reaction with water are not gas but fine mist. 2) This mist cannot be sufficiently captured by the conventional gas absorption method using circulating water, etc., and accompanies with exhaust gas. 3) It was found that the mixing of bromine gas and SO 2 gas was also difficult to achieve uniform mixing and the reaction was incomplete. As a countermeasure, the specific surface area composed of filaments was 100 to
By using an eliminator of 500 m 2 / m 3 in the absorption step, the reaction between bromine and SO 2 proceeds almost quantitatively, and the generated hydrogen bromide and sulfuric acid can be efficiently and effectively captured. It has been found that the use efficiency of SO 2 is improved, the equipment can be made more compact, and even if harmful components are not contained in the exhaust gas from the absorption process, or if they are contained in trace amounts, they can be easily removed. The present invention has been completed.
【0012】すなわち本発明は、0.3g/リットル以
下の臭素イオンを含む水溶液より臭素を採取する方法に
おいて、(1)臭素イオンを含む水溶液に酸化剤を加え
て臭素イオンを臭素に転化する酸化工程、(2)酸化工
程で臭素に転化された水溶液に水溶液全量に対して10
〜100倍容量の臭素との反応性がないガスを接触させ
て臭素ガス(Br2)を放散させる発生工程、(3)発
生工程で放散された臭素ガスに亜硫酸ガス(SO2)を
SO2/Br2モル比0.8〜1.7となるように混合
し、臭素を臭化水素に転化する還元工程及び、(4)還
元工程で転化された臭化水素を含む反応混合物をフィラ
メントから構成された比表面積が100〜500m2/
m3のエリミネータで捕捉する吸収工程、の4工程を少
なくとも経、さらに必要に応じて、吸収された臭化水素
を酸化剤により臭素とし、その後精製することも含む臭
素の採取方法である。That is, according to the present invention, there is provided a method for collecting bromine from an aqueous solution containing 0.3 g / liter or less of bromine ions. (1) Oxidation for converting bromine ions to bromine by adding an oxidizing agent to the aqueous solution containing bromine ions. Step (2) The aqueous solution converted to bromine in the oxidation step is added to the aqueous solution in an amount of 10
Step generation of dissipating 100 volumes of bromine and reactive by contacting the free gas bromine gas (Br 2), (3) sulfur dioxide bromine gas dissipated in generating step a (SO 2) SO 2 / Br 2 molar ratio of 0.8 to 1.7 and a reduction step of converting bromine to hydrogen bromide, and (4) a reaction mixture containing hydrogen bromide converted in the reduction step The configured specific surface area is 100-500 m 2 /
This is a bromine collection method including at least four steps of an absorption step of capturing with an m 3 eliminator, and further, if necessary, converting absorbed hydrogen bromide into bromine with an oxidizing agent, followed by purification.
【0013】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.
【0014】本発明では、原料として、臭素イオン濃度
が0.3g/リットル以下の水溶液を用い、このような
比較的臭素イオン濃度が低い水溶液としては、大量に存
在する地下かん水や、無尽蔵の海水等を挙げることがで
きる。海水中の臭素イオン濃度は、海域、水深、季節等
により異なるが、通常50〜70mg/リットルであ
る。さらに原料の臭素イオン濃度は上記の範囲のうちで
も高い程好ましいが、入手が容易な海水が好ましく用い
られる。In the present invention, an aqueous solution having a bromine ion concentration of 0.3 g / liter or less is used as a raw material. Such an aqueous solution having a relatively low bromine ion concentration may be a large amount of underground brine or inexhaustible seawater. And the like. The bromine ion concentration in seawater varies depending on the sea area, water depth, season, and the like, but is usually 50 to 70 mg / liter. Further, the bromine ion concentration of the raw material is preferably as high as possible in the above range, but seawater which is easily available is preferably used.
【0015】以下、本発明の方法を各工程毎に詳しく説
明する。Hereinafter, the method of the present invention will be described in detail for each step.
【0016】<酸化工程>酸化工程では、原料として用
いられる臭素イオン濃度が0.3g/リットル以下の水
溶液に酸化剤を加え、臭素イオンを臭素に転化する。用
いられる酸化剤としては、臭素イオンを臭素に酸化でき
る酸化力をもつものであれば特に制限はなく、標準酸化
還元電位(pH0)1.07mV以上の酸化剤用いられ
る。これらのうちでもオゾン、酸素、過酸化水素、塩素
や、過マンガン酸、塩素酸、亜塩素酸、次亜塩素酸、過
塩素酸、及びこれらの塩が好ましく用いられ、さらに、
酸化速度、海水への溶解度が大きく、安定で大量入手で
き、低価格である塩素が好ましく用いられる。<Oxidation Step> In the oxidation step, an oxidizing agent is added to an aqueous solution having a bromine ion concentration of 0.3 g / liter or less, used as a raw material, to convert bromine ions into bromine. The oxidizing agent used is not particularly limited as long as it has an oxidizing power capable of oxidizing bromine ions to bromine, and an oxidizing agent having a standard oxidation-reduction potential (pH 0) of 1.07 mV or more is used. Among these, ozone, oxygen, hydrogen peroxide, chlorine and permanganic acid, chloric acid, chlorous acid, hypochlorous acid, perchloric acid, and salts thereof are preferably used.
Chlorine, which has a high oxidation rate and high solubility in seawater, is stable, can be obtained in large quantities, and is inexpensive, is preferably used.
【0017】酸化剤の使用量としては、臭素イオンを臭
素に転化するに必要な酸化当量以上が好ましく、さら
に、酸化剤の原単位が増えたり臭素の採取率が低下する
のを避けるために、原料に含まれる臭素イオン当量に対
して1.05〜1.30倍酸化当量の範囲が好ましい。The amount of the oxidizing agent used is preferably not less than the oxidizing equivalent required to convert bromine ions to bromine. Further, in order to avoid an increase in the basic unit of the oxidizing agent and a decrease in the bromine collection rate, A range of 1.05 to 1.30 times equivalent of oxidation equivalent to bromine ion equivalent contained in the raw material is preferable.
【0018】酸化剤により臭素イオンが臭素へ転化され
るが、その際の水溶液のpHとしては、酸化剤の利用率
及び臭素ガスの発生率をより高くするために3〜4のp
Hが好ましい。水溶液のpHが4よりも大きいと、次の
臭素ガスを放散させる発生工程での臭素ガスの発生率が
低下することがあり、pHが3よりも小さいと、塩素等
の酸化剤の揮発性が高まり、酸化剤の利用率が低下する
ことがある。酸化工程において、用いられる水溶液のp
Hを調整する必要がある場合、硫酸、塩酸、硝酸等の鉱
酸を加えて調整すればよく、加えるタイミングとして
は、原料の水溶液に加えても、酸化工程で臭素イオンが
臭素に転化された水溶液に加えてもよい。The bromide ion is converted to bromine by the oxidizing agent. At this time, the pH of the aqueous solution is 3 to 4 p in order to further increase the utilization of the oxidizing agent and the generation rate of bromine gas.
H is preferred. When the pH of the aqueous solution is higher than 4, the rate of generation of bromine gas in the next generation step of releasing bromine gas may decrease. When the pH is lower than 3, the volatility of the oxidizing agent such as chlorine may decrease. And the utilization of the oxidant may decrease. In the oxidation step, p of the aqueous solution used
When it is necessary to adjust H, it may be adjusted by adding a mineral acid such as sulfuric acid, hydrochloric acid, or nitric acid. The timing of addition is such that bromine ions are converted to bromine in the oxidation step even when added to the aqueous solution of the raw material. It may be added to an aqueous solution.
【0019】<発生工程>次の発生工程では、臭素イオ
ンが臭素に転化された水溶液に、この水溶液全量に対し
て10〜100倍容量の臭素との反応性がないガスを接
触させて水溶液中の臭素を臭素ガスとして放散させる。<Generation Step> In the next generation step, an aqueous solution in which bromine ions have been converted to bromine is brought into contact with a gas having no reactivity with bromine in an amount of 10 to 100 times the volume of the total amount of the aqueous solution. Of bromine is released as bromine gas.
【0020】用いられるガスとしては、臭素との反応性
がないものであれば特に制限はなく、アルゴン、ヘリウ
ム等の不活性ガス、窒素、酸素、炭酸ガス、空気等を例
示でき、大量に入手でき、取り扱いが容易で安価な空気
が好ましく用いられる。The gas used is not particularly limited as long as it does not react with bromine, and examples thereof include inert gases such as argon and helium, nitrogen, oxygen, carbon dioxide, air and the like. Inexpensive air, which is easy to handle and easy to use, is preferably used.
【0021】用いられるガスの使用量としては、臭素ガ
スの発生効率が高くかつガスに含まれる臭素ガス濃度も
高く、また、電力コストも経済的とするために、酸化工
程で臭素イオンが臭素に転化された水溶液全量に対して
10〜100倍容量用いることが好ましい。使用量が1
0倍容量未満では臭素ガスの放散量、すなわち臭素ガス
発生率が低下してしまい経済的でない。一方、100倍
容量よりも多いと、放散ガスに含まれる臭素ガスの濃度
が低下してしまい、後の還元工程での効率が低下するだ
けでなく、ガスの圧力損失が大きくなってガスを流通さ
せる電力コストが増加してしまい経済的でない。また、
臭素ガスの発生効率も限界に近いため、臭素ガスの放散
量もそれ程高くできない。従って、本発明では、ガスの
使用量は10〜100倍容量を必須とする。The amount of gas used is such that bromine ions are converted to bromine in the oxidation step in order to increase the efficiency of generating bromine gas, increase the concentration of bromine gas contained in the gas, and reduce the cost of electricity. It is preferable to use 10 to 100 times the volume of the converted aqueous solution. 1 usage
If the volume is less than 0 times, the amount of bromine gas emitted, that is, the rate of bromine gas generation decreases, which is not economical. On the other hand, if the volume is more than 100 times the volume, the concentration of bromine gas contained in the released gas will decrease, and not only will the efficiency in the subsequent reduction step be reduced, but also the gas pressure loss will increase and the gas will flow. The cost of power to be used increases, which is not economical. Also,
Since the generation efficiency of bromine gas is close to the limit, the amount of brominated gas emission cannot be so high. Therefore, in the present invention, the amount of gas used must be 10 to 100 times the volume.
【0022】臭素に転化された水溶液にガスを接触させ
る方法としては、用いられるガスと水溶液中の臭素とが
十分に接触できるものであれば特に制限はなく、通常、
臭素の放散設備として充填塔が用いられる。その具体的
な方法としては、充填塔上部より酸化工程で臭素に転化
された水溶液をフィードし、臭素との反応性がないガス
を充填塔下部よりフィードし、ガスと臭素を含む水溶液
とを交流接触させて臭素ガスを放散させる方法が好まし
く用いられる。The method of contacting the gas with the aqueous solution converted to bromine is not particularly limited as long as the gas used and the bromine in the aqueous solution can be sufficiently contacted.
A packed tower is used as a bromine emission facility. As a specific method, an aqueous solution converted into bromine in the oxidation step is fed from the upper part of the packed tower, a gas having no reactivity with bromine is fed from the lower part of the packed tower, and the gas and the aqueous solution containing bromine are exchanged. A method in which bromine gas is released by contact is preferably used.
【0023】さらに、この際用いられる充填物としては
特に制限はないが、ガスと臭素を含む水溶液との接触効
率を大きくすることが好ましく、具体的には、ラシヒリ
ング、レッシングリングといったリング状充填物、テラ
レット等の不規則充填物や、ヒシパッキン、サンパッキ
ンといった波状型充填物、格子等の規則充填物が例示で
きる。ここで、ガスと臭素を含む水溶液との接触効率は
不規則充填物を用いる場合が高く、圧力損失は規則充填
物を用いる場合が低く、いずれを採用するかは放散設備
とその効率を考慮して適宜決めればよい。Further, the packing used at this time is not particularly limited, but it is preferable to increase the contact efficiency between the gas and the aqueous solution containing bromine. Specifically, a ring-shaped packing such as a Raschig ring or a lessing ring is used. And irregular packings such as teralet, corrugated packings such as heishi packing and sun packing, and structured packings such as lattices. Here, the contact efficiency between the gas and the aqueous solution containing bromine is high in the case of using irregular packing, and the pressure loss is low in the case of using structured packing.The choice of which to use depends on the diffusion equipment and its efficiency. May be determined appropriately.
【0024】臭素との反応性がないガスを臭素に転化さ
れた水溶液へ供給する際には、放散された臭素ガスをブ
ロアーで吸引しながらガスを供給することが好ましい。
この理由は、ブロアーで吸引することで水溶液よりの臭
素ガス発生を負圧に保つことができ、臭素ガスの発生効
率をより高くすることができると共に、外部への臭素ガ
スの漏洩を防ぐことができるからである。When a gas having no reactivity with bromine is supplied to the aqueous solution converted to bromine, it is preferable to supply the gas while sucking the emitted bromine gas with a blower.
The reason is that by suctioning with a blower, the generation of bromine gas from the aqueous solution can be maintained at a negative pressure, the efficiency of generating bromine gas can be increased, and the leakage of bromine gas to the outside can be prevented. Because you can.
【0025】<還元工程>次の還元工程では、発生工程
で発生する臭素ガスに亜硫酸ガス(SO2)をSO2/B
r2モル比0.8〜1.7となるように混合して臭素を
臭化水素に転化させ、臭化水素を含む反応混合物を得
る。このBr2とSO2との反応は酸化還元反応であり、
一般にその速度は大きく、反応により臭化水素と硫酸が
生成する。<Reduction Step> In the next reduction step, a sulfur dioxide gas (SO 2 ) is added to the bromine gas generated in the generation step by SO 2 / B.
were mixed so that the r 2 molar ratio 0.8 to 1.7 is converted bromine hydrogen bromide to obtain a reaction mixture containing hydrogen bromide. This reaction between Br 2 and SO 2 is a redox reaction,
Generally, the rate is high, and the reaction produces hydrogen bromide and sulfuric acid.
【0026】ここで、用いられるSO2の量としては、
Br2の還元率を高くし、かつSO2使用量も比較的少量
で済むように、SO2/Br2モル比を0.8〜1.7の
範囲とすることが好ましく、さらに1.0〜1.3の範
囲とすることが好ましい。SO2/Br2モル比が0.8
未満であると、臭素の還元が不十分となり、臭素の採取
効率が低下してしまい、また、SO2/Br2モル比を
1.7より大きくしても臭素の採取率は限界で増加せ
ず、SO2が大過剰になり経済的でなくなってしまう。Here, the amount of SO 2 used is as follows:
The SO 2 / Br 2 molar ratio is preferably in the range of 0.8 to 1.7 so that the reduction ratio of Br 2 is high and the amount of SO 2 used is relatively small. It is preferably in the range of 1.3. SO 2 / Br 2 molar ratio is 0.8
If the molar ratio is less than 1.7, the reduction of bromine becomes insufficient, and the efficiency of bromine collection decreases. Also, even if the molar ratio of SO 2 / Br 2 is larger than 1.7, the bromine collection rate increases at the limit. Therefore, SO 2 becomes excessively large and is not economical.
【0027】また、亜硫酸ガスを加える際、加えられる
亜硫酸ガスが系内に均一になるようにすることが好まし
く、その具体的方法としては、例えば、亜硫酸ガスの供
給を多孔管ノズルで行う方法が挙げられる。In addition, when adding the sulfurous acid gas, it is preferable that the added sulfurous acid gas is made uniform in the system. As a specific method, for example, a method of supplying the sulfurous acid gas with a perforated pipe nozzle is used. No.
【0028】臭素ガスと亜硫酸ガスとの混合そして反応
はガス拡散により進行するが、より速く、より効率よく
行うためにブロアを設置するのが好ましい。その設置場
所は、SO2ガスを加えた後が望ましい。これにより、
臭素とSO2の混合を完全に行うことができる。さら
に、用いられるブロアは、前記の発生工程において臭素
との反応性のないガスを供給するための吸引用ブロアと
するのがより好ましい。Although the mixing and reaction of the bromine gas and the sulfurous acid gas proceed by gas diffusion, it is preferable to provide a blower for faster and more efficient operation. The installation place is desirably after adding SO 2 gas. This allows
Complete mixing of the bromine and SO 2 is possible. Further, it is more preferable that the blower used is a suction blower for supplying a gas having no reactivity with bromine in the generation step.
【0029】<吸収工程>次の吸収工程では、還元工程
で転化された臭化水素をフィラメントから構成されたエ
リミネータで捕捉する。<Absorption Step> In the next absorption step, the hydrogen bromide converted in the reduction step is captured by an eliminator composed of filaments.
【0030】用いられるエリミネータの比表面積の範囲
としては、臭化水素の捕捉効率を高めるために100〜
500m2/m3の範囲が好ましい。この範囲にあれば、
臭化水素の捕捉効率は98%以上にも達し、また、副生
硫酸の捕捉効率も98%以上にも達する。このように高
い捕捉効率が得られた理由は定かではないが、生成する
臭化水素、硫酸がガスではなくミストであり、そのミス
トの捕捉にフィラメントから構成されたエリミネータが
効力を発揮したものと考えられ、本発明の最大の骨子と
なる。また、このエリミネータの作用は、単なるミスト
捕捉ではなく、臭素と亜硫酸ガスとの混合と反応の促進
にも寄与していると考えられる。一方、エリミネータの
比表面積が100m2/m3未満では、圧力損失は小さい
が臭化水素の捕捉率が低下し、SO2の使用量増加、臭
素の採取率低下を招くために好ましくない。500m2
/m3より大きい場合には、本吸収工程での臭化水素の
捕捉率は限界であり、採取率改善の効果は大きくなく、
また、ガスの圧力損失が急激に大きくなり、ガスを流通
させる電力コストが増加し、経済的でない。The range of the specific surface area of the eliminator used is 100 to 100% in order to increase the efficiency of capturing hydrogen bromide.
A range of 500 m 2 / m 3 is preferred. In this range,
The efficiency of capturing hydrogen bromide reaches 98% or more, and the efficiency of capturing by-product sulfuric acid also reaches 98% or more. The reason why such a high trapping efficiency was obtained is not clear, but the generated hydrogen bromide and sulfuric acid are not gas but mist, and the eliminator composed of filaments was effective in trapping the mist. It is conceivable and constitutes the main point of the present invention. In addition, it is considered that the action of the eliminator contributes not only to mist trapping but also to the promotion of the mixing and reaction of bromine and sulfur dioxide. On the other hand, when the specific surface area of the eliminator is less than 100 m 2 / m 3 , the pressure loss is small, but the capture rate of hydrogen bromide is reduced, which leads to an increase in the amount of SO 2 used and a reduction in the bromine collection rate, which is not preferable. 500m 2
/ M 3 , the absorption rate of hydrogen bromide in this absorption step is at a limit, and the effect of improving the collection rate is not significant.
Further, the pressure loss of the gas increases rapidly, and the cost of power for flowing the gas increases, which is not economical.
【0031】本発明で用いられるエリミネータの材質と
しては、耐食性に優れ、捕捉率向上に大きな効果がある
ものであればよく、ポリエチレン、ポリプロピレン、ポ
リ塩化ビニル、ポリ塩化ビリニデン、フッ素系樹脂等の
樹脂や、樹脂がコーティングされた金属等が好ましく用
いられ、さらに、加工のしやすさ、扱いやすさの点も考
慮して、樹脂が好ましく用いられる。The material of the eliminator used in the present invention is not particularly limited as long as it is excellent in corrosion resistance and has a great effect on improving the trapping rate. Examples of the resin include resins such as polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, and fluororesin. In addition, a resin coated metal or the like is preferably used, and furthermore, a resin is preferably used in consideration of ease of processing and ease of handling.
【0032】エリミネータのフィラメント径は特に限定
されないが、0.1〜1mmの範囲にあれば臭化水素、
硫酸の捕捉率を高め、取り扱いが容易であり、入手も容
易であることから好ましい。また、エリミネータはフィ
ラメントが不規則におられた綿状でも規則的に折り重ね
られたものでもよいが、圧力損失を低くする場合には規
則的に折り重ねられたものを用いることが望ましい。The filament diameter of the eliminator is not particularly limited, but may be hydrogen bromide, if it is in the range of 0.1 to 1 mm.
It is preferable because the rate of capturing sulfuric acid is increased, the handling is easy, and the availability is easy. The eliminator may be a cotton with irregular filaments or a regular fold, but it is preferable to use a regular fold to reduce the pressure loss.
【0033】エリミネータの使用量としては、捕捉効率
をより高くし、圧力損失を低くするために、吸収工程で
用いられる装置の断面積1m2当たりのエリミネータの
総表面積として100〜400m2の範囲とすることが
好ましい。例えば、比表面積が300m2/m3のエリミ
ネータを用いる場合には、厚みが40cmであれば12
0m2/m2となり、1mの厚みであれば300m2/m2
となる。表面積が100m2/m2よりも小さいと、圧力
損失は小さいが臭化水素の捕捉率が低下し、SO2の使
用量増加、臭素の採取率低下を招くことがある。一方、
400m2/m2より大きくしても臭化水素の捕捉率は限
界で、採取率改善の効果は大きくなく、また、ガスの圧
力損失が急激に大きくなって、ガスを流通させる電力コ
ストが増加することがある。The amount of use of the eliminator, the capture efficiency was higher, in order to reduce the pressure loss, the range of 100 to 400 m 2 as the total surface area of the eliminator of the cross-sectional area 1 m 2 per apparatus used in the absorption step Is preferred. For example, when using an eliminator having a specific surface area of 300 m 2 / m 3 , if the thickness is 40 cm, 12
0 m 2 / m 2 , and 300 m 2 / m 2 for a thickness of 1 m
Becomes If the surface area is less than 100 m 2 / m 2 , the pressure loss is small but the capture rate of hydrogen bromide is reduced, which may lead to an increase in the amount of SO 2 used and a decrease in the bromine collection rate. on the other hand,
Even if it is larger than 400 m 2 / m 2 , the trapping rate of hydrogen bromide is limited and the effect of improving the collection rate is not significant, and the pressure loss of the gas increases sharply, increasing the electricity cost to distribute the gas. May be.
【0034】エリミネータの設置段数は1段でもよい
が、分割して設置することにより、ガス線速分布が均一
となって最終的な臭素の採取効率が向上するため、2以
上に分割することが好ましく、さらに、臭素の採取効率
と装置の複雑さを考慮して、2〜4分割とすることが好
ましい。The number of stages of the eliminator may be one. However, by dividing and installing the eliminator, the gas linear velocity distribution becomes uniform and the final bromine collection efficiency is improved. Preferably, it is preferably divided into 2 to 4 parts in consideration of bromine collection efficiency and the complexity of the apparatus.
【0035】また、エリミネータによる捕捉をより効率
的に行うため、先の還元工程及び/又は吸収工程で水を
スプレーで供給することが好ましい。In order to more efficiently capture by the eliminator, it is preferable to supply water by spraying in the above-mentioned reduction step and / or absorption step.
【0036】この場合、水の供給量としては、ガス1m
3に対して0.2〜5.0リットルの範囲が好ましく、
簡易な設備で捕捉効率をより高くできる。一方、水の供
給量が0.2リットル/m3未満では、臭素の採取効率
がやや低下することがあり、また、5.0リットル/m
3よりも多いと、スプレー設備の大型化と送液コストの
増加を招くことがある。In this case, the supply amount of water is 1 m of gas.
The range of 0.2 to 5.0 liters is preferable for 3 ;
The capture efficiency can be increased with simple equipment. On the other hand, when the supply amount of water is less than 0.2 liter / m 3 , the bromine collection efficiency may be slightly reduced, and 5.0 liter / m 3 may be obtained.
If the number is more than 3 , the size of the spray equipment may increase and the cost of feeding the liquid may increase.
【0037】水のスプレー供給は、臭素の採取率を向上
させ、また、エリミネータ使用量を削減するために、前
記したブロア直後からエリミネータ間で2〜3分割して
行うことが好ましい。In order to improve the bromine collection rate and to reduce the amount of eliminator used, the spray supply of water is preferably performed by dividing the eliminator into two or three parts immediately after the blower.
【0038】供給される水は純水でも工業用水でもよ
く、また、吸収工程で捕捉される臭化水素を含む水溶液
の一部を循環使用してもよく、この場合には、より高濃
度の臭化水素を含む水溶液を得ることができる。The water to be supplied may be pure water or industrial water, or a part of the aqueous solution containing hydrogen bromide captured in the absorption step may be circulated and used. An aqueous solution containing hydrogen bromide can be obtained.
【0039】上記の条件下では、通常、吸収工程で得ら
れる水溶液中の臭化水素の濃度は1〜20wt%、H2
SO4は1〜20wt%となる。[0039] Under the conditions described above, typically, the concentration of hydrogen bromide in the aqueous solution obtained in the absorption step is 1 to 20 wt%, H 2
SO 4 will be 1~20wt%.
【0040】エリミネータを通過するガス線速として
は、捕捉効率をより高くし、圧力損失を低くするため
に、空時で1〜5m/秒の範囲とすることが好ましい。
ガス線速が空時で1m/秒未満の場合には捕捉効率がや
や低下することがあり、5m/秒より大きい場合にはガ
スの圧力損失が大きくなることがある。The linear velocity of the gas passing through the eliminator is preferably in the range of 1 to 5 m / s in an empty state in order to increase the trapping efficiency and reduce the pressure loss.
When the gas linear velocity is less than 1 m / sec in the space state, the trapping efficiency may slightly decrease, and when the gas linear velocity is more than 5 m / sec, the pressure loss of the gas may increase.
【0041】また、吸収工程の排ガスにはSO2とBr2
が同時に残存することはほとんどないが、SO2/Br2
モル比が小さい場合は微量の未反応の臭素が、SO2/
Br2モル比が大きい場合は過剰分のSO2が微量含まれ
ていることがあり、これらは排ガスを海水等で洗浄する
ことにより容易に除去できる。Also, SO 2 and Br 2 are contained in the exhaust gas of the absorption step.
Rarely remain at the same time, but SO 2 / Br 2
When the molar ratio is small, a small amount of unreacted bromine becomes SO 2 /
When the Br 2 molar ratio is large, a small amount of excess SO 2 may be contained, and these can be easily removed by washing the exhaust gas with seawater or the like.
【0042】また、吸収工程の排ガスを発生工程へと循
環してもよい。この場合には、排ガス中のSO2又はB
r2は微量であり、経済性の低下はほとんどなく、排ガ
スを発生工程での臭素の放散ガスとして利用できるた
め、ガスのクローズド化が実現でき、環境保全上極めて
有効である。また、このようにガスを循環するプロセス
で、不純物が蓄積する場合、循環ガスの一部をパージす
る必要があるが、その量は全ガス量に対して非常に少量
であり、小規模の除去設備で対応できる。Further, the exhaust gas of the absorption step may be circulated to the generation step. In this case, SO 2 or B
r 2 is the trace, the reduction in economical efficiency little, since available as stripped gas of bromine the exhaust gas generation process, can be realized Closed of gas is very effective environmental protection. In addition, when impurities accumulate in the process of circulating gas in this way, it is necessary to purge a part of the circulating gas, but the amount is very small with respect to the total gas amount, and small-scale removal is required. Equipment can be used.
【0043】以上の工程により、低濃度の臭素イオンを
含むかん水あるいは海水のような水溶液より臭素を採取
することができるが、さらに、臭素を高純度化するよう
に精製することもでき、このことにより、高純度の臭素
を製品として高収率で採取できる。その場合、上記の吸
収工程で得られる臭化水素を含む水溶液を常法により精
製すればよい。例えば、吸収工程で得られる臭化水素を
含む水溶液に塩素等の酸化剤を加えることで臭素が生成
し、さらに生成した臭素を蒸留するなどして、精製する
ことでよい。さらに具体的にいえば、特公昭51−27
439号公報に記載の方法などを用い、蒸留塔上部より
臭化水素を含む水溶液をフィードし、それと共に蒸留塔
中程より臭化水素を酸化するのに必要な量の塩素をフィ
ードして臭化水素を臭素へ転化させる、そして、蒸留塔
下部よりスチーム等により加熱し蒸留塔の塔頂部を70
〜100℃程度に制御しながら、臭素を蒸留することで
高純度の臭素を取り出すことができる。Through the above steps, bromine can be collected from an aqueous solution containing low-concentration bromine ions, such as brine or seawater. However, bromine can be further purified to be highly purified. Thereby, high-purity bromine can be collected as a product in a high yield. In that case, the aqueous solution containing hydrogen bromide obtained in the above absorption step may be purified by a conventional method. For example, bromine may be generated by adding an oxidizing agent such as chlorine to an aqueous solution containing hydrogen bromide obtained in the absorption step, and the generated bromine may be purified by distillation or the like. More specifically, Japanese Patent Publication No. 51-27
No. 439, an aqueous solution containing hydrogen bromide is fed from the upper part of the distillation column, and an amount of chlorine necessary for oxidizing hydrogen bromide is fed from the middle of the distillation column. Hydrogen hydride is converted to bromine, and heated from the lower part of the distillation column with steam or the like so that the top of the distillation column is
By distilling bromine while controlling the temperature to about 100 ° C., high-purity bromine can be obtained.
【0044】以上の方法により比較的低濃度の臭素イオ
ンを含む水溶液より高純度の臭素を採取できるわけであ
るが、本発明では、上記の酸化工程、発生工程、還元工
程、吸収工程などの各工程をバッチ式あるいは連続式で
行えばよい。さらに、設備のコンパクト化、運転操作性
の向上そして臭素採取率の向上を実現できる連続式で行
うことが好ましい。この連続式の具体的な態様は、原
料、生産規模等により適宜選択して決められるが、これ
らの工程を相互に有機的に組み合わせてもよく、また、
必要に応じて、一部の工程で得られる処理物を保管後そ
のままあるいは順次得られる処理物を集めた後次工程へ
と処理する方式であってもよい。According to the above method, high-purity bromine can be collected from an aqueous solution containing a relatively low concentration of bromine ion. However, in the present invention, each of the above-mentioned oxidation step, generation step, reduction step, absorption step, etc. The process may be performed in a batch system or a continuous system. Further, it is preferable to use a continuous method capable of realizing compactness of equipment, improvement of operability and improvement of bromine collection rate. The specific mode of the continuous system is appropriately selected and determined according to the raw material, the production scale, and the like.However, these steps may be organically combined with each other,
If necessary, a method may be used in which the processed products obtained in some of the steps are stored as they are, or the processed products obtained sequentially are collected, and then processed to the next step.
【0045】[0045]
【実施例】以下、本発明を実施例によりさらに説明する
が、本発明はこれらに限定されるものではない。EXAMPLES Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited thereto.
【0046】実施例1 臭素イオンが64mg/リットルの海水に硫酸を加えて
pH3.5とした。この海水に塩素ガスを海水中の臭素
イオンの量に対して1.1倍当量加えて臭素に酸化し、
その後この水溶液に水溶液の容量の51倍容量の空気を
導入して臭素ガスを放散した。Example 1 Sulfuric acid was added to seawater containing 64 mg / l of bromine ions to adjust the pH to 3.5. This seawater is oxidized to bromine by adding 1.1 times equivalent of chlorine gas to the amount of bromine ions in the seawater,
Thereafter, air of 51 times the volume of the aqueous solution was introduced into the aqueous solution to emit bromine gas.
【0047】一方、前部にブロアを設置した内径寸法9
50mmφ、長さ17mの吸収部に、比表面積 370
m2/m3のポリプロピレン製エリミネータを、ブロアか
ら10mの位置に40mmの厚みで(装置断面積に対す
るフィラメント断面積15m2/m2)、さらにこれから
2mの位置(ブロアから12mの位置)に300mmの
厚みで(装置断面積に対するフィラメント断面積110
m2/m2)で、それぞれセットし、HBr 10wt
%、H2SO4 7wt%の吸収液をブロア出口及び前段
エリミネータ部にそれぞれ半量ずつスプレーにて循環噴
霧した。循環噴霧量は3.0リットル−吸収液/m3−
ガス(900リットル/時間)であった。前記装置に、
発生工程からの臭素ガスを1000mg/m3含む空気
を300m3/時間導入すると同時に、SO2ガスをスプ
レーにて臭素ガス1モルに対して1.2モルの割合でブ
ロア前に導入した。吸収排ガスは、全量発生工程に循環
した。排ガス中の臭素濃度を分光光度計により分析した
結果5mg/m3以下であった。吸収液はHBr濃度が
10wt%となるように連続的に少量の水を吸収液タン
クに加えて混合した。増加した吸収液は連続的に抜き出
し、塩素をHBrの当量加えた後、蒸留により臭素を製
品として採取した。臭素の採取率は99.5%であっ
た。On the other hand, the inner diameter 9 with a blower installed at the front
In the absorption part of 50mmφ, length 17m, specific surface area 370
A polypropylene eliminator of m 2 / m 3 was placed at a position of 10 m from the blower with a thickness of 40 mm (filament cross-sectional area of 15 m 2 / m 2 with respect to the cross-sectional area of the device), and further at a position of 2 m (at a position of 12 m from the blower). (The filament cross-sectional area 110 relative to the apparatus cross-sectional area)
m 2 / m 2 ), and HBr 10 wt.
% And H 2 SO 4 7 wt% were circulated and sprayed to the blower outlet and the pre-stage eliminator part by a half respectively. The amount of circulating spray is 3.0 liters-absorbent / m 3-
Gas (900 liters / hour). In the device,
Air containing 1000 mg / m 3 of bromine gas from the generation step was introduced at 300 m 3 / hour, and at the same time, SO 2 gas was introduced by spraying at a ratio of 1.2 mol per mol of bromine gas before the blower. The absorbed exhaust gas was circulated to the entire generation process. As a result of analyzing the bromine concentration in the exhaust gas by a spectrophotometer, it was 5 mg / m 3 or less. A small amount of water was continuously added to the absorbing solution tank and mixed so that the HBr concentration became 10 wt%. The increased absorption liquid was continuously withdrawn, chlorine was added in an equivalent amount of HBr, and then bromine was collected as a product by distillation. The bromine collection rate was 99.5%.
【0048】比較例1 比表面積80m2/m3のエリミネータを用いる以外は実
施例1と同じ条件、同じ操作で実施した。吸収排ガス中
の臭素濃度は150mg/m3であり、臭素の採取率は
85%であった。Comparative Example 1 The same operation and operation as those of Example 1 were carried out except that an eliminator having a specific surface area of 80 m 2 / m 3 was used. The bromine concentration in the absorbed exhaust gas was 150 mg / m 3 , and the bromine collection rate was 85%.
【0049】比較例2 SO2ガスのフィード量を臭素1モルに対して0.6モ
ルで行う以外は実施例1と同じ条件、同じ操作で実施し
た。吸収排ガス中の臭素濃度は、400mg/m3であ
り、臭素の採取率は60%であった。Comparative Example 2 The same operation and operation as in Example 1 were carried out except that the feed amount of SO 2 gas was 0.6 mol per 1 mol of bromine. The bromine concentration in the absorbed exhaust gas was 400 mg / m 3 , and the bromine collection rate was 60%.
【0050】実施例2 スプレー水を、HBr 10wt%、H2SO4 7wt
%の吸収液に代えて水を0.3リットル−水/m3−ガ
ス(900リットル/時間)ワンパスで噴霧する以外、
実施例1と同じ条件、同じ操作で実施した。排ガス中の
臭素濃度を分析した結果9mg/m3であった。また、
吸収液の組成はHBr 3.4g/リットル、H2SO4
2g/リットルであり、吸収液は吸収液タンクから連
続的に抜き出し、塩素をHBrの当量加えた後、蒸留に
より臭素を製品として採取した。臭素の採取率は99.
1%であった。Example 2 The spray water was HBr 10 wt%, H 2 SO 4 7 wt
% Of water instead of spraying with 0.3 liter-water / m 3 -gas (900 liter / hour)
It carried out by the same conditions and the same operation as Example 1. The result of analyzing the bromine concentration in the exhaust gas was 9 mg / m 3 . Also,
The composition of the absorbing solution was HBr 3.4 g / liter, H 2 SO 4
The absorption liquid was continuously extracted from the absorption liquid tank, chlorine was added in an equivalent amount of HBr, and then bromine was collected as a product by distillation. The bromine collection rate is 99.
1%.
【0051】[0051]
【発明の効果】本発明は、臭素イオン濃度が0.3g/
リットル以下という比較的低濃度のかん水や海水から効
率的、効果的に臭素を採取する方法であり、経済性が高
く、工業的価値の高い方法である。According to the present invention, a bromine ion concentration of 0.3 g /
It is a method for efficiently and effectively collecting bromine from brackish water or seawater having a relatively low concentration of less than 1 liter, which is economical and has high industrial value.
【0052】本発明によれば、以下の効果が得られる。According to the present invention, the following effects can be obtained.
【0053】(1)資源量として豊富な、低臭素イオン
濃度のかん水や無尽蔵の海水から高収率で臭素を採取で
きる。(1) Bromine can be collected in high yield from brackish water or inexhaustible seawater with a low bromine ion concentration, which is abundant in resources.
【0054】(2)酸化、発生、還元、吸収の効率が高
く、その設備は極めてコンパクトで済む。殊に吸収の効
率が高く、有用な方法である。(2) The efficiency of oxidation, generation, reduction and absorption is high, and the equipment is extremely compact. In particular, the absorption efficiency is high and it is a useful method.
【0055】(3)理論量に近い薬剤使用量で臭素を採
取でき、経済性が高い。(3) Bromine can be collected with a chemical usage amount close to the theoretical amount, and the cost is high.
【0056】(4)Br2又はSO2を含んだ排ガスの発
生が皆無かまたは極少量で除去も容易であり、環境保全
上優れる。(4) There is no or only a very small amount of exhaust gas containing Br 2 or SO 2, and it is easy to remove.
Claims (15)
む水溶液より臭素を採取する方法において、(1)臭素
イオンを含む水溶液に酸化剤を加えて臭素イオンを臭素
に転化する酸化工程、(2)前記酸化工程で臭素に転化
された水溶液に該水溶液全量に対して10〜100倍容
量の臭素との反応性がないガスを接触させて臭素ガス
(Br2)を放散させる発生工程、(3)前記発生工程
で放散された臭素ガスに亜硫酸ガス(SO2)をSO2/
Br2モル比0.8〜1.7となるように混合し、臭素
を臭化水素に転化する還元工程及び、(4)前記還元工
程で転化された臭化水素を含む反応混合物をフィラメン
トから構成された比表面積が100〜500m2/m3の
エリミネータで捕捉する吸収工程、の4工程を少なくと
も経ることを特徴とする臭素の採取方法。1. A method for collecting bromine from an aqueous solution containing 0.3 g / liter or less of bromine ions, comprising: (1) an oxidation step of adding an oxidizing agent to an aqueous solution containing bromine ions to convert bromine ions into bromine; 2) step occurs for the dissipation of oxidation processes in an aqueous solution was converted to the bromine aqueous solution by contacting the gas has no reactivity with the 10 to 100-fold volume bromine based on the total amount with bromine gas (Br 2), ( 3) Sulfur dioxide gas (SO 2 ) is added to the SO 2 /
A reduction step of mixing Br 2 in a molar ratio of 0.8 to 1.7 to convert bromine into hydrogen bromide; and (4) a reaction mixture containing hydrogen bromide converted in the reduction step is supplied from a filament. A method for collecting bromine, which comprises at least four steps of an absorption step of capturing with an eliminator having a specific surface area of 100 to 500 m 2 / m 3 .
捕捉された臭化水素を含む反応混合物に酸化剤を加えて
臭素とし、その後精製することを特徴とする臭素の採取
方法。2. A method for collecting bromine, comprising, after the absorption step according to claim 1, adding an oxidizing agent to the reaction mixture containing the captured hydrogen bromide to obtain bromine, followed by purification.
面積に対して表面積で100〜400m2/m2とするこ
とを特徴とする請求項1又は請求項2に記載の臭素の採
取方法。3. A eliminator sampling method bromine according to claim 1 or claim 2 usage in surface area with respect to the apparatus the cross-sectional area of the absorption step, characterized in that a 100 to 400 m 2 / m 2 of.
1〜5m/秒であることを特徴とする請求項1〜3のい
ずれかに記載の臭素の採取方法。4. The method for collecting bromine according to claim 1, wherein the linear velocity of the gas passing through the eliminator is 1 to 5 m / sec in an empty state.
とを特徴とする請求項1〜4のいずれかに記載の臭素の
採取方法。5. The method for collecting bromine according to claim 1, wherein the eliminator is divided into two and four parts.
する請求項1〜5のいずれかに記載の臭素の採取方法。6. The method for collecting bromine according to claim 1, wherein the eliminator is made of a resin.
をスプレーで供給することを特徴とする請求項1〜6の
いずれかに記載の臭素の採取方法。7. The method for collecting bromine according to claim 1, wherein water is supplied by spraying in the reduction step and / or the absorption step.
溶液の一部であることを特徴とする請求項7に記載の臭
素の採取方法。8. The method for collecting bromine according to claim 7, wherein the water is part of an aqueous solution containing hydrogen bromide captured in the absorption step.
0リットル/m3であることを特徴とする請求項7又は
請求項8に記載の臭素の採取方法。9. The supply amount of water is 0.2 to 5.
How to collect bromine according to claim 7 or claim 8 characterized in that it is a 0 l / m 3.
スを発生工程へとリサイクルすることを特徴とする請求
項1〜9のいずれかに記載の臭素の採取方法。10. The method for collecting bromine according to claim 1, wherein the exhaust gas after capturing hydrogen bromide in the absorption step is recycled to the generation step.
求項1〜10のいずれかに記載の臭素の採取方法。11. The method for collecting bromine according to claim 1, wherein the oxidizing agent is chlorine.
ことを特徴とする請求項1〜11のいずれかに記載の臭
素の採取方法。12. The method for collecting bromine according to claim 1, wherein the gas having no reactivity with bromine is air.
ーで吸引して、臭素との反応性がないガスを供給するこ
とを特徴とする請求項1〜12のいずれかに記載の臭素
の採取方法。13. The bromine collection according to claim 1, wherein in the generation step, the bromine gas released is sucked by a blower to supply a gas having no reactivity with bromine. Method.
とを特徴とする請求項1〜13のいずれかに記載の臭素
の採取方法。14. The method for collecting bromine according to claim 1, wherein the supply of the sulfur dioxide gas is performed before the blower.
工程を連続式で行うことを特徴とする請求項1〜14の
いずれかに記載の臭素の採取方法。15. The method for collecting bromine according to claim 1, wherein the oxidation step, the generation step, the reduction step, and the absorption step are performed in a continuous manner.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16804899A JP4362894B2 (en) | 1999-06-15 | 1999-06-15 | How to collect bromine |
IL13633000A IL136330A (en) | 1999-06-15 | 2000-05-24 | Method for collecting bromine |
GB0014018A GB2351282B (en) | 1999-06-15 | 2000-06-08 | Method for collecting bromine |
FR0007580A FR2795064A1 (en) | 1999-06-15 | 2000-06-14 | PROCESS FOR COLLECTING BROMINE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16804899A JP4362894B2 (en) | 1999-06-15 | 1999-06-15 | How to collect bromine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001002402A true JP2001002402A (en) | 2001-01-09 |
JP4362894B2 JP4362894B2 (en) | 2009-11-11 |
Family
ID=15860873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16804899A Expired - Fee Related JP4362894B2 (en) | 1999-06-15 | 1999-06-15 | How to collect bromine |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4362894B2 (en) |
FR (1) | FR2795064A1 (en) |
GB (1) | GB2351282B (en) |
IL (1) | IL136330A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011245484A (en) * | 2011-08-08 | 2011-12-08 | Tsurumi Soda Co Ltd | Salt water purification device and method |
CN112010262A (en) * | 2019-05-28 | 2020-12-01 | 自然资源部天津海水淡化与综合利用研究所 | Improved bromine extraction method and equipment by air blowing method |
CN116119619A (en) * | 2023-04-18 | 2023-05-16 | 山东默锐科技有限公司 | Preparation process of hydrogen bromide gas |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104944376A (en) * | 2015-06-19 | 2015-09-30 | 天津长芦海晶集团有限公司 | Preparation method for absorbed water for preparing bromine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL103184A0 (en) * | 1991-09-16 | 1993-02-21 | Catalytica Inc | Process for producing bromine from seawater |
-
1999
- 1999-06-15 JP JP16804899A patent/JP4362894B2/en not_active Expired - Fee Related
-
2000
- 2000-05-24 IL IL13633000A patent/IL136330A/en not_active IP Right Cessation
- 2000-06-08 GB GB0014018A patent/GB2351282B/en not_active Expired - Fee Related
- 2000-06-14 FR FR0007580A patent/FR2795064A1/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011245484A (en) * | 2011-08-08 | 2011-12-08 | Tsurumi Soda Co Ltd | Salt water purification device and method |
CN112010262A (en) * | 2019-05-28 | 2020-12-01 | 自然资源部天津海水淡化与综合利用研究所 | Improved bromine extraction method and equipment by air blowing method |
CN116119619A (en) * | 2023-04-18 | 2023-05-16 | 山东默锐科技有限公司 | Preparation process of hydrogen bromide gas |
Also Published As
Publication number | Publication date |
---|---|
GB2351282B (en) | 2001-05-02 |
FR2795064A1 (en) | 2000-12-22 |
GB0014018D0 (en) | 2000-08-02 |
IL136330A0 (en) | 2001-05-20 |
GB2351282A (en) | 2000-12-27 |
JP4362894B2 (en) | 2009-11-11 |
IL136330A (en) | 2003-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW510819B (en) | Method and apparatus for treating a waste gas containing fluorine-containing compounds | |
CN105597535B (en) | Method for treating mixed organic waste gas containing chlorine, hydrogen chloride and oxynitride | |
CN100500265C (en) | Purification process and equipment for exhaust gas containing high concentration of nitrogen oxides | |
CN1617831A (en) | Nox, hg, and so2 removal using ammonia | |
US5433828A (en) | Method for the removal of hydrogen sulfide and/or carbon disulfide from waste gases | |
CN111167263B (en) | Nitrogen oxide absorbent slurry and preparation and use methods thereof | |
CN104248906B (en) | Treatment process for high-concentration intermittent organic waste gas emission | |
US20040101460A1 (en) | Apparatus and method for point-of-use treatment of effluent gas streams | |
JP2001002402A (en) | How to collect bromine | |
JP4758722B2 (en) | Method for purifying hydrogen chloride gas | |
JP5345676B2 (en) | How to absorb chlorine from a gas stream | |
JP2003240226A (en) | Exhaust gas processing device and processing method | |
CN2870958Y (en) | Purifier of waste gas containing high-content nitrogen oxygen waste gas | |
CN112206642A (en) | Exhaust gas treatment method | |
CN112957891A (en) | Recycling treatment method for nitrogen oxide waste gas in noble metal purification process | |
CN221940142U (en) | A waste hydrochloric acid treatment system for VCM production room | |
CN218358392U (en) | Comprehensive hazardous waste incineration flue gas treatment system | |
CN210993684U (en) | Nitrogen oxide-containing waste gas treatment device provided with chlorine dioxide electrolysis generator | |
CN102666451A (en) | Process for producing allyl chloride and dichloropropanol | |
JP4436183B2 (en) | Iodine ion removal process and electrolysis process | |
WO2010050342A1 (en) | Method and system for purifying nitrogen trifluoride containing halogen or halogen compound as impurity | |
JP2006231105A (en) | Removal method of oxidizing gas | |
JP4751091B2 (en) | Exhaust gas treatment method | |
CN105169920A (en) | Method for removing NOX from coke oven chimney exhaust gas by using residual ammonia water in coking plant | |
US6355223B1 (en) | Closed loop process for producing chlorine from hydrogen chloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090810 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130828 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |