JP2000351623A - Raw material solution for forming perovskite oxide thin film - Google Patents
Raw material solution for forming perovskite oxide thin filmInfo
- Publication number
- JP2000351623A JP2000351623A JP11159808A JP15980899A JP2000351623A JP 2000351623 A JP2000351623 A JP 2000351623A JP 11159808 A JP11159808 A JP 11159808A JP 15980899 A JP15980899 A JP 15980899A JP 2000351623 A JP2000351623 A JP 2000351623A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- material solution
- thin film
- oxide thin
- perovskite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 103
- 239000010409 thin film Substances 0.000 title claims abstract description 65
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims abstract description 74
- 229910052751 metal Inorganic materials 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 claims abstract description 37
- 150000002736 metal compounds Chemical class 0.000 claims abstract description 26
- 239000002904 solvent Substances 0.000 claims abstract description 25
- 239000003960 organic solvent Substances 0.000 claims abstract description 24
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 150000002739 metals Chemical class 0.000 claims abstract description 8
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims description 27
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 22
- -1 titanium alkoxide Chemical class 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 239000010936 titanium Substances 0.000 claims description 16
- 229940046892 lead acetate Drugs 0.000 claims description 15
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 6
- KQNKJJBFUFKYFX-UHFFFAOYSA-N acetic acid;trihydrate Chemical compound O.O.O.CC(O)=O KQNKJJBFUFKYFX-UHFFFAOYSA-N 0.000 claims description 5
- 229910004356 Ti Raw Inorganic materials 0.000 claims description 3
- 150000008064 anhydrides Chemical class 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 abstract description 8
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 36
- 238000000576 coating method Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 17
- 150000004706 metal oxides Chemical class 0.000 description 17
- 229910044991 metal oxide Inorganic materials 0.000 description 16
- 238000003980 solgel method Methods 0.000 description 16
- 230000007062 hydrolysis Effects 0.000 description 15
- 238000006460 hydrolysis reaction Methods 0.000 description 15
- 239000003381 stabilizer Substances 0.000 description 15
- 238000002425 crystallisation Methods 0.000 description 14
- 230000008025 crystallization Effects 0.000 description 14
- 150000004703 alkoxides Chemical class 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 150000002902 organometallic compounds Chemical class 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000010304 firing Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 6
- 238000001354 calcination Methods 0.000 description 5
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 5
- 125000002524 organometallic group Chemical group 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 5
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- NMUTVZGCFBKTRR-UHFFFAOYSA-N acetyl acetate;zirconium Chemical compound [Zr].CC(=O)OC(C)=O NMUTVZGCFBKTRR-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 150000007942 carboxylates Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000006068 polycondensation reaction Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- JLRJWBUSTKIQQH-UHFFFAOYSA-K lanthanum(3+);triacetate Chemical compound [La+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JLRJWBUSTKIQQH-UHFFFAOYSA-K 0.000 description 3
- 150000002611 lead compounds Chemical class 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- SHXHPUAKLCCLDV-UHFFFAOYSA-N 1,1,1-trifluoropentane-2,4-dione Chemical compound CC(=O)CC(=O)C(F)(F)F SHXHPUAKLCCLDV-UHFFFAOYSA-N 0.000 description 2
- CVBUKMMMRLOKQR-UHFFFAOYSA-N 1-phenylbutane-1,3-dione Chemical compound CC(=O)CC(=O)C1=CC=CC=C1 CVBUKMMMRLOKQR-UHFFFAOYSA-N 0.000 description 2
- YRAJNWYBUCUFBD-UHFFFAOYSA-N 2,2,6,6-tetramethylheptane-3,5-dione Chemical compound CC(C)(C)C(=O)CC(=O)C(C)(C)C YRAJNWYBUCUFBD-UHFFFAOYSA-N 0.000 description 2
- WGECXQBGLLYSFP-UHFFFAOYSA-N 2,3-dimethylpentane Chemical compound CCC(C)C(C)C WGECXQBGLLYSFP-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- GQKZRWSUJHVIPE-UHFFFAOYSA-N 2-Pentanol acetate Chemical compound CCCC(C)OC(C)=O GQKZRWSUJHVIPE-UHFFFAOYSA-N 0.000 description 2
- ATUUSOSLBXVJKL-UHFFFAOYSA-N 3-ethylpentanoic acid Chemical compound CCC(CC)CC(O)=O ATUUSOSLBXVJKL-UHFFFAOYSA-N 0.000 description 2
- SQNZLBOJCWQLGQ-UHFFFAOYSA-N 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyloctane-3,5-dione Chemical compound CC(C)(C)C(=O)CC(=O)C(F)(F)C(F)(F)C(F)(F)F SQNZLBOJCWQLGQ-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 229910018921 CoO 3 Inorganic materials 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229910004121 SrRuO Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000003849 aromatic solvent Substances 0.000 description 2
- 238000010533 azeotropic distillation Methods 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001924 cycloalkanes Chemical class 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- FGKJLKRYENPLQH-UHFFFAOYSA-N isocaproic acid Chemical compound CC(C)CCC(O)=O FGKJLKRYENPLQH-UHFFFAOYSA-N 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 2
- PGMYKACGEOXYJE-UHFFFAOYSA-N pentyl acetate Chemical compound CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 2
- 238000012643 polycondensation polymerization Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- IGIDLTISMCAULB-YFKPBYRVSA-N (3s)-3-methylpentanoic acid Chemical compound CC[C@H](C)CC(O)=O IGIDLTISMCAULB-YFKPBYRVSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- MUNGMRPYTCHBFX-UHFFFAOYSA-N 1,5-diphenylpentane-1,3,5-trione Chemical compound C=1C=CC=CC=1C(=O)CC(=O)CC(=O)C1=CC=CC=C1 MUNGMRPYTCHBFX-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- VUAXHMVRKOTJKP-UHFFFAOYSA-N 2,2-dimethylbutyric acid Chemical compound CCC(C)(C)C(O)=O VUAXHMVRKOTJKP-UHFFFAOYSA-N 0.000 description 1
- XFOASZQZPWEJAA-UHFFFAOYSA-N 2,3-dimethylbutyric acid Chemical compound CC(C)C(C)C(O)=O XFOASZQZPWEJAA-UHFFFAOYSA-N 0.000 description 1
- BZHMBWZPUJHVEE-UHFFFAOYSA-N 2,3-dimethylpentane Natural products CC(C)CC(C)C BZHMBWZPUJHVEE-UHFFFAOYSA-N 0.000 description 1
- KBPCCVWUMVGXGF-UHFFFAOYSA-N 2,6-dimethylheptane Chemical compound CC(C)CCCC(C)C KBPCCVWUMVGXGF-UHFFFAOYSA-N 0.000 description 1
- OXQGTIUCKGYOAA-UHFFFAOYSA-N 2-Ethylbutanoic acid Chemical compound CCC(CC)C(O)=O OXQGTIUCKGYOAA-UHFFFAOYSA-N 0.000 description 1
- JQRBBVRBGGXTLZ-UHFFFAOYSA-N 2-methoxyethanol Chemical compound COCCO.COCCO JQRBBVRBGGXTLZ-UHFFFAOYSA-N 0.000 description 1
- JCCIFDCPHCKATH-UHFFFAOYSA-N 2-methylbutan-2-yl acetate Chemical compound CCC(C)(C)OC(C)=O JCCIFDCPHCKATH-UHFFFAOYSA-N 0.000 description 1
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 1
- MLMQPDHYNJCQAO-UHFFFAOYSA-N 3,3-dimethylbutyric acid Chemical compound CC(C)(C)CC(O)=O MLMQPDHYNJCQAO-UHFFFAOYSA-N 0.000 description 1
- UWWDUVVCVCAPNU-UHFFFAOYSA-N 3-ethylhexanoic acid Chemical compound CCCC(CC)CC(O)=O UWWDUVVCVCAPNU-UHFFFAOYSA-N 0.000 description 1
- GSOHKPVFCOWKPU-UHFFFAOYSA-N 3-methylpentane-2,4-dione Chemical compound CC(=O)C(C)C(C)=O GSOHKPVFCOWKPU-UHFFFAOYSA-N 0.000 description 1
- VLJKEQYDVMCGHW-UHFFFAOYSA-N 4,4-dimethyl-3-oxopentanal Chemical compound CC(C)(C)C(=O)CC=O VLJKEQYDVMCGHW-UHFFFAOYSA-N 0.000 description 1
- UZFMOKQJFYMBGY-UHFFFAOYSA-N 4-hydroxy-TEMPO Chemical compound CC1(C)CC(O)CC(C)(C)N1[O] UZFMOKQJFYMBGY-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- YBZLCVOEUXYGIP-UHFFFAOYSA-N C(C)(=O)OC(C)=O.[Zr+4].[O-]CCCC.[O-]CCCC.[O-]CCCC.[O-]CCCC.[Zr+4] Chemical compound C(C)(=O)OC(C)=O.[Zr+4].[O-]CCCC.[O-]CCCC.[O-]CCCC.[O-]CCCC.[Zr+4] YBZLCVOEUXYGIP-UHFFFAOYSA-N 0.000 description 1
- ZCTPOERCNOQBED-UHFFFAOYSA-N CO[Ti](OC)(OC(C)C)OC(C)C Chemical compound CO[Ti](OC)(OC(C)C)OC(C)C ZCTPOERCNOQBED-UHFFFAOYSA-N 0.000 description 1
- 102100032566 Carbonic anhydrase-related protein 10 Human genes 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 101000867836 Homo sapiens Carbonic anhydrase-related protein 10 Proteins 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- PACGUUNWTMTWCF-UHFFFAOYSA-N [Sr].[La] Chemical compound [Sr].[La] PACGUUNWTMTWCF-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- ZRYCZAWRXHAAPZ-UHFFFAOYSA-N alpha,alpha-dimethyl valeric acid Chemical compound CCCC(C)(C)C(O)=O ZRYCZAWRXHAAPZ-UHFFFAOYSA-N 0.000 description 1
- BAZMYXGARXYAEQ-UHFFFAOYSA-N alpha-ethyl valeric acid Chemical compound CCCC(CC)C(O)=O BAZMYXGARXYAEQ-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- IGIDLTISMCAULB-UHFFFAOYSA-N anteisohexanoic acid Natural products CCC(C)CC(O)=O IGIDLTISMCAULB-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- UPURPFNAFBQPON-UHFFFAOYSA-N beta,beta-dimethyl valeric acid Chemical compound CCC(C)(C)CC(O)=O UPURPFNAFBQPON-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- VSFQMZYFJAOOOG-UHFFFAOYSA-N di(propan-2-yloxy)lead Chemical compound CC(C)O[Pb]OC(C)C VSFQMZYFJAOOOG-UHFFFAOYSA-N 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- XGZNHFPFJRZBBT-UHFFFAOYSA-N ethanol;titanium Chemical compound [Ti].CCO.CCO.CCO.CCO XGZNHFPFJRZBBT-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002604 lanthanum compounds Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- UAXOELSVPTZZQG-UHFFFAOYSA-N tiglic acid Natural products CC(C)=C(C)C(O)=O UAXOELSVPTZZQG-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気的及び/又は
光学的性質により各種の誘電体デバイスへの応用が期待
できる金属酸化物系のペロブスカイト型酸化物薄膜を、
ゾルゲル法等により形成するためのペロブスカイト型酸
化物薄膜形成用原料溶液に関する。The present invention relates to a metal oxide-based perovskite oxide thin film which can be expected to be applied to various dielectric devices due to its electrical and / or optical properties.
The present invention relates to a raw material solution for forming a perovskite oxide thin film to be formed by a sol-gel method or the like.
【0002】[0002]
【従来の技術】金属酸化物薄膜、特にチタン酸ジルコン
酸鉛(PZT)及びそれにランタンをドープした(PL
ZT:PbxLa1-x(ZryTi1-y)1-X/4O3)はその
高い誘電率、優れた強誘電特性から種々の誘電体デバイ
スへの応用が期待されている。これらの金属酸化物薄膜
の成膜法としては、スパッタリング法、MOCVD法な
どがあるが、比較的安価で簡便に薄膜を作製する手法と
して、有機金属溶液を基板に塗布するゾルゲル法があ
る。2. Description of the Related Art Metal oxide thin films, in particular, lead zirconate titanate (PZT) and lanthanum-doped (PLZT)
ZT: Pb x La 1-x (Zr y Ti 1-y) 1-X / 4 O 3) is their high dielectric constant, is applied from the excellent ferroelectric characteristics to the various dielectric device it has been expected. As a method of forming these metal oxide thin films, there are a sputtering method, an MOCVD method, and the like. As a relatively inexpensive and simple method of forming a thin film, there is a sol-gel method of applying an organic metal solution to a substrate.
【0003】ゾルゲル法は、原料となる各成分金属の加
水分解性の化合物、その部分加水分解物及び/又はその
部分重縮合物を含有する原料溶液を基板に塗布し、塗膜
を乾燥させた後、例えば空気中で約400℃に加熱して
金属酸化物の膜を形成し、さらにその金属酸化物の結晶
化温度以上(例えば、約700℃)で焼成して膜を結晶
化させることにより強誘電体薄膜を成膜する方法であ
る。In the sol-gel method, a raw material solution containing a hydrolyzable compound of each component metal as a raw material, a partial hydrolyzate thereof and / or a partial polycondensate thereof is applied to a substrate, and the coating film is dried. Thereafter, the film is heated, for example, to about 400 ° C. in the air to form a metal oxide film, and then fired at a temperature equal to or higher than the crystallization temperature of the metal oxide (eg, about 700 ° C.) to crystallize the film. This is a method of forming a ferroelectric thin film.
【0004】このゾルゲル法に似た方法として、有機金
属分解(MOD)法がある。MOD法では、熱分解性の
有機金属化合物、例えば、金属のβ−ジケトン錯体(例
えば、金属アセチルアセトネート)やカルボン酸塩(例
えば、酢酸塩)を含有する原料溶液を基板に塗布し、例
えば空気中又は含酸素雰囲気中等で加熱して、塗膜中の
溶媒の蒸発及び金属化合物の熱分解を生じさせて金属酸
化物の膜を形成し、さらに結晶化温度以上で焼成して膜
を結晶化させる。従って、原料化合物の種類が異なるだ
けで、成膜操作はゾルゲル法とほぼ同様である。As a method similar to the sol-gel method, there is an organic metal decomposition (MOD) method. In the MOD method, a raw material solution containing a thermally decomposable organometallic compound, for example, a metal β-diketone complex (for example, metal acetylacetonate) or a carboxylate (for example, acetate) is applied to a substrate, Heating in air or an oxygen-containing atmosphere, etc., causes evaporation of the solvent in the coating film and thermal decomposition of the metal compound to form a metal oxide film, which is then fired at a crystallization temperature or higher to crystallize the film. To Therefore, the film forming operation is almost the same as that of the sol-gel method except for the type of the starting compound.
【0005】このようにゾルゲル法とMOD法は成膜操
作が同じであるので、両者を併用した方法も可能であ
る。即ち、原料溶液が加水分解性の金属化合物と熱分解
性の金属化合物の両方を含有していてもよく、その場合
には塗膜の加熱中に原料化合物の加水分解と熱分解が起
こり、金属酸化物が生成する。As described above, since the sol-gel method and the MOD method have the same film forming operation, a method using both of them is also possible. That is, the raw material solution may contain both a hydrolyzable metal compound and a thermally decomposable metal compound. In this case, hydrolysis and thermal decomposition of the raw material compound occur during heating of the coating film, and the metal Oxide forms.
【0006】従って、以下において、ゾルゲル法、MO
D法、及びこれらを併用した方法を包含して「ゾルゲル
法等」と称す。Accordingly, in the following, the sol-gel method, MO
The D method and methods using these methods in combination are referred to as “sol-gel method”.
【0007】ゾルゲル法等は、安価かつ簡便で量産に適
しているという利点に加えて、膜の組成制御が容易で、
成膜厚みが比較的均一であるという優れた特長を有す
る。従って、比較的平坦な基板上に強誘電体薄膜を形成
するのには最も有利な成膜法であると言える。The sol-gel method and the like have the advantages of being inexpensive, simple, and suitable for mass production.
An excellent feature is that the film thickness is relatively uniform. Therefore, it can be said that this is the most advantageous film forming method for forming a ferroelectric thin film on a relatively flat substrate.
【0008】このゾルゲル法等の有機金属原料としては
金属アルコキシド又は有機酸塩が一般に使用されてい
る。また、これらの有機金属原料を溶解する有機溶媒と
しては、アルコール類、エチレングリコール誘導体、キ
シレン、トルエン等を使用することができるが、従来、
ペロブスカイト型酸化物薄膜形成用原料溶液の有機溶媒
としては、エチレングリコール誘導体が良いとされ、特
にエチレングリコールモノメチルエーテル(2−メトキ
シエタノール)が広く使用されてきている(例えば、Jp
n.J.Appl.Phys.Vol.33(1994)pp.5196−5200、特開平9
−28415号公報等)。Metal alkoxides or organic acid salts are generally used as an organic metal raw material for the sol-gel method or the like. As the organic solvent for dissolving these organometallic raw materials, alcohols, ethylene glycol derivatives, xylene, toluene and the like can be used.
As an organic solvent for the raw material solution for forming a perovskite oxide thin film, an ethylene glycol derivative is considered to be good, and in particular, ethylene glycol monomethyl ether (2-methoxyethanol) has been widely used (for example, Jp.
nJAppl.Phys.Vol.33 (1994) pp.5196-5200, JP-A-9
-28415 publication).
【0009】[0009]
【発明が解決しようとする課題】しかし、最近、エチレ
ングリコールモノメチルエーテル等のエチレングリコー
ル誘導体の有害性、特に生殖機能に対する影響が問題に
なっている(例えば特開平9−28415号公報等)。
これに伴い、エチレングリコール誘導体を使用しないペ
ロブスカイト型酸化物薄膜形成用原料溶液の開発が強く
望まれている。However, recently, the harmfulness of ethylene glycol derivatives such as ethylene glycol monomethyl ether and the like, particularly the influence on the reproductive function, has become a problem (for example, JP-A-9-28415).
Accordingly, development of a raw material solution for forming a perovskite oxide thin film without using an ethylene glycol derivative has been strongly desired.
【0010】また、従来のゾルゲル法で作成したPZT
系薄膜では一般に、表面形態に凹凸があり、その成膜粒
子の粒径が不均一であることが知られている(例えば、
Jpn.J.Appl.Phys.Vol.33(1994)pp.5159−5166、J.Mate
r.Res.,vol11,No.10,Oct. 1996 pp.2556−2564等)。即
ち、このPZT系薄膜では一般に、粒径1000nm程
度のペロブスカイト粗大粒子とジルコニア微細粒子領域
とに分かれた不均一な表面形態を有している。表面形態
が不均一であると、電気的特性も場所により不均一にな
り、微細キャパシタを作製する場合の障害となる。In addition, PZT prepared by a conventional sol-gel method
In general, it is known that the surface morphology of a system thin film is uneven, and the particle size of the film-forming particles is non-uniform (for example,
Jpn.J.Appl.Phys.Vol.33 (1994) pp.5159-5166, J.Mate
r. Res., vol 11, No. 10, Oct. 1996, pp. 2556-2564). That is, the PZT-based thin film generally has an uneven surface morphology divided into coarse perovskite particles having a particle diameter of about 1000 nm and fine zirconia particles. If the surface morphology is non-uniform, the electrical characteristics will also be non-uniform depending on the location, which will be an obstacle to producing a fine capacitor.
【0011】本発明は上記従来の問題点を解決し、エチ
レングリコール誘導体を使用しないペロブスカイト型酸
化物薄膜形成用原料溶液であって、表面形態が均一で電
気的特性の均質性にも優れたペロブスカイト型酸化物薄
膜を形成することができるペロブスカイト型酸化物薄膜
形成用原料溶液を提供することを目的とする。The present invention solves the above-mentioned conventional problems, and is a raw material solution for forming a perovskite-type oxide thin film without using an ethylene glycol derivative, wherein the perovskite has a uniform surface morphology and excellent uniformity of electric characteristics. It is an object of the present invention to provide a raw material solution for forming a perovskite-type oxide thin film that can form a type oxide thin film.
【0012】[0012]
【課題を解決するための手段】本発明のペロブスカイト
型酸化物薄膜形成用原料溶液は、Ti及び/又はZrを
含有するペロブスカイト型酸化物薄膜を成膜するための
原料溶液であって、各成分金属又は2以上の成分金属を
含む金属化合物、その部分加水分解物並びにその部分重
縮合物よりなる群から選ばれる1種又は2種以上の金属
化合物を有機溶媒中に含有する溶液からなる原料溶液に
おいて、該溶液中に1−ブタノール、2−ブタノール、
2−メチル−1−プロパノール及び2−メチル−2−プ
ロパノールよりなる群から選ばれる1種又は2種以上の
ブタノール溶媒を含有することを特徴とする。The raw material solution for forming a perovskite oxide thin film of the present invention is a raw material solution for forming a perovskite oxide thin film containing Ti and / or Zr. A raw material solution comprising a solution containing one or more metal compounds selected from the group consisting of a metal or a metal compound containing two or more component metals, a partial hydrolyzate thereof and a partial polycondensate thereof in an organic solvent In the solution, 1-butanol, 2-butanol,
It is characterized by containing one or more butanol solvents selected from the group consisting of 2-methyl-1-propanol and 2-methyl-2-propanol.
【0013】即ち、本発明者らは、上記目的を達成する
ために検討を行うに当り、まず、原料となる有機金属化
合物については、金属アルコキシドが望ましいと考え
た。これは、金属アルコキシドを中心原料とするゾルゲ
ル法は、加水分解及び縮合重合により金属−酸素結合が
形成され、その結果、一般的に緻密な膜が得られやすい
からである。これに対し、熱分解性の有機金属化合物を
原料とするMOD法は、原料が縮合重合しないため、一
般的にポーラスな薄膜となり、また、ロゼッタ構造を取
りやすいとされる。従って、原料の有機金属化合物とし
ては、Pb原料化合物には酢酸鉛3水和物及び/又は酢
酸鉛無水物を、Ti原料化合物にはチタンアルコキシド
を、Zr原料化合物にはジルコニウムアルコキシドをそ
れぞれ標準原料とすることで研究を進めた。ここでPb
原料化合物に酢酸鉛を選択した理由は、鉛のアルコキシ
ドは溶解せず、経時変化安定性が悪いためである。[0013] That is, the present inventors have considered that in order to achieve the above object, first, as the organometallic compound as a raw material, a metal alkoxide is desirable. This is because in the sol-gel method using a metal alkoxide as a central raw material, a metal-oxygen bond is formed by hydrolysis and condensation polymerization, and as a result, a dense film is generally easily obtained. On the other hand, the MOD method using a thermally decomposable organometallic compound as a raw material is generally considered to be a porous thin film and easy to have a rosette structure because the raw material does not undergo condensation polymerization. Therefore, as an organometallic compound as a raw material, a lead raw material compound is lead acetate trihydrate and / or lead acetate anhydride, a titanium raw material compound is titanium alkoxide, and a Zr raw material compound is zirconium alkoxide. And proceeded with the research. Where Pb
The reason why lead acetate was selected as the raw material compound is that lead alkoxides did not dissolve and the stability with time was poor.
【0014】しかして、本発明者らは、このような原料
系のもとに、以下の条件を満足するペロブスカイト型酸
化物薄膜形成用原料溶液を見出すべく鋭意研究を重ね
た。The present inventors have conducted intensive studies on such a raw material system to find a raw material solution for forming a perovskite oxide thin film satisfying the following conditions.
【0015】 用いる溶媒が低毒性有機溶媒であるこ
と 塗布特性に優れていること(ストリエーションがな
いこと) 経時変化安定性があること 表面モフォロジーが良好であり、膜が緻密であるこ
と そして、研究の結果、ブタノール、即ち、1−ブタノー
ル、2−ブタノール、2−メチル−1−プロパノール、
2−メチル−2−プロパノールを主溶媒として用いるこ
とにより、塗布特性が著しく改善され、得られる薄膜の
表面形態の飛躍的な向上が認められること、更に、安定
化剤としてβ−ジケトン類を所定量添加することによ
り、塗布性、表面形態の向上効果を損なうことなく、原
料溶液の加水分解速度、重縮合速度等を抑え、その経時
変化安定性を改善することができることを知見し、本発
明を完成させた。The solvent used is a low-toxic organic solvent. It has excellent coating properties (no striation). It has stability over time. It has good surface morphology and a dense film. As a result, butanol, i.e., 1-butanol, 2-butanol, 2-methyl-1-propanol,
By using 2-methyl-2-propanol as a main solvent, coating properties are remarkably improved, and a drastic improvement in the surface morphology of the obtained thin film is observed. Further, β-diketones are required as a stabilizer. The present inventors have found that by adding a fixed amount, it is possible to suppress the rate of hydrolysis and the rate of polycondensation of the raw material solution and to improve the stability over time, without impairing the effect of improving the applicability and surface morphology. Was completed.
【0016】低毒性有機溶媒の条件を満足するブタノー
ル以外の有機溶媒では、溶解度が高く合成時に沈殿が発
生しない溶剤は少なく、更に合成時に沈殿が生じない溶
媒を用いた原料溶液でも塗布特性が良好でないものが多
く、また、塗布特性を満足するものでも良好な表面モフ
ォロジーを満足し得なかった。前記,,の条件を
満足する有機溶媒としては、ブタノールが最適であっ
た。Organic solvents other than butanol satisfying the condition of a low-toxic organic solvent have high solubility and few precipitates do not occur during synthesis, and have good coating properties even in a raw material solution using a solvent that does not precipitate during synthesis. In many cases, good surface morphology could not be satisfied even if the coating characteristics were satisfied. Butanol was most suitable as the organic solvent satisfying the above conditions.
【0017】また、β−ジケトン類以外の他の安定化剤
(β−ケトエステル類、アルカノールアミン類、多価ア
ルコール類、エステル類、長鎖カルボン酸、長鎖アルコ
ール、その他)では、塗布特性、経時変化安定性の向上
に有効なものもあったが、いずれも表面モフォロジーを
満足し得なかった。Further, other stabilizers other than β-diketones (β-ketoesters, alkanolamines, polyhydric alcohols, esters, long-chain carboxylic acids, long-chain alcohols, and others) have coating properties, Some of them were effective in improving the stability over time, but none of them could satisfy the surface morphology.
【0018】一方、原料有機金属化合物の選定について
も検討を行った。過去に、ブタノールを用いて成膜した
報告(Journal of Materials Science 19 (1984) 595-5
98)はあるが、ここで用いられている原料有機金属化合
物は、2−エチルヘキサン酸鉛、ジルコニウムアセチル
アセテート、チタンテトラブトキシドであった。そこ
で、ここで使用されている原料系について検討したとこ
ろ、原料有機金属化合物として、Pb原料化合物に2−
エチルヘキサン酸鉛を用いた場合、上記〜の条件は
満足したが、の条件を満足せず、また、ボイドの多い
ポーラスな薄膜となった。これに対し、酢酸鉛3水和物
及び/又は酢酸鉛無水物を用いた場合は、緻密な薄膜構
造となり、〜のみならずの表面モフォロジーも良
好であった。On the other hand, selection of the starting organometallic compound was also studied. Previously, a film was formed using butanol (Journal of Materials Science 19 (1984) 595-5
98), but the starting organometallic compounds used here were lead 2-ethylhexanoate, zirconium acetyl acetate, and titanium tetrabutoxide. Then, when the raw material system used here was examined, as a raw material organometallic compound, 2-Pb raw material compound was used.
When lead ethylhexanoate was used, the above conditions were satisfied, but the conditions were not satisfied, and a porous thin film having many voids was obtained. On the other hand, when lead acetate trihydrate and / or anhydrous lead acetate were used, a dense thin film structure was obtained, and not only the surface morphology but also the surface morphology was good.
【0019】また、Zr原料化合物としてジルコニウム
アセチルアセテートを用いた場合、上記の条件は満足
したが、のストリエーションが生じ、また、の経時
変化安定性にも問題があり、鉛量を増やした場合(例え
ば15%PLZT(120/1/52/48))に沈殿
が生じた。更に、の条件も満足せず、また、ボイドの
多いポーラスな薄膜となった。これに対し、ジルコニウ
ムアルコキシドを用いた場合には、アセチルアセトン量
を最適化することにより、鉛量を増やしても15%PL
ZT(130/1/52/48)の沈殿のない溶液を得
ることができ、しかも緻密な薄膜構造となり、の表面
モフォロジーも良好であった。これは、ジルコニウムア
セチルアセテートを原料として用いると、アセチルアセ
トン等のβ−ジケトン類量の最適化ができないため、沈
殿が生成するのに対し、ジルコニウムアルコキシドであ
れば、アセチルアセトン等のβ−ジケトン類量の最適化
ができるため、この最適化で、沈殿のない溶液を得るこ
とができ、また、その他の条件も満足することによるた
めと考えられる。When zirconium acetyl acetate is used as the Zr raw material compound, the above conditions are satisfied, but striation occurs, and there is also a problem in stability over time. (Eg, 15% PLZT (120/1/52/48)). Further, the above conditions were not satisfied, and a porous thin film having many voids was obtained. On the other hand, when the zirconium alkoxide was used, the amount of lead was increased by 15% PL by optimizing the amount of acetylacetone.
A solution free of ZT (130/1/52/48) precipitation could be obtained, and a dense thin film structure was obtained, and the surface morphology was good. This is because, when zirconium acetyl acetate is used as a raw material, the amount of β-diketones such as acetylacetone cannot be optimized, so that a precipitate is generated, whereas in the case of zirconium alkoxide, the amount of β-diketones such as acetylacetone is reduced. It is considered that the solution can be optimized, so that a solution without precipitation can be obtained by this optimization, and that other conditions are satisfied.
【0020】本発明によれば、 低毒性であり 塗布特性に優れ 経時変化安定性に優れ 得られる薄膜の表面モフォロジーが良好で、膜が緻
密なペロブスカイト型酸化物薄膜形成用原料溶液が提供
される。According to the present invention, there is provided a raw material solution for forming a perovskite-type oxide thin film, which has low toxicity, excellent coating properties, excellent stability over time, and a dense film having a good surface morphology. .
【0021】なお、本発明のペロブスカイト型酸化物薄
膜形成用原料溶液を成膜した場合、良好な表面モフォロ
ジーが得られる、即ち、具体的には結晶粒が微細にな
り、かつ膜全体を通して粒径がほぼ均一となってバラツ
キがなくなる上に、ジルコニア相又はパイロクロア相と
いったペロブスカイト以外の相が見られなくなる効果の
作用機構は次の通り推定される。When the raw material solution for forming a perovskite oxide thin film of the present invention is formed into a film, a good surface morphology is obtained. Specifically, the crystal grains become finer and the particle size becomes smaller throughout the film. The mechanism of the effect of eliminating the variation other than perovskite such as the zirconia phase or the pyrochlore phase in addition to the fact that it becomes almost uniform and the dispersion disappears is presumed as follows.
【0022】即ち、原料溶液中に存在するブタノール
(又はブタノールとβ−ジケトン類)が配位したTi及
び/又はZrの有機金属錯体が、従来の有機金属錯体、
例えばエチレングリコール誘導体(又はエチレングリコ
ール誘導体と安定化剤)が配位した有機金属錯体等と比
較して、結晶化温度が低いため、膜の仮焼時及び/又は
結晶化アニール(焼成)時に、まず多数のTiO2又は
ZrO2結晶が基板上に不均一生成する。そして、これ
らの結晶が初期核となり結晶成長するため、均一で微細
な結晶粒からなる酸化物薄膜が形成される。このように
結晶粒が微細かつ均一で、ペロブスカイト以外の相が生
成しなくなるため、電気的特性も膜全体で均一となり、
強誘電体薄膜のどの部分からデバイスを作製してもほぼ
同じ品質の製品が得られ、製品の信頼性が向上する。That is, the organometallic complex of Ti and / or Zr to which butanol (or butanol and β-diketones) present in the raw material solution is coordinated is a conventional organometallic complex,
For example, since the crystallization temperature is lower than that of an organometallic complex to which an ethylene glycol derivative (or an ethylene glycol derivative and a stabilizer) is coordinated, during calcination of the film and / or crystallization annealing (firing), First, a large number of TiO 2 or ZrO 2 crystals are generated unevenly on the substrate. Then, since these crystals become initial nuclei and grow, crystal oxide thin films composed of uniform and fine crystal grains are formed. As described above, since the crystal grains are fine and uniform, and no phase other than perovskite is generated, the electrical characteristics are also uniform throughout the film,
Even if a device is manufactured from any part of the ferroelectric thin film, a product of almost the same quality can be obtained, and the reliability of the product is improved.
【0023】本発明において、原料溶液に存在する有機
溶媒に対する前記ブタノール溶媒の含有率は30重量%
以上であることが好ましい。In the present invention, the content of the butanol solvent with respect to the organic solvent present in the raw material solution is 30% by weight.
It is preferable that it is above.
【0024】また、本発明では、原料溶液に存在する金
属元素の合計原子数に対して、β−ジケトン類を0.1
〜5倍の分子数で含有すること、特に、原料溶液に存在
する有機溶媒に対する1−ブタノールの含有率が30重
量%以上であり、かつ原料溶液に存在する金属元素の合
計原子数に対してアセチルアセトンを0.1〜5倍の分
子数で含有することが好ましく、これにより、より一層
優れた効果が得られる。In the present invention, β-diketones are added in an amount of 0.1 to the total number of metal elements present in the raw material solution.
To 5 times the number of molecules, in particular, the content of 1-butanol with respect to the organic solvent present in the raw material solution is 30% by weight or more and based on the total number of metal elements present in the raw material solution. It is preferable that acetylacetone is contained in a molecular number of 0.1 to 5 times, whereby a more excellent effect can be obtained.
【0025】本発明のペロブスカイト型酸化物薄膜形成
用原料溶液は、特に、PbとZr及び/又はTiとを含
有するペロブスカイト型酸化物薄膜を成膜するための原
料溶液として好適である。The raw material solution for forming a perovskite type oxide thin film of the present invention is particularly suitable as a raw material solution for forming a perovskite type oxide thin film containing Pb and Zr and / or Ti.
【0026】また、前述の如く、本発明では、Ti原料
化合物としてチタンアルコキシドを、Zr原料化合物と
してジルコニウムアルコキシドを、また、Pb原料化合
物として酢酸鉛3水和物及び/又は酢酸鉛無水物をそれ
ぞれ用いることが好ましい。As described above, in the present invention, titanium alkoxide is used as the Ti raw material compound, zirconium alkoxide is used as the Zr raw material compound, and lead acetate trihydrate and / or anhydrous lead acetate are used as the Pb raw material compound. Preferably, it is used.
【0027】[0027]
【発明の実施の形態】以下に本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
【0028】本発明で成膜するペロブスカイト型酸化物
薄膜は、TiとZrの一方又は両方を含有する酸化物材
料である。かかるペロブスカイト型酸化物薄膜の例とし
ては、PbとZr及び/又はTiとからなるペロブスカ
イト型酸化物薄膜(チタン酸ジルコン酸鉛:PZT薄
膜)が挙げられる。The perovskite-type oxide thin film formed in the present invention is an oxide material containing one or both of Ti and Zr. As an example of such a perovskite oxide thin film, a perovskite oxide thin film (lead zirconate titanate: PZT thin film) composed of Pb and Zr and / or Ti can be mentioned.
【0029】この酸化物材料には、微量のドープ元素を
含有させることができる。ドープ元素の例としては、C
a、Sr、Ba、Hf、Sn、Th、Y、Sm、Dy、
Ce、Bi、Sb、Nb、Ta、W、Mo、Cr、C
o、Ni、Fe、Cu、Si、Ge、U、Sc、V、P
r、Nd、Eu、Gd、Tb、Ho、Er、Tm、Y
b、Lu、Laなどが挙げられ、その含有量は薄膜中の
金属原子の原子分率で0.1以下とするのが好ましい。This oxide material can contain a trace amount of a doping element. Examples of doping elements include C
a, Sr, Ba, Hf, Sn, Th, Y, Sm, Dy,
Ce, Bi, Sb, Nb, Ta, W, Mo, Cr, C
o, Ni, Fe, Cu, Si, Ge, U, Sc, V, P
r, Nd, Eu, Gd, Tb, Ho, Er, Tm, Y
b, Lu, La, and the like, and the content thereof is preferably 0.1 or less in terms of the atomic fraction of metal atoms in the thin film.
【0030】本発明においては、有機溶媒として、ブタ
ノール、即ち、1−ブタノール、2−ブタノール、2−
メチル−1−プロパノール、2−メチル−2−プロパノ
ールの1種又は2種以上のブタノール溶媒を用いるが、
経済性、融点及び引火点による取扱性等を考慮した場
合、1−ブタノールを用いるのが最も好ましい。有機溶
媒としては、これらのブタノール溶媒と他の有機溶媒と
の混合溶媒を用いても良いが、この場合、優れた表面モ
フォロジーを得るためには、原料溶液中の全有機溶媒に
対するブタノール溶媒の割合が30重量%以上、特に4
0重量%以上となるようにするのが好ましい。In the present invention, as the organic solvent, butanol, ie, 1-butanol, 2-butanol, 2-butanol,
One or two or more butanol solvents of methyl-1-propanol and 2-methyl-2-propanol are used,
In consideration of economy, melting point, and handling property depending on flash point, it is most preferable to use 1-butanol. As the organic solvent, a mixed solvent of these butanol solvents and another organic solvent may be used.In this case, in order to obtain excellent surface morphology, the ratio of the butanol solvent to the total organic solvent in the raw material solution is required. Is 30% by weight or more, especially 4%
It is preferable that the content be 0% by weight or more.
【0031】なお、併用し得る他の有機溶媒としては、
ブタノール以外のアルコール、カルボン酸、エステル、
ケトン、エーテル、シクロアルカン、芳香族系溶媒など
が挙げられ、このうち、アルコールとしては、エタノー
ル、1−プロパノール、2−プロパノール、1−ペンタ
ノール、2−ペンタノール、2−メチル−2−ペンタノ
ールなどのアルカノール類、シクロヘキサノールといっ
たシクロアルカノール類、ならびに2−メトキシエタノ
ール、1−エトキシ−2−プロパノールといったアルコ
キシアルコール類が使用できる。Other organic solvents that can be used in combination include:
Alcohols other than butanol, carboxylic acids, esters,
Ketones, ethers, cycloalkanes, aromatic solvents and the like can be mentioned, and among them, alcohols include ethanol, 1-propanol, 2-propanol, 1-pentanol, 2-pentanol, 2-methyl-2-pen Alkanols such as tanol, cycloalkanols such as cyclohexanol, and alkoxy alcohols such as 2-methoxyethanol and 1-ethoxy-2-propanol can be used.
【0032】また、カルボン酸溶媒の例としては、n−
酪酸、α−メチル酪酸、i−吉草酸、2−エチル酪酸、
2,2−ジメチル酪酸、3,3−ジメチル酪酸、2,3
−ジメチル酪酸、3−メチルペンタン酸、4−メチルペ
ンタン酸、2−エチルペンタン酸、3−エチルペンタン
酸、2,2−ジメチルペンタン酸、3,3−ジメチルペ
ンタン酸、2,3−ジメチルペンタン酸、2−エチルヘ
キサン酸、3−エチルヘキサン酸などが挙げられる。Examples of the carboxylic acid solvent include n-
Butyric acid, α-methylbutyric acid, i-valeric acid, 2-ethylbutyric acid,
2,2-dimethylbutyric acid, 3,3-dimethylbutyric acid, 2,3
-Dimethylbutyric acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 2,2-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 2,3-dimethylpentane Acid, 2-ethylhexanoic acid, 3-ethylhexanoic acid and the like.
【0033】エステル系溶媒としては、酢酸エチル、酢
酸プロピル、酢酸n−ブチル、酢酸sec−ブチル、酢
酸tert−ブチル、酢酸イソブチル、酢酸n−アミ
ル、酢酸sec−アミル、酢酸tert−アミル、酢酸
イソアミルなどが挙げられる。Examples of the ester solvent include ethyl acetate, propyl acetate, n-butyl acetate, sec-butyl acetate, tert-butyl acetate, isobutyl acetate, n-amyl acetate, sec-amyl acetate, tert-amyl acetate, and isoamyl acetate. And the like.
【0034】ケトン系溶媒としては、アセトン、メチル
エチルエトン、メチルイソブチルケトンが挙げられ、エ
ーテル系溶媒としては、ジメチルエーテル、ジエチルエ
ーテルといった鎖式エーテル、並びにテトラヒドロフラ
ン、ジオキサンといった環式エーテルが挙げられる。ま
た、シクロアルカン系溶媒としては、シクロヘプタン、
シクロヘキサンなどが挙げられ、芳香族系溶媒として
は、トルエン、キシレンなどが挙げられる。The ketone solvents include acetone, methyl ethyl ethone, and methyl isobutyl ketone. The ether solvents include chain ethers such as dimethyl ether and diethyl ether, and cyclic ethers such as tetrahydrofuran and dioxane. As the cycloalkane-based solvent, cycloheptane,
Cyclohexane and the like, and aromatic solvents include toluene, xylene and the like.
【0035】また、本発明においては、原料溶液中に安
定化剤としてβ−ジケトン類を配合するのが好ましく、
安定化剤の配合により、原料溶液の加速分解速度、重縮
合速度が抑えられ、その保存安定性が改善される。この
場合、安定化剤としてのβ−ジケトン類の添加量は、原
料溶液中に存在する金属元素の合計原子数に対するβ−
ジケトン類の分子数で0.1〜5倍の量が好ましく、よ
り好ましくは0.2〜3倍である。β−ジケトン類は添
加量が多すぎると安定性の低下が危惧され、少なすぎる
とβ−ジケトン類の効果が十分に得られない。使用する
β−ジケトン類としては、アセチルアセトン、ベンゾイ
ルアセトン、ジベンゾイルアセトン、ジイソブチルメタ
ン、ジピバロイルメタン、3−メチルペンタン−2,4
−ジオン、2,2−ジメチルペンタン−3,5−ジオ
ン、ヘプタフルオロブタノイルピバロイルメタン、トリ
フルオロアセチルアセトン等が挙げられるが、これらの
中でも特に経済性、膜の緻密性、ハロゲン化物を含まな
い等の観点からアセチルアセトンが望ましい。In the present invention, it is preferable to mix β-diketones as a stabilizer in the raw material solution.
By adding a stabilizer, the rate of accelerated decomposition and the rate of polycondensation of the raw material solution are suppressed, and the storage stability is improved. In this case, the amount of β-diketones added as a stabilizer is β-diketone relative to the total number of metal elements present in the raw material solution.
The amount is preferably 0.1 to 5 times, more preferably 0.2 to 3 times, the number of molecules of the diketones. If the amount of the β-diketone is too large, the stability may be reduced. If the amount is too small, the effect of the β-diketone cannot be sufficiently obtained. As the β-diketones to be used, acetylacetone, benzoylacetone, dibenzoylacetone, diisobutylmethane, dipivaloylmethane, 3-methylpentane-2,4
-Dione, 2,2-dimethylpentane-3,5-dione, heptafluorobutanoylpivaloylmethane, trifluoroacetylacetone and the like, among which economicalness, denseness of the film, and halides are included. Acetylacetone is desirable from the viewpoint that there is no acetylacetone.
【0036】安定化剤としてのβ−ジケトン類は、原料
溶液の製造工程のどの段階で添加しても良いが、後述す
る共沸蒸留を行う場合には、この蒸留後に添加すること
が好ましい。また、金属アルコキシドの部分加水分解を
行う場合には、その前にβ−ジケトン類を添加しておく
方が、加水分解速度の制御が容易となることから好まし
い。なお、β−ジケトン類を添加した場合には、塗布後
の加水分解を促進させるために、原料溶液に少量の水を
添加しても良い。The β-diketone as a stabilizer may be added at any stage in the production process of the raw material solution. However, when performing azeotropic distillation described later, it is preferable to add it after this distillation. In the case where the metal alkoxide is partially hydrolyzed, it is preferable to add β-diketones before the partial hydrolysis because the hydrolysis rate can be easily controlled. When β-diketones are added, a small amount of water may be added to the raw material solution in order to promote hydrolysis after coating.
【0037】本発明のペロブスカイト型酸化物薄膜形成
用原料溶液は、有機溶媒としてブタノール溶媒を用い、
好ましくは安定化剤としてβ−ジケトン類を配合するこ
と以外は常法に従って調製することができる。The raw material solution for forming a perovskite oxide thin film of the present invention uses a butanol solvent as an organic solvent,
Preferably, it can be prepared according to a conventional method except that a β-diketone is blended as a stabilizer.
【0038】原料金属化合物としては、各成分金属又は
2以上の成分金属を含む金属化合物、その部分加水分解
物並びにその部分重縮合物を用いることができるが、特
に好ましい金属化合物は、加水分解性又は熱分解性の有
機金属化合物である。例えば、アルコキシド、有機酸
塩、β−ジケトン錯体などが代表例であるが、金属錯体
については、アミン錯体をはじめとして、各種の他の錯
体も利用できる。ここでβ−ジケトンとしては、アセチ
ルアセトン(=2,4−ペンタンジオン)、ヘプタフル
オロブタノイルピバロイルメタン、ジピバロイルメタ
ン、トリフルオロアセチルアセトン、ベンゾイルアセト
ンなどが挙げられる。As the starting metal compound, a metal compound containing each component metal or two or more component metals, a partial hydrolyzate thereof and a partial polycondensate thereof can be used, and a particularly preferable metal compound is a hydrolyzable metal compound. Alternatively, it is a thermally decomposable organometallic compound. For example, alkoxides, organic acid salts, β-diketone complexes and the like are typical examples, but various other complexes such as amine complexes can be used for metal complexes. Here, examples of the β-diketone include acetylacetone (= 2,4-pentanedione), heptafluorobutanoylpivaloylmethane, dipivaloylmethane, trifluoroacetylacetone, and benzoylacetone.
【0039】原料として好適な有機金属化合物の具体例
を示すと、鉛化合物及びランタン化合物としては酢酸塩
(酢酸鉛、酢酸ランタン)などの有機酸塩並びにジイソ
プロポキシ鉛などのアルコキシドが挙げられる。チタン
化合物としては、テトラエトキシチタン、テトライソプ
ロポキシチタン、テトラn−ブトキシチタン、テトラi
−ブトキシチタン、テトラt−ブトキシチタン、ジメト
キシジイソプロポキシチタンなどのアルコキシドが好ま
しいが、有機酸塩又は有機金属錯体も使用できる。ジル
コニウム化合物は上記チタン化合物と同様である。Specific examples of organometallic compounds suitable as raw materials include, as the lead compound and the lanthanum compound, organic acid salts such as acetates (lead acetate and lanthanum acetate) and alkoxides such as diisopropoxy lead. Examples of the titanium compound include tetraethoxy titanium, tetra isopropoxy titanium, tetra n-butoxy titanium, tetra i
Alkoxides such as -butoxytitanium, tetra-t-butoxytitanium and dimethoxydiisopropoxytitanium are preferred, but organic acid salts or organometallic complexes can also be used. The zirconium compound is the same as the above-mentioned titanium compound.
【0040】なお、原料の金属化合物は、上述したよう
な1種類の金属を含有する化合物の他に、2種以上の成
分金属を含有する複合化した金属化合物であってもよ
い。かかる複合化金属化合物の例としては、PbO
2〔Ti(OC3H7)3〕2、PbO2〔Zr(OC4H9)
3〕2などが挙げられる。The starting metal compound may be a complex metal compound containing two or more component metals in addition to the compound containing one kind of metal as described above. Examples of such composite metal compounds include PbO
2 [Ti (OC 3 H 7 ) 3 ] 2 , PbO 2 [Zr (OC 4 H 9 )
3 ] 2 and the like.
【0041】本発明では、前述の理由から、特に、Ti
原料化合物としてチタンアルコキシドを、Zr原料化合
物としてジルコニウムアルコキシドを、また、Pb原料
化合物として酢酸鉛3水和物及び/又は酢酸鉛無水物を
それぞれ用いることが好ましい。In the present invention, in particular, Ti
It is preferable to use titanium alkoxide as a raw material compound, zirconium alkoxide as a Zr raw material compound, and lead acetate trihydrate and / or anhydrous lead acetate as a Pb raw material compound.
【0042】本発明では、これらの各成分金属の原料と
して使用する金属化合物を、ブタノール又はブタノール
を含む有機溶媒に溶解し、好ましくは、安定化剤として
β−ジケトン類を添加して、形成するペロブスカイト型
酸化物薄膜の複合金属酸化物(2以上の金属を含有する
酸化物)の前駆体を含有する原料溶液を調製する。In the present invention, a metal compound used as a raw material of each of these component metals is dissolved in butanol or an organic solvent containing butanol, and preferably formed by adding a β-diketone as a stabilizer. A raw material solution containing a precursor of a composite metal oxide (an oxide containing two or more metals) of a perovskite oxide thin film is prepared.
【0043】原料溶液中に含有させる各金属化合物の割
合は、成膜しようとするペロブスカイト型酸化物薄膜の
金属原子比とほぼ同じでよい。但し、一般に鉛化合物は
揮発性が高く、金属酸化物に変化させるための加熱中又
は結晶化のための焼成中に蒸発による鉛の欠損が起こる
ことがある。そのため、この欠損を見越して、鉛をやや
過剰(例えば、2〜20%過剰)に存在させても良い。
この鉛の欠損の程度は、鉛化合物の種類や成膜条件によ
って異なり、予め実験により求めることができる。The ratio of each metal compound contained in the raw material solution may be substantially the same as the metal atomic ratio of the perovskite oxide thin film to be formed. However, lead compounds generally have high volatility, and lead deficiency may occur due to evaporation during heating for changing to a metal oxide or during firing for crystallization. Therefore, in anticipation of this deficiency, lead may be present in a slight excess (for example, a 2 to 20% excess).
The degree of lead deficiency varies depending on the type of lead compound and film forming conditions, and can be determined in advance by experiments.
【0044】なお、原料溶液の金属化合物濃度は特に制
限されず、利用する塗布法や部分加水分解の有無によっ
ても異なるが、一般に金属酸化物換算の合計金属含有量
として0.1〜20重量%の範囲が好ましい。The concentration of the metal compound in the raw material solution is not particularly limited and varies depending on the coating method to be used and the presence or absence of partial hydrolysis. Generally, the total metal content in terms of metal oxide is 0.1 to 20% by weight. Is preferable.
【0045】金属化合物をブタノール又はブタノールを
含む有機溶媒中に溶解させた溶液は、そのまま原料溶液
としてゾルゲル法等による成膜に使用することができ
る。或いは、造膜を促進させるため、この溶液を加熱し
て、加水分解性の金属化合物(例えば、アルコキシド)
を部分加水分解ないし部分重縮合させて成膜に使用して
もよい。即ち、この場合には、原料溶液は、少なくとも
一部の金属化合物については、その部分加水分解物及び
/又は部分重縮合物を含有することになる。A solution in which a metal compound is dissolved in butanol or an organic solvent containing butanol can be used as it is as a raw material solution for film formation by a sol-gel method or the like. Alternatively, to promote film formation, the solution is heated to produce a hydrolyzable metal compound (eg, alkoxide).
May be partially hydrolyzed or partially polycondensed and used for film formation. That is, in this case, the raw material solution contains a partial hydrolyzate and / or a partial polycondensate of at least a part of the metal compound.
【0046】部分加水分解のための加熱は、温度や時間
を制御して、完全に加水分解が進行しないようにする。
完全に加水分解すると、原料溶液の安定性が著しく低下
し、ゲル化し易くなる上、均一な成膜も困難となる。加
熱条件としては、温度80〜200℃で、0.5〜50
時間程度が適当である。加水分解中に、加水分解物が−
M−O−結合(M=金属)により部分的に重縮合するこ
とがあるが、このような重縮合は部分的であれば許容さ
れる。The heating for the partial hydrolysis is controlled by controlling the temperature and time so that the hydrolysis does not proceed completely.
When the hydrolysis is completely performed, the stability of the raw material solution is remarkably reduced, gelation is easily caused, and uniform film formation is difficult. The heating conditions are a temperature of 80 to 200 ° C., a temperature of 0.5 to 50
Time is appropriate. During the hydrolysis, the hydrolyzate
Polycondensation may occur partially due to the MO-bond (M = metal), but such polycondensation is acceptable if it is partial.
【0047】原料溶液が、金属アルコキシドと金属カル
ボン酸塩の両者を含有する場合には、金属アルコキシド
と混合する前に、金属カルボン酸塩に付随する結晶水を
除去しておくことが好ましい。この結晶水の除去は、金
属カルボン酸だけをまず溶媒に溶解させ、この溶液を蒸
留して溶媒との共沸蒸留により脱水することにより実施
できる。従って、この場合の溶媒は水と共沸蒸留可能な
ものを使用する。金属カルボン酸塩の結晶水を除去せず
に金属アルコキシドと混合すると、金属アルコキシドの
加水分解が進行しすぎたり、その制御が困難となること
があり、部分加水分解後に沈殿を生ずることがある。When the raw material solution contains both a metal alkoxide and a metal carboxylate, it is preferable to remove crystallization water accompanying the metal carboxylate before mixing with the metal alkoxide. The removal of the water of crystallization can be carried out by first dissolving only the metal carboxylic acid in a solvent, distilling the solution and dehydrating the solution by azeotropic distillation with the solvent. Therefore, in this case, a solvent that can be azeotropically distilled with water is used. If the metal carboxylate is mixed with the metal alkoxide without removing the water of crystallization, the hydrolysis of the metal alkoxide may progress too much or its control may be difficult, and precipitation may occur after partial hydrolysis.
【0048】このような本発明のペロブスカイト型酸化
物薄膜形成用原料溶液によれば、従来のゾルゲル法等と
同様にして、次のような手順に従ってペロブスカイト型
酸化物薄膜を成膜することができる。According to such a raw material solution for forming a perovskite oxide thin film of the present invention, a perovskite oxide thin film can be formed according to the following procedure in the same manner as in a conventional sol-gel method or the like. .
【0049】まず、本発明のペロブスカイト型酸化物薄
膜形成用原料溶液を基板上に塗布する。塗布は、スピン
コーティングにより行うのが一般的であるが、ロール塗
布、噴霧、浸漬、カーテンフローコート、ドクターブレ
ードなど他の塗布法も適用可能である。塗布後、塗膜を
乾燥させ、溶媒を除去する。この乾燥温度は溶媒の種類
によっても異なるが、通常は80〜200℃程度であ
り、好ましくは100〜180℃の範囲でよい。但し、
原料溶液中の金属化合物を金属酸化物に転化させるため
の次工程の加熱の際の昇温中に、溶媒は除去されるの
で、塗膜の乾燥工程は必ずしも必要とされない。First, a raw material solution for forming a perovskite oxide thin film of the present invention is applied on a substrate. The coating is generally performed by spin coating, but other coating methods such as roll coating, spraying, dipping, curtain flow coating, and doctor blade can also be applied. After application, the coating is dried and the solvent is removed. The drying temperature varies depending on the type of the solvent, but is usually about 80 to 200C, and preferably in the range of 100 to 180C. However,
Since the solvent is removed during the heating in the next step for converting the metal compound in the raw material solution to the metal oxide, the drying step of the coating film is not necessarily required.
【0050】その後、仮焼工程として、塗布した基板を
加熱し、有機金属化合物を完全に加水分解又は熱分解さ
せて金属酸化物に転化させ、金属酸化物からなる膜を形
成する。この加熱は、一般に加水分解の必要なゾルゲル
法では水蒸気を含んでいる雰囲気、例えば、空気又は含
水蒸気雰囲気(例えば、水蒸気を含有する窒素雰囲気)
中で行われ、熱分解させるMOD法では含酸素雰囲気中
で行われる。加熱温度は、金属酸化物の種類によっても
異なるが、通常は150〜550℃の範囲であり、好ま
しくは、300〜450℃である。加熱時間は、加水分
解及び熱分解が完全に進行するように選択するが、通常
は1分ないし2時間程度である。Thereafter, as a calcining step, the applied substrate is heated to completely hydrolyze or thermally decompose the organometallic compound and convert it to a metal oxide, thereby forming a film made of the metal oxide. This heating is generally performed in an atmosphere containing water vapor in a sol-gel method requiring hydrolysis, for example, air or an atmosphere containing water vapor (for example, a nitrogen atmosphere containing water vapor).
The MOD method for thermal decomposition is performed in an oxygen-containing atmosphere. The heating temperature varies depending on the type of the metal oxide, but is usually in the range of 150 to 550 ° C, preferably 300 to 450 ° C. The heating time is selected so that the hydrolysis and thermal decomposition proceed completely, but is usually about 1 minute to 2 hours.
【0051】ゾルゲル法等の場合は、1回の塗布で、ペ
ロブスカイト型酸化物薄膜に必要な膜厚とすることは難
しい場合が多いので、必要に応じて、上記の塗布と(乾
燥と)仮焼を繰返して、所望の膜厚の金属酸化物の膜を
得る。こうして得られた膜は、非晶質であるか、結晶質
であっても結晶性が不十分であるので、分極性が低く、
強誘電体薄膜として利用できない。そのため、最後に結
晶化アニール工程として、その金属酸化物の結晶化温度
以上の温度で焼成して、ペロブスカイト型の結晶構造を
持つ結晶質の金属酸化物薄膜とする。なお、結晶化のた
めの焼成は、最後に一度で行うのではなく、各塗布した
塗膜ごとに、上記の仮焼に続けて行ってもよいが、高温
での焼成を何回も繰返す必要があるので、最後にまとめ
て行う方が経済的には有利である。In the case of a sol-gel method or the like, it is often difficult to obtain a film thickness required for a perovskite-type oxide thin film by one application, so that the above application and (drying) By repeating baking, a metal oxide film having a desired film thickness is obtained. The film obtained in this way is amorphous or crystalline, but the crystallinity is insufficient, so the polarization is low,
Cannot be used as a ferroelectric thin film. Therefore, finally, as a crystallization annealing step, firing is performed at a temperature equal to or higher than the crystallization temperature of the metal oxide to obtain a crystalline metal oxide thin film having a perovskite crystal structure. The firing for crystallization may not be performed once at the end, but may be performed after the above-described calcination for each applied coating film, but it is necessary to repeat firing at a high temperature many times. Therefore, it is economically advantageous to perform the operation at the end.
【0052】この結晶化のための焼成温度は通常は50
0〜800℃の範囲であり、例えば500〜750℃で
ある。従って、基板としては、この焼成温度に耐える程
度の耐熱性を有するものを使用する。結晶化のための焼
成(アニール)時間は、通常は1分から2時間程度であ
り、焼成雰囲気は特に制限されないが、通常は空気又は
酸素である。The firing temperature for this crystallization is usually 50
It is in the range of 0 to 800C, for example, 500 to 750C. Therefore, a substrate having heat resistance enough to withstand this firing temperature is used. The firing (annealing) time for crystallization is usually about 1 minute to 2 hours, and the firing atmosphere is not particularly limited, but is usually air or oxygen.
【0053】このようなペロブスカイト型酸化物薄膜の
形成に用いられる耐熱性の基板材料としては、シリコン
(単結晶又は多結晶)、白金、ニッケルなどの金属類、
酸化ルテニウム、酸化イリジウム、ルテニウム酸ストロ
ンチウム(SrRuO3)又はコバルト酸ランタンスト
ロンチウム((LaXSr1-X)CoO3)などのぺロブ
スカイト型導電性酸化物など、石英、窒化アルミニウ
ム、酸化チタンなどの無機化合物が挙げられる。キャパ
シター膜の場合には、基板は下部電極であり、下部電極
としては、例えば、Pt、Pt/Ti、Pt/Ta、R
u、RuO2、Ru/RuO2、RuO2/Ru、Ir、
IrO2、Ir/IrO2、Pt/Ir、Pt/Ir
O2、SrRuO3又は(LaXSr1-X)CoO3などの
ぺロブスカイト型導電性酸化物などとすることができる
(なお、「/」を用いた2層構造のものは「上層/下
層」として示してある。)。As a heat-resistant substrate material used for forming such a perovskite-type oxide thin film, metals such as silicon (single crystal or polycrystal), platinum and nickel,
Perovskite-type conductive oxides such as ruthenium oxide, iridium oxide, strontium ruthenate (SrRuO 3 ) or lanthanum strontium cobaltate ((La X Sr 1 -x) CoO 3 ); quartz, aluminum nitride, titanium oxide, etc. Inorganic compounds. In the case of a capacitor film, the substrate is a lower electrode, and for example, Pt, Pt / Ti, Pt / Ta, R
u, RuO 2 , Ru / RuO 2 , RuO 2 / Ru, Ir,
IrO 2 , Ir / IrO 2 , Pt / Ir, Pt / Ir
Perovskite-type conductive oxides such as O 2 , SrRuO 3 or (La X Sr 1-x ) CoO 3 (a two-layer structure using “/” means “upper layer / lower layer” ").)
【0054】このようにして成膜されたペロブスカイト
型酸化物薄膜の膜厚は、誘導体デバイスの用途によって
も異なるが、通常は500〜4000Å程度が好まし
く、得られた強誘電体薄膜は、各種の誘導体デバイスに
有用である。The thickness of the perovskite-type oxide thin film formed in this manner varies depending on the application of the derivative device, but is generally preferably about 500 to 4000 °. Useful for derivative devices.
【0055】[0055]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。The present invention will be described more specifically below with reference to examples and comparative examples.
【0056】なお実施例及び比較例で用いた原料金属化
合物は次の通りである。The starting metal compounds used in the examples and comparative examples are as follows.
【0057】 Pb原料化合物:酢酸鉛3水和物 酢酸鉛無水物 2−エチルヘキサン酸鉛 La原料化合物:酢酸ランタン1.5水和物 Ti原料化合物:チタンテトライソプロポキシド Zr原料化合物:ジルコニウムテトラn−ブトキシド ジルコニウムアセチルアセテート 実施例1〜14、比較例1〜30 反応容器に表1〜3に示すPb原料化合物と酢酸ランタ
ン1.5水和物と表1〜3に示すアルコール系溶媒を投
入し、結晶水を共沸脱水した後(脱水後に酢酸鉛の沈殿
が生じる場合があるが、沈殿があっても良い)、更に、
表1〜3に示すアルコール系溶媒で希釈し(酢酸鉛は完
全に溶解しなくても良い)、次いで、表1〜3に示すZ
r原料化合物とチタンテトライソプロポキシドを添加し
て、表1〜3に示す金属原子比となるように調合した
(この時点で金属化合物が完全に溶解していなくても良
い)。Pb raw material compound: lead acetate trihydrate lead acetate anhydride 2-ethylhexanoate La raw material compound: lanthanum acetate hemihydrate Ti raw material compound: titanium tetraisopropoxide Zr raw material compound: zirconium tetra n-butoxide zirconium acetyl acetate Examples 1 to 14, Comparative Examples 1 to 30 Pb raw material compounds shown in Tables 1 to 3, lanthanum acetate hemihydrate, and an alcohol solvent shown in Tables 1 to 3 were charged into a reaction vessel. Then, after azeotropically dehydrating the water of crystallization (lead acetate may precipitate after dehydration, there may be a precipitate).
It is diluted with an alcohol solvent shown in Tables 1 to 3 (lead acetate does not have to be completely dissolved), and then Z shown in Tables 1 to 3
The raw material compound and titanium tetraisopropoxide were added to prepare a metal atomic ratio shown in Tables 1 to 3 (the metal compound does not have to be completely dissolved at this time).
【0058】この液を窒素雰囲気中で3時間還流した後
(この時点で金属化合物は完全に溶解される)、安定化
剤として表1〜3に示す化合物を原料溶液中に存在する
金属元素の合計原子数に対して1倍の分子数となる量添
加した(ただし、実施例1,比較例1,29では安定化
剤添加せず)。After the solution was refluxed for 3 hours in a nitrogen atmosphere (at this point, the metal compound was completely dissolved), the compounds shown in Tables 1 to 3 were used as stabilizers for the metal elements present in the raw material solution. It was added in such an amount that the number of molecules became 1 times the total number of atoms (however, in Example 1, Comparative Examples 1 and 29, no stabilizer was added).
【0059】その後、窒素雰囲気で3時間還流した後、
表1〜3に示すアルコール系溶媒を少量添加して濃度調
整することにより、酸化物換算で15重量%濃度の金属
化合物を含有するゾルゲル液を得た。After refluxing for 3 hours in a nitrogen atmosphere,
By adding a small amount of an alcohol solvent shown in Tables 1 to 3 and adjusting the concentration, a sol-gel solution containing a metal compound at a concentration of 15% by weight in terms of oxide was obtained.
【0060】なお、実施例3においては、安定化剤を添
加した後、水及び表1に示すアルコール系溶媒の添加を
行った後、還流を行った。このときの水の添加量は、原
料溶液中に存在する金属元素の合計原子数に対して0.
25倍の分子数となる量とし、アルコールの添加量は、
この水の添加量の9重量倍とした。In Example 3, after the addition of the stabilizer, water and the alcoholic solvent shown in Table 1 were added, and then the mixture was refluxed. At this time, the amount of water added is 0.1 to the total number of atoms of the metal elements present in the raw material solution.
25 times the number of molecules, the amount of alcohol added,
The amount was 9 times the amount of water added.
【0061】このゾルゲル液をPt(2000Å)/S
iO2(5000Å)/Si(100)ウェーハの基板
上にスビンコート法により塗布し(3000rpm、1
5秒)、300℃で5分間空気中で仮焼した。この塗
布、仮焼を4回繰返して行った後、700℃で1分間酸
素雰囲気中で焼成して結晶化アニール処理し、厚さ約2
800Åの強誘電体薄膜を形成した。This sol-gel solution was converted to Pt (2000 °) / S
It is applied on a substrate of an iO 2 (5000 °) / Si (100) wafer by a spin coating method (3000 rpm, 1 rpm).
(5 seconds) and calcined in air at 300 ° C. for 5 minutes. This coating and calcination are repeated four times, and then calcination annealing is performed at 700 ° C. for 1 minute in an oxygen atmosphere to obtain a thickness of about 2 mm.
An 800 ° ferroelectric thin film was formed.
【0062】この強誘電体薄膜の表面のSEM写真を観
察し、薄膜を構成するペロブスカイト相の結晶の平均粒
径、粒径のバラツキの有無、ペロブスカイト相以外の相
の有無を調べ、結果を表4,5に示した。なお、平均粒
径は、薄膜表面のSEM写真から計算により求めた粒子
の平均切片長で表した。An SEM photograph of the surface of the ferroelectric thin film was observed, and the average grain size of the crystals of the perovskite phase constituting the thin film, the presence or absence of variation in the grain size, and the presence or absence of a phase other than the perovskite phase were examined. 4 and 5. The average particle size was represented by an average intercept length of particles calculated from an SEM photograph of the thin film surface.
【0063】また、表4,5には、調製したゾルゲル液
を半年間室温で放置したときのゲル化の有無、沈殿発生
の有無並びに上記仮焼後の膜のストリエーションの有無
の調査結果も併記した。Tables 4 and 5 also show the results of a survey on the presence or absence of gelation, the occurrence of precipitation, and the presence or absence of striation of the calcined film when the prepared sol-gel solution was left at room temperature for half a year. Also described.
【0064】[0064]
【表1】 [Table 1]
【0065】[0065]
【表2】 [Table 2]
【0066】[0066]
【表3】 [Table 3]
【0067】[0067]
【表4】 [Table 4]
【0068】[0068]
【表5】 [Table 5]
【0069】以上の結果から、本発明によれば、表面形
態が均一で微細な結晶粒からなる良好なペロブスカイト
型酸化物薄膜を形成することができること、また、安定
化剤としてのβ−ジケトン類の配合で原料溶液の安定化
が向上することがわかる。From the above results, according to the present invention, it is possible to form a good perovskite-type oxide thin film composed of fine crystal grains having a uniform surface morphology, and to obtain β-diketones as a stabilizer. It can be seen that the stabilization of the raw material solution is improved by the addition of
【0070】これに対して、ブタノールを主体とする有
機溶媒を用いない比較例1〜5では、表面形態が不均一
で結晶粒が大きく、良好なペロブスカイト型酸化物薄膜
を得ることができない。また、安定化剤としてβ−ジケ
トン類を用いない比較例6〜24や29では、有機溶媒
として1−ブタノールを用いていても、原料溶液の安定
性や成膜性等が劣るものとなる。On the other hand, in Comparative Examples 1 to 5 in which an organic solvent mainly composed of butanol was not used, the surface morphology was uneven, the crystal grains were large, and a good perovskite oxide thin film could not be obtained. Further, in Comparative Examples 6 to 24 and 29 in which β-diketones were not used as a stabilizer, even if 1-butanol was used as the organic solvent, the stability of the raw material solution, film formability, and the like were poor.
【0071】更に、Pb原料化合物として2−エチルへ
キサン酸鉛を用いた比較例28や、Zr原料化合物とし
てジルコニウムアセチルアセテートを用いた比較例2
9,30では、有機溶媒として1−ブタノールを用い、
比較例28,30では安定化剤としてアセチルアセトン
を用いているものの、原料溶液の安定性や成膜性等が劣
るものとなる。Further, Comparative Example 28 using lead 2-ethylhexanoate as a Pb raw material compound and Comparative Example 2 using zirconium acetyl acetate as a Zr raw material compound
In 9 and 30, 1-butanol was used as an organic solvent,
In Comparative Examples 28 and 30, although acetylacetone was used as the stabilizer, the stability of the raw material solution and the film-forming properties were poor.
【0072】[0072]
【発明の効果】以上詳述した通り、本発明によれば、低
毒性で、塗布特性及び経時安定性に優れた原料溶液によ
り、表面モフォロジーが良好で、表面形態の均一性に優
れ、従って、電気的特性の均質性にも優れる高特性ペロ
ブスカイト型酸化物薄膜が提供される。As described above in detail, according to the present invention, a raw material solution having low toxicity, excellent application properties and stability over time, has good surface morphology and excellent uniformity of surface morphology. A high-performance perovskite-type oxide thin film having excellent electrical property homogeneity is provided.
フロントページの続き (72)発明者 松浦 正弥 兵庫県三田市テクノパーク12−6 三菱マ テリアル株式会社三田工場内 (72)発明者 影山 謙介 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 Fターム(参考) 4G047 CA02 CA08 CA10 CB05 CC02 CD02 CD08 4G048 AA03 AB02 AC02 AD02 AD08 AE05 AE08 Continued on the front page (72) Inventor Masaya Matsuura 12-6 Techno Park, Mita-shi, Hyogo Mitsubishi Materials Corporation Mita Plant (72) Inventor Kensuke Kageyama 1-297 Kitabukurocho, Omiya-shi, Saitama Mitsubishi Materials Corporation 4G047 CA02 CA08 CA10 CB05 CC02 CD02 CD08 4G048 AA03 AB02 AC02 AD02 AD08 AE05 AE08
Claims (7)
カイト型酸化物薄膜を成膜するための原料溶液であっ
て、各成分金属又は2以上の成分金属を含む金属化合
物、その部分加水分解物並びにその部分重縮合物よりな
る群から選ばれる1種又は2種以上の金属化合物を有機
溶媒中に含有する溶液からなる原料溶液において、該溶
液中に1−ブタノール、2−ブタノール、2−メチル−
1−プロパノール及び2−メチル−2−プロパノールよ
りなる群から選ばれる1種又は2種以上のブタノール溶
媒を含有することを特徴とするペロブスカイト型酸化物
薄膜形成用原料溶液。1. A raw material solution for forming a perovskite-type oxide thin film containing Ti and / or Zr, a metal compound containing each component metal or two or more component metals, a partial hydrolyzate thereof, and In a raw material solution composed of a solution containing one or more metal compounds selected from the group consisting of the partial polycondensates in an organic solvent, 1-butanol, 2-butanol, 2-methyl-
A raw material solution for forming a perovskite oxide thin film, comprising one or more butanol solvents selected from the group consisting of 1-propanol and 2-methyl-2-propanol.
有機溶媒に対する前記ブタノール溶媒の含有率が30重
量%以上であることを特徴とするペロブスカイト型酸化
物薄膜形成用原料溶液。2. The raw material solution for forming a perovskite oxide thin film according to claim 1, wherein the content of the butanol solvent with respect to the organic solvent present in the raw material solution is 30% by weight or more.
在する金属元素の合計原子数に対して、β−ジケトン類
を0.1〜5倍の分子数で含有することを特徴とするペ
ロブスカイト型酸化物薄膜形成用原料溶液。3. The perovskite according to claim 1, wherein the β-diketones are contained in an amount of 0.1 to 5 times the total number of atoms of the metal elements present in the raw material solution. Raw material solution for forming oxide thin film.
て、原料溶液に存在する有機溶媒に対する1−ブタノー
ルの含有率が30重量%以上であり、かつ原料溶液に存
在する金属元素の合計原子数に対してアセチルアセトン
を0.1〜5倍の分子数で含有することを特徴とするペ
ロブスカイト型酸化物薄膜形成用原料溶液。4. The method according to claim 1, wherein the content of 1-butanol with respect to the organic solvent present in the raw material solution is 30% by weight or more, and the total amount of metal elements present in the raw material solution. A raw material solution for forming a perovskite-type oxide thin film, comprising acetylacetone at a molecular number 0.1 to 5 times the number of the raw materials.
て、PbとZr及び/又はTiとを含有するペロブスカ
イト型酸化物薄膜を成膜するための原料溶液であること
を特徴とするペロブスカイト型酸化物薄膜形成用原料溶
液。5. The perovskite type material according to claim 1, which is a raw material solution for forming a perovskite type oxide thin film containing Pb and Zr and / or Ti. Raw material solution for oxide thin film formation.
て、Ti原料化合物がチタンアルコキシドであり、Zr
原料化合物がジルコニウムアルコキシドであることを特
徴とするペロブスカイト型酸化物薄膜形成用原料溶液。6. The method according to claim 1, wherein the Ti raw material compound is a titanium alkoxide,
A raw material solution for forming a perovskite-type oxide thin film, wherein the raw material compound is a zirconium alkoxide.
物が酢酸鉛3水和物及び/又は酢酸鉛無水物であること
を特徴とするペロブスカイト型酸化物薄膜形成用原料溶
液。7. The raw material solution for forming a perovskite oxide thin film according to claim 5, wherein the Pb raw material compound is lead acetate trihydrate and / or lead acetate anhydride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15980899A JP4048650B2 (en) | 1999-06-07 | 1999-06-07 | Raw material solution for forming perovskite oxide thin films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15980899A JP4048650B2 (en) | 1999-06-07 | 1999-06-07 | Raw material solution for forming perovskite oxide thin films |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000351623A true JP2000351623A (en) | 2000-12-19 |
JP4048650B2 JP4048650B2 (en) | 2008-02-20 |
Family
ID=15701717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15980899A Expired - Fee Related JP4048650B2 (en) | 1999-06-07 | 1999-06-07 | Raw material solution for forming perovskite oxide thin films |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4048650B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002275390A (en) * | 2001-03-15 | 2002-09-25 | Fukuoka Prefecture | Crystalline gel dispersing coating solution, and method for forming thin film using crystalline gel dispersing coating solution |
JP2008143760A (en) * | 2006-12-13 | 2008-06-26 | Showa Denko Kk | Coating agent for forming composite oxide film |
WO2011027833A1 (en) * | 2009-09-02 | 2011-03-10 | 三菱マテリアル株式会社 | Method for forming dielectric thin film, and thin film capacitor comprising the dielectric thin film |
JP2012102001A (en) * | 2010-10-13 | 2012-05-31 | Toto Ltd | Aqueous solution for forming perovskite type oxide film |
JP2013136502A (en) * | 2011-11-28 | 2013-07-11 | Mitsubishi Materials Corp | Composition for forming ferroelectric thin film, method for forming the thin film, and thin film formed by the method |
WO2019059216A1 (en) * | 2017-09-25 | 2019-03-28 | リンテック株式会社 | Dielectric sheet, and manufacturing method of dielectric sheet |
-
1999
- 1999-06-07 JP JP15980899A patent/JP4048650B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002275390A (en) * | 2001-03-15 | 2002-09-25 | Fukuoka Prefecture | Crystalline gel dispersing coating solution, and method for forming thin film using crystalline gel dispersing coating solution |
JP2008143760A (en) * | 2006-12-13 | 2008-06-26 | Showa Denko Kk | Coating agent for forming composite oxide film |
WO2011027833A1 (en) * | 2009-09-02 | 2011-03-10 | 三菱マテリアル株式会社 | Method for forming dielectric thin film, and thin film capacitor comprising the dielectric thin film |
CN102482115A (en) * | 2009-09-02 | 2012-05-30 | 三菱综合材料株式会社 | Method for forming dielectric thin film, and thin film capacitor comprising the dielectric thin film |
US8891227B2 (en) | 2009-09-02 | 2014-11-18 | Mitsubishi Materials Corporation | Process of forming dielectric thin film and thin film capacitor having said dielectric thin film |
JP2012102001A (en) * | 2010-10-13 | 2012-05-31 | Toto Ltd | Aqueous solution for forming perovskite type oxide film |
JP2013136502A (en) * | 2011-11-28 | 2013-07-11 | Mitsubishi Materials Corp | Composition for forming ferroelectric thin film, method for forming the thin film, and thin film formed by the method |
WO2019059216A1 (en) * | 2017-09-25 | 2019-03-28 | リンテック株式会社 | Dielectric sheet, and manufacturing method of dielectric sheet |
Also Published As
Publication number | Publication date |
---|---|
JP4048650B2 (en) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100432621B1 (en) | Composition For Forming Ba1-xSrxTiyO3 Thin Films And Method For Forming Ba1-xSrxTiyO3 Thin Films | |
JP4329287B2 (en) | PLZT or PZT ferroelectric thin film, composition for forming the same and method for forming the same | |
US20100159128A1 (en) | Niobium 2-ethylhexanoate derivative, method of producing the derivative, organic acid metal salt composition containing the derivative, and method of producing thin film using the composition | |
JP2001261338A (en) | Raw material solution for forming titanium-containing metal oxide thin film, method of forming the same, and titanium-containing metal oxide thin film | |
EP2784802B1 (en) | Method of forming PNbZT ferroelectric thin film | |
KR102019522B1 (en) | Pzt-based ferroelectric thin film-forming composition, method of preparing the same, and method of forming pzt-based ferroelectric thin film using the same | |
JP2002047011A (en) | Method of forming compact perovskite metallic oxide thin film and compact perovskite metallic oxide thin film | |
KR102334850B1 (en) | Manganese- and niobium-doped pzt piezoelectric film | |
JP4048650B2 (en) | Raw material solution for forming perovskite oxide thin films | |
JP4042276B2 (en) | Method for forming Pb-based perovskite metal oxide thin film | |
JP4329289B2 (en) | SBT ferroelectric thin film, composition for forming the same, and method for forming the same | |
JP6787172B2 (en) | PZT-based ferroelectric thin film and its manufacturing method | |
JP4329288B2 (en) | BLT or BT ferroelectric thin film, composition for forming the same and method for forming the same | |
JP2001072926A (en) | Starting solution for formation of perovskite-type oxide thin film | |
JP3475736B2 (en) | Pb-based metal oxide thin film forming solution with excellent stability without change over time | |
CN104072133A (en) | PZT-based ferroelectric thin film and method of forming the same | |
JP2000119022A (en) | Ferroelectric thin film, raw material solution for forming the same film and formation of film | |
JP3456305B2 (en) | Composition for forming Ba1-xSrxTiO3 thin film | |
JP2005255468A (en) | COATING LIQUID FOR FORMING Bi-BASED DIELECTRIC THIN FILM WITH PARAELECTRIC OR FERROELECTRIC PROPERTY, AND Bi-BASED DIELECTRIC THIN FILM | |
JP3146961B2 (en) | Composition for forming (Ba, Sr) TiO3 dielectric thin film and method for forming (Ba, Sr) TiO3 thin film | |
JP2007329030A (en) | High dielectric film formation composition and its manufacturing method | |
JP4006896B2 (en) | Composition for forming PLZT ferroelectric thin film and method for forming PLZT ferroelectric thin film | |
JP2676775B2 (en) | Thin film dielectric and method of manufacturing the same | |
JP2000001368A (en) | Ferroelectric thin film, stock solution for forming same and formation of same | |
CN101193849B (en) | Niobium 2-ethylhexanoate derivative, method for producing the derivative, organic acid metal salt composition containing the derivative, and method for producing thin film using the composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071119 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |