JP2000348335A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JP2000348335A JP2000348335A JP2000093824A JP2000093824A JP2000348335A JP 2000348335 A JP2000348335 A JP 2000348335A JP 2000093824 A JP2000093824 A JP 2000093824A JP 2000093824 A JP2000093824 A JP 2000093824A JP 2000348335 A JP2000348335 A JP 2000348335A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic
- recording medium
- grain size
- magnetic layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 claims abstract description 59
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 40
- 239000000956 alloy Substances 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 30
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 26
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 19
- 239000011651 chromium Substances 0.000 claims description 57
- 239000011572 manganese Substances 0.000 claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 229910052748 manganese Inorganic materials 0.000 claims description 14
- 229910052715 tantalum Inorganic materials 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- 230000004907 flux Effects 0.000 claims description 6
- 239000010955 niobium Substances 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims 3
- 239000010941 cobalt Substances 0.000 claims 1
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 8
- 230000001050 lubricating effect Effects 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 264
- 239000010408 film Substances 0.000 description 24
- 239000011241 protective layer Substances 0.000 description 20
- 230000005415 magnetization Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 238000005259 measurement Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910000599 Cr alloy Inorganic materials 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910001149 41xx steel Inorganic materials 0.000 description 4
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 4
- 229910000943 NiAl Inorganic materials 0.000 description 4
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 4
- 239000010952 cobalt-chrome Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 229910018979 CoPt Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010702 perfluoropolyether Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- -1 Co: 57-79 at% Substances 0.000 description 2
- 241000511976 Hoya Species 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 150000001721 carbon Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910002441 CoNi Inorganic materials 0.000 description 1
- 229910020707 Co—Pt Inorganic materials 0.000 description 1
- 229910019026 PtCr Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気テープ、磁気
ディスク等の磁気記録媒体に関し、特に磁性層の膜厚を
薄くすることによって、記録信号の再生時におけるノイ
ズの発生を抑制した磁気記録媒体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic tape and a magnetic disk, and more particularly to a magnetic recording medium in which the generation of noise during reproduction of a recording signal is suppressed by reducing the thickness of a magnetic layer. About.
【0002】[0002]
【従来の技術】この種の磁気記録媒体としては、例えば
特開平8−227516号公報に記載されているような
磁気記録媒体が提案されている。この磁気記録媒体は、
基板上にCo−Pt系の2層の磁性層を設け、この2層
の磁性層の間にCrとMoを主成分とする非磁性層を介
在させた基本構成からなる。このように磁性層を非磁性
層で2層に分割することにより、個々の磁性層の膜厚は
トータル膜厚が等しい単層の磁性層の場合に比べて薄い
ので、記録信号の再生時のノイズを低減することができ
る。一方、ノイズを低減する目的として、米国特許第5
693426号明細書に記載されているようなB2構造
の金属間化合物を下層とする構造を採用する磁気記録媒
体が提案されている。このB2構造の金属間化合物は一
般にシード層と呼ばれるもので、特にCo系磁性層との
相性がよいCr系下地層のさらに下層として、微細なB
2構造のシード層を形成することによって下地層となる
Cr系の層をエピタキシャル成長させることができ、微
細なCr系下地層を形成することができる。しかも、同
時にその上層となる磁性層にも上記下地層の微細状態を
反映したエピタキシャル成長を起こさせることができ、
ノイズを低減させることができる。このようなタイプの
磁気記録媒体は、出力の大きさよりもノイズを抑えるこ
とが優先課題となるMR(磁気抵抗型)ヘッド対応用の磁
気記録媒体として好適に使用することができる。2. Description of the Related Art As a magnetic recording medium of this kind, for example, a magnetic recording medium described in Japanese Patent Application Laid-Open No. 8-227516 has been proposed. This magnetic recording medium
It has a basic structure in which two Co-Pt-based magnetic layers are provided on a substrate, and a non-magnetic layer mainly composed of Cr and Mo is interposed between the two magnetic layers. By dividing the magnetic layer into two non-magnetic layers as described above, the thickness of each magnetic layer is smaller than that of a single magnetic layer having the same total film thickness. Noise can be reduced. On the other hand, US Pat.
There has been proposed a magnetic recording medium employing a structure having a B2 structure intermetallic compound as a lower layer as described in JP-A-63-42626. The B2 structure intermetallic compound is generally called a seed layer. In particular, as a further lower layer of a Cr-based underlayer having good compatibility with the Co-based magnetic layer, fine B
By forming a seed layer having two structures, a Cr-based layer serving as an underlayer can be epitaxially grown, and a fine Cr-based underlayer can be formed. Moreover, at the same time, epitaxial growth reflecting the fine state of the underlayer can also be caused on the magnetic layer as the upper layer,
Noise can be reduced. Such a type of magnetic recording medium can be suitably used as a magnetic recording medium for an MR (magnetoresistive) head, in which suppressing noise rather than output is a priority.
【0003】[0003]
【発明が解決しようとする課題】上述した構成からなる
磁気記録媒体は、非磁性層によって磁性層を分割してい
るので、確かに磁性層の膜厚が薄くなり結晶粒径が微細
化されるのでノイズを抑えることができる。また、シー
ド層による上層のエピタキシャル成長による磁性層の結
晶粒径の微細化でノイズを抑えることもできる。しかし
ながら、ノイズの低減のために、磁性層の結晶粒径を非
常に微細化すると、磁化が熱的に不安定となり、記録さ
れた信号が時間と共に減衰し、しまいには記録された信
号が消滅してしまうという問題が生じた。そこで、高密
度記録に望ましい媒体の微細構造としては、粒子を微細
化するとともに、粒径分布を均一にして、粒子サイス゛の分
散を小さくし、熱揺らぎの影響を受けやすい過度に微細
な粒子の生成を抑えることが重要である。In the magnetic recording medium having the above-described structure, the magnetic layer is divided by the non-magnetic layer, so that the thickness of the magnetic layer is reduced and the crystal grain size is reduced. Therefore, noise can be suppressed. Also, noise can be suppressed by reducing the crystal grain size of the magnetic layer by epitaxial growth of the upper layer by the seed layer. However, if the crystal grain size of the magnetic layer is made very small in order to reduce noise, the magnetization becomes thermally unstable, and the recorded signal attenuates over time, eventually erasing the recorded signal. Problem. Therefore, as a fine structure of a medium that is desirable for high-density recording, the fine particles are made finer, the particle size distribution is made uniform, the dispersion of the particle size is reduced, and excessively fine particles that are easily affected by thermal fluctuations are formed. It is important to reduce production.
【0004】本発明は上述した背景の下になされたもの
であり、高保磁力、高S/N比、低PW50値及び熱揺
らぎ耐性を満足する磁気記録媒体を提供することを目的
とする。The present invention has been made under the above-mentioned background, and has as its object to provide a magnetic recording medium that satisfies a high coercive force, a high S / N ratio, a low PW50 value, and resistance to thermal fluctuation.
【0005】[0005]
【課題を解決するための手段】本発明者は、鋭意究明の
結果、S/N比、PW50値及び熱揺らぎ耐性が十分に
満足できない原因が、磁性層の結晶粒の粒径及び粒径分
布を制御する結晶粒径制御層の材質にもよることを見出
し、ある特定の合金だけが高S/N比、低PW50値及
び高い熱揺らぎ耐性を達成できることを解明した。特
に、2層以上の磁性層を有し、磁性層間の少なくとも1
つに非磁性層を有する磁気記録媒体にあっては、磁性層
を分割している非磁性層の膜材料の材質によるものであ
ることを見出し、磁性層をCo−Pt系を用いた場合、
ある特定の合金だけが高S/N比、低PW50値及び、
高い熱揺らぎ耐性を達成することができることを究明し
た。本発明はこのような背景のもとに案出されたもので
あり、以下の構成を採用することによりかかる課題を解
決するものである。Means for Solving the Problems As a result of intensive studies, the present inventors have found that the reason why the S / N ratio, the PW50 value and the thermal fluctuation resistance cannot be sufficiently satisfied is that the crystal grain size and the grain size distribution of the magnetic layer are not sufficient. It was found that it depends on the material of the crystal grain size control layer for controlling the S / N ratio, and that only a specific alloy can achieve a high S / N ratio, a low PW50 value, and a high thermal fluctuation resistance. In particular, it has two or more magnetic layers, and at least one magnetic layer between the magnetic layers.
Finally, in the case of a magnetic recording medium having a non-magnetic layer, it was found that the magnetic layer is based on the material of the film material of the non-magnetic layer dividing the magnetic layer.
Only certain alloys have high S / N ratio, low PW50 value and
It has been found that high thermal fluctuation resistance can be achieved. The present invention has been devised under such a background, and solves the problem by adopting the following configuration.
【0006】本発明の磁気記録媒体は、基板上に、少な
くとも磁性層を有する磁気記録媒体において、前記基板
と磁性層との間に、磁性層の結晶粒の粒径及び粒径分布
を制御する結晶粒径制御層を有し、この結晶粒径制御層
は、Cr(クロム)とC(炭素)とを含む合金であるこ
とを特徴とするものである。本発明において、結晶粒径
制御層は、Cr(クロム)とC(炭素)とを含む合金で
ある。Cr(クロム)へのC(炭素)の添加効果は、C
(炭素)がCr層を微細化するため、結晶粒径制御層上
に成長するCo粒子の微細化を促進させ、なおかつ粒径
分布をよくすることである。これにより、耐熱ゆらぎ特
性が過度に悪い微粒子が減少し、S/N比、PW50値
が改善されるとともに、耐熱揺らぎ特性も向上する。上
記結晶粒径制御層におけるC(炭素)の含有量は、0.
01at%〜0.5at%であることが好ましい。C
(炭素)の含有量が0.01at%より小さいと、結晶
粒径制御層を微細化させる効果が低減するので、その上
に形成する磁性層結晶粒径が大きくなり、高S/N比が
得られず、粒径分布の均一化がはかれないので耐熱揺ら
ぎ特性が悪くなり、好ましくない。また、C(炭素)の
含有量が0.5at%を超えると、高保磁力が得られな
いので、好ましくない。また、結晶粒径制御層には、M
n(マンガン)を添加するとよい。特に、結晶粒径制御
層上に直接磁性層が形成されている場合は、結晶粒径制
御層に含まれているMnが磁性層のCoとCrとの界面
に析出し、Cr合金層上に成長する初期のCo層のCr
相に選択的に析出し、Co粒間の磁気的相互作用を低減
させる。これによりS/N比がさらに改善される。よっ
て、これらの両元素を適度に添加することにより、PW
50値及びS/N比の双方の改善が可能になった。Mn
(マンガン)の含有量としては、0.5at%〜5at
%が好ましい。なぜなら、0.5at%未満では、磁性
層のCo界面へのMnの拡散効果が期待できず、S/N
比が改善されない。5at%を超えると、磁性層のCo
界面へのMnの拡散効果が大きく、Co粒間の磁気的相
互作用が極度に弱くなり、その結果、とりわけ信号減衰
が悪化するからである。さらに、上記結晶粒径制御層に
は、Mo(モリブデン)、V(バナジウム)、W(タン
グステン)、Zr(ジルコニウム)、Ti(チタン)、
Ta(タンタル)、Ni(ニッケル)、Nb(ニオ
ブ)、O(酸素)、N(窒素)から選ばれる少なくとも
1種の元素が含まれる構成にしてもよい。これは、以下
の理由による。高記録密度達成のため、近年の磁気ディ
スクは更なる高保磁力が要求されている。高保磁力を達
成するためには、磁性層のCo系合金に含まれるPt濃
度は増加する傾向にあり、これとともに、Co系合金の
格子定数が増大する。下地層と磁性層のエピタキシャル
成長を起こさせるには、下地層と磁性層の格子定数がマ
ッチングしていることが必要で、結晶粒径制御層におい
ても例外ではない。このため、上記元素のうちMo、
V、W、Zr、Ti、Ta、Ni、Nbなどは、結晶粒
径制御層に含まれるCrよりも原子半径の大きな元素で
あって、磁性層との格子定数をマッチングさせる働きを
有する。一方、酸素や窒素は、グレインの成長を抑制
し、結晶粒を微細化させる働きを有する。これらの2種
類の方法を効果的に使用することで、さらなる高保磁
力、高S/N比、低PW50値、熱揺らぎ耐性が良好な
磁気記録媒体となる。これらの元素の含有量の合計は、
2at%〜30at%であることが好ましい。なぜな
ら、2at%未満ではCr合金の格子定数が、磁性層の
Co系合金に比べて小さくなり、30at%を超える
と、逆に大きくなり過ぎる。いずれの場合においても、
磁性層のエピタキシャル成長が困難になり、保磁力の低
下、S/N比の低下を招くからである。According to the magnetic recording medium of the present invention, in a magnetic recording medium having at least a magnetic layer on a substrate, a grain size and a grain size distribution of crystal grains of the magnetic layer are controlled between the substrate and the magnetic layer. It has a crystal grain size control layer, and the crystal grain size control layer is characterized by being an alloy containing Cr (chromium) and C (carbon). In the present invention, the crystal grain size control layer is an alloy containing Cr (chromium) and C (carbon). The effect of adding C (carbon) to Cr (chromium)
Since (carbon) refines the Cr layer, it is necessary to promote the refinement of the Co particles grown on the crystal grain size control layer and to improve the particle size distribution. As a result, the number of fine particles having excessively poor heat fluctuation characteristics is reduced, the S / N ratio and the PW50 value are improved, and the heat fluctuation characteristics are also improved. The content of C (carbon) in the crystal grain size control layer is 0.1%.
It is preferably in the range of 01 at% to 0.5 at%. C
When the content of (carbon) is less than 0.01 at%, the effect of miniaturizing the crystal grain size control layer is reduced, so that the crystal size of the magnetic layer formed thereon becomes large, and the high S / N ratio is reduced. It is not preferable because the particle size distribution cannot be uniformed because heat resistance fluctuation characteristics are deteriorated. On the other hand, if the content of C (carbon) exceeds 0.5 at%, a high coercive force cannot be obtained, which is not preferable. The crystal grain size control layer has M
It is preferable to add n (manganese). In particular, when the magnetic layer is formed directly on the crystal grain size control layer, Mn contained in the crystal grain size control layer precipitates at the interface between Co and Cr in the magnetic layer, and is deposited on the Cr alloy layer. Cr in initial Co layer growing
It selectively precipitates in the phase and reduces magnetic interaction between Co grains. This further improves the S / N ratio. Therefore, by appropriately adding both of these elements, the PW
Improvement of both 50 value and S / N ratio became possible. Mn
The content of (manganese) is 0.5 at% to 5 at
% Is preferred. If the concentration is less than 0.5 at%, the effect of diffusing Mn into the Co interface of the magnetic layer cannot be expected, and the S / N
The ratio does not improve. If it exceeds 5 at%, Co of the magnetic layer
This is because the effect of diffusion of Mn into the interface is large, and the magnetic interaction between Co grains becomes extremely weak, and as a result, especially, signal attenuation is deteriorated. Furthermore, Mo (molybdenum), V (vanadium), W (tungsten), Zr (zirconium), Ti (titanium),
It may be configured to include at least one element selected from Ta (tantalum), Ni (nickel), Nb (niobium), O (oxygen), and N (nitrogen). This is for the following reason. In order to achieve a high recording density, recent magnetic disks are required to have a higher coercive force. In order to achieve a high coercive force, the Pt concentration contained in the Co-based alloy of the magnetic layer tends to increase, and at the same time, the lattice constant of the Co-based alloy increases. In order to cause epitaxial growth of the underlayer and the magnetic layer, it is necessary that the lattice constants of the underlayer and the magnetic layer match, and the crystal grain size control layer is no exception. Therefore, among the above elements, Mo,
V, W, Zr, Ti, Ta, Ni, Nb, and the like are elements having an atomic radius larger than that of Cr contained in the crystal grain size control layer, and have a function of matching the lattice constant with the magnetic layer. On the other hand, oxygen and nitrogen have a function of suppressing the growth of grains and refining crystal grains. By effectively using these two types of methods, a magnetic recording medium having a further high coercive force, a high S / N ratio, a low PW50 value, and good thermal fluctuation resistance can be obtained. The sum of the contents of these elements is
Preferably it is 2 at% to 30 at%. The reason is that if it is less than 2 at%, the lattice constant of the Cr alloy becomes smaller than that of the Co-based alloy of the magnetic layer, and if it exceeds 30 at%, it becomes too large. In each case,
This is because epitaxial growth of the magnetic layer becomes difficult, which causes a decrease in coercive force and a decrease in the S / N ratio.
【0007】基板の材質等には、特に制限はない。例え
ば、ガラス基板、結晶化ガラス基板、アルミニウム合金
基板、セラミックス基板、カーボン基板、シリコン基板
等を使用することができる。[0007] The material and the like of the substrate are not particularly limited. For example, a glass substrate, a crystallized glass substrate, an aluminum alloy substrate, a ceramics substrate, a carbon substrate, a silicon substrate, or the like can be used.
【0008】本発明の磁気記録媒体の磁性層は単層でも
複数層でもよい。複数層の場合は、磁性層の上に直接他
の磁性層を積層してもよく、また、磁性層間に非磁性層
を介在させてもよい。本発明のおける請求項7〜10の
磁気記録媒体は磁性層を2層以上有する。磁性層の数
は、再生出力、重ね書き特性等を考慮して2層以上の3
層、4層、5層等とすることができる。但し、実用的な
観点から、通常は最大5層程度である。しかし、必要に
より6層以上の磁性層を設けることも勿論できる。The magnetic layer of the magnetic recording medium of the present invention may be a single layer or a plurality of layers. In the case of a plurality of layers, another magnetic layer may be directly laminated on the magnetic layer, or a non-magnetic layer may be interposed between the magnetic layers. The magnetic recording medium according to claims 7 to 10 of the present invention has two or more magnetic layers. The number of magnetic layers should be three or more for two or more layers in consideration of reproduction output, overwriting characteristics, and the like.
Layers, four layers, five layers, and the like. However, from a practical viewpoint, the number of layers is usually about 5 at the maximum. However, if necessary, six or more magnetic layers can be provided.
【0009】本発明の請求項7〜10の磁気記録媒体
は、2層以上ある磁性層の間の少なくとも一つに非磁性
層を有する。非磁性層は、通常、磁性層と磁性層との間
に直接設けられる。但し、必要により、非磁性層と磁性
層との間に中間層を設けることもできる。また、磁性層
が3層以上ある場合、各磁性層の間に、それぞれ非磁性
層を設けることが好ましい。その場合、磁性層の層数を
nとするとn−1層の非磁性層を設けることになる。し
かし、磁性層が3層以上ある場合、場合によっては全て
の磁性層の間に非磁性層を設けず、磁性層の間の少なく
とも1つに非磁性層を設けることもできる。The magnetic recording medium according to claims 7 to 10 of the present invention has a non-magnetic layer in at least one of two or more magnetic layers. The non-magnetic layer is usually provided directly between the magnetic layers. However, if necessary, an intermediate layer may be provided between the nonmagnetic layer and the magnetic layer. When there are three or more magnetic layers, it is preferable to provide a non-magnetic layer between each magnetic layer. In this case, if the number of magnetic layers is n, n-1 non-magnetic layers will be provided. However, when there are three or more magnetic layers, a nonmagnetic layer may be provided between at least one of the magnetic layers without providing a nonmagnetic layer between all the magnetic layers in some cases.
【0010】各磁性層の厚みは50〜250オングスト
ローム、好ましくは、80〜150オングストロームと
することが適当である。なぜなら磁性層が50オングス
トローム未満では、再生出力の不足、保磁力の低下、熱
揺らぎ特性の悪化を招き、250オングストロームを超
えると、磁性層のグレインが膜厚の増加とともに増大
し、S/N比、PW50値の悪化(低下)を招くからで
ある。また、各非磁性層の厚みは5〜100オングスト
ローム、好ましくは10〜50オングストロームとする
ことが適当である。なぜなら非磁性層が5オングストロ
ーム未満では、非磁性層の上下に形成された磁性層の磁
気的な分断効果がなく、S/N比が改善しない。又、1
00オングストロームを超えると、非磁性層の上下に形
成された磁性層の磁気的な分断が過度に行われ、保磁力
の低下、熱揺らぎ特性の悪化が起こるからである。It is appropriate that the thickness of each magnetic layer is 50 to 250 Å, preferably 80 to 150 Å. If the thickness of the magnetic layer is less than 50 Å, the reproduction output becomes insufficient, the coercive force decreases, and the thermal fluctuation characteristic deteriorates. This causes the PW50 value to deteriorate (decrease). It is appropriate that the thickness of each nonmagnetic layer is 5 to 100 angstroms, preferably 10 to 50 angstroms. If the nonmagnetic layer is less than 5 angstroms, the magnetic layers formed above and below the nonmagnetic layer have no magnetic separation effect, and the S / N ratio is not improved. Also, 1
If the thickness exceeds 00 angstroms, the magnetic layers formed above and below the non-magnetic layer are excessively magnetically separated, resulting in a decrease in coercive force and a deterioration in thermal fluctuation characteristics.
【0011】磁性層の膜構成としては、以下の実施例で
示す磁性層−非磁性層−磁性層のほかに、例えば、磁性
層−非磁性層−磁性層−磁性層−非磁性層−磁性層とい
う具合に磁性層の膜数を更に増やしても良い。また、2
以上の磁性層における、各磁性層を構成する材料及び膜
厚は同一でも異なっていても良い。同様に2以上の非磁
性層における、各非磁性層を構成する材料及び膜厚は同
一でも異なっていても良い。The film structure of the magnetic layer may be, for example, magnetic layer-nonmagnetic layer-magnetic layer-magnetic layer-nonmagnetic layer-magnetic layer in addition to the magnetic layer-nonmagnetic layer-magnetic layer shown in the following embodiments. The number of films of the magnetic layer may be further increased as a layer. Also, 2
In the above magnetic layers, the materials and thicknesses of the respective magnetic layers may be the same or different. Similarly, in the two or more nonmagnetic layers, the material and the thickness of each nonmagnetic layer may be the same or different.
【0012】本発明において、磁性層の材料は特に限定
されない。磁性層の材料としては、例えば、CoとPt
とを主成分とする合金、CoとNiとを主成分とする合
金、CoとCrとを主成分とする合金などがある。具体
的には、CoPt、CoNi、CoCr、CoPtC
r、CoPtTa、CoPtNi、CoNiCr、Co
CrTa、CoCrPtTa、CoCrPtB、CoC
rPtTaNb、CoCrPtBNbなどの各合金があ
げられる。なお、磁気抵抗型ヘッド対応の磁気記録媒体
や、高い保磁力の磁気記録媒体の磁性層としては、Co
とPtとを主成分とする合金がよい。CoとPtとを主
成分とする合金は、十分な保磁力を得るという観点か
ら、CoとPtとの合計が70at%以上の合金である
ことが適当である。また、CoとPtとの比率には特に
制限はないが、保磁力、ノイズ及びコストを考慮する
と、Pt(at%)/Co(at%)は0.06以上
0.25以下の範囲であることが適当である。In the present invention, the material of the magnetic layer is not particularly limited. As the material of the magnetic layer, for example, Co and Pt
, An alloy mainly containing Co and Ni, an alloy mainly containing Co and Cr, and the like. Specifically, CoPt, CoNi, CoCr, CoPtC
r, CoPtTa, CoPtNi, CoNiCr, Co
CrTa, CoCrPtTa, CoCrPtB, CoC
Each alloy such as rPtTaNb and CoCrPtBNb can be used. The magnetic layer of a magnetic recording medium compatible with a magnetoresistive head or a magnetic recording medium having a high coercive force is made of Co
An alloy containing Pt and Pt as main components is preferable. From the viewpoint of obtaining a sufficient coercive force, the alloy containing Co and Pt as main components is preferably an alloy having a total of 70 at% or more of Co and Pt. The ratio between Co and Pt is not particularly limited, but considering coercive force, noise, and cost, Pt (at%) / Co (at%) is in the range of 0.06 or more and 0.25 or less. Is appropriate.
【0013】Co及びPt以外の成分には特に制限はな
いが、例えば、Cr、Ta、Ni、Si、B、O、N、
Nb、Mn、Mo、Zn、W、Pb、Re、V、Sm及
びZrの1種又は2種以上を適宜使用することができ
る。これらの元素の添加量は磁気特性等を考慮して適宜
決定され、通常30at%以下であることが適当であ
る。より具体的な磁性層の材料としては、例えば、Co
PtCr合金、CoPtTa合金、CoPtCrTa合
金、CoPtCrNi合金、CoPtCrB合金等を挙
げることができる。There are no particular restrictions on the components other than Co and Pt. For example, Cr, Ta, Ni, Si, B, O, N,
One or more of Nb, Mn, Mo, Zn, W, Pb, Re, V, Sm, and Zr can be used as appropriate. The addition amount of these elements is appropriately determined in consideration of the magnetic characteristics and the like, and is usually preferably 30 at% or less. More specific materials for the magnetic layer include, for example, Co
PtCr alloy, CoPtTa alloy, CoPtCrTa alloy, CoPtCrNi alloy, CoPtCrB alloy and the like can be mentioned.
【0014】磁性層はノイズの低減の観点から、CoP
tCr合金の場合、Co、Pt、Crの好ましい含有量
は、Co:62〜90at%、Pt:5〜20at%、
Cr:5〜18at%である。また、CoPtCrTa
合金の場合、Co、Pt、Cr、Taの好ましい含有量
は、Co:55〜89at%、Pt:5〜20at%、
Cr:5〜25at%、Ta:1〜7at%、CoPt
CrB合金の場合、Co、Pt、Cr、Bの好ましい含
有量は、Co:46〜89at%、Pt:5〜17at
%、Cr:5〜25at%、B:1〜12at%であ
る。The magnetic layer is made of CoP from the viewpoint of noise reduction.
In the case of a tCr alloy, the preferable contents of Co, Pt, and Cr are Co: 62 to 90 at%, Pt: 5 to 20 at%,
Cr: 5 to 18 at%. In addition, CoPtCrTa
In the case of an alloy, the preferred contents of Co, Pt, Cr, and Ta are Co: 55 to 89 at%, Pt: 5 to 20 at%,
Cr: 5 to 25 at%, Ta: 1 to 7 at%, CoPt
In the case of a CrB alloy, the preferable contents of Co, Pt, Cr, and B are Co: 46 to 89 at% and Pt: 5 to 17 at.
%, Cr: 5 to 25 at%, and B: 1 to 12 at%.
【0015】また、高保磁力の点から、基板側の磁性層
の飽和磁束密度Bsは媒体表面側の磁性層の飽和磁束密
度Bsより大きいことが好ましい。基板側の磁性層は主
に磁気記録媒体の保磁力を決定するものと考えられてお
り、飽和磁束密度Bsが高いことが要求される。又、媒
体表面側の磁性層は、主に磁気記録媒体のS/N比及び
耐コロージョン特性(耐食性)を決定するものと考えら
れており、飽和磁束密度Bsが小さいことが要求され
る。この場合、磁性層の好ましい組成の範囲は、磁性層
がCoPtCrTaの場合、基板側磁性層では、Co:
59〜81at%、Pt:5〜13at%、Cr:13
〜23at%、Ta:1〜5at%、媒体表面側磁性層
では、Co:57〜79at%、Pt:5〜13at
%、Cr:15〜25at%、Ta:1〜5at%とす
ることが好ましい。Further, from the viewpoint of high coercive force, the saturation magnetic flux density Bs of the magnetic layer on the substrate side is preferably larger than the saturation magnetic flux density Bs of the magnetic layer on the medium surface side. The magnetic layer on the substrate side is considered to mainly determine the coercive force of the magnetic recording medium, and is required to have a high saturation magnetic flux density Bs. The magnetic layer on the medium surface side is considered to mainly determine the S / N ratio and corrosion resistance (corrosion resistance) of the magnetic recording medium, and is required to have a small saturation magnetic flux density Bs. In this case, the preferable range of the composition of the magnetic layer is such that when the magnetic layer is CoPtCrTa, the substrate-side magnetic layer has Co:
59 to 81 at%, Pt: 5 to 13 at%, Cr: 13
-23 at%, Ta: 1-5 at%, and in the medium surface side magnetic layer, Co: 57-79 at%, Pt: 5-13 at%.
%, Cr: 15 to 25 at%, and Ta: 1 to 5 at%.
【0016】本発明において、非磁性層は、CrとCを
含有する合金である。CrへのC添加効果は、CがCr
層を微細化するため、その後に成長するCo粒子の微細
化を促進させ、なお且つ粒径分布をよくする。これによ
り過度に耐熱揺らぎ特性が悪い微粒子が減少し、S/
N、PWが改善されるとともに、耐熱揺らぎ特性も向上
する。加えてMnはCo層とCr層の界面に析出し、C
r合金層上に成長する初期のCo層のCr相に選択的に
析出し、Co粒間の磁気的相互作用を低減させる。これ
によりS/Nが改善される。よってこれらの両元素を適
度に添加することによりPW、S/N双方の改善が可能
となった。In the present invention, the nonmagnetic layer is an alloy containing Cr and C. The effect of adding C to Cr is as follows.
In order to reduce the size of the layer, the size of the Co particles to be subsequently grown is promoted and the particle size distribution is improved. As a result, the number of fine particles having excessively poor heat fluctuation characteristics is reduced, and S / S
The N and PW are improved, and the heat fluctuation characteristics are also improved. In addition, Mn precipitates at the interface between the Co layer and the Cr layer,
It selectively precipitates in the Cr phase of the initial Co layer growing on the r alloy layer, and reduces magnetic interaction between Co grains. Thereby, the S / N is improved. Therefore, both PW and S / N can be improved by appropriately adding both of these elements.
【0017】本発明の磁気記録媒体は、前記磁性層及び
非磁性層以外に、例えば、シード層、下地層、保護層及
び潤滑層等を有することができる。これら、シード層、
下地層、中間層、保護層及び潤滑層は公知のものをその
まま使用することができる。The magnetic recording medium of the present invention may have, for example, a seed layer, an underlayer, a protective layer, a lubricating layer, etc., in addition to the magnetic layer and the nonmagnetic layer. These, seed layer,
Known underlayers, intermediate layers, protective layers and lubricating layers can be used as they are.
【0018】シード層は、一般的に結晶粒径の小さく且
つ均一な結晶粒の材料で構成され、シード層上に形成さ
れる下地層、中間層、磁性層の結晶粒を微細に保ちなが
ら、結晶成長を良好にすることを目的として設けられ
る。シード層の代表的な材料としては、NiAl合金を
はじめとするB2型結晶構造の材料や、CrTi合金、
CrNi合金などが挙げられる。なお、結晶成長を良好
にするために、シード層を積層しても構わない。The seed layer is generally made of a material having a small crystal grain size and uniform crystal grains, while keeping the crystal grains of the underlayer, the intermediate layer, and the magnetic layer formed on the seed layer fine, It is provided for the purpose of improving crystal growth. As a typical material of the seed layer, a material having a B2-type crystal structure such as a NiAl alloy, a CrTi alloy,
CrNi alloy and the like can be mentioned. Note that a seed layer may be stacked to improve the crystal growth.
【0019】下地層は、高い保磁力が得られるような材
料とすることが好ましい。下地層は、1層又は2層以上
から構成することができる。下地層としては、例えば、
CrMo合金、CrV合金、CrW合金等を使用するこ
とができる。このようにCr合金とすることで、磁性層
と下地層との格子面間隔のマッチングが良好になるの
で、磁性層の磁化容易軸が面内方向に向きやすくなる。
その結果、面内方向保磁力及び電磁変換特性が良好にな
る。また、下地層がCrの場合に比べて同じ保磁力であ
るならばCr合金の膜厚を薄くすることができるので、
Cr合金の膜厚増による過度の粒径サイズの増加を抑え
ることができ、結果としてPW,S/N比が改善され
る。The underlayer is preferably made of a material that can provide a high coercive force. The underlayer can be composed of one layer or two or more layers. As the underlayer, for example,
CrMo alloy, CrV alloy, CrW alloy and the like can be used. By using a Cr alloy in this way, the lattice spacing between the magnetic layer and the underlayer is well matched, so that the easy axis of magnetization of the magnetic layer is easily oriented in the in-plane direction.
As a result, in-plane coercive force and electromagnetic conversion characteristics are improved. If the underlayer has the same coercive force as compared to the case where the underlayer is Cr, the thickness of the Cr alloy can be reduced, so that
An excessive increase in the particle size due to an increase in the thickness of the Cr alloy can be suppressed, and as a result, the PW and the S / N ratio are improved.
【0020】中間層は、下地層と磁性層との間、好まし
くは磁性層と接する位置に形成され、磁性層のC軸の配
向を良好にする目的で設けられる。中間層は非磁性材料
であって、その結晶系は、磁性層の結晶系に合わせるこ
とが望ましく、本発明のように磁性層がCoPt系の場
合、六方最密充填結晶構造を持つHCP結晶構造である
ので、中間層はHCP結晶構造とする。HCP結晶構造
を持つ中間層としては、CoCr、CoCrNb、Co
CrPt、CoCrPtTa合金等が挙げられる。保護
層は、磁性層をヘッドの接触摺動による破壊から防護す
る目的で磁性層の上(基板と反対側の面)に設けられ
る。保護層は、1層又は2層以上から構成することがで
きる。The intermediate layer is formed between the underlayer and the magnetic layer, preferably at a position in contact with the magnetic layer, and is provided for the purpose of improving the C-axis orientation of the magnetic layer. The intermediate layer is a non-magnetic material, and its crystal system is preferably matched to the crystal system of the magnetic layer. When the magnetic layer is a CoPt system as in the present invention, the HCP crystal structure having a hexagonal close-packed crystal structure Therefore, the intermediate layer has an HCP crystal structure. As the intermediate layer having the HCP crystal structure, CoCr, CoCrNb, Co
CrPt, CoCrPtTa alloy, and the like. The protective layer is provided on the magnetic layer (the surface opposite to the substrate) for the purpose of protecting the magnetic layer from destruction due to sliding contact of the head. The protective layer can be composed of one layer or two or more layers.
【0021】保護層としては、例えば、酸化ケイ素膜、
炭素膜、ジルコニア膜、水素化カーボン膜、水素窒素化
カーボン膜、窒化カーボン膜、窒化珪素膜、SiC膜等
を挙げることができる。なお、保護層は、スパッタリン
グ法等などの公知の成膜方法で設けることができる。潤
滑層は、ヘッドとの接触摺動による抵抗を低減する目的
で設けられ、例えば、パーフルオロポリエーテル等が一
般には用いられる。なお、本発明の結晶粒径制御層は、
基板と磁性層との間であればどこに形成してもかまわな
い。例えば、基板とシード層との間、シード層が複数の
場合のはシード層間、シード層と下地層との間、シード
層と磁性層との間、基板と下地層との間、磁性層が複数
層の場合は磁性層間、等々である。具体的には、基板/
結晶粒径制御層/シード層、基板/シード層/結晶粒径
制御層/シード層、基板/シード層/結晶粒径制御層/
下地層、基板/シード層/結晶粒径制御層/磁性層、基
板/結晶粒径制御層/下地層/(中間層)/磁性層、磁
性層/結晶粒径制御層/磁性層、等々の層構成があげら
れる。As the protective layer, for example, a silicon oxide film,
Examples include a carbon film, a zirconia film, a hydrogenated carbon film, a hydrogen nitrided carbon film, a carbon nitride film, a silicon nitride film, and a SiC film. Note that the protective layer can be provided by a known film formation method such as a sputtering method. The lubricating layer is provided for the purpose of reducing resistance due to sliding contact with the head, and for example, perfluoropolyether or the like is generally used. Incidentally, the crystal grain size control layer of the present invention,
It may be formed anywhere between the substrate and the magnetic layer. For example, between the substrate and the seed layer, when there are a plurality of seed layers, between the seed layer, between the seed layer and the underlayer, between the seed layer and the magnetic layer, between the substrate and the underlayer, and between the substrate and the underlayer. In the case of a plurality of layers, there are magnetic layers and the like. Specifically, the substrate /
Crystal grain size control layer / seed layer, substrate / seed layer / crystal grain size control layer / seed layer, substrate / seed layer / crystal grain size control layer /
Underlayer, substrate / seed layer / crystal grain size control layer / magnetic layer, substrate / crystal grain size control layer / underlayer / (intermediate layer) / magnetic layer, magnetic layer / crystal grain size control layer / magnetic layer, etc. The layer configuration is mentioned.
【0022】[0022]
【発明の実施の形態】以下本発明の磁気記録媒体につい
て実施例によりさらに具体的に説明する。 (実施例1)本実施例の磁気記録媒体は、図1に示す通
り、ガラス基板1上に、シード層2、下地層3、中間層
4、第1磁性層5、非磁性層6、第2磁性層7、保護層
8、潤滑層9を順次積層してなる磁気ディスクである。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the magnetic recording medium of the present invention will be described more specifically with reference to examples. (Embodiment 1) As shown in FIG. 1, a magnetic recording medium of the present embodiment has a seed layer 2, an underlayer 3, an intermediate layer 4, a first magnetic layer 5, a non-magnetic layer 6, This is a magnetic disk in which two magnetic layers 7, a protective layer 8, and a lubricating layer 9 are sequentially laminated.
【0023】ガラス基板1は、化学強化されたアルミノ
シリケートガラスからなり、その表面粗さはRmax=
3.2nm、Ra=0.3nmに鏡面研磨されている。
シード層2は、NiAl薄膜(膜厚:700オングスト
ローム)からなる。なお、このNiAl薄膜はNi:5
0at%、Al:50at%の組成比で構成されてい
る。The glass substrate 1 is made of chemically strengthened aluminosilicate glass and has a surface roughness Rmax =
Mirror-polished to 3.2 nm, Ra = 0.3 nm.
The seed layer 2 is made of a NiAl thin film (thickness: 700 Å). The NiAl thin film was made of Ni: 5
The composition ratio is 0 at% and Al: 50 at%.
【0024】下地層3は、CrMo薄膜(膜厚:100
オングストローム)で、磁性層の結晶構造を良好にする
ために設けられている。なお、このCrMo薄膜は、C
r:90at%、Mo:10at%の組成比で構成され
ている。また、前記中間層4は、CoCr薄膜(膜厚:
50オングストローム)で、磁性層のC軸の配向を良好
にするために設けられている。なお、このCoCr薄膜
は、Co:65at%、Cr:35at%でHCP結晶
構造の非磁性膜である。The underlayer 3 is made of a CrMo thin film (film thickness: 100
Angstrom) to improve the crystal structure of the magnetic layer. In addition, this CrMo thin film is C
r: 90 at%, Mo: 10 at%. The intermediate layer 4 is made of a CoCr thin film (film thickness:
50 Å) to improve the C-axis orientation of the magnetic layer. This CoCr thin film is a nonmagnetic film having an HCP crystal structure with Co: 65 at% and Cr: 35 at%.
【0025】第1及び第2磁性層5、7は、それぞれ同
じ膜材料であるCoPtCrTa合金からなり、膜厚も
ともに120オングストロームである。これら磁性層の
Co、Pt、Cr、Taの各含有量は次のとおりであ
る。すなわち、第1磁性層は、Co:72.5at%、
Pt:8at%、Cr:16at%、Ta:3.5at
%である。第2磁性層は、Co:71at%、Pt:8
at%、Cr:18at%、Ta:3at%である。The first and second magnetic layers 5 and 7 are made of the same film material, CoPtCrTa alloy, and both have a thickness of 120 angstroms. The contents of Co, Pt, Cr, and Ta in these magnetic layers are as follows. That is, the first magnetic layer is made of Co: 72.5 at%,
Pt: 8 at%, Cr: 16 at%, Ta: 3.5 at
%. The second magnetic layer is composed of Co: 71 at%, Pt: 8
at%, Cr: 18 at%, and Ta: 3 at%.
【0026】上述の第1及び第2に磁性層5、7の間に
存在する非磁性層4は、CrMnC薄膜(膜厚:30オ
ングストローム)で、その組成比は、Cr:97.95
at%、Mn:2.00at%、C:0.05at%で
ある。The nonmagnetic layer 4 existing between the first and second magnetic layers 5 and 7 is a CrMnC thin film (thickness: 30 angstroms), and its composition ratio is Cr: 97.95.
at%, Mn: 2.00 at%, and C: 0.05 at%.
【0027】保護層8は、磁性層が磁気ヘッドとの接触
によって劣化することを防止するためのものであり、磁
性層側から順に積層された、第1保護層8a、第2保護
層8bの2層によって構成される。第1保護層8aは、
膜厚50オングストロームのCr膜からなり、磁性層に
対して酸化による磁気特性の劣化を防止する化学的保護
層になっている。もう一方の第2保護層8bは、膜厚1
00オングストロームの水素化カーボン膜からなり耐摩
耗性が得られる。The protective layer 8 is for preventing the magnetic layer from deteriorating due to contact with the magnetic head. The protective layer 8 is formed of the first protective layer 8a and the second protective layer 8b which are sequentially stacked from the magnetic layer side. It is composed of two layers. The first protective layer 8a is
It is made of a Cr film having a thickness of 50 angstroms, and serves as a chemical protective layer for preventing the magnetic layer from deteriorating its magnetic properties due to oxidation. The other second protective layer 8b has a thickness of 1
It is made of a hydrogenated carbon film having a thickness of 00 Å and has abrasion resistance.
【0028】潤滑層9は、パーフルオロポリエーテルの
液体潤滑剤からなり、この膜によって磁気ヘット゛との接触
を緩和している。なお、膜厚は8オングストロームであ
る。The lubricating layer 9 is made of a liquid lubricant of perfluoropolyether, and this film alleviates the contact with the magnetic head. The thickness is 8 Å.
【0029】以下に上述の構成からなる磁気ディスクの
製造方法について説明する。まず、イオン交換によって
化学強化したガラス基板1の主表面を精密研磨によって
鏡面(Rmax=3.2nm、Ra=0.3nm)にし
た。次に、このガラス基板1の主表面上にインライン方
式のスパッタリングによって、シード層2、下地層3、
中間層4、第1磁性層5、非磁性層6、第2磁性層7、
第1保護層8a、第2保護層8bを順次成膜した。(シ
ード層2、下地層3,中間層4、第1磁性層5、非磁性
層6、第2磁性層7、第1保護層8aは、Arガス雰囲
気で、第2保護層8bは、Ar+H2(H2:7%)の混
合ガス雰囲気でスパッタ成膜した。)Hereinafter, a method of manufacturing a magnetic disk having the above configuration will be described. First, the main surface of the glass substrate 1 chemically strengthened by ion exchange was mirror-finished (Rmax = 3.2 nm, Ra = 0.3 nm) by precision polishing. Next, on the main surface of the glass substrate 1, the seed layer 2, the underlayer 3,
An intermediate layer 4, a first magnetic layer 5, a non-magnetic layer 6, a second magnetic layer 7,
The first protective layer 8a and the second protective layer 8b were sequentially formed. (The seed layer 2, the underlayer 3, the intermediate layer 4, the first magnetic layer 5, the nonmagnetic layer 6, the second magnetic layer 7, and the first protective layer 8a are in an Ar gas atmosphere, and the second protective layer 8b is in the form of Ar + H2. (H2: 7%) was formed by sputtering in a mixed gas atmosphere.)
【0030】次いで、第2保護層8b上にパーフルオロ
ポリエーテルからなる液体潤滑剤をディップ処理するこ
とによって潤滑層9を形成し磁気ディスクを得た。得ら
れた磁気ディスクの保磁力、S/N比、PW50をその
結果、保磁力は、2300Oeと良好で且つ、S/N比
は29.5dB、PW50も22.8nsecと良好で
あった。また、信号減衰は、100kfci、60℃で-0.080dB/
decade、Ku・V/kT=90であった。Next, a lubricating layer 9 was formed on the second protective layer 8b by dipping a liquid lubricant composed of perfluoropolyether to obtain a magnetic disk. As a result, the coercive force, S / N ratio, and PW50 of the obtained magnetic disk were as good as 2300 Oe, the S / N ratio was 29.5 dB, and the PW50 was 22.8 nsec. The signal attenuation is -0.080 dB / 100kfci at 60 ° C.
Dec, Ku · V / kT = 90.
【0031】なお、上記保磁力、S/N比、PW50は
以下の測定方法により測定した。保磁力の測定は、製造
した磁気ディスクから8mmφの試料を切り出して、膜
面方向に磁場を印加し、振動試料型磁力計により最大外
部印加磁場10kOeで測定した。さらに、記録再生出
力の測定は次のようにして行った。磁気ヘッド浮上量が
0.025μmのMRヘッドを用いて、MRヘッドと磁
気ディスクの相対速度を10m/secとして線記録密
度346kfcl(1インチあたり346000ビット
の線記録密度)における記録再生出力を測定した。ま
た、キャリア周波数67.6MHzで、測定帯域を7
6.3MHzとしてスペクトラムアナライザにより、信
号記録再生時のノイズスペクトラムを測定した。本測定
に用いたMRヘッドは、書き込み/読み取り側にそれぞ
れトラック幅1.2/0.9μm、磁気ヘッドギャップ
長は0.27/0.15μmである。The coercive force, S / N ratio, and PW50 were measured by the following measuring methods. The coercive force was measured by cutting out a sample of 8 mmφ from the manufactured magnetic disk, applying a magnetic field in the direction of the film surface, and measuring with a vibrating sample magnetometer at a maximum externally applied magnetic field of 10 kOe. Further, the recording / reproducing output was measured as follows. Using a MR head having a magnetic head flying height of 0.025 μm, recording / reproducing output was measured at a linear recording density of 346 kfcl (a linear recording density of 346000 bits per inch), with the relative speed between the MR head and the magnetic disk being 10 m / sec. . At a carrier frequency of 67.6 MHz, the measurement band is 7
The noise spectrum at the time of signal recording and reproduction was measured with a spectrum analyzer at 6.3 MHz. The MR head used for this measurement had a track width of 1.2 / 0.9 μm on the write / read side and a magnetic head gap length of 0.27 / 0.15 μm.
【0032】また、PW50(孤立再生信号の半値幅)
の測定は次のようにして行った。PW50測定用のMR
ヘッドを搭載した電磁変換特性測定機(GUZIK)で
孤立再生信号を抽出し、グランド(0)に対する出力信
号のピーク値の50%における孤立波形の幅をPW50
とした。なお、このPW50は高記録密度のためには、
小さければ小さいほど良い。これは、パルス幅が狭いと
同一面積上により多くのパルス(信号)を書き込めるこ
とになるからである。一方、PW50が大きいと、隣り
合うパルス(信号)同士が干渉しあい、信号を読み出す
ときにエラーとなって現れる。この波形干渉がエラーレ
ートを悪くする。これらから、PW50は23.5ns
ec以下にする必要がある。PW50 (half width of isolated reproduction signal)
Was measured as follows. MR for PW50 measurement
An isolated reproduction signal is extracted by an electromagnetic conversion characteristic measuring instrument (GUZIK) equipped with a head, and the width of the isolated waveform at 50% of the peak value of the output signal with respect to the ground (0) is determined by PW50.
And In addition, this PW50 has a high recording density.
The smaller, the better. This is because if the pulse width is small, more pulses (signals) can be written on the same area. On the other hand, if the PW50 is large, adjacent pulses (signals) interfere with each other and appear as an error when reading out the signal. This waveform interference degrades the error rate. From these, PW50 is 23.5 ns
ec or less.
【0033】さらに、熱揺らぎ特性の測定は次のように
して行った。まず、活性化体積(v)と磁化反転最小単
位の飽和磁化(Isb)の積である活性化磁気モーメン
ト(vIsb)はWaiting Time法により求
めたHf(熱ゆらぎ場)により計算した。Further, the measurement of the thermal fluctuation characteristic was performed as follows. First, the activation magnetic moment (vIsb), which is the product of the activation volume (v) and the saturation magnetization (Isb) of the minimum unit of magnetization reversal, was calculated by Hf (thermal fluctuation field) obtained by the Waiting Time method.
【0034】Waiting Time法は次の様に測
定する。残留磁化曲線測定において磁場の保持時間(W
aiting Time)を順次変えてHr(t)を測
定する。φ8mmに切出した試料をVSM(試料信号型
磁力計)へセットし、十分に大きな正磁界を試料に印加
する。次に微少な負磁界H1を印加し磁界を取去る。残
留する磁化M1を測定する。次に、正磁界を再度印加し
H1より大きな磁界H2を印加し、磁界を取去った後の
残留磁化M2を測定する。同様の操作をMiが残留磁化
Mrとなるまで測定を繰返す。得られた(Hi,Mi)
をフ゜ロットし、残留磁化曲線を得る。M=0における
磁界H値をHr(レマネンス保磁力)と定義する。The Waiting Time method is measured as follows. In the remanent magnetization curve measurement, the magnetic field holding time (W
Hr (t) is measured while sequentially changing the Aiming Time. A sample cut to φ8 mm is set on a VSM (sample signal magnetometer), and a sufficiently large positive magnetic field is applied to the sample. Next, a minute negative magnetic field H1 is applied to remove the magnetic field. The remaining magnetization M1 is measured. Next, a positive magnetic field is applied again, a magnetic field H2 larger than H1 is applied, and the residual magnetization M2 after removing the magnetic field is measured. The same operation is repeated until Mi becomes the remanent magnetization Mr. Obtained (Hi, Mi)
To obtain a remanent magnetization curve. The magnetic field H value at M = 0 is defined as Hr (remanence coercive force).
【0035】次に、十分に大きな正磁界を試料に印加
し、負磁界H1をWaiting Time15秒間
印加したあと磁界を取去り、残留磁化M1(15)を測
定する。さらに正磁界を試料に印加し、負磁界H2を1
5秒印加したあと磁界を取去り、残留磁化M2(15)
を測定する。この操作をMi(15)が残留磁化Mrに
等しくなるまで測定を繰返す。得られた(Hi,Mi
(15))をフ゜ロットし、Waiting Time
15秒の残留磁化曲線を得る。M=0におけるH値を
Hr(15)と定義する。Next, a sufficiently large positive magnetic field is applied to the sample, and a negative magnetic field H1 is applied for a waiting time of 15 seconds.
After the application, the magnetic field is removed, and the residual magnetization M1 (15) is measured. Further, a positive magnetic field is applied to the sample, and a negative magnetic field H2 is set to 1
After applying for 5 seconds, the magnetic field is removed and the residual magnetization M2 (15)
Is measured. This operation is repeated until Mi (15) becomes equal to the remanent magnetization Mr. (Hi, Mi
(15)), Waiting Time
Obtain a remanence curve of 15 seconds. The H value at M = 0 is defined as Hr (15).
【0036】同様の操作を保持時間(Waiting
Time) 15秒,30秒,60秒,120秒,24
0秒,480秒(=8分)で繰り返し、各保持時間にお
ける磁場Hr(15),Hr(30),Hr(60),
Hr(120),Hr(240) Hr(480)を得
る。このHr(t)を時間の対数(ln t)に対して
プロットすると、Hr(t)は直線的に減少し、この傾
きdHr(t)/d(ln t)により熱揺らぎ場Hf
を求める。こうして得られたHfから次式により、vI
sbを計算する。 vIsb=kT/Hf ここでkはホ゛ルツマン定数(1.38×100ー16e
rg/k),Tは測定中の絶対温度(K)である。活性
化体積vは磁性層の磁化反転の最小単位の体積とされ、
これに飽和磁化(Isb)をかけたvIsbは磁化反転
の最小単位の磁気モーメント量である。The same operation is performed for a holding time (Waiting
Time) 15 seconds, 30 seconds, 60 seconds, 120 seconds, 24
Repeated at 0 seconds and 480 seconds (= 8 minutes), the magnetic fields Hr (15), Hr (30), Hr (60),
Hr (120), Hr (240) Hr (480) is obtained. When this Hr (t) is plotted against the logarithm of time (Int), Hr (t) decreases linearly, and the slope dHr (t) / d (Int) causes the thermal fluctuation field Hf.
Ask for. From the Hf thus obtained, vI
sb is calculated. vIsb = kT / Hf where k is Boltzmann constant (1.38 × 100 over 16 e
rg / k) and T are absolute temperatures (K) during measurement. The activation volume v is the minimum unit volume of the magnetization reversal of the magnetic layer,
VIsb obtained by multiplying this by the saturation magnetization (Isb) is the magnetic moment amount of the minimum unit of the magnetization reversal.
【0037】また、vKu/kTの計算には、vとKu
を測定する必要があるが、Ku=(Hk・Isb)/2
の関係があり、さらにHco=Hk/2と仮定して以下
の式で計算する。 v・ku=v・Hk・Isb/2=vIsb・Hk/2
=vIsb・Hco ここでHcoは熱揺らぎによるHc(保磁力)低下が起
る前のHc(保磁力)であり、10ー9sの測定時間で
得られるHc(保磁力)である。またHkは磁化反転の
最小単位が持つ異方性磁界、vIsbは活性化磁気モー
メントである。In the calculation of vKu / kT, v and Ku are used.
Must be measured, but Ku = (Hk · Isb) / 2
And further, the following equation is calculated assuming that Hco = Hk / 2. v · ku = v · Hk · Isb / 2 = vIsb · Hk / 2
= VIsb · Hco where Hco is the Hc due to thermal fluctuation (coercive force) before the drop occurs Hc (coercive force), which is obtained in the 10 @ 9 s measurement time Hc (coercive force). Hk is the anisotropic magnetic field of the minimum unit of magnetization reversal, and vIsb is the activation magnetic moment.
【0038】熱揺らぎによるHc(保磁力)低下が起る
前のHc(保磁力)であるHcoは実質的に測定ができ
ないので、シャーロックの式を使用してHcとvIsb
からHcoを計算する。シャーロックの式は、マイクロ
マグネティクスシミュレーションの結果得られたHcの
測定時間依存の近似式で以下の様に表される。 Hc/Hco=1−{(kT/vKu)ln(fo・
t)^0.735}Hco, which is Hc (coercive force) before the decrease in Hc (coercive force) due to thermal fluctuations, cannot be measured substantially. Therefore, Hc and vIsb are calculated using the Sherlock equation.
Hco is calculated from The Sherlock equation is an approximate equation that depends on the measurement time of Hc obtained as a result of the micromagnetics simulation and is expressed as follows. Hc / Hco = 1 − {(kT / vKu) ln (fo ·
t) {0.735}
【0039】また上述のHco=Hk/2の仮定を入れ
ると、次式に変形される。 Hc/Hco=1−{(kT/vIsb・Hco)ln
(fo・t)^0.735} ここでkはホ゛ルツマン定数(1.38×10ー16er
g/k、Tは測定絶対温度、foは振動因子(10^9
Hz)、tは測定時間(600sec)、vIsbは活
性化磁気モーメント(emu)である。上式では、Hc
o以外が既知となるため、Hcoを数値解析計算するこ
とにより、Hcoを求める事が可能になる。以下の実施
例及び比較例の保磁力、S/N比、PW50、信号減
衰、Ku・V/kTは上述の測定方法に基づき測定す
る。When the above-mentioned assumption of Hco = Hk / 2 is taken into account, the following equation can be obtained. Hc / Hco = 1 − {(kT / vIsb · Hco) ln
(Fo · t) ^ 0.735} where k is Boltzmann constant (1.38 × 10 over 16 er
g / k, T is the measured absolute temperature, fo is the vibration factor (10 ^ 9
Hz), t is the measurement time (600 sec), and vIsb is the activation magnetic moment (emu). In the above equation, Hc
Since values other than o are known, Hco can be obtained by performing numerical analysis calculation of Hco. The coercive force, S / N ratio, PW50, signal attenuation, and Ku · V / kT of the following examples and comparative examples are measured based on the above-described measurement methods.
【0040】(比較例1)実施例1のCrMnCからな
る非磁性層6をCrMo薄膜(Cr:94at%、M
o:6at%)(比較例1)にした以外は、実施例1と
同様に磁気ディスクを作製した。これらの磁気ディスク
の保磁力、S/N比、PW50を測定したところ、保磁
力は、2300Oe、S/N比は29.5dB、PW5
0は23.8nsecとなり、PW50は良好な結果が
得られなかった。また、エラーレートも実施例1と比較
して高い値を示した。また、信号減衰は、100kfc
i、60℃で−0.095dB/decade、Ku・
V/kTが80であった。ここで、熱揺らぎ特性の点で
は、保磁力の値は大きいほどよい。S/N比の値は大き
いほどノイズが小さいので好ましい。又、PW50(孤
立再生信号の半価巾)値は、小さいほど好ましく、1.
0nsec程度違うと、約1.3Gb/inch2の差
があるといわれている。信号減衰は小さいほど熱揺らぎ
耐性が向上するので好ましい。具体的にはKu・V/k
T≧85とするのがよい。Comparative Example 1 The nonmagnetic layer 6 of CrMnC of Example 1 was formed of a CrMo thin film (Cr: 94 at%, M
o: 6 at%) (Comparative Example 1) A magnetic disk was produced in the same manner as in Example 1. When the coercive force, S / N ratio, and PW50 of these magnetic disks were measured, the coercive force was 2300 Oe, the S / N ratio was 29.5 dB, and the PW5
0 was 23.8 nsec, and a good result was not obtained for PW50. Further, the error rate also showed a higher value as compared with Example 1. The signal attenuation is 100 kfc
i, -0.095 dB / decade at 60 ° C, Ku ·
V / kT was 80. Here, in terms of the thermal fluctuation characteristics, the larger the value of the coercive force, the better. The larger the value of the S / N ratio, the smaller the noise. The smaller the PW50 (half width of isolated reproduction signal) value, the better.
It is said that if the difference is about 0 nsec, there is a difference of about 1.3 Gb / inch2. The smaller the signal attenuation, the better the thermal fluctuation resistance, which is preferable. Specifically, Ku · V / k
It is preferable that T ≧ 85.
【0041】(実施例2〜5、比較例2〜3)実施例1
のCrMnCからなる非磁性層6の膜厚を5オングスト
ローム(実施例2)、10オングストローム(実施例
3)、50オングストローム(実施例4)、100オン
グストローム(実施例5)、3オングストローム(比較
例2)、120オングストローム(比較例3)にした以
外は、実施例1と同様に磁気ディスクを作製した。これ
らの磁気ディスクの保磁力、S/N比、PW50、信号
減衰(dB/decade)、Ku・V/kTは、図2
の表1に掲げた通りであった。(Examples 2-5, Comparative Examples 2-3) Example 1
The thickness of the nonmagnetic layer 6 made of CrMnC is 5 Å (Example 2), 10 Å (Example 3), 50 Å (Example 4), 100 Å (Example 5), 3 Å (Comparative Example 2). ) And 120 Å (Comparative Example 3), except that a magnetic disk was manufactured in the same manner as in Example 1. The coercive force, S / N ratio, PW50, signal attenuation (dB / decade), and Ku · V / kT of these magnetic disks are shown in FIG.
As shown in Table 1.
【0042】図2の表1から明らかなように、CrMn
Cの非磁性層の膜厚は、5〜100オングストロームが
保磁力、S/N比、PW50の磁気特性、及び信号減
衰、Ku・V/kTの熱揺らぎの点から好ましいことが
わかる。As is apparent from Table 1 of FIG.
It can be seen that the thickness of the nonmagnetic layer of C is preferably 5 to 100 Å in terms of coercive force, S / N ratio, magnetic properties of PW50, signal attenuation, and thermal fluctuation of Ku · V / kT.
【0043】(実施例6〜10、比較例4〜7)実施例
1のCrMn2C0.05(Cr:97.95at%、M
n:2at%、C:0.05at%)の非磁性層6の組
成をCrMn0.5C0.01(Cr:99.49at%、M
n:0.5at%、C:0.01at%)(実施例
6)、CrMn 5C0.01(Cr:94.99at%、M
n:5at%、C:0.01at%)(実施例7)、C
rMn2C0.1(Cr:97.9at%、Mn:2at
%、C:0.1at%)(実施例8)、CrMn2C0.5
(Cr:97.5at%、Mn:2at%、C:0.5
at%)(実施例9)、CrC0.2(Cr:99.8a
t%、C:0.2at%)(実施例10)、CrMn2
(Cr:98at%、Mn:2at%)(比較例4)、
CrMn2C0.55(Cr:97.45at%、Mn:2
at%、C:0.55at%)(比較例5)、CrMn
0.4C0.01(Cr:99.59at%、Mn:0.4a
t%、C:0.01at%)(比較例6)、CrMn6
C0.01(Cr:93.99at%、Mn:6at%、
C:0.01at%)(比較例7)にした以外は、実施
例1と同様に磁気ディスクを作製した。これらの磁気デ
ィスクの保磁力、S/N比、PW50は、図3の表2に
掲げた通りであった。(Examples 6 to 10, Comparative Examples 4 and 7)
1 CrMnTwoC0.05(Cr: 97.95 at%, M
n: 2 at%, C: 0.05 at%)
CrMn0.5C0.01(Cr: 99.49 at%, M
n: 0.5 at%, C: 0.01 at%) (Example)
6), CrMn FiveC0.01(Cr: 94.9 at%, M
n: 5 at%, C: 0.01 at%) (Example 7), C
rMnTwoC0.1(Cr: 97.9 at%, Mn: 2 at
%, C: 0.1 at%) (Example 8), CrMnTwoC0.5
(Cr: 97.5 at%, Mn: 2 at%, C: 0.5
at%) (Example 9), CrC0.2(Cr: 99.8a
t%, C: 0.2 at%) (Example 10), CrMnTwo
(Cr: 98 at%, Mn: 2 at%) (Comparative Example 4),
CrMnTwoC0.55(Cr: 97.45 at%, Mn: 2
at%, C: 0.55 at%) (Comparative Example 5), CrMn
0.4C0.01(Cr: 99.59 at%, Mn: 0.4a
t%, C: 0.01 at%) (Comparative Example 6), CrMn6
C0.01(Cr: 93.99 at%, Mn: 6 at%,
C: 0.01 at%) (Comparative Example 7)
A magnetic disk was manufactured in the same manner as in Example 1. These magnetic
The disk coercive force, S / N ratio, and PW50 are shown in Table 2 in FIG.
It was as it was.
【0044】図3の表2から明らかなように、非磁性層
は少なくともCrとCとを含む合金であり、好ましく
は、CrとCとMnを含む合金であって、Cの含有量が
0.01〜0.5at%、Mnの含有量が0.5〜5a
t%であることが望ましいことがわかる。As is clear from Table 2 in FIG. 3, the nonmagnetic layer is an alloy containing at least Cr and C, and preferably is an alloy containing Cr, C and Mn and has a C content of 0%. 0.01 to 0.5 at%, Mn content is 0.5 to 5 a
It can be seen that t% is desirable.
【0045】なお、上述の実施例において、Crの代わ
りにCrX(X:Mo,W,Ta,V,Ti)合金を用
いてもよい。この場合には、CrCXとなる。Xの含有
量は2〜30at%とする。また、上述の実施例では、
CrとCとを含む合金からなる非磁性層(結晶粒径制御
層)を、磁性層間に介在させた例を挙げたが、基板側磁
性層の下に本発明の非磁性層(結晶粒径制御層)を設け
ることも有効である。以下、実施例11〜13として、
それらの例を掲げる。In the above embodiment, a CrX (X: Mo, W, Ta, V, Ti) alloy may be used instead of Cr. In this case, it is CrCX. The content of X is 2 to 30 at%. In the above-described embodiment,
Although an example is described in which a nonmagnetic layer (crystal grain size control layer) made of an alloy containing Cr and C is interposed between the magnetic layers, the nonmagnetic layer (crystal grain size) of the present invention is provided below the substrate-side magnetic layer. It is also effective to provide a control layer). Hereinafter, as Examples 11 to 13,
Here are some examples.
【0046】(実施例11〜13)図4は実施例11に
かかる磁気記録媒体の構成を示す図である。図4に示さ
れるように、実施例11の磁気記録媒体は、実施例1の
磁気記録媒体において、ガラス基板1とシード層2との
間に、さらに、CrMnCNからなる非磁性層(結晶粒
径制御層)61(膜厚:500オングストローム)を設
けた例である。尚、CrMnCNからなる非磁性層は、
Ar+N2(N2:20at%)の混合ガス雰囲気でスパ
ッタして成膜した。そのほかの構成は実施例1と同じで
ある。(Embodiments 11 to 13) FIG. 4 is a diagram showing a configuration of a magnetic recording medium according to an eleventh embodiment. As shown in FIG. 4, the magnetic recording medium of Example 11 is different from the magnetic recording medium of Example 1 in that a nonmagnetic layer (crystal grain size) made of CrMnCN is further provided between the glass substrate 1 and the seed layer 2. This is an example in which a control layer 61 (film thickness: 500 angstroms) is provided. The non-magnetic layer made of CrMnCN is
A film was formed by sputtering in a mixed gas atmosphere of Ar + N2 (N2: 20 at%). Other configurations are the same as those of the first embodiment.
【0047】図5は実施例12にかかる磁気記録媒体の
構成を示す図である。図5に示されるように、実施例1
2の磁気記録媒体は、実施例1の磁気記録媒体におい
て、シード層2を2層に分けて、第1シード層21及び
第2シード層22とし、これらシード層の間にCrMn
Cからなる非磁性層(結晶粒径制御層)62(膜厚:1
5オングストローム)を設けた例である。そのほかの構
成は実施例1と同じである。FIG. 5 is a diagram showing the configuration of the magnetic recording medium according to the twelfth embodiment. As shown in FIG.
The magnetic recording medium of the second embodiment is the same as the magnetic recording medium of the first embodiment except that the seed layer 2 is divided into two layers to form a first seed layer 21 and a second seed layer 22, and a CrMn layer is interposed between these seed layers.
C nonmagnetic layer (crystal grain size control layer) 62 (film thickness: 1)
5 angstrom). Other configurations are the same as those of the first embodiment.
【0048】さらに、実施例13にかかる磁気記録媒体
は、実施例1のCrMnCからなる非磁性層(結晶粒径
制御層)にMoを15at%添加した材料(Mn:2a
t%、C:0.05at%、Mo:15at%、Cr:
残部)にした例である。そのほかの構成は実施例1と同
じである。Further, the magnetic recording medium according to the thirteenth embodiment has a material (Mn: 2a) in which 15 at% of Mo is added to the nonmagnetic layer (crystal grain size control layer) made of CrMnC of the first embodiment.
t%, C: 0.05 at%, Mo: 15 at%, Cr:
(Remaining part). Other configurations are the same as those of the first embodiment.
【0049】実施例11の磁気記録媒体では、シード層
の下にさらにCrMnC層をもうけることで、磁性層
(Co)の結晶配向性が良くなるので、実施例1と比
べ、S/N比、PW50値は同等で、保磁力が+70
[Oe]向上した。実施例12の磁気記録媒体では、シ
ード層を2層にすることにより、シード層(NiAl)
のグレイン成長をおさえ、且つCrMnCの非磁性層に
より第2シード層より上層膜が微細化されるので、実施
例1と比べ、保磁力、S/N比は同等で、PW50値
が、0.3〜0.5nsec小さくなり改善できた。実
施例13の磁気記録媒体では、磁性層とのマッチングが
良くなるので、実施例1と比べ、PW50値は同等で、
保磁力は+50[Oe]、S/N比は+0.3dB向上
した。上述のとおり、実施例1と比べ、磁気特性におい
てさらに良好な結果が得られ、熱揺らぎ耐性を十分満足
するものであった。In the magnetic recording medium of the eleventh embodiment, the crystal orientation of the magnetic layer (Co) is improved by providing an additional CrMnC layer under the seed layer. PW50 value is equivalent, coercive force is +70
[Oe] Improved. In the magnetic recording medium of the twelfth embodiment, the seed layer (NiAl) is formed by using two seed layers.
, And the upper layer is made finer than the second seed layer by the nonmagnetic layer of CrMnC, so that the coercive force and the S / N ratio are the same as in Example 1, and the PW50 value is less than 0.1. It became smaller by 3 to 0.5 nsec and could be improved. In the magnetic recording medium of the thirteenth embodiment, the matching with the magnetic layer is improved, so that the PW50 value is equal to that of the first embodiment.
The coercive force was improved by +50 [Oe] and the S / N ratio was improved by +0.3 dB. As described above, a better result was obtained in the magnetic characteristics as compared with Example 1, and the thermal fluctuation resistance was sufficiently satisfied.
【0050】[0050]
【発明の効果】以上詳述したように、本発明は、基板上
に、少なくとも磁性層を有する磁気記録媒体において、
前記基板と磁性層との間に、磁性層の結晶粒の粒径及び
粒径分布を制御する結晶粒径制御層を有し、この結晶粒
径制御層は、Cr(クロム)とC(炭素)とを含む合金
であることを特徴とするものであり、これにより、高保
磁力、高S/N比、低PW50値及び熱揺らぎ耐性を満
足する磁気記録媒体を得ているものである。As described in detail above, the present invention relates to a magnetic recording medium having at least a magnetic layer on a substrate,
A crystal grain size control layer for controlling the grain size and grain size distribution of crystal grains of the magnetic layer is provided between the substrate and the magnetic layer, and the crystal grain size control layer is composed of Cr (chromium) and C (carbon). ), Whereby a magnetic recording medium satisfying a high coercive force, a high S / N ratio, a low PW50 value and a thermal fluctuation resistance is obtained.
【図1】本発明の実施例1にかかる磁気記録媒体の部分
断面図である。FIG. 1 is a partial cross-sectional view of a magnetic recording medium according to a first embodiment of the present invention.
【図2】実施例及び比較例の磁気記録媒体の特性を示す
表を示す図である。FIG. 2 is a table showing characteristics of magnetic recording media of Examples and Comparative Examples.
【図3】実施例及び比較例の磁気記録媒体の特性を示す
表を示す図である。FIG. 3 is a table showing characteristics of magnetic recording media of Examples and Comparative Examples.
【図4】本発明の実施例11にかかる磁気記録媒体の部
分断面図である。FIG. 4 is a partial sectional view of a magnetic recording medium according to Example 11 of the present invention.
【図5】本発明の実施例12にかかる磁気記録媒体の部
分断面図である。FIG. 5 is a partial sectional view of a magnetic recording medium according to Example 12 of the present invention.
1…ガラス基板、2,21,22…シード層、3…下地
層、4…中間層、5…第1磁性層、6,61,62…非
磁性層(結晶粒径制御層)、7…第2磁性層、8…保護
層、9…潤滑層。DESCRIPTION OF SYMBOLS 1 ... Glass board, 2,21,22 ... Seed layer, 3 ... Underlayer, 4 ... Intermediate layer, 5 ... First magnetic layer, 6,61,62 ... Nonmagnetic layer (crystal grain size control layer), 7 ... Second magnetic layer, 8: protective layer, 9: lubricating layer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 畠 源七 東京都新宿区中落合2丁目7番5号 ホー ヤ株式会社内 (72)発明者 梅澤 禎一郎 東京都新宿区中落合2丁目7番5号 ホー ヤ株式会社内 Fターム(参考) 5D006 BB07 BB08 CA01 CA05 CA06 FA09 5E049 AA04 AA09 AC05 BA06 DB04 DB12 DB20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Genshichi Hatake 2-7-5 Nakaochiai, Shinjuku-ku, Tokyo Inside Hoya Corporation (72) Inventor Seiichiro Umezawa 2-chome Nakachiai, Shinjuku-ku, Tokyo No. 5 F-term in Hoya Corporation (reference) 5D006 BB07 BB08 CA01 CA05 CA06 FA09 5E049 AA04 AA09 AC05 BA06 DB04 DB12 DB20
Claims (10)
気記録媒体において、 前記基板と磁性層との間に、磁性層の結晶粒の粒径及び
粒径分布を制御する結晶粒径制御層を有し、この結晶粒
径制御層は、Cr(クロム)とC(炭素)とを含む合金
であることを特徴とする磁気記録媒体。1. A magnetic recording medium having at least a magnetic layer on a substrate, wherein a crystal grain size control layer for controlling the grain size and grain size distribution of crystal grains of the magnetic layer is provided between the substrate and the magnetic layer. A magnetic recording medium, wherein the crystal grain size control layer is an alloy containing Cr (chromium) and C (carbon).
0.01at%〜0.5at%含まれていることを特徴
とする請求項1記載の磁気記録媒体。2. The magnetic recording medium according to claim 1, wherein said crystal grain size control layer contains 0.01 at% to 0.5 at% of C (carbon).
ンガン)を含む合金であることを特徴とする請求項1又
は2記載の磁気記録媒体。3. The magnetic recording medium according to claim 1, wherein the crystal grain size control layer is an alloy further containing Mn (manganese).
ン)が0.5at%〜5at%含まれていることを特徴
とする請求項3記載の磁気記録媒体。4. The magnetic recording medium according to claim 3, wherein the crystal grain size control layer contains 0.5 at% to 5 at% of Mn (manganese).
ン)、V(バナジウム)、W(タングステン)、Zr
(ジルコニウム)、Ti(チタン)、Ta(タンタ
ル)、Ni(ニッケル)、Nb(ニオブ)、O(酸
素)、N(窒素)から選ばれる少なくとも1種の元素が
含まれていることを特徴とする請求項1乃至4のいずれ
かに記載の磁気記録媒体。5. The crystal grain size control layer is made of Mo (molybdenum), V (vanadium), W (tungsten), Zr
(Zirconium), Ti (titanium), Ta (tantalum), Ni (nickel), Nb (niobium), O (oxygen), and N (nitrogen). The magnetic recording medium according to claim 1, wherein:
であることを特徴とする請求項5記載の磁気記録媒体。6. The total of the elements is 2 at% to 30 at%.
The magnetic recording medium according to claim 5, wherein
磁性層間の少なくとも1つに非磁性層を有する磁気記録
媒体において、 前記非磁性層が請求項1乃至7のいずれかに記載の結晶
粒径制御層であることを特徴とする磁気記録媒体。7. A magnetic recording medium having two or more magnetic layers on a substrate and having a non-magnetic layer in at least one of the magnetic layers, wherein the non-magnetic layer is any one of claims 1 to 7. A magnetic recording medium comprising the crystal grain size control layer according to any one of the preceding claims.
記磁性層間の少なくとも1つに非磁性層を有する磁気記
録媒体において、 前記非磁性層はCr(クロム)とC(炭素)とを含む合
金であり、前記磁性層はCo(コバルト)とPt(白
金)とを含む合金であることを特徴とする磁気記録媒
体。8. A magnetic recording medium having two or more magnetic layers on a substrate and a non-magnetic layer in at least one of the magnetic layers, wherein the non-magnetic layer is composed of Cr (chromium) and C (carbon ), And the magnetic layer is an alloy containing Co (cobalt) and Pt (platinum).
ストロームであることを特徴とする請求項7又は8記載
の磁気記録媒体。9. The magnetic recording medium according to claim 7, wherein said nonmagnetic layer has a thickness of 5 to 100 Å.
束密度Bsが媒体表面側磁性層の飽和磁束密度Bsより
大きいことを特徴とする請求項7乃至9のいずれか一に
記載の磁気記録媒体。10. The magnetic layer according to claim 7, wherein the magnetic layer has a saturation magnetic flux density Bs of the substrate side magnetic layer larger than a saturation magnetic flux density Bs of the medium surface side magnetic layer. recoding media.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000093824A JP3524839B2 (en) | 1999-03-31 | 2000-03-30 | Magnetic recording media |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9390599 | 1999-03-31 | ||
JP11-93905 | 1999-03-31 | ||
JP2000093824A JP3524839B2 (en) | 1999-03-31 | 2000-03-30 | Magnetic recording media |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000348335A true JP2000348335A (en) | 2000-12-15 |
JP3524839B2 JP3524839B2 (en) | 2004-05-10 |
Family
ID=26435180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000093824A Expired - Fee Related JP3524839B2 (en) | 1999-03-31 | 2000-03-30 | Magnetic recording media |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3524839B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7331100B2 (en) * | 2004-07-07 | 2008-02-19 | Headway Technologies, Inc. | Process of manufacturing a seed/AFM combination for a CPP GMR device |
-
2000
- 2000-03-30 JP JP2000093824A patent/JP3524839B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7331100B2 (en) * | 2004-07-07 | 2008-02-19 | Headway Technologies, Inc. | Process of manufacturing a seed/AFM combination for a CPP GMR device |
Also Published As
Publication number | Publication date |
---|---|
JP3524839B2 (en) | 2004-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7420886B2 (en) | Magnetic recording medium, and thermal stability measuring method and apparatus of magnetic recording medium | |
US6759138B2 (en) | Antiferromagnetically coupled magnetic recording medium with dual-layered upper magnetic layer | |
US6670055B2 (en) | Magnetic recording medium and manufacturing method therefor | |
US8546000B2 (en) | Perpendicular magnetic disc | |
US5900324A (en) | Magnetic recording media, methods for producing the same and magnetic recorders | |
US6143388A (en) | Thin film disk with onset layer | |
JP5401069B2 (en) | Perpendicular magnetic recording medium | |
US7431999B2 (en) | Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus | |
JP4761224B2 (en) | Perpendicular magnetic recording medium | |
US6010795A (en) | Magnetic recording medium comprising a nickel aluminum or iron aluminum underlayer and chromium containing intermediate layer each having (200) dominant crystalographic orientation | |
JP2005004945A (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
US5851628A (en) | Magnetic recording medium and method for manufacturing the same | |
US6432562B1 (en) | Magnetic recording medium with a nialru seedlayer | |
JP2003151117A (en) | Magnetic recording medium | |
US7357998B2 (en) | Disk substrate for a perpendicular magnetic recording medium, perpendicular magnetic recording disk and manufacturing methods thereof | |
US7498093B2 (en) | Perpendicular magnetic recording medium and method for manufacturing the same | |
JP3524839B2 (en) | Magnetic recording media | |
US6045931A (en) | Magnetic recording medium comprising a cobalt-samarium magnetic alloy layer and method | |
JP2515771B2 (en) | Magnetic recording media | |
JP2005302109A (en) | Multilayer perpendicular magnetic recording medium manufacturing method | |
JP3335320B2 (en) | Magnetic recording media | |
US6416881B1 (en) | Media with a metal oxide sealing layer | |
US6756113B2 (en) | Magnetic recording medium and manufacturing method thereof | |
JP2003085729A (en) | Magnetic recording medium | |
US6376097B1 (en) | Recording media with a TiW sealing layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040213 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |