[go: up one dir, main page]

JP2000340030A - Bonded copper particles and powder for conductive paste - Google Patents

Bonded copper particles and powder for conductive paste

Info

Publication number
JP2000340030A
JP2000340030A JP11150281A JP15028199A JP2000340030A JP 2000340030 A JP2000340030 A JP 2000340030A JP 11150281 A JP11150281 A JP 11150281A JP 15028199 A JP15028199 A JP 15028199A JP 2000340030 A JP2000340030 A JP 2000340030A
Authority
JP
Japan
Prior art keywords
copper
particles
conductive paste
powder
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11150281A
Other languages
Japanese (ja)
Other versions
JP3918036B2 (en
Inventor
Kazuji Sano
和司 佐野
Yoshihiro Okada
美洋 岡田
Hiromasa Miyoshi
宏昌 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP15028199A priority Critical patent/JP3918036B2/en
Publication of JP2000340030A publication Critical patent/JP2000340030A/en
Priority to US09/741,024 priority patent/US6620344B2/en
Priority to US10/633,556 priority patent/US6923924B2/en
Priority to US11/084,116 priority patent/US7235119B2/en
Application granted granted Critical
Publication of JP3918036B2 publication Critical patent/JP3918036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain copper particles.powder showing high conductivity when dispersed in resin by preparing joined copper particles for conductive paste joined in neck parts of unit particles of the specified number of particles. SOLUTION: Two or more unit particles are joined. Preferably, the diameters of the unit particles are 0.5-10 μm, the diameter of the neck part is smaller than the diameter of unit particles on both sides of neck part, and copper powder for conductive paste is prepared with joined copper particles formed by joining two or more unit particles in the neck parts and unit particles having no neck part, and the number of the joined copper particles is 20-80% of the whole copper particles. Copper powder is manufactured in such a process that a copper salt aqueous solution and an alkali agent are reacted to deposit copper hydroxide, a reducing agent is added to suspension of the deposited copper hydroxide to intermediately reduce to cuprous oxide, and the cuprous oxide is finally reduced to metallic copper with a reducing agent in water, and in this manufacturing method, preferably, a process depositing copper hydroxide is conducted under an oxygen-containing atmosphere, and copper hydroxide is deposited in a aqueous solution having an iron concentration of 50 ppm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,導電性能のよい導
電ペーストが得られる導電ペースト用の金属銅粒子・粉
末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to metallic copper particles / powder for a conductive paste from which a conductive paste having good conductive performance can be obtained.

【0002】[0002]

【従来の技術】例えば絶縁基板上に導電ペーストをスク
リーン印刷して厚膜回路基板を作製する場合,その導電
ペーストとして主に銀系ペーストが使用されてきたが,
最近では銅系ペーストも使用される傾向にある。銅系ペ
ーストは銀系ペーストに比べて次のような利点があるか
らである。
2. Description of the Related Art For example, when a thick film circuit board is manufactured by screen-printing a conductive paste on an insulating substrate, a silver-based paste has been mainly used as the conductive paste.
Recently, copper-based pastes have also been used. This is because the copper-based paste has the following advantages over the silver-based paste.

【0003】(1) マイグレーションが起き難いのでショ
ートし難い。 (2) 導体抵抗および高周波損失が小さいので回路の微細
化が可能である。 (3) 耐半田性に優れるので信頼性が高い。 (4) 低コスト化が可能である。
(1) It is difficult to cause a short circuit because migration hardly occurs. (2) Since the conductor resistance and high-frequency loss are small, the circuit can be miniaturized. (3) High reliability due to excellent solder resistance. (4) Cost reduction is possible.

【0004】このような利点をもつ銅系ペーストは,粒
径が0.1〜10μm程度の銅粉をビヒクル(樹脂)に
分散させることによって得られる。
[0004] A copper paste having such advantages can be obtained by dispersing copper powder having a particle size of about 0.1 to 10 µm in a vehicle (resin).

【0005】銅粉の製造法としては,機械的粉砕法,溶
融銅を噴霧するアトマイズ法,陰極への電解析出法,蒸
発蒸着法,湿式還元法等が知られている。これらはそれ
ぞれ得失があるが,湿式還元法はペースト用に適する粒
径の微細粉を比較的容易に得ることができるので,導電
ペースト用銅粉を製造する場合の主流となっており,例
えば特開平4−116109号公報,特開平2−197
012号公報および特開昭62−99406号公報には
湿式還元法による銅粉の製造法が記載されている。
As a method for producing copper powder, there are known a mechanical pulverizing method, an atomizing method in which molten copper is sprayed, an electrolytic deposition method on a cathode, an evaporation deposition method, a wet reduction method, and the like. Although each of these has its advantages and disadvantages, the wet reduction method is a main stream in the production of copper powder for conductive paste, since fine powder having a particle size suitable for paste can be obtained relatively easily. JP-A-4-116109, JP-A-2-197
No. 012 and Japanese Unexamined Patent Publication No. 62-99406 describe a method for producing copper powder by a wet reduction method.

【0006】[0006]

【発明が解決しようとする課題】銅系ペーストとしての
性能は各種の観点から評価され得るが,導電ペーストと
して使用される場合には,導電性に優れることが基本的
に重要である。同一純度の金属銅粉であっても,これを
樹脂に分散させた場合に,その粒度分布や粒子形状など
の違いにより,電気抵抗も異なる値を示すようになる。
電気抵抗を少なくするには,粒子同士が密に接触するこ
と,換言すれば,粒子同士の接触界面が多くなるよう
に,樹脂中に高い充填率をもって銅粒子が分散している
ことが重要であろうことは当然に考えられる。ところ
が,導電ペーストに要求される他の性質例えば適正な流
動性や粘性を保持し且つ適切な強度を有するように,こ
れを実現しようとすると,実際には容易なことではな
い。
The performance as a copper-based paste can be evaluated from various viewpoints, but when used as a conductive paste, it is basically important to have excellent conductivity. Even when metallic copper powder of the same purity is dispersed in a resin, the electric resistance also shows different values due to differences in particle size distribution, particle shape, and the like.
In order to reduce the electrical resistance, it is important that the particles are in close contact with each other, in other words, that the copper particles are dispersed at a high filling rate in the resin so that the contact interface between the particles increases. Of course it is possible. However, it is not easy in practice to realize other properties required for the conductive paste, for example, to maintain appropriate fluidity and viscosity and to have appropriate strength.

【0007】従来の湿式還元法による銅粉の製法では,
得られる銅粉の粒径は経験的に決まることが多く,ま
た,粒径が大きくなるとその粒度の分布も大きくなるの
が通常であった。したがって,樹脂中に高い充填率をも
って充填でき,しかも粒子同士の接触界面が大きくなる
ような銅粉が得られるように,その製法を制御すること
は実質的にできなかった。
[0007] In the conventional method of producing copper powder by the wet reduction method,
The particle size of the obtained copper powder is often determined empirically, and the distribution of the particle size generally increases as the particle size increases. Therefore, it was practically impossible to control the production method so as to obtain a copper powder that can be filled into a resin with a high filling rate and that has a large contact interface between particles.

【0008】本発明の課題は,このような問題を解決
し,樹脂に分散させたときに高い導電率を示す(電気抵
抗が低い)銅の粒子・粉体を提供するにある。
An object of the present invention is to solve such a problem and to provide copper particles / powder having a high conductivity (low electric resistance) when dispersed in a resin.

【0009】[0009]

【課題を解決するための手段】本発明によれば,2個以
上の単位粒子,好ましくは2個以上20個以下の単位粒
子がネック部をもって接合してなる導電ペースト用の接
合銅粒子を提供する。とくに,粒径が0.5〜10μm
程度の単位粒子2〜20個が互いに三次元の任意方向に
ネック部をもって接合してなる導電ペースト用の接合銅
粒子を提供する。
According to the present invention, there is provided a bonded copper particle for a conductive paste comprising two or more unit particles, preferably two or more and twenty or less unit particles bonded together with a neck portion. I do. Particularly, the particle size is 0.5 to 10 μm
Provided is a bonded copper particle for a conductive paste in which 2 to 20 unit particles having a degree are bonded to each other with a neck in an arbitrary three-dimensional direction.

【0010】ここで,ネック部とは,単位粒子と単位粒
子が接合した部分を言うが,そのネックの径は,ネック
部両側の単位粒子のうち少なくとも一方の粒径よりも小
さく,好ましくはネック部両側の両単位粒子の粒径より
も小さい。本発明によれば,このようなネック部をもつ
接合銅粒子と,ネック部を持たない単位粒子とからなる
導電ペースト用の銅粉体を提供する。この場合,ネック
部をもつ接合銅粒子の数が全体の20〜80%を占める
ことが望ましい。このような金属銅粉体を樹脂中に分散
させることによって電気伝導性の良好な導電ペーストを
得ることができる。樹脂としてはフエノール樹脂のよう
な熱硬化型樹脂であることができる。
Here, the neck portion refers to a portion where the unit particles are bonded to each other, and the diameter of the neck is smaller than at least one of the unit particles on both sides of the neck portion. It is smaller than the particle size of both unit particles on both sides. According to the present invention, there is provided a copper powder for a conductive paste comprising the bonded copper particles having such a neck portion and the unit particles having no neck portion. In this case, it is desirable that the number of bonded copper particles having a neck portion occupies 20 to 80% of the whole. By dispersing such metal copper powder in a resin, a conductive paste having good electric conductivity can be obtained. The resin can be a thermosetting resin such as a phenolic resin.

【0011】このような金属銅粉体は,銅塩水溶液とア
ルカリ剤を反応させて水酸化銅を析出させた懸濁液に還
元剤を添加して亜酸化銅にまで中間還元し,さらに還元
剤で金属銅にまで水中で最終還元する銅粉の製造法にお
いて,前記の水酸化銅を析出させる工程を酸素含有ガス
雰囲気下で実施することによって,さらには,水酸化銅
を析出させる工程をFe濃度が50ppm以下の水溶液
中で実施すること,さらには,中間還元のあとの亜酸化
銅の懸濁液に酸素含有ガスを吹き込むことによって有利
に製造できる。
Such a metallic copper powder is prepared by reacting an aqueous solution of a copper salt with an alkali agent to add a reducing agent to a suspension in which copper hydroxide is precipitated, and intermediate-reduced to cuprous oxide, and further reduced. In the method for producing copper powder that is finally reduced to metallic copper in water with an agent, the step of precipitating copper hydroxide is carried out in an oxygen-containing gas atmosphere. The production can be advantageously carried out in an aqueous solution having an Fe concentration of 50 ppm or less, and further by blowing an oxygen-containing gas into the suspension of cuprous oxide after the intermediate reduction.

【0012】[0012]

【発明の実施の形態】図1〜2は後記実施例で得られた
本発明に従う金属銅粉の電子顕微鏡写真像(SEM像)
であり,図2は図1の中央部のものを拡大したものであ
る。図2の中央部の接合銅粒子は,粒径2.5〜5μm
程度の単位粒子7個が3次元のランダム方向にネック部
をもって接合していると見てよく,各ネック部は,ネッ
ク部両側の単位粒子の径よりも小さな径を有している。
そして,このような単位粒子7個の接合銅粒子のほか,
図1に見られるように,単位粒子1個のもの(接合せず
に独立しているもの),2個接合したもの,3個接合し
たもの・・n個接合したもの(図1ではnは最大約20
個程度である)が存在している。いずれにしてもネック
部は,単に粒子同士が点接触しているものとは異なり,
ある程度の接合面積をもって単位粒子が接合しており,
粉体が流動したときのような自然の衝撃ではネック部で
分離しないようなネック強度を有している。このような
ネック部をもって接合している接合銅粒子を含む銅粉で
導電ペーストを作成すると,接合銅粒子を含まないもの
に比べて,電気抵抗が著しく低くなることがわかった。
1 and 2 show electron micrograph images (SEM images) of the copper metal powder according to the present invention obtained in the following Examples.
FIG. 2 is an enlarged view of the central part of FIG. The central copper particles in FIG. 2 have a particle size of 2.5 to 5 μm.
It can be seen that seven unit particles of the order are joined with a neck in a three-dimensional random direction, and each neck has a diameter smaller than the diameter of the unit particles on both sides of the neck.
And, besides such bonded copper particles of seven unit particles,
As can be seen in FIG. 1, one unit particle (independent without joining), two joined, three joined,... N joined (in FIG. 1, n is Up to about 20
About). In any case, the neck is different from the one where the particles are only in point contact with each other.
Unit particles are bonded with a certain bonding area,
It has a neck strength such that it does not separate at the neck under natural impact such as when the powder flows. It was found that when a conductive paste was prepared from copper powder containing bonding copper particles bonded with such a neck portion, the electrical resistance was significantly lower than that without the bonding copper particles.

【0013】図3〜4は,後記比較法で得られた金属銅
粉の電子顕微鏡写真像(SEM像)であり,図4は図3
中央部やや上方位置のものを拡大したものである。この
銅粉は,粒径より径小のネック部をもつ接合銅粒子は存
在しないと見てよく,ほぼ球形(ボール状)のまま粒径
2〜10μmのものがほぼ均等に分布しており,平均粒
径は約6.0μmである。
FIGS. 3 and 4 are electron micrograph images (SEM images) of the metallic copper powder obtained by the comparative method described later, and FIG.
It is an enlargement of the one slightly above the center. It can be seen that this copper powder has no bonded copper particles having a neck portion smaller in diameter than the particle size, and those having a particle size of 2 to 10 μm in a substantially spherical shape (ball shape) are almost uniformly distributed. The average particle size is about 6.0 μm.

【0014】両者の金属銅粉を同じ量,同じ樹脂に分散
させたペーストについて,同じ条件で電気抵抗(乾燥塗
膜の体積抵抗)を測定すると,後記の実施例に示すよう
に,前者のペーストでは3.12×10-3Ω・cm,後
者のペーストでは2.76×10-2Ω・cmであり,前
者の方が1オーダー小さい値を示し,著しく導電性がよ
い。その理由については厳密には不明であるが,接合銅
粒子の数が多い分だけ単位粒子間の連結が確実であり,
したがって,粒子同士の接触界面が多くなること,そし
て,このような接合銅粒子間に,より小さな接合銅粒子
や単独の単位粒子が介在することにより,全体として樹
脂中に良好に充填されることが挙げられる。ただし前者
のものでも,単位粒子の接合数が20を超えるような接
合銅粒子ではネックの数が多すぎて樹脂への分散性が劣
るようになり,凝集したような状態となるので,好まし
いことではない。同様に,接合銅粒子だけからなると分
散性に劣る場合があり,例えば接合銅粒子の数が全体の
80%を超えると分散性が悪くなり,したがって独立し
た単位粒子も存在する方がよく,接合銅粒子の数が全体
の20〜80%の範囲にあるのがよい。また,接合銅粒
子を形成する単位粒子は0.5〜10μm程度の粒径の
ものであるのがよい。これに対して,後者のネック無し
の銅粒子(ボール状のもの)からなる場合には,充填性
にとっては良好な粒径分布を有していたとしても,粒子
相互間の接触界面が前者のものに比べて格段に少なくな
る結果,前者に比べて導電性に劣るようになると思われ
る。
When the electric resistance (volume resistance of the dried coating film) of the paste in which the same amount of both metal copper powders and the same resin were dispersed in the same resin was measured under the same conditions, as shown in the examples described later, the former paste was used. Is 3.12 × 10 −3 Ω · cm and the latter paste is 2.76 × 10 −2 Ω · cm, and the former shows a value smaller by one order and has remarkably good conductivity. Although the reason is not exactly known, the connection between the unit particles is assured because of the large number of bonded copper particles.
Therefore, the number of contact interfaces between the particles increases, and the smaller copper particles or single unit particles intervene between the bonded copper particles, so that the resin can be better filled as a whole. Is mentioned. However, even in the former case, it is preferable to use a bonded copper particle in which the number of bonded unit particles exceeds 20, since the number of necks is too large, the dispersibility in the resin becomes inferior, and a state of aggregation occurs. is not. Similarly, dispersibility may be inferior if it is composed of only bonded copper particles. For example, if the number of bonded copper particles exceeds 80% of the total, the dispersibility will be poor, and it is better that independent unit particles exist. The number of copper particles should be in the range of 20-80% of the whole. Further, it is preferable that the unit particles forming the bonded copper particles have a particle size of about 0.5 to 10 μm. On the other hand, when the latter is made of copper particles without a neck (ball-shaped), the contact interface between the particles is the same as that of the former, even if it has a good particle size distribution for filling. As a result, the conductivity will be inferior to that of the former.

【0015】前者のような適正なネック数をもつ接合銅
粒子が分布した金属銅粉は,湿式還元法による金属銅粉
の製法において,初期の水酸化銅の生成過程での雰囲気
制御によって,さらには該水酸化銅の生成過程での不純
物制御によって製造できることがわかった。すなわち,
銅塩水溶液とアルカリ剤を反応させて水酸化銅を析出さ
せた懸濁液に還元剤を添加して亜酸化銅にまで中間還元
し,さらに還元剤で金属銅にまで水中で最終還元する従
来の銅粉の製法において,水酸化銅を析出させる過程は
従来は窒素等の不活性雰囲気下で行なっていたのを酸素
含有ガス,代表的には空気中で行う方法に改変すると,
さらには,この水酸化銅を析出させる液中に共存するM
g,Ca,Zn,Na,Al,Feなどの不純物濃度を
低下させると,前記のようなネック数をもつ接合銅粒子
が得られることがわかった。さらに,亜酸化銅まで中間
還元したあと,金属銅まで最終還元する前の段階で,亜
酸化銅懸濁液中に酸素含有ガス,代表的には空気の吹き
込みを行うと,その程度により,得られる銅粉の粒径と
粒度分布を制御できることもわかった。
The metal copper powder in which bonded copper particles having an appropriate number of necks are distributed as in the former method is further improved by controlling the atmosphere during the initial copper hydroxide production process in the production of metal copper powder by the wet reduction method. Was found to be able to be produced by controlling impurities in the process of producing the copper hydroxide. That is,
A conventional method in which a reducing agent is added to a suspension in which copper hydroxide is precipitated by reacting an aqueous solution of a copper salt with an alkali agent to intermediately reduce to cuprous oxide, and finally reduce to metallic copper in water with a reducing agent. In the production of copper powder, the process of precipitating copper hydroxide was previously performed under an inert atmosphere such as nitrogen, but it can be changed to a process performed in an oxygen-containing gas, typically air.
Further, M coexisting in the solution for precipitating the copper hydroxide is used.
It was found that when the concentration of impurities such as g, Ca, Zn, Na, Al, and Fe was reduced, bonded copper particles having the above-described number of necks could be obtained. In addition, an oxygen-containing gas, typically air, is blown into the cuprous oxide suspension after the intermediate reduction to cuprous oxide and before the final reduction to metallic copper. It was also found that the particle size and particle size distribution of the resulting copper powder could be controlled.

【0016】より具体的に説明すると,まず銅塩水溶液
とアルカリ剤を反応させて水酸化銅を析出させる工程に
おいては,銅塩水溶液としては硫酸銅水溶液を,またア
ルカリ剤としてはNaOH水溶液が最も普通に使用で
き,場合によっては,前者は塩化銅,炭酸銅,硝酸銅な
どの水溶液であってもよく,後者についても他に影響を
与えないアルカリ剤であれば使用可能であり,所定濃度
の銅塩水溶液と所定の濃度のアルカリ水溶液を別途に作
製し,両液を混ぜ合わせて直ちに強攪拌する方法,或い
は銅塩水溶液にアルカリ水溶液を攪拌下に添加し続ける
という方法で水酸化銅の析出反応を進行させることがで
きるが,この雰囲気を従来の不活性ガス雰囲気から酸素
含有ガス雰囲気(空気)に変えて水酸化銅を析出させる
と,中間還元において,比較的大きな粒径の亜酸化銅,
代表的には0.5〜1.5μm程度の粒径の亜酸化銅が得
られる。これに対して,窒素雰囲気とした以外は同一の
条件で水酸化銅を析出させると,0.3μm程度の小粒
径の亜酸化銅となる。このような小粒径の亜酸化銅の場
合には,前記のようなネックをもつ金属銅粉を得ること
は困難となる。
More specifically, in the step of reacting an aqueous solution of a copper salt with an alkali agent to precipitate copper hydroxide, an aqueous solution of copper sulfate is used as the aqueous solution of copper salt, and an aqueous solution of NaOH is used as the alkali agent. It can be used normally, and in some cases, the former may be an aqueous solution of copper chloride, copper carbonate, copper nitrate, etc., and the latter can be used as long as it has no influence on other substances. Precipitation of copper hydroxide by separately preparing a copper salt aqueous solution and an alkaline aqueous solution having a predetermined concentration and mixing the two solutions and immediately stirring the mixture vigorously, or by continuously adding the aqueous alkali solution to the copper salt aqueous solution with stirring. The reaction can proceed, but when this atmosphere is changed from the conventional inert gas atmosphere to an oxygen-containing gas atmosphere (air) to precipitate copper hydroxide, the intermediate reduction , Nitrous oxide, copper of a relatively large particle size,
Typically, cuprous oxide having a particle size of about 0.5 to 1.5 μm is obtained. On the other hand, when copper hydroxide is precipitated under the same conditions except that a nitrogen atmosphere is used, cuprous oxide having a small particle size of about 0.3 μm is obtained. In the case of cuprous oxide having such a small particle size, it is difficult to obtain metallic copper powder having the above-mentioned neck.

【0017】そのさい,液中のMg,Ca,Zn,N
a,Al,Feなどの不純物濃度が高いとそのような大
きな粒径の亜酸化銅が得難い。とりわけ,液中のFeは
大きな粒径の亜酸化銅を得るのに妨げる作用が強い。し
たがって,これらの不純物濃度はできるだけ少なくする
のがよく,Feは50ppm以下,不純物全体としても
70ppm以下,好ましくは50ppm以下とするのが
よい。このような不純物は出発原料の銅塩に同伴するの
が普通であり,したがって,できるだけ純度の高い銅塩
を使用するのがよい。
At this time, Mg, Ca, Zn, N
If the concentration of impurities such as a, Al, and Fe is high, it is difficult to obtain cuprous oxide having such a large particle size. In particular, Fe in the liquid has a strong effect of preventing obtaining cuprous oxide having a large particle size. Therefore, the concentration of these impurities should be as low as possible, and the content of Fe should be 50 ppm or less, and the total impurities should be 70 ppm or less, preferably 50 ppm or less. Such impurities are usually entrained in the starting copper salt, and it is therefore advisable to use a copper salt of the highest purity possible.

【0018】析出した水酸化銅の懸濁液に対して,還元
剤を添加して亜酸化銅に還元(中間還元)する場合に
は,還元剤としてグルコース(ブドウ糖)が使用でき
る。この中間還元工程は不活性ガス雰囲気下で昇温しな
がら行うのがよい。そして,この中間還元処理を終えた
あと,雰囲気ガスを酸素含有ガスに代え,この酸素含有
ガスを液中にバブリングするのがよい。
When a reducing agent is added to the precipitated copper hydroxide suspension to reduce (intermediately reduce) cuprous oxide, glucose (glucose) can be used as the reducing agent. This intermediate reduction step is preferably performed while raising the temperature in an inert gas atmosphere. After the completion of the intermediate reduction treatment, the atmosphere gas is replaced with an oxygen-containing gas, and the oxygen-containing gas is preferably bubbled in the liquid.

【0019】中間還元後にこのような酸化処理を行うこ
とにより,液のpHは5〜9となるが,吹き込む酸素含
有ガスの量を多くするにつれて最終還元されたときの銅
の単位粒子の粒径は大きくなる傾向にある。酸素含有ガ
スの吹き込み量は流量と吹き込み時間で決まるが,この
流量と吹き込み時間を調節することにより,単位粒子の
粒径制御ができ,この酸化処理を行うと,行わない場合
に比べて,単位粒子の粒度分布の幅が狭くなって粒径の
揃った単位粒子が得られ,しかも,単位粒子の形状も,
ボール状になることがわかった。このような成果を得る
に必要な酸素含有ガスの吹き込み量は,液中の銅1モル
に対して酸素量が少なくとも0.1モル以上となるよう
に流量と吹き込み時間を調節するのがよい。吹き込み量
の上限については特に規制しないが,あまり吹き込み量
が多くなっても効果が飽和するので,吹き込みの仕方に
もよるが,液中の銅1モルに対して酸素量が20モル以
下,場合によっては10モル以下であってもよい。吹き
込む酸素含有ガスとしては空気の使用が最も便利であ
り,特別のことがない限り,常温の空気を常温の懸濁液
に吹き込めばよい。もちろん酸素富化空気や純酸素ガス
も使用できる。
By performing such an oxidation treatment after the intermediate reduction, the pH of the solution becomes 5 to 9. However, as the amount of the oxygen-containing gas to be blown in increases, the particle size of the copper unit particles at the time of final reduction increases. Tends to be large. The blowing amount of the oxygen-containing gas is determined by the flow rate and the blowing time. By adjusting the flow rate and the blowing time, the particle size of the unit particles can be controlled. The width of the particle size distribution is narrowed to obtain unit particles with a uniform particle size.
It turned out to be a ball. It is preferable to adjust the flow rate and the blowing time so that the oxygen-containing gas is blown at a rate of at least 0.1 mole or more per mole of copper in the solution. The upper limit of the blowing amount is not particularly limited. However, even if the blowing amount is too large, the effect is saturated. Therefore, depending on the blowing method, when the oxygen amount is 20 mol or less per mol of copper in the liquid. Depending on the case, it may be 10 mol or less. As the oxygen-containing gas to be blown, the use of air is most convenient. Unless otherwise specified, air at room temperature may be blown into the suspension at room temperature. Of course, oxygen-enriched air or pure oxygen gas can also be used.

【0020】次いで,この懸濁液を不活性ガス雰囲気下
でデカンテーションし,その上澄液を除去することによ
り,沈殿を採取し,この沈殿を新たな水中に懸濁させ,
還元剤として抱水ヒドラジンを用いて金属銅にまで最終
還元する。こうして得られた液中の金属銅を液から分離
し,これを耐酸化性付与のための表面処理を施し,或い
は施すことなく,乾燥することにより,本発明に従うネ
ックをもつ金属銅粉を得ることができる。
Next, the suspension was decanted under an inert gas atmosphere, and the supernatant was removed to collect a precipitate, and the precipitate was suspended in fresh water.
Final reduction to metallic copper using hydrazine hydrate as reducing agent. The metallic copper in the liquid thus obtained is separated from the liquid, and is subjected to a surface treatment for imparting oxidation resistance or dried without being subjected to the method, thereby obtaining a metallic copper powder having a neck according to the present invention. be able to.

【0021】したがって,本発明によれば,銅塩水溶液
とアルカリ剤を反応させて水酸化銅を析出させた懸濁液
に還元剤を添加して亜酸化銅にまで中間還元し,次いで
還元剤で金属銅にまで水中で最終還元する銅粉の製造法
において,水酸化銅を析出させる工程を酸素含有ガス雰
囲気下で実施すること,水酸化銅を析出させる液中のF
e濃度を50ppm以下とすること,さらには,亜酸化
銅にまで中間還元したあと酸素含有ガス吹き込みで酸化
処理すること,を特徴とするネックをもつ金属銅粒子か
らなる銅粉の製法を提供する。
Therefore, according to the present invention, a reducing agent is added to a suspension in which copper hydroxide is precipitated by reacting an aqueous solution of a copper salt with an alkali agent, intermediate reduction is performed to cuprous oxide, and then reducing agent is added. In the method for producing copper powder which is finally reduced to metallic copper in water by water, the step of precipitating copper hydroxide is carried out in an oxygen-containing gas atmosphere, and the F
The present invention provides a method for producing copper powder comprising metallic copper particles having a neck, characterized in that the e concentration is set to 50 ppm or less, and furthermore, an intermediate reduction to cuprous oxide is performed and then an oxidation treatment is performed by blowing an oxygen-containing gas. .

【0022】[0022]

【実施例】〔実施例1〕次の硫酸銅水溶液Aとアルカリ
水溶液Bを準備した。 硫酸銅水溶液A: 〔CuSO4・5H2O:0.6925Kg〕+〔純水:
2.20Kg〕 アルカリ水溶液B: 〔濃度48.1%のNaOH水溶液:0.545Kg〕+
〔純水:4.15Kg〕
EXAMPLES Example 1 The following aqueous copper sulfate solution A and aqueous alkali solution B were prepared. Copper sulfate aqueous solution A: [CuSO 4 .5H 2 O: 0.6925 kg] + [pure water:
2.20 Kg] Alkaline aqueous solution B: [48.1% NaOH aqueous solution: 0.545 Kg] +
[Pure water: 4.15 kg]

【0023】温度27℃に保持した該アルカリ水溶液B
に,温度29℃の該硫酸銅水溶液Aを大気雰囲気中で全
量添加し強攪拌する。液中のFe濃度は50ppm以下
であり,他の不純物も痕跡程度しか存在しない。発熱に
よりA+Bの液の温度は32℃まで上昇し,水酸化銅が
析出した懸濁液が得られる。この液のpHは13.2で
ある。A液とB液の混合量比は,液中の銅に対して苛性
ソーダの当量比が1.20である。
The alkaline aqueous solution B maintained at a temperature of 27 ° C.
Then, the entire amount of the aqueous solution of copper sulfate A at a temperature of 29 ° C. is added in the air atmosphere, followed by vigorous stirring. The Fe concentration in the liquid is 50 ppm or less, and other impurities are present only in traces. The temperature of the liquid A + B rises to 32 ° C. due to heat generation, and a suspension in which copper hydroxide is precipitated is obtained. The pH of this solution is 13.2. As for the mixing ratio of the liquid A and the liquid B, the equivalent ratio of caustic soda to copper in the liquid is 1.20.

【0024】得られた水酸化銅懸濁液の全量に対し,純
水1.41Kgに0.9935Kgのブドウ糖を溶かした
ブドウ糖溶液を添加し,添加後38分間で液の温度を7
0℃まで昇温したあと,15分間保持する。この時の液
のpHは7.8である。この処理は窒素雰囲気下で行
う。
To a total amount of the obtained copper hydroxide suspension, a glucose solution obtained by dissolving 0.9935 kg of glucose in 1.41 kg of pure water was added.
After heating to 0 ° C., hold for 15 minutes. The pH of the liquid at this time is 7.8. This treatment is performed in a nitrogen atmosphere.

【0025】ついで,この液中に0.7リットル/分の
流量で420分間にわたって空気をバブリングさせて液
を酸化させる。これにより,液のpHは5.76とな
る。亜酸化銅の粒径はほぼ0.7μmである。
Next, air is bubbled through the solution at a flow rate of 0.7 liter / min for 420 minutes to oxidize the solution. As a result, the pH of the liquid becomes 5.76. The particle size of cuprous oxide is approximately 0.7 μm.

【0026】この懸濁液を窒素雰囲気中で2日間静置し
たあと,上澄液(pH5.99)を除去し,亜酸化銅の
沈殿をほぼ全量採取し,これに,純水0.55Kgを追
加する。この亜酸化銅の懸濁液全量に対し,抱水ヒドラ
ジン0.074Kgを数回に分けて添加する。発熱反応
により液の温度は50℃から最終的に80℃まで昇温し
反応が終了する。反応終了後の懸濁液を固液分離し,粉
体を採取し,これを120℃の窒素雰囲気中で乾燥して
銅粉を得る。
After the suspension was allowed to stand in a nitrogen atmosphere for 2 days, the supernatant (pH 5.99) was removed, and almost all of the precipitate of cuprous oxide was collected, and 0.55 kg of pure water was added thereto. Add. 0.074 kg of hydrazine hydrate is added in several portions to the total amount of the cuprous oxide suspension. Due to the exothermic reaction, the temperature of the liquid is raised from 50 ° C. to finally 80 ° C., and the reaction is completed. After the completion of the reaction, the suspension is subjected to solid-liquid separation, a powder is collected, and dried in a nitrogen atmosphere at 120 ° C. to obtain a copper powder.

【0027】この方法で得られた銅粉の電子顕微鏡SE
M像を図1〜2に示した。この銅粉は,本文に説明した
ように,粒径2.5〜5.0μmの単位粒子がネックをも
って接合した接合銅粒子を含む銅粉であり,SEM像に
おいて接合銅粒子を数えると,接合銅粒子の数は粒子全
体のおよそ40%であった。
Electron microscope SE of the copper powder obtained by this method
The M images are shown in FIGS. As described in the text, this copper powder is a copper powder containing bonded copper particles in which unit particles having a particle size of 2.5 to 5.0 μm are bonded together with a neck. The number of copper particles was approximately 40% of the total particles.

【0028】従来の銅系の導電ペーストと同様の処法に
従って,この銅粉30gとフェノール系樹脂7.5gと
を混練してペーストを作成し,これを硝子基板上に厚み
30μmで塗膜化し,乾燥したあと,電気抵抗を測定し
た。その結果,該塗膜の体積抵抗は3.12×10-3Ω
・cmであった。
According to the same processing method as that of the conventional copper-based conductive paste, 30 g of this copper powder and 7.5 g of a phenolic resin are kneaded to prepare a paste, which is formed into a film having a thickness of 30 μm on a glass substrate. After drying, the electrical resistance was measured. As a result, the volume resistance of the coating film was 3.12 × 10 −3 Ω.
Cm.

【0029】〔比較例1〕次の硫酸銅水溶液Aとアルカ
リ水溶液B’を準備した。 硫酸銅水溶液A: 〔CuSO4・5H2O:0.6925Kg〕+〔純水:
2.20Kg〕 アルカリ水溶液B: 〔濃度49.0%のNaOH水溶液:0.541Kg〕+
〔純水:4.15Kg〕
Comparative Example 1 The following aqueous copper sulfate solution A and alkaline aqueous solution B 'were prepared. Copper sulfate aqueous solution A: [CuSO 4 .5H 2 O: 0.6925 kg] + [pure water:
2.20 Kg] Alkaline aqueous solution B: [NaOH aqueous solution with a concentration of 49.0%: 0.541 kg] +
[Pure water: 4.15 kg]

【0030】温度27℃に保持した該アルカリ水溶液
B’に,温度29℃の該硫酸銅水溶液Aを窒素ガス雰囲
気中で全量添加し強攪拌する。液中のFe濃度は50p
pm以下であり,他の不純物も痕跡程度しか存在しな
い。発熱によりA+B’の液の温度は32.9℃まで上
昇し,水酸化銅が析出した懸濁液が得られる。この液の
pHは12.9である。A液とB’液の混合量比は,液
中の銅に対して苛性ソーダの当量比が1.19である。
To the aqueous alkali solution B ′ maintained at a temperature of 27 ° C., the entire aqueous copper sulfate solution A at a temperature of 29 ° C. is added in a nitrogen gas atmosphere, followed by vigorous stirring. Fe concentration in liquid is 50p
pm or less, and only traces of other impurities are present. The temperature of the solution A + B 'rises to 32.9 ° C. due to heat generation, and a suspension in which copper hydroxide is precipitated is obtained. The pH of this solution is 12.9. As for the mixing ratio of the liquid A and the liquid B ', the equivalent ratio of caustic soda to copper in the liquid is 1.19.

【0031】得られた水酸化銅懸濁液の全量に対し,純
水1.41Kgに0.9935Kgのブドウ糖を溶かした
ブドウ糖溶液を添加し,添加後38分間で液の温度を7
0℃まで昇温したあと,15分間保持する。この時の液
のpHは7.8である。この処理は窒素雰囲気下で行
う。
To the total amount of the obtained copper hydroxide suspension, a glucose solution in which 0.9935 kg of glucose was dissolved in 1.41 kg of pure water was added.
After heating to 0 ° C., hold for 15 minutes. The pH of the liquid at this time is 7.8. This treatment is performed in a nitrogen atmosphere.

【0032】ついで,この液中に0.7リットル/分の
流量で420分間にわたって空気をバブリングさせて液
を酸化させる。これにより,液のpHは5.80とな
る。亜酸化銅の粒径はほぼ0.3μmである。
Next, air is bubbled into the liquid at a flow rate of 0.7 liter / min for 420 minutes to oxidize the liquid. As a result, the pH of the solution becomes 5.80. The particle size of cuprous oxide is approximately 0.3 μm.

【0033】この懸濁液を窒素雰囲気中で2日間静置し
たあと,上澄液(pH6.02)を除去し,亜酸化銅の
沈殿をほぼ全量採取し,これに,純水0.55Kgを追
加する。この亜酸化銅の懸濁液全量に対し,抱水ヒドラ
ジン0.074Kgを数回に分けて添加する。発熱反応
により液の温度は50℃から最終的に80℃まで昇温し
反応が終了する。反応終了後の懸濁液を固液分離し,粉
体を採取し,これを120℃の窒素雰囲気中で乾燥して
銅粉を得る。
After the suspension was allowed to stand in a nitrogen atmosphere for 2 days, the supernatant (pH 6.02) was removed, and almost all of the precipitate of cuprous oxide was collected, and 0.55 kg of pure water was added thereto. Add. 0.074 kg of hydrazine hydrate is added in several portions to the total amount of the cuprous oxide suspension. Due to the exothermic reaction, the temperature of the liquid is raised from 50 ° C. to finally 80 ° C., and the reaction is completed. After the completion of the reaction, the suspension is subjected to solid-liquid separation, a powder is collected, and dried in a nitrogen atmosphere at 120 ° C. to obtain a copper powder.

【0034】この方法で得られた銅粉の電子顕微鏡SE
M像を図3〜4に示した。この銅粉は,本文に説明した
ように,平均粒径がほぼ6.0μmのボール状の粒子か
らなり,ネックは有していない。
Electron microscope SE of copper powder obtained by this method
The M images are shown in FIGS. As described in the text, the copper powder is composed of ball-shaped particles having an average particle diameter of approximately 6.0 μm and has no neck.

【0035】実施例1と全く同様にしてこの銅粉30g
とフェノール系樹脂7.5gとを混練してペーストを作
成し,これを硝子基板上に厚み30μmで塗膜化し,乾
燥したあと,電気抵抗を測定した。その結果,該塗膜の
体積抵抗は2.76×10-2Ω・cmであった。
In the same manner as in Example 1, 30 g of this copper powder
Was mixed with 7.5 g of a phenolic resin to prepare a paste, which was coated on a glass substrate with a thickness of 30 μm, dried, and then measured for electrical resistance. As a result, the volume resistance of the coating film was 2.76 × 10 −2 Ω · cm.

【0036】[0036]

【発明の効果】以上説明したように,本発明によれば,
電気伝導性の優れた塗膜を形成できる導電ペースト用銅
粉が提供できる。
As described above, according to the present invention,
A copper powder for a conductive paste capable of forming a coating film having excellent electric conductivity can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1で得られた金属銅粉の電子顕
微鏡写真像である。
FIG. 1 is an electron micrograph image of metallic copper powder obtained in Example 1 of the present invention.

【図2】図1の中央部の粒子部分を拡大した電子顕微鏡
写真像である。
FIG. 2 is an electron micrograph image of an enlarged particle portion in the center of FIG.

【図3】本発明の比較例1で得られた金属銅粉の電子顕
微鏡写真像である。
FIG. 3 is an electron micrograph image of the metallic copper powder obtained in Comparative Example 1 of the present invention.

【図4】図3の中央部やや上の粒子部分を拡大した電子
顕微鏡写真像である。
FIG. 4 is an electron micrograph image in which a particle portion slightly above the central portion in FIG. 3 is enlarged.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/12 610 H05K 3/12 610B // B22F 1/00 B22F 1/00 L B23K 35/30 310 B23K 35/30 310C (72)発明者 三好 宏昌 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4J038 DA041 EA011 HA066 KA20 NA20 4K017 AA03 BA05 CA07 DA01 DA07 EH03 EH16 FB05 4K018 AA03 BA02 BB04 BB10 BC09 BD10 HA10 KA33 5E343 BB24 BB72 GG13 5G301 DA06 DA55 DD01 DE10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 3/12 610 H05K 3/12 610B // B22F 1/00 B22F 1/00 L B23K 35/30 310 B23K 35/30 310C (72) Inventor Hiromasa Miyoshi 1-8-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Dowa Mining Co., Ltd. 4J038 DA041 EA011 HA066 KA20 NA20 4K017 AA03 BA05 CA07 DA01 DA07 EH03 EH16 FB05 4K018 AA03 BA02 BB04 BB10 BC09 BD10 HA10 KA33 5E343 BB24 BB72 GG13 5G301 DA06 DA55 DD01 DE10

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 2個以上の単位粒子がネック部をもって
接合してなる導電ペースト用の接合銅粒子。
1. Bonded copper particles for a conductive paste comprising two or more unit particles bonded together with a neck portion.
【請求項2】 2個以上20個以下の単位粒子がネック
部をもって接合してなる導電ペースト用の接合銅粒子。
2. Bonded copper particles for a conductive paste comprising two or more and twenty or less unit particles bonded together with a neck portion.
【請求項3】 単位粒子の径が0.5〜10μmである
請求項1または2に記載の接合銅粒子。
3. The bonded copper particle according to claim 1, wherein the diameter of the unit particle is 0.5 to 10 μm.
【請求項4】 ネック部の径は,ネック部を挟む両側の
単位粒子の径より小さい請求項1または2に記載の導電
ペースト用の接合銅粒子。
4. The bonded copper particles for a conductive paste according to claim 1, wherein the diameter of the neck portion is smaller than the diameter of the unit particles on both sides of the neck portion.
【請求項5】 2個以上の単位粒子がネック部をもって
接合してなる接合銅粒子と,ネック部を持たない単位粒
子とからなる導電ペースト用銅粉末。
5. A copper powder for a conductive paste comprising a bonded copper particle formed by bonding two or more unit particles with a neck portion and a unit particle having no neck portion.
【請求項6】 接合銅粒子の数が全体の20〜80%で
ある請求項5に記載の導電ペースト用銅粉末。
6. The copper powder for a conductive paste according to claim 5, wherein the number of bonding copper particles is 20 to 80% of the whole.
【請求項7】 銅塩水溶液とアルカリ剤を反応させて水
酸化銅を析出させた懸濁液に還元剤を添加して亜酸化銅
にまで中間還元し,さらに還元剤で金属銅にまで水中で
最終還元する銅粉の製造法において,前記の水酸化銅を
析出させる工程を酸素含有ガス雰囲気下で実施すること
を特徴とする接合銅粒子をもつ銅粉の製造法。
7. A reducing agent is added to a suspension in which an aqueous copper salt solution and an alkali agent are reacted to precipitate copper hydroxide, and the intermediate is reduced to cuprous oxide. A method for producing copper powder having bonded copper particles, wherein the step of precipitating copper hydroxide is carried out in an oxygen-containing gas atmosphere in the method for producing copper powder to be finally reduced in (1).
【請求項8】 水酸化銅を析出させる工程は,Fe濃度
が50ppm以下の水溶液中で実施する請求項7に記載
の銅粉の製造法。
8. The method for producing copper powder according to claim 7, wherein the step of depositing copper hydroxide is performed in an aqueous solution having an Fe concentration of 50 ppm or less.
【請求項9】 中間還元のあとの亜酸化銅の懸濁液に酸
素含有ガスを吹き込む請求項7または8に記載の銅粉の
製造法。
9. The method for producing copper powder according to claim 7, wherein an oxygen-containing gas is blown into the suspension of cuprous oxide after the intermediate reduction.
【請求項10】 請求項1ないし6のいずれかの導電ペ
ースト用銅粉末を樹脂中に分散させてなる導電ペース
ト。
10. A conductive paste obtained by dispersing the copper powder for a conductive paste according to claim 1 in a resin.
【請求項11】 樹脂はフエノール系樹脂である請求項
10に記載の導電ペースト。
11. The conductive paste according to claim 10, wherein the resin is a phenolic resin.
JP15028199A 1999-05-28 1999-05-28 Copper powder manufacturing method Expired - Lifetime JP3918036B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15028199A JP3918036B2 (en) 1999-05-28 1999-05-28 Copper powder manufacturing method
US09/741,024 US6620344B2 (en) 1999-05-28 2000-12-21 Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
US10/633,556 US6923924B2 (en) 1999-05-28 2003-08-05 Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
US11/084,116 US7235119B2 (en) 1999-05-28 2005-03-21 Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15028199A JP3918036B2 (en) 1999-05-28 1999-05-28 Copper powder manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006325389A Division JP4660784B2 (en) 2006-12-01 2006-12-01 Conductive paste

Publications (2)

Publication Number Publication Date
JP2000340030A true JP2000340030A (en) 2000-12-08
JP3918036B2 JP3918036B2 (en) 2007-05-23

Family

ID=15493554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15028199A Expired - Lifetime JP3918036B2 (en) 1999-05-28 1999-05-28 Copper powder manufacturing method

Country Status (1)

Country Link
JP (1) JP3918036B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169770A (en) * 2005-12-26 2007-07-05 Mitsui Mining & Smelting Co Ltd Copper powder, copper particle and method for producing the copper particle
WO2013047332A1 (en) * 2011-09-30 2013-04-04 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method of producing same
CN111715888A (en) * 2019-03-20 2020-09-29 香港科技大学 Copper-based nanostructure, preparation method thereof, transparent conductive film and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169770A (en) * 2005-12-26 2007-07-05 Mitsui Mining & Smelting Co Ltd Copper powder, copper particle and method for producing the copper particle
WO2013047332A1 (en) * 2011-09-30 2013-04-04 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method of producing same
JP2014005188A (en) * 2011-09-30 2014-01-16 Dowa Electronics Materials Co Ltd Cuprous oxide powder and method of producing the same
US9211587B2 (en) 2011-09-30 2015-12-15 Dowa Electronics Materials Co., Ltd. Cuprous oxide powder and method for producing same
CN111715888A (en) * 2019-03-20 2020-09-29 香港科技大学 Copper-based nanostructure, preparation method thereof, transparent conductive film and electronic device
CN111715888B (en) * 2019-03-20 2023-10-24 香港科技大学 Copper-based nanostructure, method for producing the same, transparent conductive film, and electronic device

Also Published As

Publication number Publication date
JP3918036B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
US6923924B2 (en) Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
US6875252B2 (en) Copper powder and process for producing copper powder
US7534283B2 (en) Method of producing copper powder and copper powder
JPH10330801A (en) Fine copper powder and its production
JP3570591B2 (en) Production method of copper powder
KR20000023067A (en) Metallic powder, manufacturing method thereof and conductive paste
US7909908B2 (en) Method of improving the weatherability of copper powder
JPH09241709A (en) Production of copper powder
US20020117652A1 (en) Silver-dispersed copper powder, process for producing the powder and conductive paste utilizing the powder
JP3640552B2 (en) Manufacturing method of copper powder with small particle size distribution
JP2000340030A (en) Bonded copper particles and powder for conductive paste
JP4406738B2 (en) Manufacturing method of copper powder with small particle size distribution
JPH0557324B2 (en)
JP2002245849A (en) Conductive filler for conductive paste and method for producing the same
JP4660784B2 (en) Conductive paste
JP4012961B2 (en) Production method of plate copper powder
JPH05221637A (en) Cuprous oxide powder and method for producing copper powder
JP3827900B2 (en) Conductive filler and conductive paste
JPH04235205A (en) Production of copper powder
JP5003668B2 (en) Method for producing oxide-coated copper fine particles
JP4301646B2 (en) Nickel powder manufacturing method
JP3444608B2 (en) Production method of copper fine powder
JP3245965B2 (en) Production method of copper powder
KR100791231B1 (en) Silver Diffusion Copper Powder, Manufacturing Method Thereof, and Conducting Wire for Conductive Paste and Printed Electronic Circuit Using The Same
JPH07109505A (en) Production of silver-palladium composite powder and silver-palladium composite powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term