JP2000337108A - Carbon dioxide recovery type combined generating system - Google Patents
Carbon dioxide recovery type combined generating systemInfo
- Publication number
- JP2000337108A JP2000337108A JP11147914A JP14791499A JP2000337108A JP 2000337108 A JP2000337108 A JP 2000337108A JP 11147914 A JP11147914 A JP 11147914A JP 14791499 A JP14791499 A JP 14791499A JP 2000337108 A JP2000337108 A JP 2000337108A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- working fluid
- turbine
- condenser
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 66
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims description 33
- 239000001569 carbon dioxide Substances 0.000 title claims description 33
- 238000011084 recovery Methods 0.000 title claims description 11
- 239000012530 fluid Substances 0.000 claims abstract description 60
- 238000010248 power generation Methods 0.000 claims description 24
- 239000000446 fuel Substances 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 230000001172 regenerating effect Effects 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 5
- 230000006835 compression Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 52
- 238000000926 separation method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 239000002918 waste heat Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は二酸化炭素回収型複
合発電システムに関し、圧縮機、ガスタービン、排ガス
ボイラからなるシステムを閉ループ化すると共に排ガス
ボイラで蒸気タービン系を作動させる構成とし、NOX
の発生をなくし、出力を増大するようなシステム構成と
したものである。The present invention relates to a carbon dioxide capture hybrid power system BACKGROUND OF THE INVENTION The compressor, a gas turbine, a system of the exhaust gas boiler and configured to operate the steam turbine system with the exhaust gas boiler while closed of, NO X
And a system configuration that increases the output.
【0002】[0002]
【従来の技術】地球温暖化問題に対処するため発電所で
発生する二酸化炭素を燃料排ガスから分離する方法とし
て、PSA(Pressure Swing Absorption )法や膜分離
法等が提案されている。高効率の発電プラントであるガ
スタービンコンバインドプラントでは、現状では、この
ような二酸化炭素分離装置は適用されていないが、適用
すると、排ガス中の二酸化炭素濃度が比較的薄いため必
要分離動力が大きくなり、その動力を加味した正味の発
電効率は著しく低下してしまう。2. Description of the Related Art PSA (Pressure Swing Absorption) method and membrane separation method have been proposed as methods for separating carbon dioxide generated in a power plant from fuel exhaust gas in order to cope with the problem of global warming. At present, such a carbon dioxide separation device is not applied to a gas turbine combined plant, which is a high-efficiency power generation plant. However, the net power generation efficiency taking into account the power is significantly reduced.
【0003】図5は従来のガスタービンコンバインドプ
ラントにCO2 分離装置を装備した例を示す。図におい
て、1はガスタービンを構成する圧縮機、2はCH4 等
の炭化水素系の燃料を燃焼させる燃焼器、3はタービン
である。4は排ガスボイラで、タービン3の排ガスを導
き、排熱を回収する。5は蒸気タービン、6は復水器
(凝縮器)、7はポンプであり、閉ループを構成し排熱
回収ボイラ4によりタービン3の排熱で蒸気を発生し、
蒸気タービン5を駆動し、仕事をした膨張後の蒸気は復
水器6で復水し、ポンプ7により再び排熱回収ボイラ4
へ戻す蒸気タービン系を構成している。8は発電機であ
り、タービン3により駆動され、電力を得る。30はC
O2 分離装置であり、前述のPSA法や膜分離法等によ
り排ガスボイラ4からの排気からCO2 を分離、回収す
る。FIG. 5 shows an example in which a conventional gas turbine combined plant is equipped with a CO 2 separation device. In the figure, 1 is a compressor constituting a gas turbine, 2 is a combustor for burning hydrocarbon fuel such as CH 4 , and 3 is a turbine. An exhaust gas boiler 4 guides exhaust gas from the turbine 3 and recovers exhaust heat. 5 is a steam turbine, 6 is a condenser (condenser), 7 is a pump, which constitutes a closed loop and generates steam by the exhaust heat of the turbine 3 by the exhaust heat recovery boiler 4,
The expanded steam that has driven and operated the steam turbine 5 is condensed by the condenser 6, and is again returned to the exhaust heat recovery boiler 4 by the pump 7.
To form a steam turbine system. Reference numeral 8 denotes a generator, which is driven by the turbine 3 to obtain electric power. 30 is C
The O 2 separation device separates and recovers CO 2 from exhaust gas from the exhaust gas boiler 4 by the above-described PSA method, membrane separation method, or the like.
【0004】上記構成のプラントにおいて、圧縮機1は
大気より空気を吸入し、圧縮して燃焼器2へ供給する。
燃焼器2では圧縮機1からの空気と炭化水素系の燃料、
例えばメタン(CH4 )が供給され、燃焼して高温の燃
焼ガスとなり、タービン3に流入し膨張してタービン3
を回転させて仕事をし、その排気は排熱回収ボイラ4へ
導かれ、ここで排熱を与えて流出する。流出した排気中
には燃焼によりCO2が含まれており、このCO2 はC
O2 分離装置30で分離、回収されて煙突40より大気
へ放出される。In the plant having the above configuration, the compressor 1 sucks air from the atmosphere, compresses the air, and supplies the compressed air to the combustor 2.
In the combustor 2, the air from the compressor 1 and a hydrocarbon fuel,
For example, methane (CH 4 ) is supplied and combusted to produce high-temperature combustion gas, which flows into the turbine 3 and expands, thereby expanding the turbine 3.
Is rotated to perform work, and the exhaust gas is guided to the exhaust heat recovery boiler 4, where the exhaust heat is given and the exhaust gas is discharged. The discharged exhaust gas contains CO 2 by combustion, and this CO 2
The gas is separated and collected by the O 2 separation device 30 and released from the chimney 40 to the atmosphere.
【0005】一方排ガスボイラ4では、その排熱により
下位の閉ループにおいて蒸気を発生させ、その蒸気は蒸
気タービン5に供給され、膨張することにより蒸気ター
ビン5を回転させて仕事をし、低温となった蒸気は復水
器6で復水して水となり、ポンプ7で再び排ガスボイラ
4へ送られる。On the other hand, in the exhaust gas boiler 4, steam is generated in a lower closed loop by the exhaust heat, and the steam is supplied to the steam turbine 5, and expands to rotate the steam turbine 5 to perform work, and the temperature becomes low. The steam is condensed into water by the condenser 6 and is sent again to the exhaust gas boiler 4 by the pump 7.
【0006】上記の図5に示すシステムにおいては、排
ガス中の二酸化炭素はわずかであり、その割にはCO2
分離装置30は容量が大きく、複雑で高価な装置とな
り、又その動力も大きく、正味の発電効率を著しく低下
させてしまう。又、圧縮機1は空気を吸い込み、圧縮し
て燃焼器2に供給し、燃料の燃焼に供されるが、空気中
には窒素成分を含み、排ガスは煙突40より大気に放出
されるのでNOX の発生の原因となっている。[0006] In the system shown in Figure 5 above, the carbon dioxide in the exhaust gas is slight, and its split CO 2
Separation device 30 has a large capacity, is a complicated and expensive device, and has a large power, which significantly lowers the net power generation efficiency. The compressor 1 draws in air, compresses the air, supplies the compressed air to the combustor 2, and is used for fuel combustion. However, since the air contains a nitrogen component and the exhaust gas is discharged from the chimney 40 to the atmosphere, NO This is the cause of the occurrence of X.
【0007】図6は従来のガスタービンプラントの他の
例であり、符号1〜4,8は図5と同じ構成であるので
説明は省略する。図において、タービン3の排気は排ガ
スボイラ4で排熱が回収された後、復水器20で復水
し、復水した水の一部はポンプ21で排ガスボイラ4へ
送られ、排熱で加熱され燃焼器2に噴射される。復水の
残りはライン41より外部へ排出し、又、復水器20か
らの排ガスはCO2 分離装置30でCO2 が分離、回収
されて煙突40から大気へ放出される。このようなシス
テムでは、排ガスボイラ4で蒸気を発生させ、その蒸気
を燃焼器2に噴射して大幅な出力増加が得られる、いわ
ゆる蒸気噴射サイクルの構成を示す。本システムでも図
5に示すガスタービンコンバインドの場合と同様に排ガ
スの二酸化炭素の分離動力は大きく正味の発電効率は低
下し、又、圧縮機1は大気から空気を吸い込むので同様
にNOX の発生の原因となっている。FIG. 6 shows another example of a conventional gas turbine plant. Reference numerals 1 to 4 and 8 have the same structure as in FIG. In the figure, after exhaust heat of a turbine 3 is recovered by an exhaust gas boiler 4, the exhaust water is condensed by a condenser 20, and a part of the condensed water is sent to the exhaust gas boiler 4 by a pump 21, It is heated and injected into the combustor 2. The remaining condensate is discharged from the line 41 to the outside, also, the exhaust gas from the condenser 20 is CO 2 in the CO 2 separation device 30 separates and is released is recovered from the chimney 40 into the atmosphere. In such a system, a configuration of a so-called steam injection cycle in which steam is generated by the exhaust gas boiler 4 and the steam is injected into the combustor 2 to obtain a large output increase is shown. The power generation efficiency of the separation power is large net carbon dioxide of the exhaust gas as in the case of a gas turbine combined even in this system is shown in FIG. 5 is reduced, also, the compressor 1 is generated similarly NO X so draws air from the atmosphere Is the cause.
【0008】[0008]
【発明が解決しようとする課題】前述のように、従来の
ガスタービンプラントにおいては、CO2 分離装置30
は大容量で、高価な装置であると共に、その所要動力も
大きく、正味の発電効率が著しく低下してしまう。又、
圧縮機1では大気より空気を吸い込み燃焼器2で燃焼に
供され、その排気は大気に放出されるのでNOX が発生
する。As described above, in the conventional gas turbine plant, the CO 2 separation device 30 is used.
Is a large-capacity, expensive device, and requires a large amount of power, resulting in a significant decrease in net power generation efficiency. or,
In the compressor 1, air is sucked in from the atmosphere and supplied to the combustor 2 for combustion, and the exhaust gas is discharged to the atmosphere, so that NO X is generated.
【0009】そこで本発明は、二酸化炭素回収型複合発
電プラントにおいて、圧力比を増大させて出力の増大を
図ると共に、比較的簡潔な構造の二酸化炭素分離用の排
出圧縮機を用い、かつNOX の発生もない発電プラント
の構成を実現することを課題としてなされたものであ
る。[0009] The present invention provides a carbon dioxide capture combined cycle power plant, there is ensured an increase in the output by increasing the pressure ratio, using a relatively discharge compressor for carbon dioxide separation concise structure and NO X It is an object of the present invention to realize a configuration of a power generation plant that does not cause any problem.
【0010】[0010]
【課題を解決するための手段】本発明は前述の課題を解
決するために次の(1)乃至(5)の手段を提供する。The present invention provides the following means (1) to (5) in order to solve the above-mentioned problems.
【0011】(1)二酸化炭素と水蒸気からなる作動流
体を圧縮する圧縮機と、同圧縮機からの作動流体と共に
燃料を燃焼させ高温の作動流体を発生させる燃焼器と、
同燃焼器からの高温作動流体を膨張させて電力を得るタ
ービンと、同タービンから排出される作動流体の排熱で
蒸気タービン系の蒸気を加熱する熱交換器と、同熱交換
器から流出する低温作動流体を復水する復水器と、同復
水器からの作動流体を前記圧縮機へ戻す戻りラインと、
同戻りラインから二酸化炭素を排出する排出圧縮機とを
備えてなることを特徴とする二酸化炭素回収型複合発電
システム。(1) A compressor for compressing a working fluid composed of carbon dioxide and water vapor, a combustor for burning fuel together with the working fluid from the compressor to generate a high-temperature working fluid,
A turbine that obtains electric power by expanding a high-temperature working fluid from the combustor, a heat exchanger that heats steam of a steam turbine system by exhaust heat of the working fluid discharged from the turbine, and flows out of the heat exchanger. A condenser for condensing the low-temperature working fluid, a return line for returning the working fluid from the condenser to the compressor,
A combined carbon dioxide recovery power generation system comprising a discharge compressor for discharging carbon dioxide from the return line.
【0012】(2)上記(1)の発明において、前記熱
交換器は、前記タービンと前記蒸気タービン系の両方が
作動する場合には排熱回収ボイラとして作動し、前記蒸
気タービン系が単独運転する場合には蒸気発生用ボイラ
として作動することを特徴とするシステム。(2) In the above invention (1), when both the turbine and the steam turbine system operate, the heat exchanger operates as an exhaust heat recovery boiler, and the steam turbine system operates alone. A system that operates as a steam generating boiler if it does.
【0013】(3)上記(1)又は(2)の発明におい
て、前記タービンからの作動流体を前記熱交換器へ導く
流路には再生熱交換器を設け、同再生熱交換器は前記圧
縮機で圧縮した作動流体を前記タービンの排熱で加熱し
て前記燃焼器へ供給することを特徴とするシステム。(3) In the invention of the above (1) or (2), a regenerative heat exchanger is provided in a flow path for guiding the working fluid from the turbine to the heat exchanger, and the regenerative heat exchanger is provided with a compressor. A system wherein a working fluid compressed by a machine is heated by exhaust heat of the turbine and supplied to the combustor.
【0014】(4)上記(1)から(3)のいずれかの
発明において、前記圧縮機は低圧圧縮機と高圧圧縮機を
接続して構成され、両圧縮機の間には中間冷却器を設
け、同中間冷却器には前記復水器で復水した作動流体の
一部を供給し、前記低圧圧縮機出口の作動流体の温度を
下げることを特徴とするシステム。(4) In any one of the above inventions (1) to (3), the compressor is constituted by connecting a low-pressure compressor and a high-pressure compressor, and an intercooler is provided between the two compressors. A system for supplying a part of the working fluid condensed by the condenser to the intercooler to reduce the temperature of the working fluid at the outlet of the low-pressure compressor.
【0015】(5)二酸化炭素と水蒸気からなる作動流
体を圧縮する圧縮機と、同圧縮機からの作動流体と共に
燃料を燃焼させ高温の作動流体を発生させる燃焼器と、
同燃焼器からの高温作動流体を膨張させて電力を得るタ
ービンと、同タービンから排出される作動流体の排熱を
回収する熱交換器と、同熱交換器で加熱された蒸気を導
き膨張させて電力を得る蒸気タービンと、同蒸気タービ
ンの排気を復水する復水器と、同復水器からの復水を前
記熱交換器に戻すポンプと、前記熱交換器から流出する
前記タービンの排気を復水する復水器と、同復水器から
の作動流体を前記圧縮機へ戻す戻りラインと、同戻りラ
インから二酸化炭素を排出する排出圧縮機とを備えてな
ることを特徴とする二酸化炭素回収型複合発電システ
ム。(5) A compressor for compressing a working fluid composed of carbon dioxide and water vapor, a combustor for burning fuel together with the working fluid from the compressor to generate a high-temperature working fluid,
A turbine that expands the high-temperature working fluid from the combustor to obtain electric power, a heat exchanger that collects exhaust heat of the working fluid discharged from the turbine, and a steam heated by the heat exchanger for expansion. A steam turbine that obtains electric power from the steam turbine, a condenser that condenses exhaust gas from the steam turbine, a pump that returns condensate from the condenser to the heat exchanger, and a turbine that flows out of the heat exchanger. A condenser for condensing exhaust gas, a return line for returning working fluid from the condenser to the compressor, and a discharge compressor for discharging carbon dioxide from the return line. Combined power generation system with carbon dioxide capture.
【0016】本発明の(1)及び(5)では、燃焼器で
燃焼した作動流体は二酸化炭素と水蒸気からなり、戻し
ラインにより、圧縮機、タービン、熱交換器、復水器は
閉ループを構成している。燃焼器で燃焼して生成された
高温の作動流体はタービンで膨張してタービンを回転さ
せ発電を行い、仕事をした作動流体は熱交換器に入り蒸
気タービン系に排熱を与え、復水器で復水して戻りライ
ンにより圧縮機へ戻される。戻りラインからは作動流体
に含まれる燃焼生成物のCO2 が排出圧縮機で大気圧ま
で圧縮されて排出される。従って、圧縮機は空気を吸い
込むことなく、閉ループによりCO2 とH2 Oのみから
なるのでNOX が発生することがない。又、構造が簡潔
な排出圧縮機を用いてH2 OとCO2 とを容易に分離す
ることができ、圧力比を大きくして出力を向上させるこ
とができる。In (1) and (5) of the present invention, the working fluid combusted in the combustor is composed of carbon dioxide and water vapor, and the compressor, turbine, heat exchanger, and condenser form a closed loop by the return line. are doing. The high-temperature working fluid generated by combustion in the combustor expands in the turbine and rotates the turbine to generate electricity.The working fluid that has worked enters the heat exchanger and gives waste heat to the steam turbine system, and the condenser And the water is returned to the compressor by the return line. From the return line, CO 2, a combustion product contained in the working fluid, is compressed to atmospheric pressure by a discharge compressor and discharged. Accordingly, the compressor does not draw in air, and is made up of only CO 2 and H 2 O in a closed loop, so that NO X is not generated. Further, H 2 O and CO 2 can be easily separated using a discharge compressor having a simple structure, and the output can be improved by increasing the pressure ratio.
【0017】本発明の(2)では、熱交換器が排熱回収
ボイラと蒸気タービン系単独の蒸気発生用のボイラの両
方の機能を有するので、ガスタービン系と蒸気タービン
系の両サイクルが作動している時には、タービンの排熱
を蒸気タービン系に与えて蒸気を加熱する排熱ボイラと
して機能し、蒸気タービン系を単独運転する場合には、
蒸気を発生させる蒸気タービン用のボイラとして機能す
る。従って、上記(1)の発明の運用幅が広がり、機能
が向上する。In (2) of the present invention, since the heat exchanger has both functions of an exhaust heat recovery boiler and a steam generator-only boiler, both cycles of the gas turbine system and the steam turbine system operate. When the steam turbine system is operating independently, it functions as a waste heat boiler that gives steam from the turbine to the steam turbine system to heat the steam.
It functions as a boiler for a steam turbine that generates steam. Therefore, the operational range of the invention (1) is expanded, and the function is improved.
【0018】本発明の(3)では、圧縮機で圧縮された
作動流体は再生熱交換器でタービンの排熱で加熱されて
温度が高まり、燃焼器へ供給されるので、上記(1)又
は(2)の発明よりは燃料量を少くすることができ、熱
効率を高めることができる。In (3) of the present invention, the working fluid compressed by the compressor is heated by the exhaust heat of the turbine in the regenerative heat exchanger to increase the temperature, and is supplied to the combustor. The fuel amount can be reduced and the thermal efficiency can be increased as compared with the invention of (2).
【0019】本発明の(4)では、圧縮機が低圧、高圧
の2段からなり、両圧縮機の間に中間冷却器が設けられ
ており、低圧圧縮機の出口には復水器で復水した作動流
体が中間冷却器から噴射されて低圧圧縮機出口の温度を
下げている。従って、高圧圧縮機入口温度が低下するの
で圧縮機の動力が小さくなり、上記(1)から(3)の
発明と比べ、更にタービンの出力も増大する。In (4) of the present invention, the compressor has two stages of low pressure and high pressure, an intercooler is provided between the two compressors, and a condenser is provided at the outlet of the low pressure compressor by a condenser. The watered working fluid is injected from the intercooler to lower the temperature at the outlet of the low-pressure compressor. Accordingly, since the inlet temperature of the high-pressure compressor is reduced, the power of the compressor is reduced, and the output of the turbine is further increased as compared with the above inventions (1) to (3).
【0020】[0020]
【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の第1形態に係る二酸化炭素回収型複合発電システム
の系統図である。図において、符号1〜8は図5に示す
従来の複合発電プラントと同じ構成であるので、詳しい
説明は省略し、そのまま引用して説明するが、本発明の
特徴部分は符号10,11,15で示す部分であり、以
下に詳しく説明する。Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a system diagram of a carbon dioxide capture integrated power generation system according to a first embodiment of the present invention. In the figure, reference numerals 1 to 8 have the same configuration as that of the conventional combined cycle power plant shown in FIG. This is described in detail below.
【0021】図1において、10は復水器であり、11
は二酸化炭素(CO2 )排出圧縮機、15は復水器10
の出口側と圧縮機1入口側とを接続する戻りラインであ
る。本実施の第1形態では、戻りライン15により排ガ
スボイラ4の排ガス側出口と圧縮機1入口をつないで、
かつ復水器10の出口にCO2 排出圧縮機11を備えた
ものである。即ちガスタービンコンバインドサイクル系
を閉ループ化したものである。In FIG. 1, reference numeral 10 denotes a condenser;
Is a carbon dioxide (CO 2 ) discharge compressor, 15 is a condenser 10
This is a return line connecting the outlet side of the compressor and the inlet side of the compressor 1. In the first embodiment of the present invention, the return line 15 connects the exhaust gas side outlet of the exhaust gas boiler 4 and the compressor 1 inlet,
Further, a CO 2 discharge compressor 11 is provided at the outlet of the condenser 10. That is, the gas turbine combined cycle system is a closed loop.
【0022】上記構成のシステムにおいて、燃焼器2に
は圧縮機1からの圧縮された作動流体が流入し、燃料の
CH4 が当量の酸素と共に投入される。これにより作動
流体は燃料がメタン(CH4 )主体の天然ガスの場合二
酸化炭素(CO2 )と水蒸気(H2 O)のみになり、燃
料生成物である二酸化炭素と水はタービン3へ流入し、
膨張することによりタービン3を回転させ発電機8で電
力を発生させ、仕事を終えた作動流体は排ガスボイラ4
で蒸気タービン系の閉ループに排熱を与え、復水器10
に導かれて復水する。復水器10からの作動流体は戻り
ライン15により圧縮機1へ戻される。又、復水器10
を出た作動流体のうち余分なCO2 は、CO2 排出圧縮
機11により大気圧まで圧縮されて外部へ排出される。In the system having the above-described configuration, the compressed working fluid from the compressor 1 flows into the combustor 2, and CH 4 of the fuel is injected together with an equivalent amount of oxygen. As a result, the working fluid becomes only carbon dioxide (CO 2 ) and water vapor (H 2 O) when the fuel is natural gas mainly composed of methane (CH 4 ), and carbon dioxide and water as fuel products flow into the turbine 3. ,
By expansion, the turbine 3 is rotated to generate electric power by the generator 8, and the working fluid that has completed its work is discharged from the exhaust gas boiler 4.
Gives waste heat to the closed loop of the steam turbine system by the condenser 10
It is led by water to return. The working fluid from the condenser 10 is returned to the compressor 1 via the return line 15. In addition, condenser 10
Of the working fluid that has exited, the excess CO 2 is compressed to atmospheric pressure by the CO 2 discharge compressor 11 and discharged outside.
【0023】一方、排ガスボイラ4に接続した蒸気ター
ビン系は閉ループを構成しており、排ガスボイラ4の排
熱により加熱された蒸気は蒸気タービン5へ供給され、
膨張することにより蒸気タービン5を回転させて電力を
得て、仕事を終えた低温の蒸気は復水器6へ導かれて復
水し、ポンプ7により再び排ガスボイラ4へ導かれて加
熱されて蒸気となる。On the other hand, the steam turbine system connected to the exhaust gas boiler 4 forms a closed loop, and the steam heated by the exhaust heat of the exhaust gas boiler 4 is supplied to the steam turbine 5,
By expansion, the steam turbine 5 is rotated to obtain electric power, and the low-temperature steam that has completed its work is led to the condenser 6 to be condensed, and is again led to the exhaust gas boiler 4 by the pump 7 to be heated. Turns into steam.
【0024】以上説明の実施の第1形態においては、圧
縮機1、タービン3、排ガスボイラ4、復水器10とで
閉ループを構成し、かつ排熱回収ボイラ4には蒸気ター
ビン系の閉ループを接続するようにし、かつ圧縮機1は
空気を使用しないのでNOXの発生がない。又、CO2
排出圧縮機11が多段の圧縮機で構成され、CO2 排出
圧縮機11の入口側は大気圧よりも低く、プラントの圧
力比が大きいので出力がその分大きくなる。更に従来の
PSAや膜分離法と比べてCO2 排出圧縮機11は簡略
な構成であり、装置のコストも低く抑えることができ
る。又、燃焼生成物であるCO2 とH2 Oは系から容易
に分離可能であり、CO2 の排出はCO2排出圧縮機1
1で容易になされる。In the first embodiment described above, the compressor 1, the turbine 3, the exhaust gas boiler 4, and the condenser 10 constitute a closed loop, and the exhaust heat recovery boiler 4 has a closed loop of a steam turbine system. Since the compressor 1 is connected and the compressor 1 does not use air, NO X is not generated. Also, CO 2
The discharge compressor 11 is constituted by a multi-stage compressor. The inlet side of the CO 2 discharge compressor 11 is lower than the atmospheric pressure, and the output is increased correspondingly because the pressure ratio of the plant is large. Furthermore, the CO 2 discharge compressor 11 has a simpler structure than conventional PSA and membrane separation methods, and the cost of the apparatus can be kept low. Further, a combustion products CO 2 and H 2 O are readily separated from the system, the discharge of the CO 2 is CO 2 emission compressor 1
1 facilitates this.
【0025】図2は本発明の実施の第2形態に係る二酸
化炭素回収型複合発電システムの系統図である。図にお
いて本実施の第2形態の特徴部分は符号50で示す部分
にあり、図1に示す排ガスボイラに代えてボイラ50を
設けた構成である。その他の構成は図1に示す実施の第
1形態のものと同じ構成であるので説明は省略する。FIG. 2 is a system diagram of a combined power generation system of a carbon dioxide capture type according to a second embodiment of the present invention. In the figure, a characteristic portion of the second embodiment is a portion denoted by reference numeral 50, and has a configuration in which a boiler 50 is provided instead of the exhaust gas boiler shown in FIG. The other configuration is the same as that of the first embodiment shown in FIG.
【0026】図において50はボイラであり、排ガスボ
イラ50aと蒸気発生用のボイラ50bとから構成され
ている。排ガスボイラ50aは図1に示す排ガスボイラ
4に相当し、タービン3からの排気を導きその排熱を蒸
気タービン系に与えるものである。ボイラ50bは、上
位のタービン3の系を停止し、下位の蒸気タービン系の
み単独運転する場合に作動させるもので、この場合にの
み蒸気タービン系の蒸気を加熱して蒸気タービン5へ供
給し、蒸気タービン系を単独運転可能とするものであ
る。このような実施の第2形態においても、図1の実施
の第1形態と同じく、NOX の発生をなくし、発電効率
を高めることができる。In the figure, reference numeral 50 denotes a boiler, which comprises an exhaust gas boiler 50a and a boiler 50b for generating steam. The exhaust gas boiler 50a corresponds to the exhaust gas boiler 4 shown in FIG. 1 and guides exhaust gas from the turbine 3 and gives the exhaust heat to the steam turbine system. The boiler 50b stops the system of the upper turbine 3 and operates when only the lower steam turbine system is operated alone. Only in this case, the steam of the steam turbine system is heated and supplied to the steam turbine 5, The steam turbine system can be operated independently. In the second embodiment of this embodiment, as in the first embodiment of FIG. 1, without the occurrence of NO X, it is possible to enhance the power generation efficiency.
【0027】図3は本発明の実施の第3形態に係る二酸
化炭素回収型複合発電システムの系統図である。本実施
の第3形態の特徴部分は符号12の部分にあり、その他
の構成は図1に示す実施の第1形態のものと同じであ
り、これらの部分の説明は省略する。FIG. 3 is a system diagram of a combined power generation system with carbon dioxide capture according to a third embodiment of the present invention. The features of the third embodiment are indicated by reference numeral 12, and the other configuration is the same as that of the first embodiment shown in FIG. 1, and the description of these portions will be omitted.
【0028】図において12は再生熱交換器であり、圧
縮機1の出口ガスは再生熱交換器12に流入し、タービ
ン3の出口ガスとで熱交換し、圧縮機1の出口ガスは温
度が高められて燃焼器2へ供給され、燃焼器2の燃料量
を減少させ、熱効率を高める。このような実施の第3形
態においては、図1に示す実施の第1形態と同様にNO
X が発生せず、実施の第1形態よりも一層発電効率を高
める効果を奏する。In the figure, reference numeral 12 denotes a regenerative heat exchanger. The outlet gas of the compressor 1 flows into the regenerative heat exchanger 12 and exchanges heat with the outlet gas of the turbine 3. The fuel is increased and supplied to the combustor 2 to reduce the fuel amount of the combustor 2 and increase the thermal efficiency. In such a third embodiment, NO as in the first embodiment shown in FIG.
X is not generated, and the effect of increasing the power generation efficiency further than in the first embodiment is achieved.
【0029】図4は本発明の実施の第4形態に係る二酸
化炭素回収型複合発電システムの系統図であり、本実施
の第4形態の特徴部分は圧縮機を低圧圧縮機1aと高圧
圧縮機1bとに分割し、かつ両圧縮機1a,1bとの間
に中間冷却器13を設け、復水の一部を中間冷却器13
へポンプ14で供給するようにした構成であり、その他
の構成は図1に示す実施の第1形態と同じ構成であるの
で、これらの部分の説明は省略する。FIG. 4 is a system diagram of a carbon dioxide recovery combined cycle power generation system according to a fourth embodiment of the present invention. The features of the fourth embodiment are that the compressor is a low-pressure compressor 1a and a high-pressure compressor. 1b, and an intercooler 13 is provided between the two compressors 1a and 1b.
Since the pump is supplied by the pump 14, and other configurations are the same as those of the first embodiment shown in FIG. 1, the description of these portions will be omitted.
【0030】図4において、燃焼器2へ供給される作動
流体は、低圧圧縮機1aと高圧圧縮機1bとで圧縮さ
れ、燃焼器2において燃料のCH4 と当量のO2 とで燃
焼し、タービン3を駆動する。タービン3で仕事をした
作動流体は排ガスボイラ4へ流入し、蒸気タービン系に
排熱を与えて復水器10で復水し、一部は低圧圧縮機1
aに戻りライン15を通って戻り、又、燃焼生成物であ
るCO2 はCO2 排出圧縮機11で図1と同様に外部へ
排出される。In FIG. 4, the working fluid supplied to the combustor 2 is compressed by the low-pressure compressor 1a and the high-pressure compressor 1b, and burns in the combustor 2 with the equivalent of CH 4 of fuel and O 2 , The turbine 3 is driven. The working fluid that has worked in the turbine 3 flows into the exhaust gas boiler 4, gives exhaust heat to the steam turbine system, and condenses water in the condenser 10.
Returning to a, through the return line 15, CO 2 as a combustion product is discharged to the outside by the CO 2 discharge compressor 11 in the same manner as in FIG.
【0031】復水器10で復水した水の一部はポンプ1
4により中間冷却器13へ導かれ低圧圧縮機1aと高圧
圧縮機1bとの中間に供給され、高圧圧縮機1bへ流入
する作動流体を冷却する。これにより圧縮機の動力が小
さくなり発電プラントの出力が上昇する。A part of the water condensed in the condenser 10 is supplied to the pump 1
4 cools the working fluid that is guided to the intercooler 13 and is supplied between the low-pressure compressor 1a and the high-pressure compressor 1b and flows into the high-pressure compressor 1b. This reduces the power of the compressor and increases the output of the power plant.
【0032】上記に説明の実施の第4形態によれば、図
1に示す実施の第1形態と同様にNOX の発生がなく、
又、実施の第1形態よりも一層出力を増大させることが
できる。又、図1と同様にCO2 排出圧縮機11により
燃焼生成物である余分のCO 2 も容易に排出させること
ができる。According to the fourth embodiment described above, FIG.
NO as in the first embodiment shown in FIG.XWithout the occurrence of
Further, it is possible to further increase the output than in the first embodiment.
it can. Also, as in FIG.TwoBy discharge compressor 11
Excess CO, a product of combustion TwoCan also be easily discharged
Can be.
【0033】[0033]
【発明の効果】本発明の二酸化炭素回収型複合発電シス
テムは、(1)二酸化炭素と水蒸気からなる作動流体を
圧縮する圧縮機と、同圧縮機からの作動流体と共に燃料
を燃焼させ高温の作動流体を発生させる燃焼器と、同燃
焼器からの高温作動流体を膨張させて電力を得るタービ
ンと、同タービンから排出される作動流体の排熱で蒸気
タービン系の蒸気を加熱する熱交換器と、同熱交換器か
ら流出する低温作動流体を復水する復水器と、同復水器
からの作動流体を前記圧縮機へ戻す戻りラインと、同戻
りラインから二酸化炭素を排出する排出圧縮機とを備え
てなることを特徴としている。このようなシステムによ
り、圧縮機は空気を吸い込むことなく、閉ループにより
CO2 とH2 OのみからなるのでNOX が発生すること
がない。又、構造が簡潔な排出圧縮機を用いてH2 Oと
CO2 とを容易に分離することができ、圧力比を大きく
して出力を向上させることができる。The combined power generation system of the present invention has the following features. (1) A compressor for compressing a working fluid composed of carbon dioxide and water vapor, and a high-temperature operation by burning fuel together with the working fluid from the compressor. A combustor that generates fluid, a turbine that expands a high-temperature working fluid from the combustor to obtain electric power, and a heat exchanger that heats steam of a steam turbine system by exhaust heat of the working fluid discharged from the turbine. A condenser for condensing low-temperature working fluid flowing out of the heat exchanger, a return line for returning working fluid from the condenser to the compressor, and a discharge compressor for discharging carbon dioxide from the return line. It is characterized by comprising. Such a system, the compressor without sucking air, never NO X occurs since only CO 2 and H 2 O by a closed loop. Further, H 2 O and CO 2 can be easily separated using a discharge compressor having a simple structure, and the output can be improved by increasing the pressure ratio.
【0034】本発明の(2)では、熱交換器が排熱回収
ボイラと蒸気タービン系単独の蒸気発生用のボイラの両
方の機能を有するので、ガスタービン系と蒸気タービン
系の両サイクルが作動している時には、タービンの排熱
を蒸気タービン系に与えて蒸気を加熱する排熱ボイラと
して機能し、蒸気タービン系を単独運転する場合には、
蒸気を発生させる蒸気タービン用のボイラとして機能す
る。従って、上記(1)の発明の運用幅が広がり、機能
が向上する。In (2) of the present invention, since the heat exchanger has both functions of an exhaust heat recovery boiler and a steam generator-only boiler, both cycles of the gas turbine system and the steam turbine system operate. When the steam turbine system is operating independently, it functions as a waste heat boiler that gives steam from the turbine to the steam turbine system to heat the steam.
It functions as a boiler for a steam turbine that generates steam. Therefore, the operational range of the invention (1) is expanded, and the function is improved.
【0035】本発明の(3)では、圧縮機で圧縮された
作動流体は再生熱交換器でタービンの排熱で加熱されて
温度が高まり、燃焼器へ供給されるので、上記(1)又
は(2)の発明よりは燃料量を少くすることができ、熱
効率を高めることができる。In the method (3) of the present invention, the working fluid compressed by the compressor is heated by the exhaust heat of the turbine in the regenerative heat exchanger to increase the temperature and is supplied to the combustor. The fuel amount can be reduced and the thermal efficiency can be increased as compared with the invention of (2).
【0036】本発明の(4)では、圧縮機が低圧、高圧
の2段からなり、両圧縮機の間に中間冷却器が設けられ
ており、低圧圧縮機の出口には復水器で復水した作動流
体が中間冷却器から噴射されて低圧圧縮機出口の温度を
下げている。従って、高圧圧縮機入口温度が低下するの
で圧縮機の動力が小さくなり、上記(1)から(3)の
発明と比べ、更にタービンの出力も増大する。In (4) of the present invention, the compressor has two stages of low pressure and high pressure, an intercooler is provided between both compressors, and a condenser is provided at the outlet of the low pressure compressor by a condenser. The watered working fluid is injected from the intercooler to lower the temperature at the outlet of the low-pressure compressor. Accordingly, since the inlet temperature of the high-pressure compressor is reduced, the power of the compressor is reduced, and the output of the turbine is further increased as compared with the above inventions (1) to (3).
【0037】本発明の(5)では、蒸気タービン系が蒸
気タービン、蒸気タービン系復水器、ポンプを有し、熱
交換器の排気で加熱されるループを構成しており、この
ようなシステムを備えて上記(1)の発明と同様の効果
が得られる。In (5) of the present invention, the steam turbine system has a steam turbine, a steam turbine system condenser, and a pump, and forms a loop heated by the exhaust gas of the heat exchanger. And the same effect as the invention of the above (1) can be obtained.
【図1】本発明の実施の第1形態に係る二酸化炭素回収
型複合発電システムの系統図である。FIG. 1 is a system diagram of a carbon dioxide capture integrated power generation system according to a first embodiment of the present invention.
【図2】本発明の実施の第2形態に係る二酸化炭素回収
型複合発電システムの系統図である。FIG. 2 is a system diagram of a carbon dioxide capture integrated power generation system according to a second embodiment of the present invention.
【図3】本発明の実施の第3形態に係る二酸化炭素回収
型複合発電システムの系統図である。FIG. 3 is a system diagram of a carbon dioxide capture integrated power generation system according to a third embodiment of the present invention.
【図4】本発明の実施の第4形態に係る二酸化炭素回収
型複合発電システムの系統図である。FIG. 4 is a system diagram of a carbon dioxide capture integrated power generation system according to a fourth embodiment of the present invention.
【図5】従来のガスタービンコンバインドプラントの系
統図である。FIG. 5 is a system diagram of a conventional gas turbine combined plant.
【図6】従来の燃焼器へ蒸気を噴射するガスタービンプ
ラントの系統図である。FIG. 6 is a system diagram of a conventional gas turbine plant that injects steam into a combustor.
1 圧縮機 2 燃焼器 3 タービン 4 排ガスボイラ 5 蒸気タービン 6,10 復水器 7,14 ポンプ 8 発電機 11 二酸化炭素排出圧縮機 12 再生熱交換器 13 中間冷却器 15 ライン 50 蒸気発生装置 DESCRIPTION OF SYMBOLS 1 Compressor 2 Combustor 3 Turbine 4 Exhaust gas boiler 5 Steam turbine 6,10 Condenser 7,14 Pump 8 Generator 11 Carbon dioxide discharge compressor 12 Regeneration heat exchanger 13 Intercooler 15 Line 50 Steam generator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上松 一雄 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 辻 正 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 Fターム(参考) 3G081 BA02 BA11 BB00 BC07 BD00 DA22 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuo Agematsu 2-1-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Works, Mitsubishi Heavy Industries, Ltd. (72) Tadashi Tadashi 2-1-1, Niihama, Arai-machi, Takasago City, Hyogo Prefecture No. 1 F-term in Takasago Works, Mitsubishi Heavy Industries, Ltd. (reference) 3G081 BA02 BA11 BB00 BC07 BD00 DA22
Claims (5)
圧縮する圧縮機と、同圧縮機からの作動流体と共に燃料
を燃焼させ高温の作動流体を発生させる燃焼器と、同燃
焼器からの高温作動流体を膨張させて電力を得るタービ
ンと、同タービンから排出される作動流体の排熱で蒸気
タービン系の蒸気を加熱する熱交換器と、同熱交換器か
ら流出する低温作動流体を復水する復水器と、同復水器
からの作動流体を前記圧縮機へ戻す戻りラインと、同戻
りラインから二酸化炭素を排出する排出圧縮機とを備え
てなることを特徴とする二酸化炭素回収型複合発電シス
テム。1. A compressor for compressing a working fluid composed of carbon dioxide and water vapor, a combustor for burning fuel together with the working fluid from the compressor to generate a high-temperature working fluid, and a high-temperature operation from the combustor. A turbine that obtains electric power by expanding the fluid, a heat exchanger that heats steam of a steam turbine system by exhaust heat of the working fluid discharged from the turbine, and condenses low-temperature working fluid flowing out of the heat exchanger A condenser, a return line for returning a working fluid from the condenser to the compressor, and a discharge compressor for discharging carbon dioxide from the return line. Power generation system.
気タービン系の両方が作動する場合には排熱回収ボイラ
として作動し、前記蒸気タービン系が単独運転する場合
には蒸気発生用ボイラとして作動することを特徴とする
請求項1記載の二酸化炭素回収型複合発電システム。2. The heat exchanger operates as an exhaust heat recovery boiler when both the turbine and the steam turbine system operate, and as a steam generating boiler when the steam turbine system operates alone. The combined power generation system according to claim 1, which operates.
換器へ導く流路には再生熱交換器を設け、同再生熱交換
器は前記圧縮機で圧縮した作動流体を前記タービンの排
熱で加熱して前記燃焼器へ供給することを特徴とする請
求項1又は2記載の二酸化炭素回収型複合発電システ
ム。3. A regenerative heat exchanger is provided in a flow path for guiding the working fluid from the turbine to the heat exchanger, and the regenerative heat exchanger converts the working fluid compressed by the compressor by exhaust heat of the turbine. The combined power generation system according to claim 1, wherein the combined power generation system is heated and supplied to the combustor.
接続して構成され、両圧縮機の間には中間冷却器を設
け、同中間冷却器には前記復水器で復水した作動流体の
一部を供給し、前記低圧圧縮機出口の作動流体の温度を
下げることを特徴とする請求項1から3のいずれかに記
載の二酸化炭素回収型複合発電システム。4. The compressor is configured by connecting a low-pressure compressor and a high-pressure compressor, an intercooler is provided between the two compressors, and the intercooler is condensed by the condenser. The combined power generation system according to any one of claims 1 to 3, wherein a part of the working fluid is supplied to lower the temperature of the working fluid at the outlet of the low-pressure compressor.
圧縮する圧縮機と、同圧縮機からの作動流体と共に燃料
を燃焼させ高温の作動流体を発生させる燃焼器と、同燃
焼器からの高温作動流体を膨張させて電力を得るタービ
ンと、同タービンから排出される作動流体の排熱を回収
する熱交換器と、同熱交換器で加熱された蒸気を導き膨
張させて電力を得る蒸気タービンと、同蒸気タービンの
排気を復水する復水器と、同復水器からの復水を前記熱
交換器に戻すポンプと、前記熱交換器から流出する前記
タービンの排気を復水する復水器と、同復水器からの作
動流体を前記圧縮機へ戻す戻りラインと、同戻りライン
から二酸化炭素を排出する排出圧縮機とを備えてなるこ
とを特徴とする二酸化炭素回収型複合発電システム。5. A compressor for compressing a working fluid composed of carbon dioxide and water vapor, a combustor for burning fuel together with the working fluid from the compressor to generate a high-temperature working fluid, and a high-temperature operation from the combustor. A turbine that obtains electric power by expanding a fluid, a heat exchanger that recovers exhaust heat of a working fluid discharged from the turbine, and a steam turbine that obtains electric power by introducing and expanding steam heated by the heat exchanger. A condenser for condensing exhaust of the steam turbine, a pump for returning condensate from the condenser to the heat exchanger, and a condensate for condensing exhaust of the turbine flowing out of the heat exchanger , A return line for returning the working fluid from the condenser to the compressor, and a discharge compressor for discharging carbon dioxide from the return line; .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11147914A JP2000337108A (en) | 1999-05-27 | 1999-05-27 | Carbon dioxide recovery type combined generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11147914A JP2000337108A (en) | 1999-05-27 | 1999-05-27 | Carbon dioxide recovery type combined generating system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000337108A true JP2000337108A (en) | 2000-12-05 |
Family
ID=15440966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11147914A Withdrawn JP2000337108A (en) | 1999-05-27 | 1999-05-27 | Carbon dioxide recovery type combined generating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000337108A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2401403A (en) * | 2003-05-08 | 2004-11-10 | Rolls Royce Plc | Carbon dioxide recirculation for a heat engine |
JP2005002998A (en) * | 2003-06-10 | 2005-01-06 | Inst Fr Petrole | Fume processing method with energy recovery |
JP2006506568A (en) * | 2002-06-21 | 2006-02-23 | サーガス・エーエス | Low exhaust thermal power generator |
JP2008163873A (en) * | 2006-12-28 | 2008-07-17 | Mitsubishi Heavy Ind Ltd | Solid fuel gasified gas using plant |
JP2010516941A (en) * | 2007-01-25 | 2010-05-20 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | How to reduce carbon dioxide emissions at power plants |
RU2394992C1 (en) * | 2006-10-26 | 2010-07-20 | Фостер Уилер Энерджи Корпорейшн | Method and device for recovering co2 at oxy-combustion |
RU2406024C2 (en) * | 2008-04-07 | 2010-12-10 | Мицубиси Хеви Индастриз, Лтд. | Method of furnace gas treatment and device for its implementation |
CN102094686A (en) * | 2010-12-14 | 2011-06-15 | 哈尔滨工程大学 | Gas, steam and hot air combined circulation device for power generation |
CN102753790A (en) * | 2010-02-08 | 2012-10-24 | 国际壳牌研究有限公司 | Power plant with magnetohydrodynamic topping cycle |
DE102014003283A1 (en) | 2013-03-05 | 2014-09-11 | Ari Löytty | METHOD AND APPARATUS FOR ACHIEVING A HIGH EFFICIENCY IN AN OPEN GAS TURBINE (COMBI) PROCESS |
JP2020139480A (en) * | 2019-02-28 | 2020-09-03 | 三菱日立パワーシステムズ株式会社 | Gas turbine plant and discharged carbon dioxide recovery method for the same |
CN111894735A (en) * | 2020-07-08 | 2020-11-06 | 南京工程学院 | A hydrogen gas turbine combined cycle polygeneration method without NOx emission |
-
1999
- 1999-05-27 JP JP11147914A patent/JP2000337108A/en not_active Withdrawn
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006506568A (en) * | 2002-06-21 | 2006-02-23 | サーガス・エーエス | Low exhaust thermal power generator |
NO339637B1 (en) * | 2003-05-08 | 2017-01-16 | Lg Fuel Cell Systems Inc | Karbondioksydresirkulering |
US8247124B2 (en) | 2003-05-08 | 2012-08-21 | Rolls-Royce Plc | Carbon dioxide recirculating apparatus |
GB2401403B (en) * | 2003-05-08 | 2006-05-31 | Rolls Royce Plc | Carbon dioxide recirculation |
US7377111B2 (en) | 2003-05-08 | 2008-05-27 | Rolls-Royce Plc | Carbon dioxide recirculation |
GB2401403A (en) * | 2003-05-08 | 2004-11-10 | Rolls Royce Plc | Carbon dioxide recirculation for a heat engine |
JP2005002998A (en) * | 2003-06-10 | 2005-01-06 | Inst Fr Petrole | Fume processing method with energy recovery |
RU2394992C1 (en) * | 2006-10-26 | 2010-07-20 | Фостер Уилер Энерджи Корпорейшн | Method and device for recovering co2 at oxy-combustion |
US7927568B2 (en) | 2006-10-26 | 2011-04-19 | Foster Wheeler Energy Corporation | Method of and apparatus for CO2 capture in oxy-combustion |
JP2008163873A (en) * | 2006-12-28 | 2008-07-17 | Mitsubishi Heavy Ind Ltd | Solid fuel gasified gas using plant |
JP2010516941A (en) * | 2007-01-25 | 2010-05-20 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | How to reduce carbon dioxide emissions at power plants |
EP2423576A3 (en) * | 2008-04-07 | 2013-11-20 | Mitsubishi Heavy Industries, Ltd. | Method and apparatus for flue gas treatment |
EP2423576A2 (en) | 2008-04-07 | 2012-02-29 | Mitsubishi Heavy Industries, Ltd. | Method and apparatus for flue gas treatment |
US8728423B2 (en) | 2008-04-07 | 2014-05-20 | Mitsubishi Heavy Industries, Ltd. | Method and apparatus for flue gas treatment |
RU2406024C2 (en) * | 2008-04-07 | 2010-12-10 | Мицубиси Хеви Индастриз, Лтд. | Method of furnace gas treatment and device for its implementation |
CN102753790A (en) * | 2010-02-08 | 2012-10-24 | 国际壳牌研究有限公司 | Power plant with magnetohydrodynamic topping cycle |
CN102094686A (en) * | 2010-12-14 | 2011-06-15 | 哈尔滨工程大学 | Gas, steam and hot air combined circulation device for power generation |
DE102014003283A1 (en) | 2013-03-05 | 2014-09-11 | Ari Löytty | METHOD AND APPARATUS FOR ACHIEVING A HIGH EFFICIENCY IN AN OPEN GAS TURBINE (COMBI) PROCESS |
US20140250905A1 (en) * | 2013-03-05 | 2014-09-11 | Ari Löytty | Method and apparatus for achieving a high efficiency in an open gas-turbine (combi) process |
US9617875B2 (en) | 2013-03-05 | 2017-04-11 | Ari Löytty | Method and apparatus for achieving a high efficiency in an open gas-turbine (COMBI) process |
JP2020139480A (en) * | 2019-02-28 | 2020-09-03 | 三菱日立パワーシステムズ株式会社 | Gas turbine plant and discharged carbon dioxide recovery method for the same |
WO2020175012A1 (en) * | 2019-02-28 | 2020-09-03 | 三菱日立パワーシステムズ株式会社 | Gas turbine plant and exhaust carbon dioxide recovery method therefor |
US11555429B2 (en) | 2019-02-28 | 2023-01-17 | Mitsubishi Heavy Industries, Ltd. | Gas turbine plant and exhaust carbon dioxide recovery method therefor |
JP7330718B2 (en) | 2019-02-28 | 2023-08-22 | 三菱重工業株式会社 | Gas turbine plant and its exhaust carbon dioxide recovery method |
CN111894735A (en) * | 2020-07-08 | 2020-11-06 | 南京工程学院 | A hydrogen gas turbine combined cycle polygeneration method without NOx emission |
CN111894735B (en) * | 2020-07-08 | 2022-04-26 | 南京工程学院 | Hydrogen gas turbine combined cycle poly-generation method without NOx emission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101235752B (en) | Power plants that utilize gas turbines for power generation and processes for lowering co2 emissions | |
US6148602A (en) | Solid-fueled power generation system with carbon dioxide sequestration and method therefor | |
US6877322B2 (en) | Advanced hybrid coal gasification cycle utilizing a recycled working fluid | |
JP5043602B2 (en) | System and method for power generation with carbon dioxide isolation | |
CN100400802C (en) | Optimized energy generation system including oxy-fired burners combined with air separation units | |
US6684643B2 (en) | Process for the operation of a gas turbine plant | |
US20040011057A1 (en) | Ultra-low emission power plant | |
US20080010967A1 (en) | Method for Generating Energy in an Energy Generating Installation Having a Gas Turbine, and Energy Generating Installation Useful for Carrying Out the Method | |
CN101238342B (en) | Method for operating a gas turbine as well as a gas turbine for implementing the method | |
RU2594096C2 (en) | Device for compression of carbon dioxide | |
JP2012062897A (en) | Method for capturing co2 from exhaust gas | |
TW201213650A (en) | Stoichiometric combustion with exhaust gas recirculation and direct contact cooler | |
CN102032049A (en) | Methods and systems involving carbon sequestration and engines | |
MX2012014223A (en) | Low emission triple-cycle power generation systems and methods. | |
WO2007098239A2 (en) | Hybrid oxy-fuel combustion power process | |
JP2000337108A (en) | Carbon dioxide recovery type combined generating system | |
KR101586105B1 (en) | Thermal power plant with CO2 sequestration | |
WO2008119784A2 (en) | Arrangement with a steam turbine and a condenser | |
WO2001075277A1 (en) | Solid-fueled power generation system with carbon dioxide sequestration and method therefor | |
JP2013530815A (en) | Method for reducing CO2 emission in combustion flow and industrial plant using the same | |
CN109681325A (en) | Natural gas-supercritical CO of zero carbon emission2Combined cycle generating process | |
CN109578098A (en) | The Natural Gas Co-generation electrification technique of zero carbon emission | |
JP4467758B2 (en) | CO2 gas recovery type gas turbine power plant and operation method thereof | |
JPH03145523A (en) | Thermoelectric power plant and themoelectric power generating method | |
JP2000345857A (en) | Repowering system using low temperature steam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060801 |