JP2000336430A - Magnetic domain control method for grain-oriented electrical steel sheets - Google Patents
Magnetic domain control method for grain-oriented electrical steel sheetsInfo
- Publication number
- JP2000336430A JP2000336430A JP11146500A JP14650099A JP2000336430A JP 2000336430 A JP2000336430 A JP 2000336430A JP 11146500 A JP11146500 A JP 11146500A JP 14650099 A JP14650099 A JP 14650099A JP 2000336430 A JP2000336430 A JP 2000336430A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- grain
- electrical steel
- steel sheet
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
Landscapes
- Laser Beam Processing (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
(57)【要約】
【課題】 レーザビームの照射により磁気特性を改善す
る方向性電磁鋼板に関し、簡単な照射装置で、高速の処
理が可能で、且つ通板速度変化に柔軟に対応できる方向
性電磁鋼板の磁区制御方法を提供する。
【解決手段】 レーザを照射して磁気特性を改善する方
向性電磁鋼板の製造方法において、複数台のパルスレー
ザ装置を板幅方向全長にわたり配列し、各パルスレーザ
からのレーザビームを板幅方向に長い線状ビームに集光
し、これらの線状ビームの線方向が通板方向にほぼ垂直
であり、鋼板の通板速度に同期して各パルスレーザを同
一周波数で照射することを特徴とする方向性電磁鋼板の
レーザ磁区制御方法であり、またパルスレーザのパルス
周波数をF、鋼板の通板速度をVとし、線状ビームの通
板方向の照射間隔aに対して、F=V/aとなるように
レーザパルス周波数が通板速度に同期する方向性電磁鋼
板の磁区制御方法。
(57) [Problem] To provide a grain-oriented electrical steel sheet whose magnetic properties are improved by irradiating a laser beam with a simple irradiator, capable of high-speed processing, and capable of flexibly responding to a change in sheet passing speed. Provided is a magnetic domain control method for an electrical steel sheet. SOLUTION: In a method of manufacturing a grain-oriented electrical steel sheet for improving magnetic properties by irradiating a laser, a plurality of pulse laser devices are arranged over the entire length in the width direction of the sheet, and a laser beam from each pulse laser is emitted in the width direction of the plate. Focusing on long linear beams, the linear directions of these linear beams are almost perpendicular to the passing direction, and each pulsed laser is irradiated at the same frequency in synchronization with the passing speed of the steel sheet. This is a method for controlling the magnetic domain of a grain-oriented electrical steel sheet. The pulse frequency of the pulsed laser is F, the passing speed of the steel sheet is V, and the irradiation interval a of the linear beam in the passing direction is F = V / a. A magnetic domain control method for grain-oriented electrical steel sheets in which the laser pulse frequency is synchronized with the sheet passing speed such that
Description
【0001】[0001]
【発明の属する技術分野】本発明は、レーザビームの照
射により磁気特性を改善する方向性電磁鋼板の製造方法
に係わる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet whose magnetic properties are improved by laser beam irradiation.
【0002】[0002]
【従来の技術】方向性電磁鋼板は圧延方向に磁化容易方
向が揃った電磁鋼板であり、磁壁は圧延方向に平行に形
成されている。この磁壁間隔である磁区幅が狭いほど鉄
損は低い。そのため従来より磁区を細分化する磁区制御
技術が種々提案され、実用化されてきた。中でも特開昭
55-18566号公報に開示されるように、鋼板の表面にパル
スレーザ、あるいは連続波レーザビームを集光照射し
て、局所的な歪みを導入し、その歪みを基点として磁区
を細分化する方法は鉄損改善効果が大きく、且つ非接触
加工であることから信頼性・制御性も高い非常に優れた
方向性電磁鋼板の磁区制御法である。2. Description of the Related Art A grain-oriented electrical steel sheet is an electrical steel sheet in which the direction of easy magnetization is aligned with the rolling direction, and the domain wall is formed parallel to the rolling direction. The smaller the magnetic domain width, which is the domain wall interval, the lower the iron loss. Therefore, various magnetic domain control techniques for subdividing magnetic domains have been proposed and put into practical use. Above all, JP
As disclosed in Japanese Patent Application Laid-Open No. 55-18566, a method in which a pulse laser or a continuous wave laser beam is condensed and irradiated on the surface of a steel sheet to introduce local distortion and subdivide magnetic domains based on the distortion. Is a magnetic domain control method for grain-oriented electrical steel sheets, which has a great effect of improving iron loss and has high reliability and controllability because of non-contact processing.
【0003】方向性電磁鋼鈑のレーザ磁区制御工程にお
いては圧延方向と通板方向は一致しており、レーザ照射
のパターンは図3に示すように鋼鈑の通板方向にほぼ垂
直で周期的な線状である。このような通板方向に周期的
な照射パターンでは、各線状歪みの磁区細分化効果の影
響範囲が照射線間隔aに比べ大きければ、鋼板全面にわ
たり磁区が細分化され、鉄損が低減される。パルスレー
ザ照射の場合は図3に示すように連続する照射点列の集
合により実効的な線状照射パターンとなり、連続波レー
ザの場合は必然的に連続的な照射パターンとなる。どち
らの方法でも照射条件を最適化することで良好な鉄損低
減効果が得られる。ところで周期的な線状照射を行うた
めに従来より図2にあるような照射光学装置が用いられ
ている。この方法ではレーザ装置7から出力されたレー
ザビームはビーム分割装置8によりA相、B相に時間的
に分割され、更にそれぞれポリゴンミラーやあるいはガ
ルバノミラー10で高速にスキャンされ、更にfθレン
ズで集光され、方向性電磁鋼板5に照射されなければな
らず、光学装置が複雑であった。更に磁気特性を良好な
値で一定に保つには照射間隔aを一定に保つ必要があ
る。しかし実際の連続製造工程ではレーザ照射の前後工
程の影響で通板速度が変動する場合がある。その際にa
を一定に保つにはビーム分割装置、スキャン装置の機械
的な同期を取りつつ、それぞれの回転速度とスキャン速
度を再調整しなければならない。しかしこれらの機械的
な動作を高速で制御することは困難であった。In the laser domain control process of the directional electromagnetic steel sheet, the rolling direction and the sheet passing direction coincide with each other, and the pattern of laser irradiation is periodically perpendicular to the sheet passing direction of the steel sheet as shown in FIG. It is a linear shape. In such an irradiation pattern that is periodic in the sheet passing direction, if the influence range of the magnetic domain refining effect of each linear distortion is larger than the irradiation line interval a, the magnetic domains are subdivided over the entire steel sheet, and iron loss is reduced. . In the case of pulse laser irradiation, as shown in FIG. 3, an effective linear irradiation pattern is formed by a set of continuous irradiation point sequences, and in the case of continuous wave laser, a continuous irradiation pattern is inevitably obtained. In both cases, a good iron loss reduction effect can be obtained by optimizing the irradiation conditions. Incidentally, an irradiation optical device as shown in FIG. 2 has been conventionally used for performing periodic linear irradiation. In this method, a laser beam output from a laser device 7 is time-divided into an A phase and a B phase by a beam splitting device 8, further scanned at high speed by a polygon mirror or a galvano mirror 10, respectively, and further collected by an fθ lens. The optical device has to be illuminated and applied to the grain-oriented electrical steel sheet 5, and the optical device is complicated. Furthermore, in order to keep the magnetic characteristics constant at a good value, it is necessary to keep the irradiation interval a constant. However, in the actual continuous manufacturing process, the sheet passing speed may fluctuate due to the influence of processes before and after laser irradiation. At that time a
In order to keep the constant, it is necessary to readjust the rotational speed and the scanning speed of each of the beam splitters and the scanning devices while maintaining mechanical synchronization. However, it has been difficult to control these mechanical operations at high speed.
【0004】[0004]
【発明が解決しようとする課題】本発明の課題は、レー
ザビームの照射により磁気特性を改善する方向性電磁鋼
板に関し、簡単な照射装置で、高速の処理が可能で、且
つ通板速度変化に柔軟に対応できる方向性電磁鋼板の磁
区制御方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a grain-oriented electrical steel sheet whose magnetic properties are improved by irradiation with a laser beam. An object of the present invention is to provide a magnetic domain control method of a grain-oriented electrical steel sheet that can flexibly respond.
【0005】[0005]
【課題を解決するための手段】本発明はレーザを照射し
て磁気特性を改善する方向性電磁鋼板の製造方法におい
て、複数台のパルスレーザ装置を板幅方向に配列し、各
パルスレーザからのレーザビームを板幅方向に長く、且
つ通板方向にほぼ垂直な線状ビームに集光し、前記板幅
方向全幅にわたり照射するとともに、すべてのパルスレ
ーザを同一周波数で照射することを特徴とする方向性電
磁鋼板の磁区制御方法である。According to the present invention, there is provided a method for manufacturing a grain-oriented electrical steel sheet for improving magnetic properties by irradiating a laser. The laser beam is focused on a linear beam that is long in the plate width direction and is substantially perpendicular to the plate passing direction, and is irradiated over the entire width in the plate width direction, and all pulse lasers are irradiated at the same frequency. This is a magnetic domain control method for grain-oriented electrical steel sheets.
【0006】[0006]
【実施例】以下に本発明を実施例を用いて詳しく説明す
る。図1は本発明の実施例の説明図である。レーザ照射
装置1はパルス発振型の多段アレイ型半導体レーザと一
体型組み合わせレンズから構成され、図4に図解されて
いる。図4に示すように多段アレイ半導体レーザ12は
アレイ半導体レーザ13を多段に積層したものであり、
一段当たり約100Wのピークパワーを持つパルスレー
ザを出力する。よって例えば8段の組み合わせで800
Wのピーク出力が得られる。半導体レーザ装置はパルス
変調電流により駆動され、その変調電流と同じ周波数、
パルス時間幅のパルスレーザ光が得られる。パルス時間
幅はパルスデューティ20%以下において、5〜200
μs の範囲で可変であり、電源能力にも依るが1kHz 程
度の周波数で発振可能である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. FIG. 1 is an explanatory diagram of an embodiment of the present invention. The laser irradiation apparatus 1 includes a pulse oscillation type multi-stage array type semiconductor laser and an integrated combination lens, and is illustrated in FIG. As shown in FIG. 4, the multi-stage array semiconductor laser 12 is obtained by stacking the array semiconductor lasers 13 in multiple stages.
A pulse laser having a peak power of about 100 W per stage is output. Therefore, for example, 800
A peak output of W is obtained. The semiconductor laser device is driven by a pulse modulation current, and has the same frequency as the modulation current,
A pulse laser beam having a pulse time width is obtained. The pulse time width is 5 to 200 when the pulse duty is 20% or less.
It is variable in the range of μs, and can oscillate at a frequency of about 1 kHz, depending on the power supply capacity.
【0007】次にレーザ光の集光照射光学系について説
明する。アレイ半導体レーザの各アレイからのレーザ光
はまず通板方向の拡散をマイクロシリンドリカルレンズ
アレイ14でコリメートし、次に通板方向シリンドリカ
ルレンズ15で集光される。次にそれと直交する板幅方
向シリンドリカルレンズ16で集光、または拡大され
る。その結果、通板方向に0.1mm 程度の微小な幅を持
ち、板幅方向には10mm程度の線状ビーム6が形成され
る。ここで14〜16のレンズは調整機構などを省略し
て一体型レンズとして製作される。 これらの半導体レ
ーザ12とレンズからなる照射装置1は一つの装置当た
りのサイズは図1中に示すように奥行き100mm、板幅
方向幅20mm、通板方向幅150mm程度で非常にコン
パクトである。Next, an optical system for converging and irradiating a laser beam will be described. The laser light from each array of the arrayed semiconductor lasers is first collimated by the micro-cylindrical lens array 14 in the light passing direction, and then focused by the light passing direction cylindrical lens 15. Next, the light is condensed or magnified by the cylindrical lens 16 in the plate width direction orthogonal thereto. As a result, a linear beam 6 having a minute width of about 0.1 mm in the sheet passing direction and about 10 mm in the sheet width direction is formed. Here, the lenses 14 to 16 are manufactured as an integrated lens by omitting the adjustment mechanism and the like. The irradiation device 1 composed of these semiconductor lasers 12 and lenses is very compact with a size per device of about 100 mm in depth, about 20 mm in the board width direction, and about 150 mm in the board direction, as shown in FIG.
【0008】単一照射装置からの線状ビーム幅は板幅方
向に10mmであることから、図1に示すように、これらの
照射装置100個を、例えば2相に分けて並べることで
1000mm幅の鋼鈑全面に線状ビームが照射できる。こ
こで2相に分けたのは装置のサイズが線状ビーム幅より
長く、約20mmであるためであり、単純な空間制約による
ものである。場合に依っては3相、あるいは単相でもよ
い。Since the linear beam width from a single irradiator is 10 mm in the plate width direction, as shown in FIG. 1, 100 irradiators are divided into, for example, two phases and arranged in a 1000 mm width. A linear beam can be applied to the entire surface of the steel sheet. The two phases are divided here because the size of the apparatus is longer than the linear beam width and is about 20 mm, and is based on simple space restrictions. Depending on the case, it may be three-phase or single-phase.
【0009】半導体レーザは超小型でレーザ共振器のア
ライメント等の保守作業が不要であるという利点を有す
る。更にアレイ半導体レーザは図4の座標設定において
板幅方向は集光性が劣るものの、通板方向は集光性が高
いという特徴を持つ。従って本発明の目的とする線状ビ
ームの形成には最適である。また上述したように集光光
学系も組み合わせたコンパクトな一体型レーザ照射装置
とすることができる。よって本発明の照射方法に用いる
には最適なレーザ装置である。Semiconductor lasers have the advantage that they are very small and do not require maintenance work such as alignment of the laser resonator. Further, the array semiconductor laser has a feature that although the light condensing property is inferior in the plate width direction in the coordinate setting of FIG. Therefore, it is optimal for forming a linear beam as the object of the present invention. Further, as described above, a compact integrated laser irradiating apparatus in which the condensing optical system is combined can be obtained. Therefore, it is an optimal laser device for use in the irradiation method of the present invention.
【0010】次にパルスレーザの発振周波数、パルス時
間幅の制御方法について図1を用いて説明する。本発明
では通板速度検出器2にて通板速度Vをリアルタイムで
測定し、演算回路付パルス発生器3に入力される。ここ
では通板方向の線状照射間隔aを設定値として用いて、
以下の式を満足する周波数Fのパルス信号を発生させ
る。Next, a method for controlling the oscillation frequency and pulse time width of the pulse laser will be described with reference to FIG. In the present invention, the passing speed V is measured in real time by the passing speed detector 2 and is input to the pulse generator 3 with an arithmetic circuit. Here, the linear irradiation interval a in the passing direction is used as a set value,
A pulse signal having a frequency F that satisfies the following equation is generated.
【0011】F=V/a 例えば典型的な操業条件である通板速度50m/分、照
射間隔6.5mmではレーザのパルス周波数は128H
zである。この周波数制御信号はレーザ電源4のトリガ
ー信号となり、周波数制御信号と同じ周波数を持ち、且
つ所望のレーザパルス時間幅Tと同じ時間幅を持ったレ
ーザ駆動用パルス電流が出力され、この電流パルスとほ
ぼ同波形のレーザパルスが得られる。この装置により通
板方向にaの間隔で線状レーザビーム6が照射される。
また鋼鈑速度はリアルタイムで測定され、その測定信号
を基にしたパルス発振の制御はすべて電気信号で行われ
るため高速の応答が可能である。F = V / a For example, at a running speed of 50 m / min and an irradiation interval of 6.5 mm, which are typical operating conditions, the laser pulse frequency is 128 H
z. This frequency control signal becomes a trigger signal for the laser power supply 4, and a laser driving pulse current having the same frequency as the frequency control signal and having the same time width as the desired laser pulse time width T is output. A laser pulse having substantially the same waveform is obtained. The linear laser beam 6 is emitted by this device at the interval a in the passing direction.
Further, the speed of the steel plate is measured in real time, and the control of the pulse oscillation based on the measured signal is all performed by an electric signal, so that a high-speed response is possible.
【0012】次にレーザ照射装置の設置について説明す
る。本発明の実施例である図1ではレーザ照射装置の板
幅方向サイズが単一レーザ装置から照射される線状ビー
ムの長さに比べ長い場合を図示した。そこで板幅全長に
わたりとぎれなく線状ビームを照射するために図1に示
すように、レーザ照射装置を二分して、通板方向にdだ
けシフトして配置される。ここでdがaの整数倍となる
ように設置する。その結果、照射位置がdだけシフトし
ていてもすべてのレーザを同時にパルス発振させること
で、図1に示されるようにすべてのレーザ照射後は間隔
aで等間隔で並び、板幅方向には一様な線状照射が成さ
れる。なお、線状ビームが板幅方向で一様でなく、とぎ
れていても十分な磁区細分化効果がある場合、もしくは
各レーザ照射装置からの線状ビーム長が装置サイズより
も長い場合は、板幅方向で一直線上にレーザ装置を配置
してもよい。Next, the installation of the laser irradiation device will be described. FIG. 1, which is an embodiment of the present invention, illustrates a case where the size of the laser irradiation device in the plate width direction is longer than the length of a linear beam irradiated from a single laser device. Therefore, in order to irradiate a linear beam without interruption over the entire width of the plate, as shown in FIG. 1, the laser irradiation device is divided into two parts and is shifted by d in the passing direction. Here, d is set so as to be an integral multiple of a. As a result, even if the irradiation position is shifted by d, all the lasers are simultaneously pulse-oscillated, and as shown in FIG. Uniform linear irradiation is achieved. If the linear beam is not uniform in the width direction of the plate and has a sufficient magnetic domain refining effect even if it is interrupted, or if the linear beam length from each laser irradiation device is longer than the device size, The laser devices may be arranged on a straight line in the width direction.
【0013】この実施例ではアレイ半導体レーザを使用
する例を示したが、線状に集光できるパルスレーザであ
れば本発明の照射方法に適用できる。たとえばパルス発
振YAG レーザやパルス発振CO2 レーザが挙げられる、特
にYAG レーザの場合は光ファイバーの利用によりレーザ
光を鋼鈑近傍まで導光し、シリンドリカルレンズの組み
合わせで線状集光すればよいため、比較的簡単な照射装
置が可能である。In this embodiment, an example in which an array semiconductor laser is used has been described. However, any pulse laser capable of condensing linearly can be applied to the irradiation method of the present invention. For example, a pulsed YAG laser or a pulsed CO2 laser can be used.Particularly, in the case of a YAG laser, the laser light can be guided to the vicinity of the steel plate by using an optical fiber, and it can be focused linearly by a combination of cylindrical lenses. A simple irradiation device is possible.
【0014】[0014]
【発明の効果】以上説明したように、本発明に依ればビ
ーム分割装置や高速スキャン装置などを使用せず、簡単
なレーザ照射光学系により、高速で通板される鋼鈑に対
して、通板方向に等間隔で並び、且つ通板方向にほぼ垂
直な方向に一様な線状ビーム照射を行うことできるとい
う効果がある。また線状ビーム照射間隔は通板速度に対
応したパルスレーザ周波数制御により制御されるため、
通板速度の変動に対して高速で柔軟に対応可能であり、
常に一定の照射間隔を維持できるため安定して良好な磁
気特性が得られるという効果がある。As described above, according to the present invention, a simple laser irradiation optical system can be used for a steel plate passed at a high speed without using a beam splitting device or a high-speed scanning device. There is an effect that uniform linear beam irradiation can be performed in a direction substantially perpendicular to the sheet passing direction and arranged at equal intervals in the sheet passing direction. Since the linear beam irradiation interval is controlled by pulse laser frequency control corresponding to the passing speed,
High speed and flexible response to variations in threading speed
Since a constant irradiation interval can always be maintained, there is an effect that stable and good magnetic characteristics can be obtained.
【図1】本発明の実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.
【図2】従来技術の説明図である。FIG. 2 is an explanatory diagram of a conventional technique.
【図3】方向性電磁鋼板のレーザ磁区制御におけるレー
ザ照射パターンである。FIG. 3 is a laser irradiation pattern in laser domain control of a grain-oriented electrical steel sheet.
【図4】多段型アレイ半導体レーザと一体型レンズによ
るレーザ照射装置の模式図である。FIG. 4 is a schematic view of a laser irradiation apparatus using a multi-stage array semiconductor laser and an integrated lens.
1…レーザ照射装置 2…通板速度検出装置 3…演算回路付パルス発生器 4…半導体レーザ電源 5…方向性電磁鋼板 6…線状集光ビーム 7…レーザ装置 8…ビーム分割装置 9…全反射折り曲げミラー 10…ガルバノミラー、および駆動装置 11…fθレンズ 12…多段アレイ半導体レーザ 13…アレイ半導体レーザ 14…マイクロシリンドリカルレンズ 15…通板方向シリンドリカルレンズ 16…板幅方向シリンドリカルレンズ DESCRIPTION OF SYMBOLS 1 ... Laser irradiation apparatus 2 ... Pulling speed detection apparatus 3 ... Pulse generator with arithmetic circuit 4 ... Semiconductor laser power supply 5 ... Oriented electromagnetic steel sheet 6 ... Linear condensed beam 7 ... Laser apparatus 8 ... Beam splitting apparatus 9 ... All Reflective bending mirror 10 Galvano mirror and driving device 11 fθ lens 12 Multi-stage array semiconductor laser 13 Array semiconductor laser 14 Micro-cylindrical lens 15 Cylindrical lens in passing direction 16 Cylindrical lens in width direction
Claims (2)
向性電磁鋼板の製造方法において、複数台のパルスレー
ザ装置を板幅方向に配列し、各パルスレーザからのレー
ザビームを板幅方向に長く、且つ通板方向にほぼ垂直な
線状ビームに集光し、前記板幅方向全幅にわたり照射す
るとともに、すべてのパルスレーザを同一周波数で照射
することを特徴とする方向性電磁鋼板の磁区制御方法。In a method of manufacturing a grain-oriented electrical steel sheet for improving magnetic properties by irradiating a laser, a plurality of pulsed laser devices are arranged in a plate width direction, and a laser beam from each pulse laser is emitted in a plate width direction. A magnetic domain control of a grain-oriented electrical steel sheet, wherein the beam is focused on a linear beam that is long and substantially perpendicular to the sheet passing direction, and is irradiated over the entire width in the sheet width direction, and all pulse lasers are irradiated at the same frequency. Method.
の通板速度をVとし、線状ビームの通板方向の照射間隔
aに対して F=V/a となるようにレーザパルス周波数が通板速度に同期して
いることを特徴とする請求項1記載の方向性電磁鋼板の
磁区制御方法。2. The pulse frequency of a pulse laser is F, the passing speed of a steel plate is V, and the laser pulse frequency is such that F = V / a with respect to the irradiation interval a of the linear beam in the passing direction. 2. The method according to claim 1, wherein the magnetic domain control is synchronized with the passing speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11146500A JP2000336430A (en) | 1999-05-26 | 1999-05-26 | Magnetic domain control method for grain-oriented electrical steel sheets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11146500A JP2000336430A (en) | 1999-05-26 | 1999-05-26 | Magnetic domain control method for grain-oriented electrical steel sheets |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000336430A true JP2000336430A (en) | 2000-12-05 |
Family
ID=15409042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11146500A Withdrawn JP2000336430A (en) | 1999-05-26 | 1999-05-26 | Magnetic domain control method for grain-oriented electrical steel sheets |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000336430A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103547403A (en) * | 2011-06-03 | 2014-01-29 | 新日铁住金株式会社 | Manufacturing apparatus of grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet |
US20140312009A1 (en) * | 2011-12-27 | 2014-10-23 | Jfe Steel Corporation | Device to improve iron loss properties of grain-oriented electrical steel sheet |
JP2018526532A (en) * | 2015-08-12 | 2018-09-13 | ポスコPosco | Steel plate coloring device and coloring method |
JP2019506524A (en) * | 2015-12-23 | 2019-03-07 | ポスコPosco | Steel plate heat treatment apparatus and method |
CN110106320A (en) * | 2019-05-07 | 2019-08-09 | 南京苏星智能装备有限公司 | A kind of laser scored equipment of intelligence bull orientation silicon steel and its control method |
-
1999
- 1999-05-26 JP JP11146500A patent/JP2000336430A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103547403A (en) * | 2011-06-03 | 2014-01-29 | 新日铁住金株式会社 | Manufacturing apparatus of grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet |
CN103547403B (en) * | 2011-06-03 | 2015-04-22 | 新日铁住金株式会社 | Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet |
US20140312009A1 (en) * | 2011-12-27 | 2014-10-23 | Jfe Steel Corporation | Device to improve iron loss properties of grain-oriented electrical steel sheet |
JPWO2013099219A1 (en) * | 2011-12-27 | 2015-04-30 | Jfeスチール株式会社 | Iron loss improvement device for grain-oriented electrical steel sheet |
CN107012309A (en) * | 2011-12-27 | 2017-08-04 | 杰富意钢铁株式会社 | The iron loss of orientation electromagnetic steel plate improves device |
US10745773B2 (en) | 2011-12-27 | 2020-08-18 | Jfe Steel Corporation | Device to improve iron loss properties of grain-oriented electrical steel sheet |
US11377706B2 (en) | 2011-12-27 | 2022-07-05 | Jfe Steel Corporation | Device to improve iron loss properties of grain-oriented electrical steel sheet |
JP2018526532A (en) * | 2015-08-12 | 2018-09-13 | ポスコPosco | Steel plate coloring device and coloring method |
JP2019506524A (en) * | 2015-12-23 | 2019-03-07 | ポスコPosco | Steel plate heat treatment apparatus and method |
CN110106320A (en) * | 2019-05-07 | 2019-08-09 | 南京苏星智能装备有限公司 | A kind of laser scored equipment of intelligence bull orientation silicon steel and its control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6838639B2 (en) | Method for the machining of workpieces by means of several laser beams | |
RU2371487C1 (en) | Method and device for manufacturing of sheet of grain-oriented electric steel with excellent magnetic properties | |
JP4459530B2 (en) | Laser processing equipment | |
KR101060746B1 (en) | How to improve the magnetic properties of oriented electrical steel sheet | |
KR102373311B1 (en) | Phased array steering for laser beam positioning systems | |
US6545248B2 (en) | Laser irradiating apparatus | |
CN101099226A (en) | Efficient micro-machining apparatus and method employing multiple laser beams | |
JP2016059932A (en) | Laser processing apparatus and output method of pulse laser beam | |
KR100639585B1 (en) | Laser control method, laser device, laser processing method, laser processing machine used therein | |
Jaeggi et al. | Time-optimized laser micro machining by using a new high dynamic and high precision galvo scanner | |
JP2000336430A (en) | Magnetic domain control method for grain-oriented electrical steel sheets | |
JP3194248B2 (en) | Laser drilling apparatus and laser drilling method | |
JP3682295B2 (en) | Laser processing equipment | |
KR101484878B1 (en) | Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet | |
JP2002011584A (en) | Multi-axis laser machining device and method of laser machining | |
JP2002239772A (en) | Laser processing method and apparatus | |
JPH0790385A (en) | Oriented electrical steel sheet with excellent magnetic properties | |
CN113385806B (en) | Control device for laser processing device, and laser processing method | |
JP2002121618A (en) | Equipment for manufacturing grain-oriented electrical steel sheets with excellent magnetic properties | |
JP3213884B2 (en) | Laser drilling equipment | |
JP2004167545A (en) | Multi-axes laser beam machining apparatus and machining method | |
JPH0215608B2 (en) | ||
Herrmann et al. | High-speed processing with ultrafast lasers and resonant scanning systems | |
JPH07290257A (en) | Laser marking method | |
JP2003188446A (en) | Method for stabilizing pulse for laser processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060801 |