JP2000333422A - Induced synchronous motor - Google Patents
Induced synchronous motorInfo
- Publication number
- JP2000333422A JP2000333422A JP11140209A JP14020999A JP2000333422A JP 2000333422 A JP2000333422 A JP 2000333422A JP 11140209 A JP11140209 A JP 11140209A JP 14020999 A JP14020999 A JP 14020999A JP 2000333422 A JP2000333422 A JP 2000333422A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- magnetic flux
- stator
- induction
- main magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 23
- 238000004804 winding Methods 0.000 claims abstract description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 11
- 230000004907 flux Effects 0.000 claims description 23
- 230000006698 induction Effects 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 230000004888 barrier function Effects 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 229910017110 Fe—Cr—Co Inorganic materials 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 102100033040 Carbonic anhydrase 12 Human genes 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 101000867855 Homo sapiens Carbonic anhydrase 12 Proteins 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- PXAWCNYZAWMWIC-UHFFFAOYSA-N [Fe].[Nd] Chemical compound [Fe].[Nd] PXAWCNYZAWMWIC-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は誘導同期型電動機に
関する。さらに詳しくは、誘導電動機と同期電動機との
機能を兼ね備える誘導同期型電動機に関する。The present invention relates to an induction synchronous motor. More specifically, the present invention relates to an induction synchronous motor having both functions of an induction motor and a synchronous motor.
【0002】[0002]
【従来の技術】近年、地球環境問題上、省エネルギーの
必要性から、高効率の電動機の開発が進められている。
たとえば多用されている誘導電動機を、二次励磁の必要
がなく、効率のよい磁石回転子形電動機、または図3に
示されているように、永久磁石50を籠形回転子51に
埋め込んだ構造の誘導同期型電動機がある。2. Description of the Related Art In recent years, the development of high-efficiency motors has been promoted due to the need for energy saving due to global environmental problems.
For example, an induction motor that is frequently used is a magnet rotor type motor that does not require secondary excitation and is efficient, or a structure in which a permanent magnet 50 is embedded in a cage rotor 51 as shown in FIG. There is an induction synchronous motor.
【0003】この電動機は、固定子52が、複数の歯5
3とその歯53の根元をつなぐヨーク部54とからな
り、略円筒形状をしている。その複数の歯53間に形成
される複数のスロット55には三相巻線56が施されて
いる。前記回転子51は、固定子52と略同軸の略円筒
形状であり、固定子52の内周面に対向して4個のロー
タ磁極を有し、軸57を中心として回転自在となるよう
に軸受(図示せず)によって支持されている。回転子5
1は、軸方向に貫く4個の永久磁石埋設用孔58に、板
状の永久磁石50を埋設している。回転子51は、ステ
ータ巻線56に流れる電流により形成される回転磁界に
より、そのロータ磁極が固定子52の巻線が形成する回
転磁極に対して吸引または反発することにより回転す
る。したがって、回転子51に永久磁石50を埋め込む
ことで、マグネットトルクとリラクタンストルクを併せ
て利用することにより、高効率を実現している。In this electric motor, the stator 52 includes a plurality of teeth 5.
3 and a yoke portion 54 connecting the roots of the teeth 53, and have a substantially cylindrical shape. A plurality of slots 55 formed between the plurality of teeth 53 are provided with a three-phase winding 56. The rotor 51 has a substantially cylindrical shape that is substantially coaxial with the stator 52, has four rotor magnetic poles facing the inner peripheral surface of the stator 52, and is rotatable about a shaft 57. It is supported by bearings (not shown). Rotor 5
Reference numeral 1 denotes a plate-shaped permanent magnet 50 embedded in four permanent magnet embedding holes 58 penetrating in the axial direction. The rotor 51 rotates when its rotor magnetic pole attracts or repels the rotating magnetic pole formed by the winding of the stator 52 due to the rotating magnetic field formed by the current flowing through the stator winding 56. Therefore, by embedding the permanent magnet 50 in the rotor 51, high efficiency is realized by utilizing both the magnet torque and the reluctance torque.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
電動機では、永久磁石として、磁力の強いネオジ鉄ボロ
ン系燃結磁石を用いており、これは価格が高いため、電
動機特性(効率)が良好でも、高価格のため普及の面で
障害がある。また製造上磁石の取付けが埋め込みである
ため、困難であり、製造コストが高くなる。とくに大型
の電動機の製造が難しい。However, in the conventional electric motor, a neodymium-iron-based burning magnet having a strong magnetic force is used as the permanent magnet. However, due to the high price, there is an obstacle in terms of diffusion. In addition, since the mounting of the magnet is embedded in manufacturing, it is difficult, and the manufacturing cost is increased. It is particularly difficult to manufacture large motors.
【0005】本発明は、叙上の事情に鑑み、回転子の組
立が簡単であり、製造コストを低減することができる誘
導同期型電動機を提供することを目的とする。[0005] In view of the above circumstances, an object of the present invention is to provide an induction-synchronous motor in which the assembly of the rotor is simple and the manufacturing cost can be reduced.
【0006】[0006]
【課題を解決するための手段】本発明の誘導同期型電動
機は、籠形回転子と、固定子鉄心に多相巻線が配置され
る固定子とを備える電動機であって、前記回転子の鉄心
が、圧延磁石板からプレス加工により作製されるロータ
ーコアを複数積層しており、当該回転子が同期時には電
源周波数で決まる同期回転数で回転し、同期以外には誘
導電流で回転することを特徴とする。SUMMARY OF THE INVENTION An induction synchronous motor according to the present invention is a motor having a cage rotor and a stator in which a multi-phase winding is arranged on a stator core. The iron core has a plurality of rotor cores formed by pressing from a rolled magnet plate, and the rotor rotates at a synchronous rotation speed determined by the power supply frequency during synchronization, and rotates at an induced current other than synchronization. Features.
【0007】[0007]
【発明の実施の形態】以下、添付図面に基づいて本発明
の誘導同期型電動機を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an induction synchronous motor according to the present invention will be described with reference to the accompanying drawings.
【0008】図1は本発明の誘導同期型電動機の一実施
の形態を示す要部断面図、図2は本発明の誘導同期型電
動機の他の実施の形態にかかわる回転子を示す拡大断面
図である。FIG. 1 is a sectional view of an essential part showing one embodiment of an induction synchronous motor of the present invention, and FIG. 2 is an enlarged sectional view showing a rotor according to another embodiment of the induction synchronous motor of the present invention. It is.
【0009】図1に示されるように、本発明の一実施の
形態にかかわる誘導同期型電動機は、ハウジング(図示
せず)に組み込まれた円筒形の固定子1と、該固定子1
に挿通される籠形回転子2とを備えている。As shown in FIG. 1, an induction synchronous motor according to an embodiment of the present invention includes a cylindrical stator 1 incorporated in a housing (not shown), and a stator 1.
And a basket-shaped rotor 2 that is inserted through the cage.
【0010】前記固定子1は、固定子鉄心3と、該固定
子鉄心3の内周に形成される24個の歯4のあいだのス
ロット5に配置される三相巻線6とから構成されてお
り、該三相巻線の各相が6ピッチおきに分布巻にされて
いる。The stator 1 comprises a stator core 3 and a three-phase winding 6 disposed in a slot 5 between 24 teeth 4 formed on the inner periphery of the stator core 3. Each phase of the three-phase winding is distributed winding every six pitches.
【0011】前記回転子2は、前記ハウジングに取り付
けられる一対の軸受(図示せず)に回転自在に支持され
た回転軸7に固定されている。この回転子2は、回転子
鉄心8と、該回転子鉄心8の各スロット9内に挿入され
る棒状の銅またはアルミニウムの導体10と、前記回転
子鉄心8の両端部で前記導体10を短絡する端絡環(図
示せず)とからなり、前記回転子鉄心8が、後述するよ
うに4箇所に突極部13を構成するローターコアを複数
積層して構成されている。The rotor 2 is fixed to a rotating shaft 7 rotatably supported by a pair of bearings (not shown) mounted on the housing. The rotor 2 includes a rotor core 8, a rod-shaped copper or aluminum conductor 10 inserted into each slot 9 of the rotor core 8, and a short circuit between the conductor 10 at both ends of the rotor core 8. The rotor core 8 is formed by laminating a plurality of rotor cores constituting the salient pole portions 13 at four positions as described later.
【0012】前記ローターコアは、プレス加工ができる
圧延磁石板、たとえばYHJ−30−10(等方性)
(日立金属(株)製 Fe−Cr−Co系の永久磁石)
から作製することができる。たとえば、まずFe−Mn
系の半硬質磁石またはFe−Cr−Co系の永久磁石な
どの圧延磁石の板を所定の形状にプレス加工する。つい
で材質に応じた適切な熱処理により、図2に示されるよ
うな磁路分布Aに着磁可能な特性を付与することができ
る。The rotor core is made of a rolled magnet plate that can be pressed, for example, YHJ-30-10 (isotropic).
(Fe-Cr-Co permanent magnet manufactured by Hitachi Metals, Ltd.)
Can be produced. For example, first, Fe-Mn
A plate of a rolled magnet, such as a semi-hard magnet based on iron or a permanent magnet based on Fe-Cr-Co, is pressed into a predetermined shape. Next, by performing an appropriate heat treatment in accordance with the material, the magnetic path distribution A as shown in FIG.
【0013】本実施の形態における回転子2は、同期時
には固定子1の磁束によって同期引込時に自然に着磁し
た回転子2の磁束が界磁となって、電源周波数で決まる
同期回転数で回転する。また電動機の負荷が一時的に増
大して、同期回転数がなくなる脱調の場合や同期以外の
起動時または加速時には、回転子2は誘導電流で回転
し、負荷が元どうりになれば、再び同期する。したがっ
て、本実施の形態にかかわる誘導同期型電動機は、誘導
電動機と同期電動機との機能を兼ね備えており、同期時
は二次励磁が不要、つまり回転子が界磁となるので高ト
ルクおよび高効率な電動機となり得る。In the present embodiment, the rotor 2 rotates at a synchronous speed determined by the power supply frequency when the magnetic flux of the rotor 2 naturally magnetized at the time of synchronization pull-in becomes a field by the magnetic flux of the stator 1 at the time of synchronization. I do. Further, when the load of the motor is temporarily increased and the synchronous rotation speed is lost, or when starting or accelerating other than synchronously, the rotor 2 rotates with the induced current, and if the load returns to its original state, Sync again. Therefore, the induction-synchronous motor according to the present embodiment has both functions of the induction motor and the synchronous motor, and does not require secondary excitation during synchronization, that is, high torque and high efficiency because the rotor becomes a field. Electric motor.
【0014】本実施の形態では、回転子の鉄心が、圧延
磁石板からプレス加工により作製されるローターコアを
複数積層しているため、組立てが簡単であるとともに、
従来のプレス加工などの製造設備をそのまま活用できる
ため、製造コストを低減することができる。In this embodiment, since the rotor core has a plurality of laminated rotor cores formed by pressing from a rolled magnet plate, assembly is simple, and
Since manufacturing equipment such as conventional press working can be utilized as it is, manufacturing costs can be reduced.
【0015】なお、同期回転数で運転を継続させる場合
に、印加電圧(電源電圧)を脱調しない所定の電圧、た
とえば最低電圧に制御する電圧調整手段を備えているの
が好ましい。かかる電圧調整手段としては、電源電圧の
変動や負荷変動による電圧変動を補償して一定に保持す
ることができる通常の電圧調整器などを用いることがで
きる。たとえば電力(入力)とトルクとがほぼ比例する
ので、入力の検出により制御する場合には、電圧、電流
および位相を検出し、電力を演算して、印加電圧を決定
する。または出力の検出により制御する場合には、トル
ク検出器を取り付け、その出力をフィードバックして印
加電圧を決定することもできる。前記電圧調整手段を備
えることにより、たとえば表1に示されるように、トル
クが3kg・cmのときは140ボルトでよく、それ以
上の電圧では入力が増大し、無駄な電力を消費するだけ
であるため、定格電圧で起動して、同期回転数に達した
ら、必要トルクに応じて、電圧を制御すれば電力が節約
され、省エネルギー運転ができる。When the operation is continued at the synchronous speed, it is preferable to provide a voltage adjusting means for controlling the applied voltage (power supply voltage) to a predetermined voltage which does not lose synchronism, for example, a minimum voltage. As such a voltage adjuster, a normal voltage adjuster or the like which can compensate for a voltage fluctuation due to a power supply voltage fluctuation or a load fluctuation and can keep the voltage fluctuation constant can be used. For example, since power (input) and torque are substantially proportional, when controlling by detecting input, voltage, current and phase are detected, power is calculated, and the applied voltage is determined. Alternatively, in the case of controlling by detecting the output, a torque detector may be attached, and the output may be fed back to determine the applied voltage. By providing the voltage adjusting means, for example, as shown in Table 1, when the torque is 3 kg · cm, the voltage may be 140 volts, and at a voltage higher than that, the input increases and only wasteful power is consumed. Therefore, when the motor is started at the rated voltage and the synchronous rotation speed is reached, if the voltage is controlled in accordance with the required torque, power can be saved and energy saving operation can be performed.
【0016】[0016]
【表1】 [Table 1]
【0017】また本実施の形態では、図1に示されるよ
うに、巻線6に流れる電流による磁束が回転子2内部を
通り抜ける通路S1と電気角90度(機械角45度)の
方向の通路S2が形成される。この通路S1はd軸方向
のフラックスパスであり、通路S2はq軸方向のフラッ
クパスである。Further, in this embodiment, as shown in FIG. 1, a magnetic flux generated by a current flowing through the winding 6 passes through the inside of the rotor 2 and a passage S1 in the direction of an electrical angle of 90 degrees (mechanical angle 45 degrees). S2 is formed. The passage S1 is a flux path in the d-axis direction, and the passage S2 is a flux path in the q-axis direction.
【0018】前記通路S1に沿って、磁気抵抗を低く
し、磁束を増大させるために、空隙部(バリヤー)11
が設けられている。Along the passage S1, a gap (barrier) 11 is formed to reduce the magnetic resistance and increase the magnetic flux.
Is provided.
【0019】また前記通路S2には、q軸フラックスパ
ス上に、磁気抵抗を高くし、磁束の流れを阻止するため
に、たとえば周方向に前記空隙部より大きな寸法の空隙
部(バリヤー)12が設けられている。In the passage S2, a gap (barrier) 12 having a size larger than the gap in the circumferential direction is provided on the q-axis flux path in order to increase the magnetic resistance and prevent the flow of magnetic flux. Is provided.
【0020】この空隙部11、12の形状寸法や位置を
適宜選定することにより、d軸リラクタンスに対するq
軸リラクタンスを調整し、電動機の定常負荷回転数が異
なる場合でも、同一構成の回転子のままで高トルクおよ
び高効率の電動機を得ることができる。また前記主磁束
の通路S1周辺における前記回転子2の4つの外周部位
に突極部13が形成されている。この突極部13によ
り、空隙による磁気抵抗は少なくなり、逆にS2通路部
の空隙は大きいので磁気抵抗は大きくすることができ
る。By appropriately selecting the shape, size, and position of the gaps 11 and 12, q
Even if the shaft reluctance is adjusted and the motor has a different steady-state load rotation speed, a motor with high torque and high efficiency can be obtained with the rotor having the same configuration. Further, salient pole portions 13 are formed at four outer peripheral portions of the rotor 2 around the passage S1 of the main magnetic flux. Due to the salient pole portions 13, the magnetic resistance due to the gap is reduced, and conversely, the gap in the S2 passage is large, so that the magnetic resistance can be increased.
【0021】つぎに本発明の他の実施の形態である2極
の場合を説明する。図3に示されるように2極の回転子
21が複数の分割体、たとえば中央に配置されるリボン
形状の回転子体21aと上下部に組み付けられる扇形状
の回転子体21bとの3分割体から構成されている。Next, a description will be given of a two-pole case according to another embodiment of the present invention. As shown in FIG. 3, the rotor 21 having two poles is divided into a plurality of divided bodies, for example, a three-divided body composed of a ribbon-shaped rotor body 21a arranged at the center and a fan-shaped rotor body 21b assembled at upper and lower portions. It is composed of
【0022】そして前記回転子体21aは、一般の電気
鉄板で形成し、回転子体21bは前記実施の形態と同様
に着磁される圧延磁石板のロータコアを複数積層して作
製されている。本実施の形態では、2極の回転子21で
あるため、d軸磁路(S1)の長さが長くなり、固定子
の磁束によって着磁し難くなる。そこで、前記回転子体
21bの圧延磁石板部の磁路を短くして、着磁し易くし
てある。一方S2の磁路は着磁の必要はなく、磁気抵抗
を大きくするため空隙部22を広げたケイ素鋼板(電気
鉄板)を複数積層して作製されている。回転子体21
a、2bは、先が狭い凹部23aと先が広い凸部23b
を軸心方向に差し込んで組み付けられている。なお、2
4は鉄心組立後分解しないようにするリベット用の孔で
ある。The rotor body 21a is formed of a general electric iron plate, and the rotor body 21b is formed by laminating a plurality of rotor cores of a rolled magnet plate to be magnetized in the same manner as in the above embodiment. In the present embodiment, since the rotor 21 has two poles, the length of the d-axis magnetic path (S1) is increased, and it is difficult to magnetize by the magnetic flux of the stator. Therefore, the magnetic path of the rolled magnet plate portion of the rotor body 21b is shortened to facilitate magnetization. On the other hand, the magnetic path of S2 does not need to be magnetized, and is formed by laminating a plurality of silicon steel plates (electric iron plates) in which the gaps 22 are widened in order to increase the magnetic resistance. Rotor body 21
a and 2b are a concave portion 23a having a narrow tip and a convex portion 23b having a wide tip.
Is inserted in the axial direction. In addition, 2
Reference numeral 4 denotes a rivet hole for preventing disassembly after assembling the iron core.
【0023】前記回転子体21bには主磁束の通路(d
軸方向のフラックスパス)S1における2つの外周部位
に突極部25が形成され、回転子体21aには該通路S
1に対し、電気角90度(機械角90度)の方向の磁束
通路(q軸方向フラックスパス)S2に2つの空隙部
(バリヤー)22が設けられている。The rotor body 21b has a main magnetic flux passage (d)
Salient pole portions 25 are formed at two outer peripheral portions in (axial flux path) S1, and the rotor body 21a is provided with the passages S.
Two gaps (barriers) 22 are provided in the magnetic flux path (q-axis direction flux path) S2 in the direction of the electrical angle of 90 degrees (mechanical angle of 90 degrees).
【0024】なお、本実施の形態では、主磁束の通路S
1に沿ってバリヤー空隙部が設けられていない。これ
は、本実施の形態の回転子が2極の回転子であるから、
4極の回転子と異なり磁路形成上その必要がないためで
ある。また、大形の回転子では磁路の長さが長くなり、
着磁不能となるので、上記のように分割コアーとして着
磁占容易化する必要がある。本形状の回転子は保磁力
(Hc)の比較的大きい圧延磁石採用の場合であり、保
磁力(Hc)の低い材料の採用や小形の回転子の場合は
全体を圧延磁石で形成してよい。In this embodiment, the main magnetic flux path S
No barrier void is provided along 1. This is because the rotor of the present embodiment is a two-pole rotor,
This is because, unlike a four-pole rotor, there is no need for forming a magnetic path. In the case of a large rotor, the length of the magnetic path becomes longer,
Since magnetization becomes impossible, it is necessary to facilitate magnetization occupation as a split core as described above. The rotor of this shape is a case where a rolled magnet having a relatively large coercive force (Hc) is used. In the case of using a material having a low coercive force (Hc) or a small rotor, the whole may be formed by a rolled magnet. .
【0025】[0025]
【発明の効果】以上説明したとおり、本発明によれば、
回転子が着磁した圧延磁石板を複数積層して作製されて
いるため、従来より回転子の組立が簡単であり、製造コ
ストを低減することができる。As described above, according to the present invention,
Since the rotor is manufactured by laminating a plurality of magnetized rolled magnet plates, the assembly of the rotor is easier than before, and the manufacturing cost can be reduced.
【図1】本発明の誘導同期型電動機の一実施の形態を示
す要部断面図である。FIG. 1 is a cross-sectional view of a main part showing an embodiment of an induction synchronous motor of the present invention.
【図2】図1における回転子の磁路分布を示す模式図で
ある。FIG. 2 is a schematic diagram showing a magnetic path distribution of a rotor in FIG.
【図3】本発明の誘導同期型電動機の他の実施の形態に
かかわる回転子を示す拡大断面図である。FIG. 3 is an enlarged sectional view showing a rotor according to another embodiment of the induction synchronous motor of the present invention.
【図4】従来の誘導同期型電動機の一例を示す要部断面
図である。FIG. 4 is a sectional view of a main part showing an example of a conventional induction synchronous motor.
1 固定子 2 回転子 3 固定子鉄心 4 歯 5 スロット 6 三相巻線 7 回転軸 8 回転子鉄心 9 スロット 10 導体 11、12 空隙部 13 突極部 S1、S2 通路 DESCRIPTION OF SYMBOLS 1 Stator 2 Rotor 3 Stator core 4 Teeth 5 Slot 6 Three-phase winding 7 Rotating shaft 8 Rotor core 9 Slot 10 Conductor 11, 12 Air gap 13 Salient pole S1, S2 Passage
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H621 AA01 AA03 BB08 GA01 GA04 GA15 GA18 HH04 HH09 JK02 JK05 5H622 AA01 AA03 CA03 CA05 CA12 CA13 CB03 CB04 CB05 DD06 PP03 PP10 PP12 PP20 QA02 QA06 QB05 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H621 AA01 AA03 BB08 GA01 GA04 GA15 GA18 HH04 HH09 JK02 JK05 5H622 AA01 AA03 CA03 CA05 CA12 CA13 CB03 CB04 CB05 DD06 PP03 PP10 PP12 PP20 QA02 QA06 QB05
Claims (5)
配置される固定子とを備える電動機であって、前記回転
子の鉄心が、圧延磁石板からプレス加工により作製され
るローターコアを複数積層しており、当該回転子が同期
時には電源周波数で決まる同期回転数で回転し、同期以
外には誘導電流で回転することを特徴とする誘導同期型
電動機。1. An electric motor comprising a cage rotor and a stator having a stator core in which a polyphase winding is arranged, wherein the rotor core is formed by pressing a rolled magnet plate. An induction-synchronous motor in which a plurality of rotor cores are stacked, and the rotor rotates at a synchronous speed determined by a power supply frequency during synchronization, and rotates by an induced current other than at the time of synchronization.
御する電圧調整手段を備えてなる請求項1記載の誘導同
期型電動機。2. An induction-synchronous electric motor according to claim 1, further comprising a voltage adjusting means for controlling an applied voltage to a predetermined voltage during the synchronization.
磁束の通路に沿って、前記回転子に空隙部が設けられる
とともに、前記主磁束と電気角90°の方向の磁束通路
には、前記回転子の空隙部より大きな寸法の空隙部が設
けられ、前記主磁束の通路周辺における前記回転子の外
周部位が突極部にされてなる請求項1または2記載の誘
導同期型電動機。3. An air gap is provided in the rotor along a path of a main magnetic flux due to a current flowing through a winding of the stator, and a magnetic flux path in a direction of an electrical angle of 90 ° with the main magnetic flux is provided. 3. The induction synchronous motor according to claim 1, wherein a gap having a size larger than a gap of the rotor is provided, and an outer peripheral portion of the rotor around a passage of the main magnetic flux is formed as a salient pole.
ており、該複数の分割体のうち、前記固定子の巻線に流
れる電流による主磁束の通路に対して電気角90°方向
の分割体が電気鉄板を複数積層してなる請求項1または
2記載の誘導同期型電動機。4. The rotor is composed of a plurality of divided bodies, and of the plurality of divided bodies, a direction of an electrical angle of 90 ° with respect to a path of a main magnetic flux by a current flowing through a winding of the stator. 3. The induction-synchronous electric motor according to claim 1, wherein the divided body is formed by stacking a plurality of electric iron plates.
磁束と電気角90度の方向の磁束通路に、前記回転子に
大きな空隙部が設けられ、かつ前記主磁束の通路周辺に
おける前記回転子の外周部位が突極部にされてなる請求
項4記載の誘導同期型電動機。5. A large air gap portion is provided in the rotor in a magnetic flux path in a direction of an electrical angle of 90 degrees with respect to a main magnetic flux by an electric current flowing through a winding of the stator, and the rotation around the main magnetic flux passage is provided. 5. The induction-synchronous motor according to claim 4, wherein the outer peripheral portion of the armature is formed as a salient pole portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11140209A JP2000333422A (en) | 1999-05-20 | 1999-05-20 | Induced synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11140209A JP2000333422A (en) | 1999-05-20 | 1999-05-20 | Induced synchronous motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000333422A true JP2000333422A (en) | 2000-11-30 |
Family
ID=15263464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11140209A Pending JP2000333422A (en) | 1999-05-20 | 1999-05-20 | Induced synchronous motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000333422A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003009483A (en) * | 2001-06-21 | 2003-01-10 | Sumitomo Heavy Ind Ltd | Permanent magnet embedded type induction motor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5372106A (en) * | 1976-12-09 | 1978-06-27 | Toshiba Corp | Rotor for permanent magnet electric rotary machine |
JPS62107573U (en) * | 1985-12-24 | 1987-07-09 | ||
JPH0739091A (en) * | 1993-07-19 | 1995-02-07 | Toyota Motor Corp | Rotor structure of synchronous machine and synchronous motor |
JPH07312837A (en) * | 1994-03-25 | 1995-11-28 | Meidensha Corp | Rotor for permanent magnet motor |
JPH1066383A (en) * | 1996-08-22 | 1998-03-06 | Toyota Motor Corp | Drive controller for permanent magnet synchronous motor |
-
1999
- 1999-05-20 JP JP11140209A patent/JP2000333422A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5372106A (en) * | 1976-12-09 | 1978-06-27 | Toshiba Corp | Rotor for permanent magnet electric rotary machine |
JPS62107573U (en) * | 1985-12-24 | 1987-07-09 | ||
JPH0739091A (en) * | 1993-07-19 | 1995-02-07 | Toyota Motor Corp | Rotor structure of synchronous machine and synchronous motor |
JPH07312837A (en) * | 1994-03-25 | 1995-11-28 | Meidensha Corp | Rotor for permanent magnet motor |
JPH1066383A (en) * | 1996-08-22 | 1998-03-06 | Toyota Motor Corp | Drive controller for permanent magnet synchronous motor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003009483A (en) * | 2001-06-21 | 2003-01-10 | Sumitomo Heavy Ind Ltd | Permanent magnet embedded type induction motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6844656B1 (en) | Electric multipole motor/generator with axial magnetic flux | |
US20140306565A1 (en) | Coaxial Motor | |
EP1837980A2 (en) | Reluctance type rotating machine with permanent magnets | |
US7161270B2 (en) | Line start reluctance synchronous motor | |
JP2000156947A (en) | Magnet-type motor and power generator | |
JP3466591B2 (en) | Rotating electric machine | |
US10749385B2 (en) | Dual magnetic phase material rings for AC electric machines | |
JP2000197325A (en) | Reluctance motor | |
Baka et al. | Design of an energy efficient line-start two-pole ferrite assisted synchronous reluctance motor for water pumps | |
JP2000041367A (en) | Hybrid excitation type synchronous machine | |
JPH11355981A (en) | Radial gap type small cylindrical dynamo-electric machine | |
EP1560317A3 (en) | Brushless exciter with electromagnetically decoupled dual excitation systems for starter-generator applications | |
JP2006166679A (en) | Structure of stator for axial gap type dynamo-electric machine | |
JP2002165391A (en) | Synchronous motor | |
JP2003333813A (en) | Rotor of synchronous reluctance motor | |
JP2002238194A (en) | Structure of rotor of permanent-magnet motor | |
JP2002272067A (en) | Squirrel-cage rotor and motor using the squirrel-cage rotor | |
JP2001086675A (en) | Self-starting permanent magnet synchronous motor and method of manufacturing the same | |
GB2312332A (en) | Magnetic circuit structure for an electric machine | |
JP2004336999A (en) | Permanent magnet motor | |
US20220224176A1 (en) | Permanent magnet assisted synchronous reluctance machine | |
JP2004056936A (en) | Synchronous induction motor and compressor | |
JP2002247816A (en) | Induction starting synchronous motor | |
JP4206611B2 (en) | Self-starting permanent magnet synchronous motor | |
JP4166929B2 (en) | Method for manufacturing electric motor rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090310 |