JP2000328143A - Method for producing double-phase structure steel having fine structure - Google Patents
Method for producing double-phase structure steel having fine structureInfo
- Publication number
- JP2000328143A JP2000328143A JP11141127A JP14112799A JP2000328143A JP 2000328143 A JP2000328143 A JP 2000328143A JP 11141127 A JP11141127 A JP 11141127A JP 14112799 A JP14112799 A JP 14112799A JP 2000328143 A JP2000328143 A JP 2000328143A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- steel
- phase
- steel material
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
(57)【要約】
【解決手段】C:0.05〜0.80mass%を含有し、室温にお
ける強磁性相の比率が20vol%以上の鉄鋼素材を、下限
温度:Ac1点、上限温度:Ac3点または(Ac2点+100
℃)のいずれか低い温度の温度範囲に加熱し、該温度範
囲にて前記鉄鋼素材に、 0.1〜20Tの磁場印加処理およ
び加工処理を施す。
【効果】鋼組織を効果的に微細化して、強度および延性
に優れた複相組織鋼材を得る。
(57) [Summary] C: A steel material containing 0.05 to 0.80 mass% and having a ferromagnetic phase ratio of 20 vol% or more at room temperature, a lower limit temperature: Ac 1 point, and an upper limit temperature: Ac 3 points. Or (Ac 2 points + 100
C), and the steel material is subjected to a magnetic field application treatment of 0.1 to 20 T and a processing treatment in the temperature range of any lower temperature. [Effect] The steel structure is effectively refined to obtain a double phase structure steel material excellent in strength and ductility.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、微細組織を有す
る複相組織鋼材の製造方法に関し、特に加工処理と磁場
印加処理とを効果的に組み合わせることによって、鋼材
組織の有利な改善ひいては力学特性の有利な改善を図ろ
うとするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a dual phase steel having a microstructure, and more particularly to an advantageous combination of a working treatment and a magnetic field applying treatment, thereby advantageously improving the steel structure and consequently improving the mechanical properties. An attempt is made to make advantageous improvements.
【0002】[0002]
【従来の技術】鋼材の望ましい特性として、高強度でか
つ高延性であることが要求されているが、一般に鋼材の
強度を上げると延性が低下し、この2つの特性は両立し
難いことが知られている。一方、鋼材の高強度化および
高靱性化を達成する手段としては、結晶粒を微細化させ
ることが提案されている。2. Description of the Related Art As desirable characteristics of steel materials, high strength and high ductility are required. However, generally, when the strength of steel materials is increased, ductility is reduced, and it is known that these two characteristics are hardly compatible. Have been. On the other hand, as means for achieving higher strength and higher toughness of steel materials, refinement of crystal grains has been proposed.
【0003】上記の場合において、組織の微細化を図る
方法としては制御圧延法が一般的であり、特開昭63−22
3124号公報や特開昭63−128117号公報などに開示されて
いる。また、CAMP−ISIJ vol.11 (1998) 566には、マル
テンサイトにした鋼材を圧縮したのち、さらに圧縮方向
に垂直な方向に圧縮することで微細粒を得る方法が開示
されている。In the above case, a controlled rolling method is generally used as a method for refining the structure.
No. 3124, JP-A-63-128117, and the like. Also, CAMP-ISIJ vol.11 (1998) 566 discloses a method of compressing a martensitic steel material and further compressing the material in a direction perpendicular to the compression direction to obtain fine grains.
【0004】このように鋼組織を微細化することによっ
て、強度と靱性の向上を狙った材料が提供されている。
しかしながら、温度を制御したり圧延方法を工夫して特
性を向上させるという方法は、すでに限界にきており、
特に板材などの場合には圧延方向に扁平な形の粒が多く
なったリ、あるいは結晶粒の方位がある方向に揃う集合
組織が形成される等の問題が生じてくる。また、パイプ
や線材などの場合には伸長粒の存在が顕著になる。その
結果、鋼組織を微細化しても強度や靱性が期待したほど
には向上しないばかりか、延性が劣化したり、延性の異
方性が大きくなるケースが多い。その他にも、従来提案
されている方法は比較的圧下率が高いため、圧延機など
の設備が非常に大がかりになるという難点がある。[0004] As described above, there has been provided a material aimed at improving strength and toughness by miniaturizing the steel structure.
However, the method of controlling the temperature and improving the characteristics by devising the rolling method has already reached its limits,
In particular, in the case of a sheet material or the like, there arise problems such as an increase in the number of grains having a flat shape in the rolling direction, or formation of a texture in which crystal grains are oriented in a certain direction. In the case of pipes and wires, the presence of elongated grains becomes remarkable. As a result, even if the steel structure is refined, not only the strength and toughness are not improved as expected, but also the ductility often deteriorates and the ductility anisotropy increases in many cases. In addition, the conventionally proposed method has a drawback that the rolling reduction and the like become very large because the rolling reduction is relatively high.
【0005】このため、結晶粒の微細化や複相組織の制
御が可能な新しい方法が求められている。その一つとし
て、磁場を利用する方法が考えられる。例えば、Palmai
Zoltan (Gepgyartastechnologia. 22巻(1982) P.463)
は、磁場の鋼に対する効果を示した研究として、Fe−0.
60C−0.30Si−0.72Mn組成の鋼をマルテンサイト組織か
らオーステナイト組織に逆変態させる熱処理で、 0.57T
(Tは磁場の強さを表す単位:テスラ)の磁場を印加す
るとフェライト相が安定化されて残留フェライト量が増
加することを報告している。しかしながら、現在までの
ところ、磁場を利用して鋼材の組織を制御することにつ
いてまでは研究がなされていない。[0005] For this reason, a new method capable of miniaturizing crystal grains and controlling a multiphase structure is required. One of the methods is to use a magnetic field. For example, Palmai
Zoltan (Gepgyartastechnologia. 22 (1982) P.463)
Is a study showing the effect of magnetic field on steel, Fe-0.
0.57T is a heat treatment that reversely transforms a 60C-0.30Si-0.72Mn composition steel from a martensitic structure to an austenitic structure.
It is reported that when a magnetic field of (T is a unit indicating the strength of a magnetic field: Tesla) is applied, the ferrite phase is stabilized and the amount of residual ferrite increases. However, to date, no research has been made on controlling the structure of a steel material using a magnetic field.
【0006】そこで、発明者らは、最近、強い磁場を印
加できる超伝導磁石が開発されたこともあって、磁場を
利用した鋼材の組織制御に取り組んだ。その結果、C:
0.1 〜0.8 mass%、Si:0.1 〜2.0 mass%、Mn:0.2 〜
2.5 mass%およびCr:0.1 〜1.5 mass%を含有し、残部
はFeおよび不可避的不純物の組成になる鋼材に、加熱処
理を施すに際し、0.1 〜20Tの磁場中で、下限温度をA
c1点、上限温度をAc3点または(A2 点+100 ℃)のい
ずれか低い温度とする温度範囲において加熱することに
より、磁場中加熱時に、磁場印加方向に延びた形状の逆
変態オーステナイト相を新たに形成させ、フェライト相
などの残留強磁性相と組合わさった複相組織鋼材の組織
制御を行う方法を開発し、特願平10−134241号明細書に
おいて開示した。上記の方法により、鋼材の組織制御が
可能となり、その結果、力学特性の有利な改善を図るこ
とができた。Accordingly, the present inventors have recently worked on controlling the structure of steel using a magnetic field, in part because a superconducting magnet capable of applying a strong magnetic field has been developed. As a result, C:
0.1 to 0.8 mass%, Si: 0.1 to 2.0 mass%, Mn: 0.2 to
2.5% by mass and Cr: 0.1 to 1.5% by mass, with the balance being Fe and unavoidable impurities, when a heat treatment is performed on a steel material in a magnetic field of 0.1 to 20T, the lower limit temperature is A.
c 1 point, by heating at a temperature range with either lower temperature of the maximum temperature Ac 3 point or (A 2 points +100 ° C.), when in a magnetic field heating, reverse transformed austenite phase shape extending in the direction of the applied magnetic field And a method for controlling the structure of a dual phase steel in combination with a residual ferromagnetic phase such as a ferrite phase was developed and disclosed in Japanese Patent Application No. 10-134241. By the above method, the structure of the steel material can be controlled, and as a result, the mechanical properties can be advantageously improved.
【0007】[0007]
【発明が解決しようとする課題】この発明は、上記の技
術をさらに改良したもので、磁場中熱処理と加工処理と
を組み合わせることにより、鋼組織を効果的に微細化し
て強度および延性をさらに向上させた、微細組織を有す
る複相組織鋼材の製造方法を提案することを目的とす
る。SUMMARY OF THE INVENTION The present invention is a further improvement of the above-mentioned technology. By combining heat treatment in a magnetic field and processing, the steel structure is effectively refined to further improve strength and ductility. An object of the present invention is to propose a method of manufacturing a steel material having a dual phase structure having a microstructure.
【0008】[0008]
【課題を解決するための手段】上述したとおり、常磁性
相と強磁性相からなる複相組織鋼を、逆変態熱処理プロ
セスで製造する際に、磁場を印加することによって、逆
変態によって生じたオーステナイト相と逆変態しないで
残留している強磁性相もが磁場方向に長く伸びたセル状
組織とすることができ、かような磁場中熱処理によっ
て、鋼材の組織を制御することができるようになった。
しかしながら、組織の微細化に関してはまだ十分とは言
えなかった。As described above, when a dual-phase structure steel composed of a paramagnetic phase and a ferromagnetic phase is manufactured by a reverse transformation heat treatment process, the steel is formed by reverse transformation by applying a magnetic field. The ferromagnetic phase remaining without reverse transformation with the austenite phase can also have a cellular structure elongated in the direction of the magnetic field, and the structure of the steel material can be controlled by such heat treatment in a magnetic field. became.
However, miniaturization of the structure was not yet sufficient.
【0009】そこで、発明者らは、この点に関して鋭意
研究を重ねた結果、下限温度:Ac1点、上限温度:Ac3
点または(Ac2点+100 ℃)のいずれか低い温度の温度
範囲に加熱し、かかる温度範囲にて上記したような磁場
印加処理を施したのち、直ちに鋼材に加工処理を施し、
さらにはその後に焼鈍を施すことにより、所期した目的
が有利に達成されることの知見を得た。また、上記のよ
うな加工処理は、必ずしも磁場印加処理後に施す必要は
なく、磁場印加処理直前または磁場印加処理中に施して
も、同様の効果が得られることが判明した。すなわち、
組織の微細化を図るためには、所定の温度範囲への加熱
と、磁場印加処理と加工処理とを効果的に組み合わせる
ことが、極めて有効であることが究明されたのである。
この発明は、上記の知見に立脚するものである。Therefore, the present inventors have conducted intensive studies on this point, and as a result, the lower limit temperature: Ac 1 point and the upper limit temperature: Ac 3
Point or (Ac 2 points + 100 ° C), whichever is the lower temperature range, and after applying the above-mentioned magnetic field application treatment in such a temperature range, immediately subject the steel material to a processing treatment,
Further, it has been found that the intended purpose can be advantageously achieved by performing annealing thereafter. In addition, it has been found that the above-described processing need not necessarily be performed after the magnetic field application processing, and the same effect can be obtained even before the magnetic field application processing or during the magnetic field application processing. That is,
It has been found that it is extremely effective to effectively combine the heating to a predetermined temperature range, the magnetic field application processing, and the processing in order to reduce the size of the structure.
The present invention is based on the above findings.
【0010】すなわち、この発明の要旨構成は次のとお
りである。 1.C:0.05mass%以上、0.80mass%以下を含有し、室
温で体積の20%以上が強磁性相である鉄鋼素材を、下限
温度:Ac1点、上限温度:Ac3点または(Ac2点+100
℃)のいずれか低い温度の温度範囲に加熱し、該温度範
囲にて前記鉄鋼素材に、 0.1〜20Tの磁場印加処理およ
び加工処理を施すことを特徴とする、微細組繊を有する
複相組織鋼材の製造方法。That is, the gist of the present invention is as follows. 1. C: A steel material containing 0.05% by mass or more and 0.80% by mass or less and having a ferromagnetic phase at room temperature of 20% or more by volume, a lower limit temperature: Ac 1 point, an upper limit temperature: Ac 3 points or (Ac 2 points) +100
C), wherein the steel material is subjected to a magnetic field application treatment of 0.1 to 20 T and a processing treatment in the temperature range of any lower temperature, and a double phase structure having a fine braid. Method of manufacturing steel.
【0011】2.上記1において、磁場印加処理を複数
回行い、その際の磁場の印加方向を逐次変更することを
特徴とする、微細組織を有する複相組織鋼材の製造方
法。2. In the above item 1, the method for producing a dual-phase structure steel material having a fine structure is characterized in that the magnetic field application process is performed a plurality of times and the direction of application of the magnetic field at that time is sequentially changed.
【0012】3.上記1または2において、磁場印加処
理を行う際に、鉄鋼素材の加工方向に垂直な任意の方向
に磁場を印加することを特徴とする、微細組織を有する
複相組織鋼材の製造方法。 ここで、加工方向とは、加工によって素材が伸びる方向
をいい、例えば圧延加工の場合は圧延方向を、また引張
加工の場合は引張方向を指す。3. In the above 1 or 2, the method for producing a dual-phase structure steel material having a fine structure, wherein a magnetic field is applied in an arbitrary direction perpendicular to the processing direction of the steel material when performing the magnetic field application treatment. Here, the processing direction refers to a direction in which the material is stretched by the processing, for example, a rolling direction in the case of rolling, and a tensile direction in the case of tensile processing.
【0013】[0013]
【発明の実施の形態】以下、この発明を由来するに至っ
た実験結果について説明する。C:0.6 mass%、Si:0.
2 mass%およびMn:0.4 mass%を含み、残部は実質的に
Feの組成(室温における強磁性相の比率:95 vol%)に
なる、厚さ:1.5 mmの熱延鋼板を、Ac3点以下である 7
45℃まで急速加熱し、5Tの磁場を印加しつつ5分間の
焼鈍を施した後、焼入れて室温まで冷却した。なお、磁
場の印加方向は、圧延方向、幅方向および板厚方向の3
条件とした。得られた試料の板厚断面を研磨して3 vol
%硝酸アルコール溶液で腐食したのち、顕微鏡観察して
写真撮影した。図1、図2に、圧延方向および幅方向に
磁場を印加した場合の組織写真を示す。図中、黒く見え
るのは、熱処理によって逆変態したオーステナイト相
(焼入れ後のためマルテンサイトとして観察される)、
一方白く見えるのは、残留フェライト相であり、特徴的
なことは、組織が熱間圧延の方向とは無関係に磁場印加
方向に配向していることである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, experimental results which led to the present invention will be described. C: 0.6 mass%, Si: 0.
Contains 2 mass% and Mn: 0.4 mass%, with the balance substantially
A hot-rolled steel sheet having a composition of Fe (the ratio of the ferromagnetic phase at room temperature: 95 vol%) and a thickness of 1.5 mm is not more than three points Ac.
After rapidly heating to 45 ° C. and annealing for 5 minutes while applying a magnetic field of 5 T, the steel was quenched and cooled to room temperature. The application direction of the magnetic field is three in the rolling direction, the width direction and the thickness direction.
Conditions. Polish the cross section of the obtained sample to 3 vol.
After being corroded with an aqueous solution of alcohol, the photograph was taken under a microscope. 1 and 2 show micrographs of the structure when a magnetic field is applied in the rolling direction and the width direction. In the figure, the black parts are the austenite phase reversed by heat treatment (observed as martensite after quenching),
On the other hand, what looks white is the residual ferrite phase, and the characteristic feature is that the structure is oriented in the direction of applying a magnetic field regardless of the direction of hot rolling.
【0014】また、同様に、板厚方向に磁場を印加した
場合の組織写真を図3に示す。この場合にも磁場印加方
向である板厚方向に組織が配向している。以上の結果か
ら、加熱処理および磁場印加処理を利用することで、熱
間圧延等の履歴に拘わらず、組織の制御が可能であるこ
とが確認された。Similarly, FIG. 3 shows a photograph of the structure when a magnetic field is applied in the thickness direction. In this case as well, the tissue is oriented in the thickness direction, which is the direction in which the magnetic field is applied. From the above results, it was confirmed that the structure can be controlled by using the heat treatment and the magnetic field application treatment regardless of the history of hot rolling and the like.
【0015】さらに、板厚方向に磁場を印加した鋼材に
ついては、上記の磁場印加処理後、直ちに磁場を印加し
た方向に圧延し、圧下率が70%になった時点で取り出
し、650 ℃で再結晶焼鈍を行った後の組織をSEM により
観察した。その結果、扁平粒の存在が極めて少なく、 1
μm 以下の微細粒となっていることが確認された。Further, the steel material to which a magnetic field was applied in the thickness direction was immediately rolled in the direction in which the magnetic field was applied after the above-mentioned magnetic field application treatment, and was taken out when the rolling reduction reached 70%. The structure after the crystal annealing was observed by SEM. As a result, the presence of flat grains was extremely low, and 1
It was confirmed that the particles were fine particles of μm or less.
【0016】このように、強磁性相を持つ材料を、2相
域に加熱し磁場を印加しながら逆変態させることで、圧
延等の履歴に関係なく組織を制御することができる。つ
まり、圧延によって形成される集合組織や圧延方向に伸
びている扁平粒などを無くすことができ、さらにかよう
な磁場印加処理を加工処理と組み合わせることによっ
て、一層の組織の微細化が達成できることが究明された
のである。As described above, by heating a material having a ferromagnetic phase to a two-phase region and applying reverse magnetic transformation while applying a magnetic field, the structure can be controlled irrespective of the history of rolling and the like. In other words, it is possible to eliminate the texture formed by rolling, the flat grains extending in the rolling direction, and the like, and it is possible to further refine the structure by combining such a magnetic field application treatment with the processing. It was determined.
【0017】この発明に従い、磁場印加処理を施すこと
によって、鋼材の組織が磁場方向に伸びた形状をとる現
象のメカニズムについては、以下のとおりと考えられ
る。すなわち、磁場下で逆変態させた場合、強磁性であ
るフエライト相の内部で、常磁性のオーステナイト相が
核発生するが、その場合全体の静磁エネルギーの増加が
最小となるような形状をとる。そのような形状として考
えられるのは、磁場方向に伸びた回転楕円体である。そ
して、このようなオーステナイトの核が多数発生して成
長、合体しながら逆変態が進行し、最終的に磁場印加方
向に伸びた形状となる。このメカニズムを模式的に示し
たものが図4 (a)〜(b) である。The mechanism of the phenomenon in which the structure of the steel material takes a shape elongated in the direction of the magnetic field by applying the magnetic field according to the present invention is considered as follows. In other words, when reverse transformation is performed under a magnetic field, a paramagnetic austenite phase nucleates inside the ferromagnetic ferrite phase, in which case the shape takes such a form that the increase in the overall magnetostatic energy is minimized. . Such a shape is considered to be a spheroid extending in the direction of the magnetic field. Then, a large number of such austenite nuclei are generated, grow and coalesce, the reverse transformation proceeds, and finally, the shape becomes elongated in the direction of applying the magnetic field. FIGS. 4A and 4B schematically show this mechanism.
【0018】また、かような磁場印加処理と加工処理を
組み合わせることによって、結晶粒の一層の微細化が図
れる理由は、まだ明確に解明されたわけではないが、加
工処理と連動させて磁場印加処理を施すことにより、圧
延等による伸長粒や集合組織を効果的に破壊することが
でき、その結果、より多くの再結晶核の導入が可能にな
ったためと考えられる。Although the reason why the crystal grains can be further refined by combining such a magnetic field application process and a processing process has not yet been clearly elucidated, the magnetic field application process is linked with the processing process. It is considered that by performing the above, it is possible to effectively break the elongated grains and texture by rolling or the like, and as a result, it became possible to introduce more recrystallization nuclei.
【0019】従って、この発明は、素材が常磁性相と強
磁性相とから成る複相鋼であれば、いずれの実用鋼にも
適合可能である。しかし、特に以下の組成および組織の
ものが好適である。 C:0.05〜0.8 mass% C量が0.05mass%に満たないと2相域でのオーステナイ
ト相が少なくなって、機械的特性の向上が望めない。一
方 0.8mass%を超えるとこの発明で意図したような2相
域での逆変態が起こらなくなる、すなわち常磁性相であ
るセメンタイトと常磁性相であるオーステナイトの2相
域となり、前述のセル状組織を得ることができなくなる
ので、C含有量は0.05〜0.8 mass%の範囲に限定した。
なお、その他の成分については特に限定されることはな
く、後述するように、室温での強磁性相の比率が20 vol
%を超えるような相を形成する成分系であればいずれで
もよい。Therefore, the present invention is applicable to any practical steel as long as the material is a dual phase steel composed of a paramagnetic phase and a ferromagnetic phase. However, those having the following composition and structure are particularly suitable. C: 0.05 to 0.8 mass% If the C content is less than 0.05 mass%, the austenite phase in the two-phase region is reduced, and improvement in mechanical properties cannot be expected. On the other hand, if the content exceeds 0.8 mass%, reverse transformation in the two-phase region as intended in the present invention does not occur, that is, the two-phase region of cementite, which is a paramagnetic phase, and austenite, which is a paramagnetic phase, becomes the above-mentioned cellular structure. Cannot be obtained, so the C content is limited to the range of 0.05 to 0.8 mass%.
The other components are not particularly limited, and the ratio of the ferromagnetic phase at room temperature is 20 vol.
%, As long as it is a component system that forms a phase exceeding 0.1%.
【0020】上述したとおり、この発明では、鋼組織に
関し、室温における強磁性相の割合を体積比率で20%以
上とする必要がある。というのは、室温において強磁性
相の割合が20%に満たないと、その相が非常に細かく分
散したとしても磁場による組織制御の効果が小さく、組
織の微細化へ結びつかないからである。As described above, in the present invention, the volume ratio of the ferromagnetic phase at room temperature needs to be 20% or more in the steel structure. This is because if the ratio of the ferromagnetic phase is less than 20% at room temperature, even if the phase is very finely dispersed, the effect of controlling the structure by the magnetic field is small and does not lead to the refinement of the structure.
【0021】次に、この発明において、鋼材の加熱条件
および磁場印加処理条件を前記の範囲に限定した理由に
ついて説明する。まず、熱処理中に印加する磁場の強さ
の下限を 0.1Tとしたのは、 0.1T未満では磁気的な効
果が小さいからであり、一方上限値を20Tとしたのは、
大空間に工業的に発生可能な磁場の強さを考慮してのこ
とである。なお、磁場の種類は、静磁場でも低周波変動
磁場でも良いが、通常は直流静磁場の方が有利である。Next, the reason why the heating conditions of the steel material and the magnetic field application treatment conditions in the present invention are limited to the above ranges will be described. First, the lower limit of the strength of the magnetic field applied during the heat treatment was set to 0.1 T because the magnetic effect was small below 0.1 T, while the upper limit was set to 20 T
This is based on the strength of a magnetic field that can be industrially generated in a large space. The type of the magnetic field may be a static magnetic field or a low-frequency fluctuating magnetic field, but usually a DC static magnetic field is more advantageous.
【0022】次に、磁場印加温度について説明すると、
Ac1点以上の温度とすることが逆変態を起こさせるため
に必要であることは平衡状態図から明らかである。同様
に、上限温度の一つをAc3点としたのは、Ac3点以上で
あるとオーステナイトの単相域となり、常磁性相と強磁
性相の2相域とならないためである。なお、Ac3点は磁
場の印加によって1〜2℃/Tの割合で上昇することが
考えられるので、磁場印加状態でのAc3点とする。ま
た、もう一つの上限温度を、Ac2点(キュリー点)より
100℃高い温度としたは、強磁場を印加した場合、Ac2
点を超えて+100 ℃程度までは常磁性相であるオーステ
ナイト相と強磁性相であるフェライト相とを磁場方向に
長く伸びたセル状組織とする効果があるためであるな
お、加熱時間は特に制限されることはないが1〜20分程
度が好適である。Next, the magnetic field application temperature will be described.
Be Ac 1 point or more temperature is needed to cause the reverse transformation is clear from the equilibrium diagram. Similarly, the reason why one of the upper limit temperatures is set to the Ac 3 point is that if the temperature is higher than the Ac 3 point, it becomes a single phase region of austenite and does not become a two-phase region of a paramagnetic phase and a ferromagnetic phase. Since the Ac 3 point may increase at a rate of 1 to 2 ° C./T due to the application of the magnetic field, the Ac 3 point is set in the state where the magnetic field is applied. In addition, another upper limit temperature from Ac 2 point (Curie point)
100 ° C higher temperature means that when a strong magnetic field is applied, Ac 2
Beyond this point, up to about + 100 ° C, the austenite phase, which is a paramagnetic phase, and the ferrite phase, which is a ferromagnetic phase, have the effect of forming a long cell structure extending in the direction of the magnetic field. Although it is not performed, about 1 to 20 minutes is preferable.
【0023】この発明において、加工を施すタイミング
については、磁場印加中、磁場印加直前、磁場印加直後
のいずれでも微細化効果としては均等である。また、か
かる加工が磁場印加中、磁場印加直前、磁場印加直後の
うちの2つ以上のタイミングにて実施されるように磁場
の印加を複数回実施してもよい。この発明において、磁
場印加直前とは、加工終了から磁場印加開始までの時間
が1分以内のことを、また磁場印加直後とは、磁場印加
終了から加工開始までの時間が1分以内のことをいう。
なお、磁場印加直後に加工を施した場合には、その後に
焼鈍処理を施すことが有利である。In the present invention, the timing of processing is the same as that of the miniaturization effect during, immediately before, or immediately after the application of a magnetic field. Further, the application of the magnetic field may be performed a plurality of times so that such processing is performed at two or more timings during, immediately before, and immediately after the application of the magnetic field. In the present invention, “immediately before the application of a magnetic field” means that the time from the end of the processing to the start of the application of the magnetic field is within 1 minute, and “immediately after the application of the magnetic field” means that the time from the end of the application of the magnetic field to the start of the processing is within 1 minute. Say.
In the case where the processing is performed immediately after the application of the magnetic field, it is advantageous to perform an annealing process thereafter.
【0024】また、加工の程度については特に制限され
ることはないが、加工量があまりに少ないと所望の微細
化効果が得難くなるので、例えば圧延加工の場合には20
%程度以上の加工量とすることが好ましい。The degree of processing is not particularly limited, but if the processing amount is too small, it is difficult to obtain a desired effect of miniaturization.
% Is preferable.
【0025】さらに、この発明において、結晶粒の一層
の微細化を図るためには、鉄鋼素材に対して複数回の磁
場印加処理を施すことが好ましい。その場合には、いず
れか一つの磁場印加処理における磁場の印加方向を、他
の印加処理における磁場の印加方向とは異なるようにし
ても良い。このように、磁場の印加方向を逐次変更すれ
ば、逆変態して生じる常磁性相の結晶粒が伸びる方向を
複数の方向として、より均一な組織を得ることができ
る。Furthermore, in the present invention, in order to further refine the crystal grains, it is preferable to apply a magnetic field to the steel material a plurality of times. In that case, the application direction of the magnetic field in any one of the magnetic field application processes may be different from the application direction of the magnetic field in the other application processes. As described above, if the application direction of the magnetic field is sequentially changed, a more uniform structure can be obtained with a plurality of directions in which the paramagnetic phase crystal grains generated by the reverse transformation extend.
【0026】また、鉄鋼素材は、加工を行うと加工方向
に結晶粒が伸長、偏平するので、加工方向と垂直な任意
の方向に磁場を印加し、これにより加工方向と垂直な方
向に伸びたセル状組織とすることで加工による伸長粒や
偏平粒の発生を抑制することができる。このため、磁場
の印加方向は、鉄鋼素材の加工方向に垂直な任意の方向
であることが好ましく、また複数回の磁場印加処理を行
い、磁場の印加方向の逐次変更する場合にも、少なくと
も一回は加工方向に垂直な方向への磁場印加を実施する
ことが好ましい。なお、この発明において、鉄鋼素材の
形状については特に制限はなく、板材、線材、棒鋼およ
び型鋼など通常の鉄鋼材料であればいずれにも適用する
ことができる。Further, when the steel material is processed, the crystal grains are elongated and flattened in the processing direction, so that a magnetic field is applied in an arbitrary direction perpendicular to the processing direction, thereby extending in the direction perpendicular to the processing direction. By having a cellular structure, the generation of elongated grains and flat grains due to processing can be suppressed. For this reason, the direction of application of the magnetic field is preferably an arbitrary direction perpendicular to the processing direction of the steel material, and at least one direction is required even when the magnetic field application processing is performed a plurality of times and the magnetic field application direction is sequentially changed. It is preferable to apply a magnetic field in the direction perpendicular to the processing direction. In the present invention, the shape of the steel material is not particularly limited, and can be applied to any ordinary steel material such as a plate, a wire, a bar and a mold.
【0027】[0027]
【実施例】実施例1 表1に示す化学組成になる鋼材を真空溶製によって準備
した。これらの鋼材を熱間圧延して板厚:4mmとした
後、酸洗して供試材とした。ついで、これらの鋼材を圧
延加工工程に供したが、圧延機の直前には超電導マグネ
ットを設置すると共に、マグネットの最大磁場となる位
置に加熱炉を設置した。上記の設備を用いて磁場中熱処
理−圧延加工処理を行った。なお、磁場の印加方向は板
厚方向であり、磁場中加熱温度については、表2中にま
とめて示す。また、圧延によって最終的な板厚は1.5 mm
になるようにした(圧下率62%)。さらに一部の試料に
ついては圧下率を20%まで下げて、あとは同じ処理をし
た材料も準備した。EXAMPLES Example 1 Steel materials having the chemical compositions shown in Table 1 were prepared by vacuum melting. These steel materials were hot-rolled to a thickness of 4 mm, and then pickled to obtain test materials. Next, these steel materials were subjected to a rolling process. A superconducting magnet was installed immediately before the rolling mill, and a heating furnace was installed at a position where the maximum magnetic field of the magnet was obtained. A heat treatment in a magnetic field and a rolling treatment were performed using the above-described equipment. The application direction of the magnetic field is the plate thickness direction, and the heating temperature in the magnetic field is summarized in Table 2. The final thickness is 1.5 mm by rolling.
(Reduction rate 62%). Further, for some of the samples, the rolling reduction was reduced to 20%, and the same material was prepared.
【0028】得られた板材からJIS 13号B引張試験片を
圧延方向および圧延方向と垂直な方向(幅方向)が引張
方向となるように採取し、引張強さ(引張速度:10mm/
s)および全伸びを測定した。また、板の圧延面を研磨
したのち、 SEM によって組織観察を行い、扁平粒か等軸
粒かを観察した。この場合、扁平粒の定義は、他の細か
い粒に比較して粒の面積が4倍以上ある場合とした。さ
らに、250 μm ×250 μm の範囲について結晶粒径を調
べた。なお扁平粒の存在割合が10%を超えている場合に
は扁平粒と結果に記入した。結晶粒径の測定方法は次の
とおりである。まず、結晶粒の方位をEBSP(Electron B
ack Scattering Patern)を用いて 250μm × 250μm の
範囲で測定し、隣り合う結晶粒同士の方位差について調
べ、方位差15°未満の結晶粒は一つの結晶粒として平均
粒径を測定した。かくして得られた実験結果を表2に併
記する。A JIS No. 13 B tensile test piece was sampled from the obtained plate material so that the rolling direction and the direction perpendicular to the rolling direction (width direction) were the tensile direction, and the tensile strength (tensile speed: 10 mm /
s) and total elongation were measured. In addition, after polishing the rolled surface of the sheet, the structure was observed by SEM to see whether the grains were flat grains or equiaxed grains. In this case, the definition of the flat grains was defined as a case where the area of the grains was four times or more as compared with other fine grains. Further, the crystal grain size was examined in a range of 250 μm × 250 μm. If the proportion of flat grains exceeds 10%, the results are indicated as flat grains. The method for measuring the crystal grain size is as follows. First, EBSP (Electron B
(Ack Scattering Pattern) was used to measure in the range of 250 μm × 250 μm, and the orientation difference between adjacent crystal grains was examined. The average grain size of a crystal grain having an orientation difference of less than 15 ° was measured as one crystal grain. The experimental results thus obtained are also shown in Table 2.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】表2に示した結果から明らかなように、こ
の発明により得られた種々の鋼材を用いて試験したNo.1
〜14については、結晶粒径が 1.4μm 程度以下と微細
で、扁平粒の比率も低く、その結果、圧延方向に平行、
垂直どちらの方向でも引張強さ、伸びともに高いバラン
スの良い機械的特性を示していた。一方、同じ鋼材を用
いて、磁場を印加しないで実験したもの(No.17〜30)は
いずれも、扁平粒の比率が 13vol%を超えており、結晶
粒径も6μm 以上となっていた。その結果、機械的特性
は低く、また圧延方向と垂直な方向での伸びの異方性も
増大していた。表2より、比較例はいずれも、圧延方向
に平行な方向での伸び値に対し、圧延方向に垂直な方向
の伸び値は7割以下であり、異方性が大きいことが判
る。また、鋼材Hは強磁性相が 18vol%しかないため、
磁性有り(No.15, 16)および磁性なし(No.31, 32)いず
れの場合も、結晶粒は大きく、特性値も低い。この理由
は、強磁性相が少ないため、磁場の効果が発現しなかっ
たためである。さらに、圧下率を20%まで下げた場合(N
o.33、 34)については、結晶粒径および機械的特性が、
磁場を印加しないで圧下率:62%で加工した場合(No.2
1、22)と同等の結果が得られており、加工量を大幅に
低減しても、磁場印加なしの場合と同等の特性が得られ
ることが判明した。As is clear from the results shown in Table 2, No. 1 was tested using various steel materials obtained according to the present invention.
For ~ 14, the crystal grain size was as fine as about 1.4 μm or less, and the ratio of flat grains was low.
Both the tensile strength and the elongation showed a well-balanced mechanical property in both vertical directions. On the other hand, in all the experiments (Nos. 17 to 30) using the same steel material without applying a magnetic field, the ratio of flat grains exceeded 13 vol% and the crystal grain size was 6 μm or more. As a result, the mechanical properties were low, and the anisotropy of elongation in the direction perpendicular to the rolling direction also increased. From Table 2, it can be seen that the elongation value in the direction perpendicular to the rolling direction is 70% or less and the anisotropy is large in each of the comparative examples with respect to the elongation value in the direction parallel to the rolling direction. Steel H has only 18vol% ferromagnetic phase,
In both cases with magnetism (Nos. 15 and 16) and without magnetism (Nos. 31 and 32), crystal grains are large and characteristic values are low. The reason for this is that the effect of the magnetic field did not appear because the ferromagnetic phase was small. Furthermore, when the rolling reduction is reduced to 20% (N
o.33, 34), the grain size and mechanical properties are
When processing at a draft of 62% without applying a magnetic field (No.2
1, 22), and it was found that even if the amount of processing was significantly reduced, the same characteristics as those without a magnetic field were obtained.
【0032】実施例2 この例では、加熱温度および磁場強度の影響について検
討した。C:0.61mass%、 Si:0.45mass%およびMn:0.
60mass%を含有し、残部は実質的にFeの組成になる鋼材
(Ac1=730 ℃、Ac2=755 ℃、 Ac3=808 ℃;強磁性
相の比率:96 vol%)を、熱間圧延して板厚:4mmとし
たのち、酸洗して供試材とした。その後の実験方法につ
いては実施例1と同様にした。具体的な処理条件および
得られた結果を表3にまとめて示す。Example 2 In this example, the effects of the heating temperature and the magnetic field strength were examined. C: 0.61 mass%, Si: 0.45 mass% and Mn: 0.
A steel material (Ac 1 = 730 ° C., Ac 2 = 755 ° C., Ac 3 = 808 ° C .; ferromagnetic phase ratio: 96 vol%) containing 60 mass% and the balance being substantially Fe After rolling to a plate thickness of 4 mm, the plate was pickled and used as a test material. The subsequent experimental method was the same as in Example 1. Table 3 summarizes specific processing conditions and obtained results.
【0033】[0033]
【表3】 [Table 3]
【0034】表3から明らかなように、この発明に従い
処理した場合(No.35〜39)にはいずれも、微細な結晶粒
が得られており、その結果、機械的特性も良好であっ
た。一方、 No.40は加熱温度が低すぎて逆変態の進行が
なく、磁場の効果が認められなかった。また、 No.41
は、逆に加熱温度が高すぎて、結晶粒が成長してしま
い、適正な組織制御ができなかった。さらに、 No.42
は、磁場強度が低すぎて、磁場の効果が認めらなかっ
た。As is clear from Table 3, when the treatment was carried out according to the present invention (Nos. 35 to 39), fine crystal grains were obtained, and as a result, the mechanical properties were also good. . On the other hand, in No. 40, the heating temperature was too low, the reverse transformation did not progress, and the effect of the magnetic field was not recognized. No.41
On the contrary, the heating temperature was too high, crystal grains grew, and proper structure control could not be performed. In addition, No. 42
The magnetic field strength was too low and no effect of the magnetic field was observed.
【0035】実施例3 この例では、圧延加工と磁場処理の順序の効果について
調査した。表1に示す鋼種Cを準備し、熱間圧延して板
厚:4mmとした後、酸洗して供試材とした。実験方法
は、圧延機とマグネットの設置位置を変えることによ
り、以下に示す5種類の実験を行った。なお、圧延の圧
下率は62%で実施例1と同じとした。 ・ No.43:磁場熱処理(板厚方向に磁場印加)−圧延 ・ No.44:加熱−板厚方向に磁場印加しながら圧延 ・ No.45:磁場熱処理(板厚方向に磁場印加)−圧延−
磁場熱処理(最初の磁場印加方向から20°傾斜させた方
向に磁場印加) ・ No.46:磁場熱処理(板厚方向に磁場印加)−圧延−
磁場熱処理(最初の磁場印加方向から60°傾斜させた方
向に磁場印加) ・ No.47:磁場熱処理(板厚方向に磁場印加)−圧延−
磁場熱処理(最初の磁場印加方向から90°傾斜させた方
向に磁場印加) 実験後の評価は、実施例1と同じ要領で行った。実験条
件を表4に、また実験結果を表5に示す。Example 3 In this example, the effect of the order of rolling and magnetic field treatment was investigated. Steel type C shown in Table 1 was prepared and hot-rolled to a sheet thickness of 4 mm, and then pickled to obtain a test material. The experiment method performed the following five types of experiments by changing the installation positions of the rolling mill and the magnet. The rolling reduction was 62%, which was the same as in Example 1.・ No.43: Magnetic field heat treatment (magnetic field applied in sheet thickness direction)-rolling ・ No.44: Heating-rolling while applying magnetic field in sheet thickness direction ・ No.45: Magnetic field heat treatment (magnetic field applied in sheet thickness direction)-rolling −
No. 46: Magnetic field heat treatment (magnetic field applied in a direction inclined 20 ° from the initial magnetic field application direction) ・ No. 46: Magnetic field heat treatment (magnetic field applied in the thickness direction)-rolling-
No. 47: Magnetic field heat treatment (magnetic field applied in the direction inclined 60 ° from the initial magnetic field application direction) ・ No. 47: Magnetic field heat treatment (magnetic field applied in the thickness direction)-rolling-
Magnetic field heat treatment (magnetic field application in a direction inclined by 90 ° from the initial magnetic field application direction) Evaluation after the experiment was performed in the same manner as in Example 1. Table 4 shows the experimental conditions, and Table 5 shows the experimental results.
【0036】[0036]
【表4】 [Table 4]
【0037】[0037]
【表5】 [Table 5]
【0038】表5から明らかなように、いずれの場合に
も結晶粒径が 1.5μm 以下の微細な等軸粒の組織が得ら
れている。特に2回繰り返して磁場印加方向を逐次変化
させた場合(No.45〜47)は一層の微細化が達成されてお
り、特性も良好であった。As is clear from Table 5, in each case, a fine equiaxed grain structure having a crystal grain size of 1.5 μm or less was obtained. In particular, when the magnetic field application direction was successively changed twice (Nos. 45 to 47), further miniaturization was achieved and the characteristics were good.
【0039】実施例4 この例では、素材の形状が棒状のものについて検討し
た。すなわち、鉄鋼素材として、C:0.1 mass%、Si:
0.2 mass%、Mn:1.3 mass%を含有し、残部は実質的に
Feの組成になる棒鋼(Ac1=715 ℃、Ac2=750 ℃、 A
c3=858 ℃;強磁性相の比率:91 vol%)を用いた。ま
た、この棒鋼を圧延する最終の仕上げ圧延機の直後に超
電導マグネットを設置し、マグネットの最大磁場となる
位置に加熱炉を設置した。かかる装置を用いて圧延−磁
場中熱処理−急速冷却処理を行った。この時、磁場の印
加方向は棒鋼の圧延方向と垂直方向となるようにした。Example 4 In this example, a material having a rod shape was examined. That is, as a steel material, C: 0.1 mass%, Si:
Contains 0.2 mass%, Mn: 1.3 mass%, with the balance substantially
Steel bar with Fe composition (Ac 1 = 715 ° C, Ac 2 = 750 ° C, A
c 3 = 858 ° C .; ferromagnetic phase ratio: 91 vol%). A superconducting magnet was installed immediately after the final finishing mill for rolling the steel bar, and a heating furnace was installed at a position where the maximum magnetic field of the magnet was reached. Rolling-heat treatment in a magnetic field-rapid cooling treatment was performed using such an apparatus. At this time, the direction of application of the magnetic field was set to be perpendicular to the rolling direction of the steel bar.
【0040】圧延された棒鋼の長手方向から試験片を切
り出した。また、結晶粒径の観察、評価は、長手方向の
断面と長手方向と垂直方向の断面の両者で行った。ま
ず、SEM にて組織観察を行い、伸長粒か等軸粒かを観察
した。この場合、伸長粒の定義は、アスペクト比が2以
上のものとした。そして、加工の影響により伸長粒の存
在割合が10%を超えている場合には伸長粒と結果に記入
した。結晶粒径の評価は実施例1と同じ要領で行った。
引張試験および伸びについては、棒鋼の長手方向を引張
方向として切り出したJIS 13号B引張試験片で行った。
また、比較のため、超伝導マグネットによる磁場印加お
よび加熱炉による熱処理を行わない条件のものについて
も、同様な組織観察および引張試験を行った。具体的な
実験条件と実験結果を表6にまとめて示す。A test piece was cut out from the longitudinal direction of the rolled steel bar. The observation and evaluation of the crystal grain size were performed on both the cross section in the longitudinal direction and the cross section in the vertical direction and the vertical direction. First, the structure was observed by SEM to observe whether the grains were elongated grains or equiaxed grains. In this case, the definition of the elongated grain was defined as having an aspect ratio of 2 or more. When the proportion of the elongated grains exceeded 10% due to the influence of the processing, the result was entered as the elongated grains. The evaluation of the crystal grain size was performed in the same manner as in Example 1.
The tensile test and elongation were performed on JIS No. 13B tensile test pieces cut out with the longitudinal direction of the steel bar taken as the tensile direction.
For comparison, a similar structure observation and tensile test were also performed on a sample under the condition that no magnetic field was applied by a superconducting magnet and no heat treatment was performed by a heating furnace. Table 6 summarizes specific experimental conditions and experimental results.
【0041】[0041]
【表6】 [Table 6]
【0042】表6に示したとおり、通常の磁場を利用し
ない方法の場合では長手方向に伸長粒が多くなり、引張
強さは 500 MPaレベルであった。これに対し、この発明
に従う得られたものは、棒鋼の長手方向、径方向どちら
の断面でも結晶粒は微細であり、また機械的特性も著し
く改善されていた。As shown in Table 6, in the case of a method not using a normal magnetic field, the number of elongated grains increased in the longitudinal direction, and the tensile strength was at a level of 500 MPa. On the other hand, in the steel obtained according to the present invention, the crystal grains were fine in both the longitudinal and radial cross sections of the steel bar, and the mechanical properties were significantly improved.
【0043】[0043]
【発明の効果】かくして、この発明によれば、強度と延
性に優れた微細組織の複相組織鋼を安定して得ることが
でき、産業上極めて有益である。As described above, according to the present invention, it is possible to stably obtain a fine-structured dual-phase steel having excellent strength and ductility, which is extremely useful in industry.
【図1】 C:0.6 mass%を含有する熱延鋼板を、5T
の磁場中(磁場印加方向は圧延方向と平行)で 745℃、
5分間逆変態させた試料の顕微鏡組織写真である。FIG. 1 shows a hot rolled steel sheet containing 0.6 mass% of C:
745 ° C in the magnetic field (the direction of the applied magnetic field is parallel to the rolling direction)
It is a microscope structure photograph of the sample reverse-transformed for 5 minutes.
【図2】 C:0.6 mass%を含有する熱延鋼板を、5T
の磁場中(磁場印加方向は圧延方向と垂直)で 745℃、
5分間逆変態させた試料の顕微鏡組織写真である。Fig. 2 C: Hot rolled steel sheet containing 0.6 mass%
745 ° C in the magnetic field (the direction of the applied magnetic field is perpendicular to the rolling direction)
It is a microscope structure photograph of the sample reverse-transformed for 5 minutes.
【図3】 C:0.6 mass%を含有する熱延鋼板を、5T
の磁場中(磁場印加方向は板厚方向)で 745℃、5分間
逆変態させた試料の顕微鏡組織写真である。FIG. 3 shows a hot rolled steel sheet containing 0.6 mass% of C:
5 is a microstructure photograph of a sample reverse-transformed at 745 ° C. for 5 minutes in a magnetic field (magnetic field application direction is a plate thickness direction).
【図4】 磁場印加による組織配向メカニズムを示す模
式図である。FIG. 4 is a schematic diagram showing a tissue orientation mechanism by applying a magnetic field.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 下斗米 道夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 米花 康典 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 阿部 義男 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K037 EA05 EA06 EA13 EA15 EA17 EA19 EA27 EA28 EA31 EB11 FG10 JA06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Michio Shimomeme 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside Kawasaki Steel Research Institute (72) Inventor Yasunori Yonehana 1-Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Yoshio Abe (72) Inventor Yoshio Abe 20-1 Shintomi, Futtsu-shi, Chiba F-term in the Technology Development Division of Nippon Steel Corporation (reference) 4K037 EA05 EA06 EA13 EA13 EA15 EA17 EA19 EA27 EA28 EA31 EB11 FG10 JA06
Claims (3)
含有し、室温で体積の20%以上が強磁性相である鉄鋼素
材を、下限温度:Ac1点、上限温度:Ac3点または(A
c2点+100 ℃)のいずれか低い温度の温度範囲に加熱
し、該温度範囲にて前記鉄鋼素材に、 0.1〜20Tの磁場
印加処理および加工処理を施すことを特徴とする、微細
組繊を有する複相組織鋼材の製造方法。1. A steel material containing C: 0.05 mass% or more and 0.80 mass% or less and having a ferromagnetic phase at room temperature of 20% or more in volume, a lower limit temperature: Ac 1 point, and an upper limit temperature: Ac 3 points. Or (A
c 2 points + 100 ° C.), and heat-treating the steel material in the temperature range of 0.1 to 20 T in the temperature range of 0.1 to 20 T and processing the fine braid in the temperature range. A method for producing a steel having a dual phase structure.
回行い、その際の磁場の印加方向を逐次変更することを
特徴とする、微細組織を有する複相組織鋼材の製造方
法。2. The method according to claim 1, wherein the application of the magnetic field is performed a plurality of times, and the application direction of the magnetic field at that time is sequentially changed.
理を行う際に、鉄鋼素材の加工方向に垂直な任意の方向
に磁場を印加することを特徴とする、微細組織を有する
複相組織鋼材の製造方法。3. The dual-phase structure steel material having a fine structure according to claim 1, wherein a magnetic field is applied in an arbitrary direction perpendicular to a processing direction of the steel material when the magnetic field application process is performed. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11141127A JP2000328143A (en) | 1999-05-21 | 1999-05-21 | Method for producing double-phase structure steel having fine structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11141127A JP2000328143A (en) | 1999-05-21 | 1999-05-21 | Method for producing double-phase structure steel having fine structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000328143A true JP2000328143A (en) | 2000-11-28 |
Family
ID=15284803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11141127A Withdrawn JP2000328143A (en) | 1999-05-21 | 1999-05-21 | Method for producing double-phase structure steel having fine structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000328143A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2806099A1 (en) * | 1999-12-17 | 2001-09-14 | Kawasaki Steel Co | METHOD FOR CONTROLLING THE STRUCTURE OF A TWO-PHASE STEEL |
JP2009228122A (en) * | 2008-03-25 | 2009-10-08 | Nippon Steel Corp | Method for controlling quality of steel material |
US7686895B2 (en) | 2007-01-31 | 2010-03-30 | Caterpillar Inc. | Method of improving mechanical properties of gray iron |
JP2012237051A (en) * | 2011-04-28 | 2012-12-06 | Nippon Steel & Sumitomo Metal Corp | Method for producing fe-based metal plate having high gathering degree of {200} plane |
JP2013032594A (en) * | 2012-09-18 | 2013-02-14 | Nippon Steel & Sumitomo Metal Corp | Method for control of steel quality |
US10240225B2 (en) | 2014-09-19 | 2019-03-26 | Hitachi, Ltd. | Steel material, material processing method, and material processing apparatus |
-
1999
- 1999-05-21 JP JP11141127A patent/JP2000328143A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2806099A1 (en) * | 1999-12-17 | 2001-09-14 | Kawasaki Steel Co | METHOD FOR CONTROLLING THE STRUCTURE OF A TWO-PHASE STEEL |
US7686895B2 (en) | 2007-01-31 | 2010-03-30 | Caterpillar Inc. | Method of improving mechanical properties of gray iron |
JP2009228122A (en) * | 2008-03-25 | 2009-10-08 | Nippon Steel Corp | Method for controlling quality of steel material |
JP2012237051A (en) * | 2011-04-28 | 2012-12-06 | Nippon Steel & Sumitomo Metal Corp | Method for producing fe-based metal plate having high gathering degree of {200} plane |
JP2013032594A (en) * | 2012-09-18 | 2013-02-14 | Nippon Steel & Sumitomo Metal Corp | Method for control of steel quality |
US10240225B2 (en) | 2014-09-19 | 2019-03-26 | Hitachi, Ltd. | Steel material, material processing method, and material processing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5521885B2 (en) | Steel wire for machine parts with high strength and excellent hydrogen embrittlement resistance, machine parts and method for producing the same | |
KR101997382B1 (en) | Steel sheet and manufacturing method | |
JP5195009B2 (en) | Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof | |
KR101747052B1 (en) | High-carbon hot-rolled steel sheet and method for manufacturing the same | |
JP5407178B2 (en) | Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof | |
CN107614727A (en) | Steel plate and manufacturing method thereof | |
CN114438418A (en) | Hot-formed member and method for manufacturing same | |
Bai et al. | Effects of Sn microalloying on cold rolling and recrystallization textures and microstructure of a ferritic stainless steel | |
JP7218533B2 (en) | Steel material and its manufacturing method | |
JP3527641B2 (en) | Steel wire with excellent cold workability | |
JP2005179703A (en) | High strength steel sheet having excellent elongation and stretch-flange formability | |
KR101892526B1 (en) | High-carbon hot-rolled steel sheet and method for manufacturing the same | |
TWI773346B (en) | Vostian iron-based stainless steel material, method for producing the same, and leaf spring | |
CN106011637A (en) | Transformation induced plasticity steel and manufacturing method thereof | |
JP2001234240A (en) | Microstructure control method for dual phase steel | |
JP2000199034A (en) | High-strength hot-rolled steel sheet excellent in workability and method for producing the same | |
JP5080215B2 (en) | High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability | |
CN106414786A (en) | Steel wire | |
JP6206423B2 (en) | High strength stainless steel plate excellent in low temperature toughness and method for producing the same | |
JP2000328143A (en) | Method for producing double-phase structure steel having fine structure | |
Kim et al. | Effect of precipitation of σ-phase and N addition on the mechanical properties in 25Cr–7Ni–4Mo–2W super duplex stainless steel | |
JP2010024497A (en) | High strength cold rolled steel sheet having excellent elongation and stretch-flangeability | |
JP4309141B2 (en) | High-strength low-permeability austenitic stainless steel sheet and manufacturing method, and bolt-fastening washer manufacturing method | |
TW200418997A (en) | High tensile strength steel having excellent fatigue strength and method of producing the same | |
CN108350544B (en) | Steel wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060801 |