[go: up one dir, main page]

JP2000321455A - Production of polyimide optical waveguide - Google Patents

Production of polyimide optical waveguide

Info

Publication number
JP2000321455A
JP2000321455A JP12576499A JP12576499A JP2000321455A JP 2000321455 A JP2000321455 A JP 2000321455A JP 12576499 A JP12576499 A JP 12576499A JP 12576499 A JP12576499 A JP 12576499A JP 2000321455 A JP2000321455 A JP 2000321455A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
polyimide
adhesive
polyimide optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12576499A
Other languages
Japanese (ja)
Inventor
Takashi Shioda
剛史 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP12576499A priority Critical patent/JP2000321455A/en
Publication of JP2000321455A publication Critical patent/JP2000321455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a method for the production of a polyimide optical waveguide which can be formed on any substrate. SOLUTION: By this method, an embedded polyimide optical waveguide is produced by laminating a desired substrate and a ridge waveguide with an adhesive as an upper clad having similar heat resistance as that of the substrate and having a lower refractive index than that of the core. By heat treating the upper clad layer which is the adhesive at a time when laser diodes, photodetectors or the like are mounted by soldering, a printed circuit board which mounts electric and optical elements is produced by a batch reflow method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明はポリイミド光導波路に関
し、特に任意な基板上に作製する製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a polyimide optical waveguide, and more particularly, to a method of manufacturing a polyimide optical waveguide on an arbitrary substrate.

【0002】[0002]

【従来の技術】低損失光ファイバの開発による光通信シ
ステムの実用化に伴い、種々の光通信用部品の開発が望
まれている。またこれら光部品を高密度に実装する光配
線技術、特に光導波路技術の確立が望まれている。一般
に、光導波路には、光損失が小さい、製造が容易、
コアとクラッドの屈折率差を制御できる等の条件が要
求される。これまでに低損失な光導波路としては石英系
が主に検討されている。光ファイバで実証済みのように
石英は光透過性が極めて良好であるため導波路にした場
合も波長が1.3μmにおいて0.1dB/cm以下の
低光損失化が達成されている。また、ポリメチルメタク
リレート(PMMA)、ポリスチレン(PS)、ポリカ
ーボネイト(PC)、ポリイミド等のプラスチック系光
導波路の場合も水素の重水素化やフッ素化などにより透
明性を向上させ、波長が1.3μmにおいて0.1〜
0.5dB/cmの低光損失化が達成されている。ハン
ダ耐熱性及び高耐湿性を有する高分子材料の中で高透明
性のものは主にフッ素化ポリイミド系であり、石英系及
びフッ素化ポリイミド光導波路を作製する場合熱処理温
度が高温であることから使用できる基板が限られるとい
う欠点があった。そのため電気・光混載配線板を作製す
る場合、ポリイミド/セラミック電気配線板など高価な
基板を使用することになる。また、レーザダイオードや
フォトダイオードは、ポリイミドフィルム導波路を紫外
線硬化あるいは熱処理により接着した後リフロー工程に
より半田実装されるため、工程数も多く歩留まりも悪く
なるという問題がある。
2. Description of the Related Art With the practical use of optical communication systems by the development of low-loss optical fibers, development of various optical communication components has been desired. It is also desired to establish an optical wiring technology for mounting these optical components at a high density, particularly an optical waveguide technology. Generally, optical waveguides have low light loss, are easy to manufacture,
Conditions such as control of the refractive index difference between the core and the clad are required. So far, silica-based optical waveguides have been mainly studied as low-loss optical waveguides. Quartz has a very good light transmittance as demonstrated in an optical fiber. Therefore, even when a waveguide is used, a low optical loss of 0.1 dB / cm or less is achieved at a wavelength of 1.3 μm. In the case of a plastic optical waveguide such as polymethyl methacrylate (PMMA), polystyrene (PS), polycarbonate (PC), or polyimide, the transparency is improved by deuteration or fluorination of hydrogen, and the wavelength is 1.3 μm. 0.1 ~
A low optical loss of 0.5 dB / cm has been achieved. Highly transparent among the heat-resistant and moisture-resistant high-polymer materials are mainly fluorinated polyimides, and the heat treatment temperature is high when manufacturing quartz-based and fluorinated polyimide optical waveguides. There is a disadvantage that usable substrates are limited. Therefore, when manufacturing an electric / light mixed wiring board, an expensive substrate such as a polyimide / ceramic electric wiring board is used. In addition, since the laser diode and the photodiode are solder-mounted by a reflow process after bonding the polyimide film waveguide by ultraviolet curing or heat treatment, there is a problem that the number of processes is large and the yield is deteriorated.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記事情をか
んがみなされたものであり、任意の基板上にポリイミド
光導波路を作製する製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method of manufacturing a polyimide optical waveguide on an arbitrary substrate.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明はポリイミド光導波路の製造方法に関
する発明であって、任意の基板とリッジ型導波路との間
を上部クラッドとして基板と同程度の耐熱性を有し、コ
アよりも低屈折率の接着剤を用いて貼り合わせて作製す
ることを特徴とする。本発明の第2の発明はリッジ型ポ
リイミド光導波路をレーザダイオードやフォトディテク
タなどのハンダ実装と同時に接着剤である上部クラッド
層を熱処理することにより、一括リフローで電気・光混
載配線板作製することを特徴とする。前記のような状況
をかんがみ、本発明者らは鋭意検討を行った結果、任意
の基板とリッジ型導波路との間を上部クラッドとして基
板と同程度の耐熱性を有し、コアよりも低屈折率の接着
剤を用いて貼り合わせることにより、前記目的を達成で
きることを見い出し、本発明を完成するに至った。
SUMMARY OF THE INVENTION To summarize the present invention, a first invention of the present invention relates to a method for manufacturing a polyimide optical waveguide, and comprises an upper cladding between an arbitrary substrate and a ridge type waveguide. It is characterized in that it is manufactured by bonding using an adhesive having the same heat resistance as the substrate and a lower refractive index than the core. The second invention of the present invention is to produce an electric / optical hybrid wiring board by batch reflow by heat-treating an upper clad layer as an adhesive simultaneously with solder mounting of a ridge type polyimide optical waveguide such as a laser diode or a photodetector. Features. In view of the above situation, the present inventors have conducted intensive studies, and as a result, the upper clad between any substrate and the ridge-type waveguide has the same heat resistance as the substrate, and has lower heat resistance than the core. It has been found that the above object can be achieved by laminating using an adhesive having a refractive index, and the present invention has been completed.

【0005】本発明に用いる接着剤は、クラッドである
ため透明性は要求されず、形成したい基板の耐熱温度程
度を有し、かつコア層よりも低屈折率のすべての接着
剤、ワニス樹脂等が使用できる。本発明によれば、シリ
コンウェハなどの基板上に通常のドライエッチングを用
いた方法でリッジ型光導波路フィルムを作製する。その
後、その上に上部クラッド接着層となる接着剤をスピン
コートなどの方法でコートし、任意基板上に貼り合わ
せ、熱処理を施す。これで本発明の第1の発明が説明で
きるが、第2の発明は接着剤をハンダリフロー工程で熱
処理することにより実現できる。
The adhesive used in the present invention is not required to be transparent because it is a clad, and all adhesives, varnish resins, etc. which have a heat resistance temperature of the substrate to be formed and have a lower refractive index than the core layer are used. Can be used. According to the present invention, a ridge-type optical waveguide film is formed on a substrate such as a silicon wafer by a method using ordinary dry etching. Thereafter, an adhesive to be an upper clad adhesive layer is coated thereon by a method such as spin coating, and is adhered to an arbitrary substrate, followed by heat treatment. This explains the first invention of the present invention, but the second invention can be realized by heat-treating the adhesive in a solder reflow process.

【0006】本発明のポリイミド光導波路製造方法を図
1を参照しつつ説明する。符号1はシリコンなどの仮基
板、符号2は下部クラッド層、符号3はコア層、符号4
は上部クラッド層、符号5は形成する任意基板を意味す
る。通常のドライエッチングを用いた方法でリッジ型ポ
リイミド光導波路を作製する。その後、その上に上部ク
ラッド層を塗布し、任意の基板上に貼り合わせる。熱処
理を施すことにより接着剤を硬化させ固定する。最後に
仮基板を剥離する。このようにして任意の基板上にポリ
イミド光導波路を作製できる。
A method for manufacturing a polyimide optical waveguide according to the present invention will be described with reference to FIG. 1 is a temporary substrate such as silicon, 2 is a lower cladding layer, 3 is a core layer, 4
Denotes an upper cladding layer, and reference numeral 5 denotes an arbitrary substrate to be formed. A ridge type polyimide optical waveguide is manufactured by a method using ordinary dry etching. After that, an upper clad layer is applied thereon and bonded to an arbitrary substrate. The adhesive is cured and fixed by heat treatment. Finally, the temporary substrate is peeled off. In this way, a polyimide optical waveguide can be manufactured on an arbitrary substrate.

【0007】[0007]

【実施例】以下実施例を用いて本発明を詳しく説明す
る。なお、本発明はこれらの実施例のみに限定されるの
ではなく、材料の組み合わせ、導波路形状等を変えるこ
とにより多種多様なポリイミド光導波路を作製できる
が、本実施例では代表的なフッ素化ポリイミド光導波路
の作製例を示す。
The present invention will be described in detail with reference to the following examples. It should be noted that the present invention is not limited to only these examples, and various kinds of polyimide optical waveguides can be manufactured by changing the combination of materials, the shape of the waveguide, and the like. A production example of a polyimide optical waveguide will be described.

【0008】実施例1 屈折率1.52である2,2−ビス(3,4−ジカルボ
キシフェニル)ヘキサフルオロプロパン二無水物(6F
DA)と2,2−ビス(トリフルオロメチル)−4,
4' −ジアミノビフェニル(TFDB)のポリイミドを
下部クラッドに、屈折率1.57の6FDAと4, 4'
−オキシジアニリン(ODA)のポリイミドをコアにし
たリッジ型光導波路を通常のドライエッチングを用いた
手法でシリコンウェハ上に作製した。その上に、上部ク
ラッドとして屈折率1.52、ガラス転移温度約120
℃のエポキシ樹脂接着剤をスピンコートにより塗布し
た。その後ガラス転移温度約120℃であるFR−4ガ
ラスエポキシプリント配線板上に貼り合わせ、150℃
で熱処理した。その後、シリコンウェハを剥離しフィル
ム光導波路とした。このようにして、FR−4ガラスエ
ポキシプリント配線板上にフッ素化ポリイミド光導波路
が得られた。
Example 1 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride having a refractive index of 1.52 (6F
DA) and 2,2-bis (trifluoromethyl) -4,
Polyimide of 4'-diaminobiphenyl (TFDB) is provided on the lower clad with 6FDA having a refractive index of 1.57 and 4,4 '.
-A ridge type optical waveguide having a polyimide core of oxydianiline (ODA) was formed on a silicon wafer by a method using ordinary dry etching. On top of that, a refractive index of 1.52 and a glass transition temperature of about 120
An epoxy resin adhesive at ℃ was applied by spin coating. Then, it is bonded on FR-4 glass epoxy printed wiring board having a glass transition temperature of about 120 ° C,
Was heat-treated. Thereafter, the silicon wafer was peeled off to form a film optical waveguide. Thus, a fluorinated polyimide optical waveguide was obtained on the FR-4 glass epoxy printed wiring board.

【0009】実施例2 実施例1と同様に屈折率1.52である6FDA/TF
DBポリイミドを下部クラッドに、屈折率1.57の6
FDA/ODAポリイミドをコアにしたリッジ型光導波
路を通常のドライエッチングを用いた手法でシリコンウ
ェハ上に作製した。ダイシングソーにより所望の形状に
そのリッジ型光導波路を切断し、シリコンウェハから剥
離した。そのフィルム光導波路上に、上部クラッドとし
て屈折率1.52、ガラス転移温度約150℃のエポキ
シ樹脂ワニスをスピンコートにより塗布した。その後F
R−4ガラスエポキシプリント配線板上に貼り合わた。
次に、フォトディテクタをFR−4ガラスエポキシプリ
ント配線板上ハンダボールによってマウントした。その
後該ポリイミド光導波路、フォトディテクタ積載配線板
通常のハンダリフロー工程を行った。このようにして、
FR−4ガラスエポキシプリント配線板上にフッ素化ポ
リイミド光導波路かつフォトディテクタが一括で積載さ
れた。また、エポキシ樹脂の屈折率がリフロー工程後と
通常熱処理で変わらないことが確認された。
Example 2 6FDA / TF having a refractive index of 1.52 as in Example 1
DB polyimide with a lower cladding and a refractive index of 1.57
A ridge type optical waveguide having FDA / ODA polyimide as a core was fabricated on a silicon wafer by a method using ordinary dry etching. The ridge type optical waveguide was cut into a desired shape by a dicing saw, and peeled from the silicon wafer. An epoxy resin varnish having a refractive index of 1.52 and a glass transition temperature of about 150 ° C. was applied as an upper clad on the film optical waveguide by spin coating. Then F
It was stuck on an R-4 glass epoxy printed wiring board.
Next, the photodetector was mounted on a FR-4 glass epoxy printed wiring board with solder balls. Thereafter, a normal solder reflow process was performed on the polyimide optical waveguide and the wiring board on which the photodetector was mounted. In this way,
A fluorinated polyimide optical waveguide and a photodetector were mounted on the FR-4 glass epoxy printed wiring board in a lump. Further, it was confirmed that the refractive index of the epoxy resin did not change after the reflow process and in the normal heat treatment.

【0010】[0010]

【発明の効果】以上説明したように、本発明のポリイミ
ド光導波路製造方法を用いることにより任意の基板上に
ポリイミド光導波路を作製できる。
As described above, a polyimide optical waveguide can be manufactured on an arbitrary substrate by using the method for manufacturing a polyimide optical waveguide of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のポリイミド光導波路作製工程を示す図
である。
FIG. 1 is a view showing a polyimide optical waveguide manufacturing process of the present invention.

【符号の説明】[Explanation of symbols]

1:仮基板 2:下部クラッド層 3:コア層 4:上部クラッド層 5:光導波路を形成する任意基板 1: Temporary substrate 2: Lower cladding layer 3: Core layer 4: Upper cladding layer 5: Arbitrary substrate for forming an optical waveguide

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 任意の基板とリッジ型導波路との間を上
部クラッドとして基板と同程度の耐熱性を有し、コアよ
りも低屈折率な接着剤を用いて貼り合わせて作製するこ
とを特徴とする埋め込み型ポリイミド光導波路の製造方
法。
1. A method in which an arbitrary substrate and a ridge-type waveguide are bonded by using an adhesive having an upper cladding and heat resistance similar to that of the substrate and having a lower refractive index than the core. A method for manufacturing a buried polyimide optical waveguide.
【請求項2】 リッジ型ポリイミド光導波路をレーザダ
イオードやフォトディテクタなどのハンダ実装と同時に
接着剤である上部クラッド層を熱処理することにより、
一括リフローで電気・光混載配線板を作製することを特
徴とする請求項1記載の埋め込み型ポリイミド光導波路
の製造方法。
2. A ridge-type polyimide optical waveguide is heat-treated at the same time as soldering a laser diode, a photodetector, or the like, and simultaneously heating an upper clad layer as an adhesive.
2. The method for manufacturing a buried polyimide optical waveguide according to claim 1, wherein the mixed electric / optical wiring board is manufactured by batch reflow.
JP12576499A 1999-05-06 1999-05-06 Production of polyimide optical waveguide Pending JP2000321455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12576499A JP2000321455A (en) 1999-05-06 1999-05-06 Production of polyimide optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12576499A JP2000321455A (en) 1999-05-06 1999-05-06 Production of polyimide optical waveguide

Publications (1)

Publication Number Publication Date
JP2000321455A true JP2000321455A (en) 2000-11-24

Family

ID=14918256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12576499A Pending JP2000321455A (en) 1999-05-06 1999-05-06 Production of polyimide optical waveguide

Country Status (1)

Country Link
JP (1) JP2000321455A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227950A (en) * 2002-02-01 2003-08-15 Omron Corp Optical element and method of manufacturing the same
WO2003100486A1 (en) * 2002-05-28 2003-12-04 Matsushita Electric Works, Ltd. Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
KR100438273B1 (en) * 2001-08-22 2004-07-02 엘지전자 주식회사 Fixing structure and fixing method for PDIC in an optical pick-up
WO2004111710A1 (en) * 2003-06-10 2004-12-23 Nippon Telegraph And Telephone Corporation Electrooptic modulation element
KR100809669B1 (en) * 2001-12-26 2008-03-05 주식회사 케이티 Manual Alignment Connection Method of Photoelectric Module Using Laser Local Heating
CN100380178C (en) * 2003-06-10 2008-04-09 日本电信电话株式会社 Electrooptic modulation element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438273B1 (en) * 2001-08-22 2004-07-02 엘지전자 주식회사 Fixing structure and fixing method for PDIC in an optical pick-up
KR100809669B1 (en) * 2001-12-26 2008-03-05 주식회사 케이티 Manual Alignment Connection Method of Photoelectric Module Using Laser Local Heating
JP2003227950A (en) * 2002-02-01 2003-08-15 Omron Corp Optical element and method of manufacturing the same
WO2003100486A1 (en) * 2002-05-28 2003-12-04 Matsushita Electric Works, Ltd. Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
US7330612B2 (en) 2002-05-28 2008-02-12 Matsushita Electric Works, Ltd. Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
US8073295B2 (en) 2002-05-28 2011-12-06 Panasonic Electric Works Co., Ltd. Material for substrate mounting optical circuit-electrical circuit mixedly and substrate mounting optical circuit-electrical circuit mixedly
WO2004111710A1 (en) * 2003-06-10 2004-12-23 Nippon Telegraph And Telephone Corporation Electrooptic modulation element
EP1526400A4 (en) * 2003-06-10 2006-07-05 Nippon Telegraph & Telephone Electrooptic modulation element
CN100380178C (en) * 2003-06-10 2008-04-09 日本电信电话株式会社 Electrooptic modulation element
US7433111B2 (en) 2003-06-10 2008-10-07 Nippon Telegraph And Telephone Corporation Electrooptic modulation element

Similar Documents

Publication Publication Date Title
EP0961139B1 (en) Polymer optical waveguide, optica integrated circuit , optical module and optical communication apparatus
KR100926395B1 (en) Optical waveguide film, method for manufacturing the film, optoelectrical hybrid film including the waveguide film, and electronic device
EP1099964A2 (en) Method for manufacturing polymer optical waveguide
JP2005275405A (en) Optical structure and method for connecting optical circuit board components
JP2000321455A (en) Production of polyimide optical waveguide
KR20070088762A (en) Optical wiring board and opto-electric hybrid board
JP3835906B2 (en) Polymer optical waveguide, optical integrated circuit, and optical module
JPH04328504A (en) Polyimide optical waveguide
JP4487297B2 (en) Resin optical waveguide provided with protective layer, method for manufacturing the same, and optical component
JP2006047764A (en) Projected optical waveguide, method of manufacturing the same and optoelectric hybrid substrate using the same
JP2000056147A (en) Method for manufacturing polymer optical waveguide
JP2012103425A (en) Manufacturing method for photoelectric composite wiring board, and photoelectric composite wiring board manufactured by the same
JP2003302544A (en) Polymer optical waveguide element with function of converting optical path and method for manufacturing the same
CN100514100C (en) Optical transmission module and manufacturing method thereof
JP2003172837A (en) Optical waveguide element with lens and method of manufacturing the same
JP2004021042A (en) Opto-electric consolidated wiring board
JP2006119659A (en) Polymer optical waveguide and manufacturing method thereof
JP2000056148A (en) Polymer optical waveguide and method of manufacturing the same
JPH01288802A (en) Light guide and its production
JP2002148455A (en) Polymer optical waveguide device
JP3921900B2 (en) Manufacturing method of polymer optical waveguide
KR100393622B1 (en) Planar lightwave circuit module
JP2007033776A (en) Manufacturing method of laminated optical waveguide
Oe et al. New waveguide technique using photosensitive polyimide for integrated optics
JP2004212774A (en) Optical coupling method using optical waveguide