JP2000317246A - Ammonia recovery method and recovery device - Google Patents
Ammonia recovery method and recovery deviceInfo
- Publication number
- JP2000317246A JP2000317246A JP2000048769A JP2000048769A JP2000317246A JP 2000317246 A JP2000317246 A JP 2000317246A JP 2000048769 A JP2000048769 A JP 2000048769A JP 2000048769 A JP2000048769 A JP 2000048769A JP 2000317246 A JP2000317246 A JP 2000317246A
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- adsorber
- adsorption
- multitubular
- heat medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
(57)【要約】
【課題】 高濃度のアンモニアを含む大量のガスからア
ンモニアを短時間で収率よく回収する方法を開発する。
【解決手段】 多管式吸着器にアンモニアの吸着剤を充
填し、吸着剤を冷却しながらアンモニア含有ガスを通気
することによりアンモニアを吸着捕取した後、多管式吸
着器を熱媒体で加熱しながら減圧下にアンモニアを脱離
させて回収する。
(57) [Problem] To develop a method for recovering ammonia from a large amount of gas containing a high concentration of ammonia in a short time and with high yield. SOLUTION: A multitubular adsorber is filled with an ammonia adsorbent, and ammonia is adsorbed and captured by passing an ammonia-containing gas while cooling the adsorbent, and then the multitubular adsorber is heated with a heat medium. The ammonia is desorbed and recovered under reduced pressure.
Description
【0001】[0001]
【発明の属する技術分野】本発明はアンモニアの回収方
法及び回収装置に関し、更に詳しくは高濃度のアンモニ
アを含む大量のガスからアンモニアを効率よく回収する
回収方法及び回収装置に関する。The present invention relates to a method and an apparatus for recovering ammonia, and more particularly to a method and an apparatus for efficiently recovering ammonia from a large amount of gas containing high-concentration ammonia.
【0002】[0002]
【従来の技術】アンモニアは、化学工業原料として広く
用いられているほか、装飾品や超硬工具の製造、半導体
製造などにおいて窒化膜生成のために使用される。これ
らのアンモニアは使用された後、排ガス処理として価値
の低い物質、または無価値の物質に変換されたり、一部
はそのまま大気中に排出されている。また、アンモニア
が使用される工程によっては有用なアンモニアを大量に
排気することがあり、例えば窒化ガリウム膜などの化合
物半導体製造などにおいては使用された高純度アンモニ
アの大部分が未反応のまま半導体製造装置から排出され
る。このためアンモニアの除害処理に多大の費用を要し
ている。これらのアンモニアは資源の有効利用のほか環
境科学的にもその回収が望まれている。本発明はアンモ
ニアを効率よく回収する方法に関するものである。従
来、アンモニアを使用した後のアンモニア含有排ガス
は、アンモニアが比較的安価な化合物であることから、
アンモニアをそのままの状態で回収することが少なく、
排ガス処理として除去、無害化などの手段で廃棄処理さ
れることが多い。アンモニア排ガス処理としては例え
ば、燃焼処理法、湿式吸収法、乾式吸着法、分解処理方
法、分解と乾式吸着の組み合わせ方法などが知られてい
る。しかしそれらは次のような問題点を有している。2. Description of the Related Art Ammonia is widely used as a raw material in the chemical industry, and is also used for producing nitride films in the production of decorative articles, cemented carbide tools and semiconductors. After these ammonias are used, they are converted into low-value substances or non-value substances as exhaust gas treatments, and some of them are discharged to the atmosphere as they are. Also, depending on the process in which ammonia is used, a large amount of useful ammonia may be exhausted. For example, in the manufacture of a compound semiconductor such as a gallium nitride film, most of the high-purity ammonia used in the semiconductor manufacturing process is left unreacted. Discharged from the device. For this reason, a great deal of cost is required for the ammonia removal treatment. These ammonias are desired to be used not only for effective use of resources but also for environmental science. The present invention relates to a method for efficiently recovering ammonia. Conventionally, ammonia-containing exhaust gas after using ammonia, because ammonia is a relatively inexpensive compound,
Less recovery of ammonia as it is,
It is often discarded by means such as removal and detoxification as exhaust gas treatment. As the ammonia exhaust gas treatment, for example, a combustion treatment method, a wet absorption method, a dry adsorption method, a decomposition treatment method, a combination method of decomposition and dry adsorption, and the like are known. However, they have the following problems.
【0003】燃焼処理法では、燃焼処理にプロパンなど
の燃料を必要とすること、また、燃焼装置が負荷変動に
対する適用範囲が狭いこと、及びアンモニアの燃焼に伴
って窒素酸化物が副生すると言う不都合がある。また、
酸性の水溶液を用いる湿式吸収法では副生するアンモニ
ウム塩の処理が難しい欠点がある。また、化学的吸着で
無害化する乾式吸着法の場合には、吸着剤が高価である
ことから、大量のアンモニアの処理の場合には処理費用
が高額になると言う不都合がある。[0003] In the combustion treatment method, it is said that fuel such as propane is required for the combustion treatment, that the combustion device has a narrow range of application to load fluctuations, and that nitrogen oxides are by-produced with the combustion of ammonia. There are inconveniences. Also,
The wet absorption method using an acidic aqueous solution has a disadvantage that it is difficult to treat the ammonium salt produced as a by-product. Further, in the case of the dry adsorption method in which detoxification is carried out by chemical adsorption, since the adsorbent is expensive, there is an inconvenience that the treatment cost is high in the case of treating a large amount of ammonia.
【0004】アンモニアを加熱下にアンモニア分解触媒
と接触させて窒素と水素に分解する方法では、化学平衡
に基づく未分解アンモニアが残存し、完全に処理をする
ことができない。このため、アンモニアを分解触媒に接
触させて窒素と水素に分解した後、未分解アンモニアを
乾式吸着剤で浄化する方法も知られているが、この場合
も乾式吸着剤が高価であり、アンモニアを含む大量のガ
スの処理には処理費用が高額になると言う不都合があ
る。In the method in which ammonia is brought into contact with an ammonia decomposition catalyst under heating to decompose it into nitrogen and hydrogen, undecomposed ammonia based on chemical equilibrium remains and cannot be completely treated. For this reason, a method is also known in which ammonia is decomposed into nitrogen and hydrogen by contacting it with a decomposition catalyst, and then the undecomposed ammonia is purified with a dry adsorbent. There is a disadvantage that the processing cost is high in the processing of a large amount of gas.
【0005】以上のようにアンモニアを排ガスとして処
理する方法にはそれぞれ欠点を有するほか、いずれの方
法においてもアンモニアを有用な物質として回収するこ
とを目的としたものではない。即ち、化学工業原料ある
いは半導体製造における原料として有用であったものを
費用を投じて価値の無いもの、または価値の低い物質に
変換処理するという基本的な問題点を有している。As described above, the methods of treating ammonia as exhaust gas have disadvantages, and none of the methods aim at recovering ammonia as a useful substance. In other words, there is a basic problem that a material useful as a chemical industrial material or a material in semiconductor production is converted into a material having no value or a material having a low value at a cost.
【0006】[0006]
【発明が解決しようとする課題】一方、窒化膜半導体の
製造などにおいては、高純度のアンモニアが多量に使用
される。しかしその大部分が未反応のまま、高濃度で排
出され、かつその量も多いことから、上記いずれの処理
方法を適用する場合にも不都合がある。これらのアンモ
ニアを効率よく回収することができれば、資源の有効利
用となるばかりでなく、環境保全の観点からも好ましい
ことである。しかしながら、いまだ効率よく、アンモニ
アを回収する方法は提案されていない。即ち本発明の課
題は、大量かつ高濃度で排出されるアンモニアを効率よ
く回収する回収方法及び回収装置を開発することであ
る。On the other hand, in the production of nitride semiconductors, etc., a large amount of high-purity ammonia is used. However, most of them are discharged at a high concentration without being reacted, and the amount thereof is large. Therefore, there is an inconvenience when any of the above-mentioned treatment methods is applied. If such ammonia can be efficiently recovered, it is not only effective use of resources but also from the viewpoint of environmental conservation. However, a method for efficiently recovering ammonia has not yet been proposed. That is, an object of the present invention is to develop a recovery method and a recovery apparatus for efficiently recovering a large amount of ammonia discharged at a high concentration.
【0007】[0007]
【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究を重ねた結果、合成ゼオライト、活
性炭などの吸着剤が充填された複数の吸着管が内蔵さ
れ、該吸着管の外側に熱媒体を流通させることができる
構成とした多管式吸着器を熱媒体で冷却しながらアンモ
ニアを含むガスを通気することによりアンモニアを効率
よく吸着捕取することができることを見出した。また、
アンモニアを吸着した該多管式吸着器を熱媒体で加熱し
ながら減圧下にアンモニアを脱離させることによってア
ンモニアを短時間で収率よく回収し得ることを見出し、
本発明に到達した。The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, a plurality of adsorption tubes filled with an adsorbent such as synthetic zeolite and activated carbon are built in, and the adsorption tubes It has been found that ammonia can be efficiently adsorbed and trapped by passing a gas containing ammonia while cooling the multitubular adsorber having a configuration in which a heat medium can be circulated outside the heat exchanger with the heat medium. Also,
It has been found that ammonia can be recovered in a short time and with good yield by desorbing ammonia under reduced pressure while heating the multitubular adsorber having adsorbed ammonia with a heat medium,
The present invention has been reached.
【0008】即ち本発明は、アンモニアの吸着剤が充填
された複数の吸着管が内蔵され、該吸着管の外側に熱媒
体を流通させることができる構造とされた多管式吸着器
を熱媒体で冷却しながら、該多管式吸着器の吸着管にア
ンモニアを含むガスを通気することによりアンモニアを
吸着捕取した後、該多管式吸着器を熱媒体で加熱しなが
ら吸着管内を減圧に保ち、アンモニアを脱離させて回収
することを特徴とするアンモニアの回収方法である。ま
た本発明は、アンモニアの吸着剤が充填された複数の吸
着管が内蔵され該吸着管の外側に熱媒体を流通させるこ
とができる構造とされた多管式吸着器を並列に複数列設
け、該多管式吸着器を順次切り換えて熱媒体で冷却しな
がら、該多管式吸着器にアンモニアを含むガスを通気す
ることによりアンモニアを吸着捕取した後、該多管式吸
着器を順次切り換えて熱媒体で加熱しながら吸着管内を
減圧に保ち、アンモニアを脱離させて連続的に回収する
ことを特徴とするアンモニアの回収方法でもある。That is, the present invention relates to a multi-tube adsorber having a structure in which a plurality of adsorption tubes filled with an adsorbent for ammonia are built in and a heat medium can be circulated outside the adsorption tubes. After ammonia is adsorbed and captured by passing a gas containing ammonia into the adsorption tube of the multitubular adsorber while cooling with, the inside of the adsorption tube is depressurized while heating the multitubular adsorber with a heat medium. A method for recovering ammonia, characterized by maintaining and removing and recovering ammonia. Further, the present invention provides a plurality of multi-tube adsorbers arranged in parallel with a plurality of adsorption tubes filled with an adsorbent of ammonia and having a structure capable of flowing a heat medium outside the adsorption tubes, While sequentially switching the multitubular adsorber and cooling ammonia with a heat medium, a gas containing ammonia is passed through the multitubular adsorber to adsorb and capture ammonia, and then sequentially switch the multitubular adsorber. A method for recovering ammonia, characterized in that the inside of the adsorption tube is kept at a reduced pressure while heating with a heat medium, and ammonia is desorbed and continuously recovered.
【0009】さらに本発明は、アンモニアの吸着剤が充
填された複数の吸着管が内蔵され、該吸着管の外側に熱
媒体を流通させることができる構造とされた多管式吸着
器と、該多管式吸着器の吸着管内を減圧排気するための
ポンプを有し、該多管式吸着器を冷却しながら、アンモ
ニアを含むガスを吸着管に通気することによりアンモニ
アを吸着捕取した後、該多管式吸着器を熱媒体で加熱し
ながら吸着管内を減圧に保ちアンモニアを脱離させて回
収することができる構成としたことを特徴とするアンモ
ニアの回収装置ある。さらにまた本発明は、アンモニア
吸着剤が充填された複数の吸着管が内蔵され該吸着管の
外側に熱媒体を流通させることができる構造とされた多
管式吸着器を並列に複数列有すると共に、該多管式吸着
器の吸着管内を減圧排気するためのポンプを有し、該多
管式吸着器を順次切り換えて熱媒体で冷却しながら、該
多管式吸着器にアンモニアを含むガスを吸着管に通気す
ることによりアンモニアを吸着捕取した後、該多管式吸
着器を順次切り換えて熱媒体で加熱しながら吸着管内を
減圧に保ちアンモニアを脱離させて連続的に回収するこ
とができる構成としたことを特徴とするアンモニアの回
収装置である。Further, the present invention provides a multitubular adsorber having a structure in which a plurality of adsorption tubes filled with an adsorbent for ammonia are built in and a heat medium can be circulated outside the adsorption tubes. After having a pump for depressurizing and exhausting the inside of the adsorption tube of the multitubular adsorber, and while cooling the multitubular adsorber, ammonia is adsorbed and captured by passing gas containing ammonia through the adsorption tube, An ammonia recovery apparatus characterized in that ammonia can be desorbed and recovered while keeping the inside of the adsorption tube under reduced pressure while heating the multitubular adsorber with a heat medium. Furthermore, the present invention has a plurality of rows of multitubular adsorbers arranged in parallel, each having a plurality of adsorption tubes filled with an ammonia adsorbent and having a structure in which a heat medium can be circulated outside the adsorption tubes. A pump for depressurizing and exhausting the inside of the adsorption tube of the multitubular adsorber, and sequentially switching the multitubular adsorber to cool the multitubular adsorber with a heat medium while supplying gas containing ammonia to the multitubular adsorber. After adsorbing and capturing ammonia by passing air through the adsorption tube, it is possible to continuously switch the multitubular adsorber to sequentially recover the ammonia by depressurizing while keeping the inside of the adsorption tube under reduced pressure while heating with a heat medium. An ammonia recovery apparatus characterized in that the apparatus has a configuration that allows the ammonia recovery.
【0010】本発明は、アンモニアを吸着する際に、吸
着熱により吸着剤が温度上昇し、吸着能力の低下するこ
とを、多管式吸着器を採用し、強制冷却することによっ
て吸着能力の低下を防ぐことができるものである。ま
た、吸着したアンモニアを減圧で脱離させる際に、アン
モニアの気化熱に伴う吸着剤の温度低下及び脱離速度が
低下することを、強制加熱することによって防止し、ア
ンモニアを短時間で収率よく回収する方法、及び回収装
置である。また、このような構成を採ることによって、
少ない吸着剤で大量のアンモニアを吸着することがで
き、吸着したアンモニアの脱離操作が短時間でできるの
で、アンモニア回収装置を小型化することが可能であ
る。さらに、吸着剤の冷却、加熱の際に、吸着剤と熱媒
体との熱交換が良好に行われることから、熱媒体として
特別なものを必要とせず、冷却水、熱水等の組み合わせ
で効率よく行なうことができる。According to the present invention, it is possible to reduce the adsorption capacity by adopting a multi-tube adsorber and forcibly cooling the adsorbent when the adsorbent rises in temperature due to the heat of adsorption and decreases the adsorption capacity when adsorbing ammonia. Can be prevented. In addition, when desorbing the adsorbed ammonia under reduced pressure, it is possible to prevent the temperature of the adsorbent and the desorption speed from being lowered due to the heat of vaporization of the ammonia by forcibly heating, and to reduce the yield of ammonia in a short time. It is a method of collecting well and a collecting device. Also, by adopting such a configuration,
Since a large amount of ammonia can be adsorbed with a small amount of adsorbent and the operation of desorbing the adsorbed ammonia can be performed in a short time, the ammonia recovery device can be downsized. In addition, when the adsorbent is cooled and heated, heat exchange between the adsorbent and the heat medium is performed well, so that no special heat medium is required and the efficiency can be improved by combining cooling water and hot water. Can do well.
【0011】[0011]
【発明の実施の形態】本発明は、主にアンモニアを比較
的高濃度で含む大量のガスからアンモニアを回収する方
法に適用される。本発明におけるアンモニアを含むガス
とは、アンモニアと通常の温度及び圧力範囲において化
学反応を生じないようなガス中にアンモニアを含むガス
を意味するものであり、そのガス種に特に限定はなく、
例えば水素、窒素、ヘリウム、アルゴンなどのガス中に
アンモニアを含むガスを言う。またアンモニアを含むガ
ス中のアンモニアの濃度に特に限定はなく、低濃度から
高濃度までいずれのアンモニア濃度のガスも含まれるも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention is mainly applied to a method for recovering ammonia from a large amount of gas containing ammonia at a relatively high concentration. The gas containing ammonia in the present invention means a gas containing ammonia in a gas that does not cause a chemical reaction with ammonia in a normal temperature and pressure range, and the gas type is not particularly limited.
For example, it refers to a gas containing ammonia in a gas such as hydrogen, nitrogen, helium, or argon. In addition, the concentration of ammonia in the gas containing ammonia is not particularly limited, and includes any concentration of ammonia from a low concentration to a high concentration.
【0012】本発明の多管式吸着器の例を図2により具
体的に説明する。本発明において、多管式吸着器3と
は、吸着剤5が充填された多数の吸着管4が一つの吸着
器内に設けられたものであり、図2に示すように、2枚
の管板8、8’を通して取り付けられたものである。そ
れぞれの吸着管内にアンモニアを含むガスを流通させる
ことができると共に、両管板間の吸着管4と胴部分9と
の間に冷却水、あるいは熱水若しくはスチームなどの熱
媒体を熱媒体入り口6から熱媒体出口7の間で流すこと
ができる構造を有し、吸着剤5を必要に応じて加熱、冷
却することができる構成とされたものである。この多管
式吸着器は、化学工業の分野で多管式熱交換器、あるい
は多管式反応器として用いられているものと同様の構造
を有するものである。これらの多管式吸着器は、一筒で
用いることもできるが、複数列並列に設けることもでき
る。An example of the multitubular adsorber of the present invention will be specifically described with reference to FIG. In the present invention, the multitubular adsorber 3 is one in which a number of adsorption tubes 4 filled with an adsorbent 5 are provided in one adsorber, and as shown in FIG. It is attached through the plates 8, 8 '. A gas containing ammonia can be circulated in each of the adsorption tubes, and a cooling medium or a heating medium such as hot water or steam is supplied between the adsorption tube 4 and the body portion 9 between the two tube plates through the heat medium inlet 6. From the heat medium outlet 7 so that the adsorbent 5 can be heated and cooled as required. The multitubular adsorber has a structure similar to that used as a multitubular heat exchanger or a multitubular reactor in the chemical industry. These multitubular adsorbers can be used in a single tube, but can also be provided in a plurality of rows in parallel.
【0013】本発明におけるアンモニアの吸着剤とは、
アンモニアを多量に物理吸着することができると共に、
圧力変化または温度変化など操作条件によって容易にア
ンモニアを放出させることができる吸着剤であればいず
れも用いることができ、特に限定されるものではない。
これらの特性を満たすものとして、例えば合成ゼオライ
ト(モレキュラーシーブス13X、5A等)、シリカゲ
ル、アルミナ、活性炭などが用いられる。In the present invention, the ammonia adsorbent is
A large amount of ammonia can be physically adsorbed,
Any adsorbent that can easily release ammonia depending on operating conditions such as pressure change or temperature change can be used, and is not particularly limited.
As a material satisfying these characteristics, for example, synthetic zeolite (molecular sieves 13X, 5A or the like), silica gel, alumina, activated carbon, or the like is used.
【0014】本発明のアンモニア回収装置の例を図1に
より具体的に説明する。本発明は一系列の多管式吸着器
からなる装置で、先ずアンモニアの吸着操作を行い、次
いでアンモニアを含むガスの供給を中止して、アンモニ
アの脱離操作を行う形で実施することもできるが、2系
列以上の多管式吸着器を並列に切換え可能な状態に接続
し、各々の多管式吸着器でのアンモニア吸着捕取と脱離
操作との切換えを行うことによって、連続的に行うこと
が好ましい。図1は多管式吸着器を2系列設け、一方の
吸着器でアンモニアの吸着操作をしている間に、他方の
吸着器ではアンモニアの脱離操作を行う方法で、両系列
を切り換えることによって、連続してアンモニアを含む
ガスからアンモニアを回収することができる構成とした
回収装置の例である。アンモニアを含むガスはアンモニ
ア排出ライン1、バルブ2を経て、吸着器3の上部から
吸着管4に導入される。この時アンモニアの吸着に伴っ
て吸着熱が発生するが、冷却水などの熱媒体を熱媒体入
口6から熱媒体出口7の間で流通させることによって、
温度上昇による吸着能力の低下を防ぐことができる。An example of the ammonia recovery apparatus of the present invention will be specifically described with reference to FIG. The present invention is an apparatus comprising a series of multitubular adsorbers, which can be implemented by first performing an ammonia adsorption operation, then stopping the supply of ammonia-containing gas, and performing an ammonia desorption operation. However, by connecting two or more series of multitubular adsorbers in a state that can be switched in parallel and switching between ammonia adsorption capture and desorption operation in each multitubular adsorber, continuous operation is possible. It is preferred to do so. FIG. 1 shows a method in which two series of multitubular adsorbers are provided, and one of the adsorbers performs the operation of adsorbing ammonia while the other adsorber performs the operation of desorbing ammonia. This is an example of a recovery device configured to be able to continuously recover ammonia from a gas containing ammonia. The gas containing ammonia is introduced into the adsorption pipe 4 from the upper part of the adsorber 3 through the ammonia discharge line 1 and the valve 2. At this time, heat of adsorption is generated along with the adsorption of ammonia. By flowing a heat medium such as cooling water between the heat medium inlet 6 and the heat medium outlet 7,
It is possible to prevent a decrease in adsorption capacity due to a rise in temperature.
【0015】アンモニアを吸着除去されたガスはバルブ
10を経て排気ライン11へ導かれる。アンモニア吸着
剤がアンモニアを吸着し飽和吸着又は飽和吸着近傍に達
した時点で、バルブ2、10を閉、バルブ2’、10’
を開にして、アンモニアを含むガスの流通を吸着器3’
に切り換える。次にバルブ12を開とし、アンモニア回
収ライン13を通じて真空ポンプ14で短時間減圧吸引
し、その時の回収ガスはバルブ15を経て、サージタン
ク23に導入する。その後バルブ15を閉、真空ポンプ
14を稼動の状態でバルブ17、20を開とし、加圧ポ
ンプ19を稼動させると共に、吸着器3に熱水又はスチ
ーム等を流通させることによって加熱し、脱離したアン
モニアをバッファータンク18を経てアンモタンク21
に回収する。回収されたアンモニアは必要に応じてバル
ブ22から抜出す。アンモニアの回収の終了後は減圧吸
引を停止し、吸着器3を常温付近の温度に冷却すると共
に、吸着器3’の出口ガス又は別に設けられた配管から
不活性ガスを導入し、吸着器3内を常圧に戻した上で、
次の切換えに備える。サージタンク23内の回収ガス
は、バルブ24、排気ガス循環ライン16を経て小流量
でアンモニア排出ラインに導入される。The gas from which ammonia has been adsorbed and removed is led to an exhaust line 11 via a valve 10. When the ammonia adsorbent adsorbs ammonia and reaches saturated adsorption or near saturated adsorption, valves 2 and 10 are closed and valves 2 ′ and 10 ′ are closed.
Is opened, and the flow of the gas containing ammonia is adsorbed by the adsorber 3 '.
Switch to. Next, the valve 12 is opened, a reduced pressure is suctioned for a short time through the ammonia recovery line 13 by the vacuum pump 14, and the recovered gas at that time is introduced into the surge tank 23 through the valve 15. Thereafter, the valve 15 is closed, the valves 17 and 20 are opened while the vacuum pump 14 is in operation, the pressurizing pump 19 is operated, and the adsorber 3 is heated by flowing hot water or steam, and desorbed. Ammonia tank 21 passes through the buffer ammonia 18
To be collected. The collected ammonia is withdrawn from the valve 22 as needed. After the completion of the ammonia recovery, the suction under reduced pressure is stopped, the adsorber 3 is cooled to a temperature near normal temperature, and an inert gas is introduced from the outlet gas of the adsorber 3 ′ or a pipe provided separately. After returning the inside to normal pressure,
Prepare for the next switch. The recovered gas in the surge tank 23 is introduced into the ammonia discharge line at a small flow rate via the valve 24 and the exhaust gas circulation line 16.
【0016】本発明において、吸着器に用いられる吸着
管の内径は、通常は25〜300mmであり、好ましく
は50〜150mm程度である。25mmより細い場合
には吸着剤の充填量が少ないために多数の吸着管を必要
とし、吸着器の製作費用が嵩むばかりでなく吸着器の容
積効率が低くなる不都合がある。また、300mmより
も大きい場合には吸着剤を冷却あるいは加熱する際の熱
伝導が悪くなる不都合がある。In the present invention, the inner diameter of the adsorption tube used for the adsorber is usually 25 to 300 mm, preferably about 50 to 150 mm. When the diameter is smaller than 25 mm, a small amount of the adsorbent is used, so that a large number of adsorption tubes are required, which not only increases the production cost of the adsorber but also lowers the volumetric efficiency of the adsorber. If it is larger than 300 mm, heat conduction when cooling or heating the adsorbent is disadvantageously deteriorated.
【0017】また吸着管の長さとして通常は250〜3
000mm、好ましくは500〜1500mm程度であ
る。250mmよりも短い場合には吸着器の構造が複雑
な割に吸着剤の充填量が少ない欠点を有し、3000m
mよりも長い場合には圧力損失が大となる不都合があ
る。The length of the adsorption tube is usually 250 to 3
000 mm, preferably about 500 to 1500 mm. When the length is shorter than 250 mm, there is a disadvantage that the amount of the adsorbent is small in spite of the complicated structure of the adsorber,
When it is longer than m, there is a disadvantage that the pressure loss becomes large.
【0018】吸着器の胴部分の形状に特に限定はない。
しかし、吸着器のガス導入部分及びガス排出部分の形状
については、アンモニアを吸着させた後、減圧下にアン
モニアを脱離させて回収する際の耐圧性保持の観点から
椀状にすることが好ましく、その点から吸着器の胴部分
の形状は円筒状とすることが好ましい。The shape of the body of the adsorber is not particularly limited.
However, the shape of the gas introduction portion and the gas discharge portion of the adsorber is preferably made into a bowl shape from the viewpoint of maintaining pressure resistance when ammonia is adsorbed and then desorbed and recovered under reduced pressure after ammonia is adsorbed. From that point, it is preferable that the shape of the body of the adsorber is cylindrical.
【0019】吸着器内に設けられる吸着管の本数に特に
限定はなく、アンモニアを含むガスの処理量、アンモニ
ア濃度、吸着管の太さ及び長さ、所望の切り換え時間な
どによって適宜選択されるほか、吸着器内の吸着管の配
列方法などに基づいて適宜設定される。このほか、吸着
器の吸着管と胴部分との間に熱媒体を効率よく流通させ
るための仕切り板等を設けることもできる。また、本発
明における吸着器の説明を、吸着管の内側に吸着剤を充
填し、吸着管の外側に熱媒体を流通させる方法で説明し
た。しかし、吸着管の外側に吸着剤を充填し、吸着管の
内側に熱媒体を流通させる構造とすることもできるが、
実用的ではない。The number of adsorption tubes provided in the adsorber is not particularly limited, and is appropriately selected depending on the throughput of ammonia-containing gas, ammonia concentration, thickness and length of the adsorption tube, desired switching time, and the like. Is appropriately set based on the method of arranging the adsorption tubes in the adsorber. In addition, a partition plate or the like for efficiently flowing the heat medium between the adsorption tube and the body of the adsorber may be provided. In addition, the description of the adsorber in the present invention has been described by a method of filling the adsorbent inside the adsorption tube and flowing the heat medium outside the adsorption tube. However, the outside of the adsorption tube can be filled with an adsorbent, and the heat medium can be circulated inside the adsorption tube.
Not practical.
【0020】アンモニア吸着器の構成材質に特に限定は
ないが、回収するアンモニアガスを汚染することがな
く、腐蝕を生じることがなく、熱伝導の良好な材質であ
ること等を考慮して通常はSUS304、SUS31
6、SUS316Lなどが用いられる。Although the constituent material of the ammonia adsorber is not particularly limited, it is usually considered in consideration of the fact that it does not contaminate the recovered ammonia gas, does not corrode, and has good heat conduction. SUS304, SUS31
6, SUS316L or the like is used.
【0021】本発明において、アンモニアを吸着させる
際の吸着剤の温度としては、温度が低いほど吸着能力は
大となるが、冷却の容易性から通常は−30〜75℃で
あり、好ましくは常温〜50℃である。このような温度
に冷却するには、冷却したガスを熱媒体として循環させ
ることもできるが、ガスは熱容量が小さく迅速に冷却す
ることができないことから、水又は公知の不凍液を冷却
して用いるのが好ましい。また吸着時の圧力に特に限定
はなく、圧力が高いほど吸着量が増大する利点と、吸着
器の耐圧性の点から、常圧〜5kg/cm2程度で行わ
れるが、主としてアンモニアを含むガスの発生源の条件
によって決定される。In the present invention, as the temperature of the adsorbent at the time of adsorbing ammonia, the lower the temperature, the higher the adsorbing ability. However, from the viewpoint of easy cooling, it is usually -30 to 75 ° C., preferably room temperature. 5050 ° C. In order to cool to such a temperature, the cooled gas can be circulated as a heat medium, but since the gas has a small heat capacity and cannot be rapidly cooled, water or a known antifreeze is used after cooling. Is preferred. The pressure at the time of adsorption is not particularly limited. From the viewpoint that the amount of adsorption increases as the pressure increases and the pressure resistance of the adsorber, the adsorption is performed at normal pressure to about 5 kg / cm 2. Is determined by the source conditions.
【0022】また、アンモニアを含むガスを吸着剤と接
触させる際の空筒線速度(LV)は、アンモニアの濃度
によって異なり一概に特定できないが、通常は100c
m/sec以下、好ましくは30cm/sec以下であ
る。The linear velocity (LV) at the time of bringing the gas containing ammonia into contact with the adsorbent differs depending on the concentration of ammonia and cannot be specified unconditionally.
m / sec or less, preferably 30 cm / sec or less.
【0023】本発明において、アンモニア吸着後の吸着
剤からアンモニアを回収する際の圧力としては、低いほ
どアンモニアの脱離が容易となるが、大きな排気容量の
真空ポンプを要することから通常は0.5〜500mm
Hg、好ましくは20〜300mHg程度である。ま
た、吸着剤の加熱温度として特に限定はなく、温度が高
いほどアンモニアの脱離が容易であるが、減圧排気を行
うことからさほど高温を必要とせず、通常は50〜20
0℃、好ましくは70〜150℃である。このような温
度に加熱するには、加熱したガスを熱媒体として循環さ
せることもできるが、ガスは熱容量が小さく迅速に加熱
することができないことから、熱水又はスチーム、若し
く加圧熱水や加圧スチームを用いることが好ましい。こ
のほか高沸点炭化水素などの熱媒体を用いることもでき
る。In the present invention, the lower the pressure at which ammonia is recovered from the adsorbent after the adsorption of ammonia, the easier the desorption of ammonia becomes, but the pressure is usually 0.1 mm because a vacuum pump having a large exhaust capacity is required. 5-500mm
Hg, preferably about 20 to 300 mHg. The heating temperature of the adsorbent is not particularly limited, and the higher the temperature, the easier the desorption of ammonia is. However, since the evacuation is performed, a very high temperature is not required.
0 ° C, preferably 70 to 150 ° C. In order to heat to such a temperature, the heated gas can be circulated as a heat medium, but since the gas has a small heat capacity and cannot be heated quickly, hot water or steam, or pressurized hot water is used. It is preferable to use steam or pressurized steam. In addition, a heat medium such as a high-boiling hydrocarbon can be used.
【0024】本発明はこのように、アンモニアの吸着の
際には熱媒体で吸着剤を強制冷却することによって大
量、かつ高濃度のアンモニアを含むガスであっても吸着
剤の温度上昇を防ぎながら効率よく吸着を行うことがで
きる。一方アンモニアを回収する際には、減圧吸引しな
がら熱媒体で加熱することによって、アンモニアの気化
に伴う吸着剤の温度低下を防ぎ、大量に吸着していたア
ンモニアを短時間で容易に脱離させることができる。な
お、吸着剤の加熱は、減圧下の脱離操作のために、比較
的低い加熱温度でよく、例えば熱水で加熱することがで
きることから、熱媒体として、冷却水と熱水の組み合わ
せで行うことができ、装置構成を単純化することができ
る。As described above, according to the present invention, when ammonia is adsorbed, the adsorbent is forcibly cooled with a heat medium to prevent the temperature of the adsorbent from rising even if the gas contains a large amount of high-concentration ammonia. Adsorption can be performed efficiently. On the other hand, when recovering ammonia, heating with a heat medium while suctioning under reduced pressure prevents the temperature of the adsorbent from lowering due to the vaporization of ammonia, and makes it possible to easily desorb a large amount of adsorbed ammonia in a short time. be able to. The heating of the adsorbent may be performed at a relatively low heating temperature for the desorption operation under reduced pressure, for example, it can be heated with hot water. Therefore, the heating is performed using a combination of cooling water and hot water as a heat medium. Therefore, the device configuration can be simplified.
【0025】また本発明では、アンモニア吸着管を比較
的細く設定し多数の吸着管を一纏めにした吸着器とする
ことによって、加熱冷却を単純化かつ容易にできると共
に、吸着剤の冷却、加熱を迅速に行うことができる。ま
た、それによって高濃度のアンモニアを含むガスであっ
ても効率よく処理することができ、また吸着したアンモ
ニアを短時間で収率よく回収することができる。本発明
で回収されたアンモニアはそのままアンモニア原料とし
て用いることもできるが、所望により公知の精製技術を
用いて、さらに高純度に精製することもできる。Further, in the present invention, by making the ammonia adsorption tube relatively thin and forming an adsorber in which a number of adsorption tubes are integrated, heating and cooling can be simplified and facilitated, and cooling and heating of the adsorbent can be performed. Can be done quickly. In addition, this makes it possible to efficiently treat even a gas containing a high concentration of ammonia, and to recover the adsorbed ammonia in a short time with high yield. The ammonia recovered in the present invention can be used as it is as an ammonia raw material, but can be further purified to a higher purity by using a known purification technique, if desired.
【0026】[0026]
【実施例】次に本発明を実施例により具体的に説明する
が、本発明はこれらにより限定されるものではない。EXAMPLES Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.
【0027】(実施例1) (アンモニア回収装置の製作)内径108.3mm、長
さ1500mmのSUS316L製の吸着管19本を内
蔵し、吸着管と胴との間に熱媒体を流通し得る構造とし
た多管式吸着器を2基製作した。この吸着器それぞれに
モレキュラーシーブス5Aを250リットル充填した。
また、真空ポンプ、加圧ポンプ、バッファータンク、サ
ージタンク、回収アンモニアタンク、さらに冷却水ライ
ンと加熱水ラインとを切り換えられるように接続し、図
1に示すものと同様のアンモニア回収装置を製作した。(Example 1) (Manufacture of ammonia recovery apparatus) A structure in which 19 SUS316L adsorption tubes having an inner diameter of 108.3 mm and a length of 1500 mm are built in and a heat medium can flow between the adsorption tubes and the body. Were manufactured. Each of the adsorbers was filled with 250 liters of molecular sieves 5A.
In addition, a vacuum pump, a pressure pump, a buffer tank, a surge tank, a recovered ammonia tank, and a cooling water line and a heated water line were connected so as to be switchable, and an ammonia recovery device similar to that shown in FIG. 1 was manufactured. .
【0028】(アンモニア回収実験)実験に先立ち下記
のようにして、吸着剤の活性化を行った。吸着管4、
4’に窒素ガスを通気して吸着管内の空気を窒素に置換
した。次に、吸着管内を真空ポンプで5mmHg以下の
減圧に保持しながら吸着管の外側に90℃の熱水を循環
させて5時間加熱した。その後常温に冷却した後、窒素
を導入して大気圧に戻し、活性化終了とした。(Ammonia Recovery Experiment) Prior to the experiment, the adsorbent was activated as follows. Adsorption tube 4,
Nitrogen gas was passed through 4 ′ to replace the air in the adsorption tube with nitrogen. Next, while maintaining the inside of the adsorption tube at a reduced pressure of 5 mmHg or less with a vacuum pump, hot water at 90 ° C. was circulated outside the adsorption tube and heated for 5 hours. Then, after cooling to room temperature, nitrogen was introduced to return to atmospheric pressure, and the activation was completed.
【0029】このアンモニア回収装置の吸着器3に25
℃の冷却水を流通させて吸着管内を冷却しながら、アン
モニア30%を含む窒素ガスを常温、常圧下、0.13
6m 3/minの流量で吸着器3に供給し、アンモニア
の吸着を行った。アンモニア吸着を8時間続けた後、ア
ンモニアを含むガスの通気を吸着器3’側に切り換え
た。この間、吸着器3の出口ガス中にアンモニアの流出
は認められなかった。In the ammonia recovery apparatus, 25
While cooling the inside of the adsorption tube by flowing cooling water of
0.13 of nitrogen gas containing 30% of monia at normal temperature and normal pressure
6m 3/ Min at a flow rate of
Was adsorbed. After continuing ammonia adsorption for 8 hours,
Switch the ventilation of gas containing ammonia to adsorber 3 '
Was. During this time, ammonia flows into the outlet gas of the adsorber 3
Was not found.
【0030】吸着管4内を常温付近の温度に保持した状
態で、真空ポンプ14で1分間軽く減圧排気し、その際
の排気ガスをサージタンク23に導入した。次に真空ポ
ンプ14の排気ラインをバッファータンク18、アンモ
ニア回収タンク21側に切り換えると共に、加圧ポンプ
19を稼動させながら、吸着器3の冷却水を90℃の熱
水に換えて供給し、吸着器管4内を加熱した。加熱下、
真空吸引操作を5時間行って、アンモニア回収操作を終
了とした。次に、熱水の供給を冷却水に換えて常温に冷
却した後、吸着器3に吸着器3’の出口ガスの一部を導
入して常圧に戻し、切換えに備えた。なお、この間にサ
ージタンク23中の回収ガスはバルブ24、排気ガス循
環ライン16を経てアンモニア排出ライン16に小流量
で導入した。While the inside of the adsorption tube 4 was maintained at a temperature around room temperature, the vacuum pump 14 lightly evacuated the air for 1 minute, and the exhaust gas at that time was introduced into the surge tank 23. Next, the exhaust line of the vacuum pump 14 is switched to the buffer tank 18 and the ammonia recovery tank 21 side, and while operating the pressurizing pump 19, the cooling water of the adsorber 3 is supplied by replacing the cooling water with 90 ° C. hot water. The inside of the vessel 4 was heated. Under heating,
A vacuum suction operation was performed for 5 hours to complete the ammonia recovery operation. Next, the supply of hot water was changed to cooling water and cooled to room temperature. Then, a part of the outlet gas of the adsorber 3 ′ was introduced into the adsorber 3 and returned to normal pressure to prepare for switching. Meanwhile, the recovered gas in the surge tank 23 was introduced at a small flow rate into the ammonia discharge line 16 via the valve 24 and the exhaust gas circulation line 16.
【0031】このような方法で吸着器を交互に切り換え
てアンモニアの回収操作を10回繰り返した。その結
果、アンモニアの回収率は98%以上であった。また回
収されたアンモニア中の不純物は窒素0.15%のみで
あった。The operation of recovering ammonia was repeated 10 times by alternately switching the adsorbers in this manner. As a result, the recovery rate of ammonia was 98% or more. The recovered ammonia contained only 0.15% of nitrogen.
【0032】(比較例1)内径472mm、長さ180
0mmの一本の吸着管にモレキュラーシーブス5Aを2
50リットル(充填長1500mm)充填した。この吸
着筒に電気加熱用のヒーター及び保温材を取り付けた。
さらに吸着筒内部には温度計測用の熱電対を設け、吸着
器を製作した。実施例1における吸着器をこのような吸
着器に換えたほかは、実施例1と同様のアンモニア回収
装置を製作した。このアンモニア回収装置にアンモニア
30%を含む窒素ガスを常温、常圧で0.136m3/
minの流量で通気した。その結果、吸着剤の温度が上
部から下部に向かって逐次上昇し、2時間後には125
℃に到達した。また、3時間後には吸着筒出口にアンモ
ニアの流出が認められた。このため、吸着操作開始から
3.5時間経過した時点で、アンモニアの吸着操作を終
了とした。吸着筒を電気加熱しながら、真空ポンプで減
圧排気してアンモニアの回収を試み、5時間の加熱操作
を行ったが、吸着筒内壁部分は温度が上昇しているもの
の、吸着筒中心部分の温度上昇は小さく、吸着されてい
たアンモニアの28%しか回収できなかった。(Comparative Example 1) Inner diameter 472 mm, length 180
2 molecular sieves 5A in one adsorption tube of 0 mm
Fifty liters (filling length 1500 mm) were filled. A heater for electric heating and a heat insulating material were attached to the adsorption tube.
Furthermore, a thermocouple for temperature measurement was provided inside the adsorption cylinder, and an adsorber was manufactured. An ammonia recovery device similar to that of Example 1 was manufactured except that the adsorber in Example 1 was replaced with such an adsorber. A nitrogen gas containing 30% of ammonia was supplied to the ammonia recovery apparatus at normal temperature and normal pressure at 0.136 m 3 /
Vent at a flow rate of min. As a result, the temperature of the adsorbent gradually increases from the top to the bottom, and after two hours,
° C was reached. After 3 hours, outflow of ammonia was observed at the outlet of the adsorption column. Thus, the ammonia adsorption operation was terminated when 3.5 hours had elapsed from the start of the adsorption operation. Attempting to recover ammonia by depressurizing and exhausting with a vacuum pump while electrically heating the adsorption cylinder, and performing a heating operation for 5 hours. Although the temperature of the inner wall of the adsorption cylinder increased, the temperature of the central part of the adsorption cylinder was increased. The rise was small and only 28% of the adsorbed ammonia could be recovered.
【0033】[0033]
【発明の効果】本発明により、次のことが可能になっ
た。 1.高濃度のアンモニアを含む大量のガスの場合であっ
ても短時間に、収率よく回収することができる。 2.アンモニア吸着の際に、吸着熱で吸着剤が温度上昇
することを、熱媒体による強制冷却で防ぐことができる
ので、吸着剤の吸着能力の高い状態で効率よく吸着操作
を行うことができる。 3.アンモニアを脱離させる際には、アンモニアの気化
熱で吸着剤の温度低下することを、熱媒体による強制加
熱で防ぐことができるので、アンモニアを短時間で収率
よく回収することができる。 4.吸着剤と熱媒体との熱交換が良好に行われることか
ら、熱媒体として特別なものを必要とせず、水と熱水の
組み合わせでも構成することができる。 5.少量の吸着剤で多量のアンモニアの吸着操作が可能
となったこと、及びアンモニアの脱離操作を短時間でで
きるようになったことにより、アンモニア吸着器の切換
え時間を短く設定することができる。 6.以上のことから、装置を単純化することができると
共に、小型化することができる。 7.従来、多額の費用をかけて廃棄していたアンモニア
を、高純度で回収し、再使用することができる。According to the present invention, the following has become possible. 1. Even in the case of a large amount of gas containing high-concentration ammonia, it can be recovered in a short time with high yield. 2. Since the temperature rise of the adsorbent due to the heat of adsorption during ammonia adsorption can be prevented by forced cooling with a heat medium, the adsorption operation can be performed efficiently in a state where the adsorbent has a high adsorption capacity. 3. When ammonia is desorbed, a decrease in the temperature of the adsorbent due to the heat of vaporization of ammonia can be prevented by forcible heating with a heat medium, so that ammonia can be recovered in a short time and with high yield. 4. Since the heat exchange between the adsorbent and the heat medium is performed well, a special heat medium is not required, and the heat medium can be composed of a combination of water and hot water. 5. Since the operation of adsorbing a large amount of ammonia can be performed with a small amount of adsorbent and the operation of desorbing ammonia can be performed in a short time, the switching time of the ammonia adsorber can be set short. 6. From the above, the device can be simplified and the device can be downsized. 7. Conventionally, ammonia that has been disposed of at a high cost can be recovered with high purity and reused.
【図1】本発明のアンモニア回収装置の例図である。FIG. 1 is an example of an ammonia recovery apparatus of the present invention.
【図2】本発明における吸着器の例図である。FIG. 2 is an example of an adsorber according to the present invention.
1 アンモニア排出ライン 2、2’、10、10’、12、12’、15、17、
20、22、24 バルブ 3、3’ 吸着器 4、4’ 吸着管 5、5’ 吸着剤 6、6’ 熱媒体入口 7、7’ 熱媒体出口 8、8’ 管板 9 胴部分 11 排気ライン 13 アンモニア回収ライン 14 真空ポンプ 16 排気ガス循環ライン 18 バッファータンク 19 加圧ポンプ 21 回収アンモニアタンク 23 サージタンク1 Ammonia discharge line 2, 2 ', 10, 10', 12, 12 ', 15, 17,
20, 22, 24 Valve 3, 3 'Adsorber 4, 4' Adsorption tube 5, 5 'Adsorbent 6, 6' Heat medium inlet 7, 7 'Heat medium outlet 8, 8' Tube plate 9 Body part 11 Exhaust line 13 Ammonia recovery line 14 Vacuum pump 16 Exhaust gas circulation line 18 Buffer tank 19 Pressurizing pump 21 Recovered ammonia tank 23 Surge tank
Claims (8)
吸着管が内蔵され、該吸着管の外側に熱媒体を流通させ
ることができる構造とされた多管式吸着器を熱媒体で冷
却しながら、該多管式吸着器の吸着管にアンモニアを含
むガスを通気することによりアンモニアを吸着捕取した
後、該多管式吸着器を熱媒体で加熱しながら吸着管内を
減圧に保ち、アンモニアを脱離させて回収することを特
徴とするアンモニアの回収方法。1. A multitubular adsorber having a structure in which a plurality of adsorption tubes filled with an adsorbent of ammonia and having a structure in which a heat medium can flow outside the adsorption tubes is cooled by a heat medium. While adsorbing and capturing ammonia by passing a gas containing ammonia through the adsorption tube of the multitubular adsorber, the inside of the adsorption tube is kept at a reduced pressure while heating the multitubular adsorber with a heat medium, and the ammonia is removed. And recovering the ammonia.
活性炭、シリカゲル、アルミナ及びシリカアルミナから
選ばれる少なくとも1種である請求項1に記載のアンモ
ニアの回収方法。2. The method of claim 1, wherein the ammonia adsorbent is a synthetic zeolite,
The method for recovering ammonia according to claim 1, wherein the method is at least one selected from activated carbon, silica gel, alumina, and silica alumina.
造工程からの排ガスである請求項1に記載のアンモニア
の回収方法。3. The method for recovering ammonia according to claim 1, wherein the gas containing ammonia is an exhaust gas from a nitride semiconductor manufacturing process.
吸着管が内蔵され、該吸着管の外側に熱媒体を流通させ
ることができる構造とされた多管式吸着器を並列に複数
列設け、該多管式吸着器を順次切り換えて熱媒体で冷却
しながら、該多管式吸着器にアンモニアを含むガスを通
気することによりアンモニアを吸着捕取した後、該多管
式吸着器を順次切り換えて熱媒体で加熱しながら吸着管
内を減圧に保ち、アンモニアを脱離させて連続的に回収
することを特徴とするアンモニアの回収方法。4. A multi-tube adsorber having a structure in which a plurality of adsorption tubes filled with an adsorbent of ammonia is built in and a heat medium can be circulated outside the adsorption tubes. While sequentially switching the multitubular adsorber and cooling with a heat medium, ammonia is adsorbed and trapped by passing ammonia-containing gas through the multitubular adsorber, and then the multitubular adsorber is sequentially operated. A method for recovering ammonia, characterized in that the pressure inside the adsorption tube is maintained at a reduced pressure while switching and heating with a heat medium, and ammonia is desorbed and continuously recovered.
さ250〜3000mmの管を用いる請求項1又は請求
項4に記載のアンモニアの回収方法。5. The method for recovering ammonia according to claim 1, wherein a tube having an inner diameter of 25 to 300 mm and a length of 250 to 3000 mm is used as the adsorption tube.
吸着管が内蔵され該吸着管の外側に熱媒体を流通させる
ことができる構造とされた多管式吸着器と、該多管式吸
着器の吸着管内を減圧排気するためのポンプを有し、該
多管式吸着器を冷却しながら、アンモニアを含むガスを
吸着管に通気することによりアンモニアを吸着捕取した
後、該多管式吸着器を熱媒体で加熱しながら吸着管内を
減圧に保ちアンモニアを脱離させて回収することができ
る構成としたことを特徴とするアンモニアの回収装置。6. A multitubular adsorber having a structure in which a plurality of adsorption tubes filled with an adsorbent of ammonia are built in and a heat medium can be circulated outside the adsorption tubes. A pump for depressurizing and exhausting the interior of the adsorption tube of the vessel, and adsorbing and capturing ammonia by passing a gas containing ammonia through the adsorption tube while cooling the multitubular adsorber. An ammonia recovery apparatus characterized in that ammonia can be desorbed and recovered while keeping the inside of the adsorption tube under reduced pressure while heating the adsorber with a heat medium.
着管が内蔵され該吸着管の外側に熱媒体を流通させるこ
とができる構造とされた多管式吸着器を並列に複数列有
すると共に、該多管式吸着器の吸着管内を減圧排気する
ためのポンプを有し、該多管式吸着器を順次切り換えて
熱媒体で冷却しながら、該多管式吸着器にアンモニアを
含むガスを吸着管に通気することによりアンモニアを吸
着捕取した後、該多管式吸着器を順次切り換えて熱媒体
で加熱しながら吸着管内を減圧に保ちアンモニアを脱離
させて連続的に回収することができる構成としたことを
特徴とするアンモニアの回収装置。7. A multi-tubular adsorber having a plurality of adsorbing tubes filled with an ammonia adsorbent and having a structure in which a heat medium can be circulated outside the adsorbing tubes is provided in a plurality of rows in parallel. A pump for depressurizing and exhausting the inside of the adsorption tube of the multitubular adsorber; sequentially switching the multitubular adsorber to cool the multitubular adsorber with a heat medium while adsorbing a gas containing ammonia to the multitubular adsorber; After adsorbing and capturing ammonia by aerating through the tube, the multitubular adsorber is sequentially switched to keep the inside of the adsorption tube at reduced pressure while heating with a heating medium, and ammonia can be continuously removed and desorbed. An ammonia recovery apparatus having a configuration.
50〜3000mmの管である請求項6又は請求項7に
記載のアンモニアの回収装置。8. An adsorption tube having an inner diameter of 25 to 300 mm and a length of 2
The ammonia recovery device according to claim 6 or 7, which is a tube of 50 to 3000 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000048769A JP2000317246A (en) | 1999-03-10 | 2000-02-25 | Ammonia recovery method and recovery device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-62631 | 1999-03-10 | ||
JP6263199 | 1999-03-10 | ||
JP2000048769A JP2000317246A (en) | 1999-03-10 | 2000-02-25 | Ammonia recovery method and recovery device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000317246A true JP2000317246A (en) | 2000-11-21 |
Family
ID=26403680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000048769A Pending JP2000317246A (en) | 1999-03-10 | 2000-02-25 | Ammonia recovery method and recovery device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000317246A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100413562C (en) * | 2005-04-01 | 2008-08-27 | 吴泽民 | Anesthesia waste gas automatic collection and purification device |
JP2011152526A (en) * | 2010-01-28 | 2011-08-11 | Gunma Prefecture | Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower |
JP2012214326A (en) * | 2011-03-31 | 2012-11-08 | Sumitomo Seika Chem Co Ltd | Ammonia purifying system and method for purifying ammonia |
JP2014124584A (en) * | 2012-12-26 | 2014-07-07 | Japan Pionics Co Ltd | Ammonia and hydrogen collection method and ammonia and hydrogen recycling method |
JP2014154792A (en) * | 2013-02-13 | 2014-08-25 | Japan Pionics Co Ltd | Recovery method and reuse method of ammonia and hydrogen |
US8889090B2 (en) | 2012-05-25 | 2014-11-18 | Japan Pionics Co., Ltd. | Method of recovering ammonia and method of recycling ammonia by using the same |
JP2016504180A (en) * | 2012-11-20 | 2016-02-12 | サエス・ピュア・ガス・インコーポレイテッドSaes Pure Gas Incorporated | Method and system for anhydrous ammonia recovery |
US9815707B2 (en) | 2013-04-26 | 2017-11-14 | Japan Pionics Co., Ltd. | Method of processing discharge gas discharged from production process |
JP2019098240A (en) * | 2017-11-30 | 2019-06-24 | 清水建設株式会社 | Sewage treatment system and sewage treatment method |
JP2019098242A (en) * | 2017-11-30 | 2019-06-24 | 清水建設株式会社 | Treatment apparatus and treatment method of nitrogen-containing organic matter |
JP2019214498A (en) * | 2018-06-13 | 2019-12-19 | 国立研究開発法人産業技術総合研究所 | Ammonia desorption method, ammonia recovery method, and ammonia recovery apparatus |
WO2020080302A1 (en) | 2018-10-15 | 2020-04-23 | 国立研究開発法人産業技術総合研究所 | Ammonia chemical species elimination method using carbon dioxide, ammonia chemical species-supplying agent, and ammonia chemical species adsorption and elimination device |
CN111610258A (en) * | 2020-06-22 | 2020-09-01 | 中冶建筑研究总院有限公司 | Adsorbent performance testing device for purifying industrial flue gas pollutants |
KR102400813B1 (en) * | 2021-08-26 | 2022-05-23 | 삼성엔지니어링 주식회사 | Composition for preparing alkaline exhaust gas adsorbent, acidic gas adsorbent and method of preparing alkaline exhaust gas adsorbent |
JP2022533234A (en) * | 2019-05-24 | 2022-07-21 | インテグリス・インコーポレーテッド | Methods and systems for removing ammonia from gas mixtures |
CN114814087A (en) * | 2022-03-29 | 2022-07-29 | 福州大学 | A test device for the cyclic adsorption performance of an adsorbent for ammonia |
-
2000
- 2000-02-25 JP JP2000048769A patent/JP2000317246A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100413562C (en) * | 2005-04-01 | 2008-08-27 | 吴泽民 | Anesthesia waste gas automatic collection and purification device |
JP2011152526A (en) * | 2010-01-28 | 2011-08-11 | Gunma Prefecture | Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower |
JP2012214326A (en) * | 2011-03-31 | 2012-11-08 | Sumitomo Seika Chem Co Ltd | Ammonia purifying system and method for purifying ammonia |
US8889090B2 (en) | 2012-05-25 | 2014-11-18 | Japan Pionics Co., Ltd. | Method of recovering ammonia and method of recycling ammonia by using the same |
JP2016504180A (en) * | 2012-11-20 | 2016-02-12 | サエス・ピュア・ガス・インコーポレイテッドSaes Pure Gas Incorporated | Method and system for anhydrous ammonia recovery |
JP2014124584A (en) * | 2012-12-26 | 2014-07-07 | Japan Pionics Co Ltd | Ammonia and hydrogen collection method and ammonia and hydrogen recycling method |
JP2014154792A (en) * | 2013-02-13 | 2014-08-25 | Japan Pionics Co Ltd | Recovery method and reuse method of ammonia and hydrogen |
US9815707B2 (en) | 2013-04-26 | 2017-11-14 | Japan Pionics Co., Ltd. | Method of processing discharge gas discharged from production process |
JP2019098240A (en) * | 2017-11-30 | 2019-06-24 | 清水建設株式会社 | Sewage treatment system and sewage treatment method |
JP2019098242A (en) * | 2017-11-30 | 2019-06-24 | 清水建設株式会社 | Treatment apparatus and treatment method of nitrogen-containing organic matter |
JP2019214498A (en) * | 2018-06-13 | 2019-12-19 | 国立研究開発法人産業技術総合研究所 | Ammonia desorption method, ammonia recovery method, and ammonia recovery apparatus |
JP7209994B2 (en) | 2018-06-13 | 2023-01-23 | 国立研究開発法人産業技術総合研究所 | Ammonia desorption method, ammonia recovery method, and ammonia recovery device |
WO2020080302A1 (en) | 2018-10-15 | 2020-04-23 | 国立研究開発法人産業技術総合研究所 | Ammonia chemical species elimination method using carbon dioxide, ammonia chemical species-supplying agent, and ammonia chemical species adsorption and elimination device |
US12023648B2 (en) | 2018-10-15 | 2024-07-02 | National Institute Of Advanced Industrial Science And Technology | Process for desorption of ammonia chemical species using carbon dioxide, ammonia chemical species-providing agent, and apparatus for adsorption and desorption of ammonia chemical species |
JP2022533234A (en) * | 2019-05-24 | 2022-07-21 | インテグリス・インコーポレーテッド | Methods and systems for removing ammonia from gas mixtures |
CN111610258A (en) * | 2020-06-22 | 2020-09-01 | 中冶建筑研究总院有限公司 | Adsorbent performance testing device for purifying industrial flue gas pollutants |
KR102400813B1 (en) * | 2021-08-26 | 2022-05-23 | 삼성엔지니어링 주식회사 | Composition for preparing alkaline exhaust gas adsorbent, acidic gas adsorbent and method of preparing alkaline exhaust gas adsorbent |
CN114814087A (en) * | 2022-03-29 | 2022-07-29 | 福州大学 | A test device for the cyclic adsorption performance of an adsorbent for ammonia |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6261345B1 (en) | Process and apparatus for recovering ammonia | |
JP2000317246A (en) | Ammonia recovery method and recovery device | |
KR0172121B1 (en) | Apparatus for low temperature purification of gases | |
JP5506396B2 (en) | Ozone concentrator | |
JP5298292B2 (en) | A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered. | |
CN1055677A (en) | Air preliminary clearning before separating | |
JP2009183950A (en) | Exhaust gas purification method | |
JP2009286683A (en) | Method for producing and storing ozone using adsorbent | |
CN101811680A (en) | Gas purification method and purification device | |
CN1297473C (en) | Gas refining method and device | |
JP2008537720A (en) | Purification of nitrogen trifluoride | |
JP3737900B2 (en) | Purification method of exhaust gas argon from single crystal production furnace | |
WO1990011117A1 (en) | Process for efficiently recovering adsorbable gas from gas which contains adsorbable gas at low concentration | |
JP2010285317A (en) | Argon purification method, argon purification apparatus, purification method for target gas, and purification apparatus for target gas | |
JP2008161743A (en) | Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent | |
JPS6297637A (en) | Method and apparatus for oxidizing carbonaceous material | |
KR100351621B1 (en) | Multi Purpose Oxygen Generator using Pressure Swing Adsorption and Method | |
JPS62119104A (en) | Method for recovering high-purity argon from exhaust gas from single crystal production furnaces | |
JP4070399B2 (en) | Helium gas purification method | |
CN113244738A (en) | Adsorption device | |
KR101755108B1 (en) | Apparatus for refining nitron fluorine three and method of continuously refining nitron fluorine three using the apparatus | |
US20040187683A1 (en) | Gas recovery system to improve the efficiency of abatementand/or implement reuse/reclamation | |
JP3710520B2 (en) | Apparatus for removing impurities from hydrogen gas and method of operating the same | |
JP4101955B2 (en) | Ammonia purification method | |
JP2002361023A (en) | Improved process for separating air |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080813 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080924 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091207 |