JP2000314646A - Heating resistance type flow measurement device - Google Patents
Heating resistance type flow measurement deviceInfo
- Publication number
- JP2000314646A JP2000314646A JP11126721A JP12672199A JP2000314646A JP 2000314646 A JP2000314646 A JP 2000314646A JP 11126721 A JP11126721 A JP 11126721A JP 12672199 A JP12672199 A JP 12672199A JP 2000314646 A JP2000314646 A JP 2000314646A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- resistor
- heating resistor
- flow rate
- sensitive resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Measuring Volume Flow (AREA)
Abstract
(57)【要約】
【課題】吸気脈動対策など性能向上を目的に流路構成が
複雑化した副通路においても、感温抵抗体による空気温
度の計測精度を向上させ、流体流量の高精度計測が可能
な発熱抵抗式流量測定装置を得る。
【解決手段】発熱抵抗体を支持するターミナル部材の先
端方向にある壁面を、感温抵抗体が壁面の影になる位置
まで傾斜させ、発熱抵抗体を支持するターミナル部材の
先端方向の壁面に略Y字形の通風溝を設ける。また感温
抵抗体の上流に空気流を導く通風孔を設ける。副通路を
流れる空気流速の向上と感温抵抗体の冷却が両立でき、
エンジンルーム内部での高温環境下においても精度良く
吸入空気流量の計測が可能になる。また、出力ノイズの
低減や計測流量範囲の拡大にも効果がある。
(57) [Summary] [Problem] To improve the accuracy of air temperature measurement by a temperature-sensitive resistor and to achieve high-precision measurement of fluid flow rate even in a sub-passage where the flow path configuration is complicated for the purpose of improving performance such as intake pulsation countermeasures To obtain an exothermic resistance type flow measurement device that can perform the measurement. A wall surface in the direction of the tip of a terminal member that supports a heating resistor is inclined to a position where the temperature-sensitive resistor becomes a shadow of the wall surface, and the wall surface in the direction of the tip of the terminal member that supports the heating resistor is substantially inclined. A Y-shaped ventilation groove is provided. Further, a ventilation hole for guiding an air flow is provided upstream of the temperature-sensitive resistor. The improvement of the air flow velocity flowing through the sub passage and the cooling of the temperature sensitive resistor can be compatible,
It is possible to accurately measure the intake air flow rate even in a high temperature environment inside the engine room. It is also effective in reducing output noise and expanding the measurement flow rate range.
Description
【0001】[0001]
【発明の属する技術分野】本発明は流体の流量を測定す
る流量測定装置に係り、特に内燃機関の吸入空気通路を
流れる空気流量を測定する空気流量測定装置及びその制
御システムに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring a flow rate of a fluid, and more particularly to an air flow rate measuring device for measuring an air flow rate flowing through an intake air passage of an internal combustion engine and a control system therefor.
【0002】[0002]
【従来の技術】副通路を回路モジュールの一部に一体化
しモジュール単品に発熱抵抗式空気流量測定装置に必要
な機能を全て持たせた構造は特開平8−5427 号等によっ
て公知である。しかし、空気流量の計測精度向上を目的
に感温抵抗体の冷却を促し、温度測定精度を向上させる
方法及び構造については十分に考慮されていない。2. Description of the Related Art A structure in which a sub-passage is integrated with a part of a circuit module and all functions necessary for a heating resistance type air flow measuring device are provided in a single module is known from Japanese Patent Application Laid-Open No. Hei 8-5427. However, a method and structure for promoting the cooling of the temperature-sensitive resistor and improving the temperature measurement accuracy for the purpose of improving the measurement accuracy of the air flow rate are not sufficiently considered.
【0003】[0003]
【発明が解決しようとする課題】本発明はエンジンから
の脈動影響対策や空気流の乱れに起因する出力ノイズの
低減など、各性能を向上させるために流路構成が複雑化
した副通路においても、副通路内部を流れる空気流速の
向上と感温抵抗体による空気温度の計測精度向上を共に
両立させ、空気流量の高精度計測が可能な発熱抵抗式流
量測定装置を提供するものである。SUMMARY OF THE INVENTION The present invention can be applied to a sub-passage having a complicated passage structure for improving various performances, such as countermeasures against pulsation from the engine and reduction of output noise caused by turbulence in the air flow. Another object of the present invention is to provide a heating resistance type flow rate measuring device capable of measuring the air flow rate with high accuracy while achieving both the improvement of the air flow velocity flowing inside the sub passage and the improvement of the measurement accuracy of the air temperature by the temperature sensitive resistor.
【0004】[0004]
【課題を解決するための手段】上記の課題を解決するた
めに、以下の方策を講じた。Means for Solving the Problems To solve the above problems, the following measures have been taken.
【0005】(1)発熱抵抗体を支持するターミナル部
材の先端方向の壁面を、上流方向から見て感温抵抗体が
壁面の影になる位置まで傾斜させ、その壁面の発熱抵抗
体付近では流路のコーナ付近、感温抵抗体の直前では前
記壁面の中央付近、すなわち略Y字形に通風溝を設け
る。[0005] (1) The wall surface in the direction of the tip of the terminal member supporting the heating resistor is inclined to a position where the temperature-sensitive resistor becomes a shadow of the wall when viewed from the upstream direction. A ventilation groove is provided near the corner of the road and immediately before the temperature-sensitive resistor, near the center of the wall surface, that is, in a substantially Y-shape.
【0006】(2)前記傾斜面に感温抵抗体の上流に空
気流を導く通風孔を設ける。(2) A ventilation hole for guiding an air flow is provided on the inclined surface upstream of the temperature-sensitive resistor.
【0007】[0007]
【発明の実施の形態】図1(a)は本発明の一実施例を
示す正面図、(b)は(a)のA−A側面断面図、図2
は図1(b)に符号5で示す副通路部のB−B水平断面
図である。FIG. 1A is a front view showing an embodiment of the present invention, FIG. 1B is a side sectional view taken along the line AA of FIG.
FIG. 3 is a horizontal cross-sectional view taken along line BB of the sub passage portion indicated by reference numeral 5 in FIG.
【0008】流体の流量を検出する発熱抵抗体1と、吸
入空気の温度を検出し温度補償を行うための感温抵抗体
2はターミナル部材3に固定され電子回路4と電気的に
接続されている。空気の流れを迂回させる通路構成の副
通路5は、ターミナル部材3の保持と電子回路4の保護
を兼ねるケース部材6と固定して使用する。A heating resistor 1 for detecting the flow rate of the fluid and a temperature-sensitive resistor 2 for detecting the temperature of the intake air and performing temperature compensation are fixed to a terminal member 3 and electrically connected to an electronic circuit 4. I have. The sub-passage 5 having a passage configuration for bypassing the flow of air is used by being fixed to the case member 6 which also holds the terminal member 3 and protects the electronic circuit 4.
【0009】ここで発熱抵抗体1と感温抵抗体2の位置
関係について説明する。Here, the positional relationship between the heating resistor 1 and the temperature-sensitive resistor 2 will be described.
【0010】感温抵抗体2はほぼ空気温度に等しい温度
で使用されるのに対し、発熱抵抗体1は感温抵抗体2に
対して数百度プラスした温度に加熱された状態で使用す
る。このため上流側に配置された発熱抵抗体1からの熱
流影響を回避するため感温抵抗体2をオフセットさせて
配置している。また、感温抵抗体2における吸入空気温
度計測を精度良く行うために、感温抵抗体2の設置位置
を可能な限りケース部材6から離れた位置としている。
これは、空気流量測定装置を車両に組み込んだ際、吸気
ダクトの外側すなわち直接エンジンルーム内の高温環境
下に晒されるのがケース部材6やその保護カバー7であ
り、その熱がターミナル部材3を介し、感温抵抗体2ま
で伝導してしまうためである。そこで、極力ターミナル
部材3の先端部に感温抵抗体2を配し、加熱されたケー
ス部材6等から離すことで断熱し、熱伝導による温度測
定誤差を低減しようとしている。以上の理由により、感
温抵抗体2をターミナル部材3の先端に置き、更に発熱
抵抗体1と感温抵抗体2をオフセットさせて配置してい
る。The temperature-sensitive resistor 2 is used at a temperature substantially equal to the air temperature, while the heat-generating resistor 1 is used in a state where the temperature of the temperature-sensitive resistor 2 is increased by several hundred degrees. Therefore, in order to avoid the influence of heat flow from the heat generating resistor 1 arranged on the upstream side, the temperature sensitive resistor 2 is arranged to be offset. Further, in order to accurately measure the intake air temperature in the temperature-sensitive resistor 2, the installation position of the temperature-sensitive resistor 2 is set as far as possible from the case member 6.
This is because the case member 6 and its protective cover 7 are exposed to a high-temperature environment outside the intake duct, that is, directly in the engine room, when the air flow measuring device is incorporated into the vehicle, and the heat is transmitted to the terminal member 3. This is because the heat is transmitted to the temperature-sensitive resistor 2 through the resistor. Therefore, the temperature sensitive resistor 2 is disposed at the tip of the terminal member 3 as much as possible, and is insulated by separating from the heated case member 6 and the like, so as to reduce a temperature measurement error due to heat conduction. For the above reasons, the temperature-sensitive resistor 2 is placed at the tip of the terminal member 3, and the heat-generating resistor 1 and the temperature-sensitive resistor 2 are arranged offset.
【0011】副通路5は主流方向8(空気の流れ方向)
で見た副通路5の入口開口部9と出口開口部10間の距
離に対し、副通路5を構成している空気流路の全長を長
く形成しており、副通路5を流れる空気流の慣性を大き
くすることでエンジンからの脈動流影響を最小限に抑え
た作りになっている。このように副通路5の流路構造を
複雑にしていくと、副通路5内部での流速低下を引き起
こしてしまう。特に流体の流量を検出する発熱抵抗体1
部の流速低下は、空気流量測定装置として重要な性能を
得ることができなくなる。そこで、発熱抵抗体1部が流
路の最狭部となるように、副通路5の構成部材を利用し
て傾斜を付けている。これにより流路を絞るのと同一の
効果が得られ、発熱抵抗体1部における流速の向上が図
れる。ところが前述した通り、発熱抵抗体1の下流に配
置した感温抵抗体2はターミナル部材3の先端にあり、
この絞り部の構造体に隠れてしまうようなレイアウトに
なってしまう。The sub passage 5 is in the main flow direction 8 (the air flow direction).
The total length of the air passage forming the sub-passage 5 is longer than the distance between the inlet opening 9 and the outlet opening 10 of the sub-passage 5 as seen in FIG. The effect of pulsating flow from the engine has been minimized by increasing the inertia. If the flow path structure of the sub-passage 5 is complicated in this way, the flow velocity inside the sub-passage 5 will be reduced. In particular, a heating resistor 1 for detecting a flow rate of a fluid
The reduced flow velocity of the section makes it impossible to obtain important performance as an air flow measuring device. Therefore, the heating resistor 1 is inclined using the constituent members of the sub-passage 5 so as to be the narrowest portion of the flow path. As a result, the same effect as narrowing the flow path can be obtained, and the flow velocity in one portion of the heating resistor can be improved. However, as described above, the temperature-sensitive resistor 2 disposed downstream of the heating resistor 1 is at the tip of the terminal member 3, and
The layout will be hidden by the structure of the aperture section.
【0012】そこで、発熱抵抗体1の付近では流路のコ
ーナに、感温抵抗体2の直前では中央付近に、すなわち
略Y字形に通風溝11を設けている。この通風溝11を
設けることにより、感温抵抗体2に向けて直接空気流を
導くことができ、その冷却効果で前述した熱伝導による
影響を低減することができる。Therefore, a ventilation groove 11 is provided in the corner of the flow path near the heating resistor 1 and near the center immediately before the temperature sensing resistor 2, that is, in a substantially Y-shape. By providing the ventilation groove 11, the air flow can be directly guided toward the temperature-sensitive resistor 2, and the cooling effect can reduce the influence of the heat conduction described above.
【0013】このような通風溝11を設けることによ
り、発熱抵抗体1部の大幅な流速低下が懸念されるが、
円断面を持たない流路においては2次流れの流速成分を
持つため、流路断面で見たコーナー部(角部)に相当す
る部分は流速が低く、その部分に通風溝11を設けるこ
とで、流速の低下を最小限に止めることができる。By providing such a ventilation groove 11, there is a fear that the flow velocity of the heating resistor 1 part may be greatly reduced.
Since the flow path having no circular cross section has a flow velocity component of the secondary flow, the flow velocity is low in a portion corresponding to a corner (corner) viewed in the cross section of the flow path, and the ventilation groove 11 is provided in that portion. In addition, a decrease in flow velocity can be minimized.
【0014】また、感温抵抗体2に空気流を導くために
発熱抵抗体1の直下流で段差を作ると、剥離流の影響で
不安定な流れを招き、出力ノイズの原因となる。しか
し、段差部下流で起こるはずの剥離領域に通風溝11を
流れる空気が存在するため剥離流が発生せず、迂回部後
流まで剥離を後らせることができる。このため発熱抵抗
体1周辺での整流にも効果があり、感温抵抗体2の冷却
と出力ノイズの低減が両立できる。If a step is formed immediately downstream of the heating resistor 1 to guide the airflow to the temperature-sensitive resistor 2, an unstable flow is caused by the influence of the separation flow, which causes output noise. However, since there is air flowing through the ventilation groove 11 in the separation region that should occur at the downstream of the step portion, no separation flow is generated, and separation can be delayed to the downstream of the bypass portion. Therefore, rectification around the heating resistor 1 is also effective, and both cooling of the temperature-sensitive resistor 2 and reduction of output noise can be achieved.
【0015】更には、流路を絞ることにより発熱抵抗体
1付近では、高流量域で流路内圧が高まり、通風溝11
へ流れ込む空気の割合が多くなる。このため副通路5全
体で見た流速は低下することになり、逆に低流量域では
それほど流路内圧に変化が起きないため2次流れの流速
成分により通風溝11にはあまり空気が流れず目立った
流速の低下が起きない。すなわち、通風溝11の設置に
より低流量域では比較的高い流速を保ち、高流量域では
流速を下げることが可能なため、計測流量範囲を拡大で
きるという特徴も持ち合わせている。Furthermore, by narrowing the flow passage, the flow passage internal pressure increases near the heating resistor 1 in a high flow rate region, and the ventilation groove 11
The proportion of air flowing into the tank increases. For this reason, the flow velocity seen in the entire sub-passage 5 decreases, and conversely, in the low flow rate range, the flow path internal pressure does not change so much, so that little air flows into the ventilation groove 11 due to the flow velocity component of the secondary flow. No noticeable drop in flow velocity occurs. That is, the installation of the ventilation groove 11 can maintain a relatively high flow rate in a low flow rate area and can reduce the flow rate in a high flow rate area, so that the measurement flow rate range can be expanded.
【0016】図3(a)は本発明の他の実施例を示す正
面図、(b)は(a)のC−C側面断面図である。FIG. 3A is a front view showing another embodiment of the present invention, and FIG. 3B is a cross-sectional side view taken along the line CC of FIG.
【0017】前述の通り、発熱抵抗体1部が流路の最狭
部となるように、副通路5の構成部材を利用して傾斜を
付けると流速の向上が図れる反面、感温抵抗体2がこの
構造体に隠れてしまう。As described above, if the heating resistor 1 is inclined by using the constituent members of the sub-passage 5 so that the portion of the heating resistor becomes the narrowest portion of the flow path, the flow velocity can be improved, while the temperature-sensitive resistor 2 can be improved. Are hidden in this structure.
【0018】そこで、副通路5の入口開口部9付近の傾
斜面から感温抵抗体2に向けて連通する通風孔12を設
けている。この構成により、副通路5内の流速低下を最
小限に止めながら通風孔12を通過した空気が直接感温
抵抗体2を冷却する効果で、精度良く空気流量の検出が
できるようになる。Therefore, a ventilation hole 12 communicating from the inclined surface near the entrance opening 9 of the sub passage 5 toward the temperature sensitive resistor 2 is provided. With this configuration, the air flowing through the ventilation holes 12 directly cools the temperature-sensitive resistor 2 while minimizing a decrease in the flow velocity in the sub-passage 5, so that the air flow rate can be accurately detected.
【0019】最後に図4を使い電子燃料噴射方式の内燃
機関に本発明品を適用した一実施例を示す。Finally, FIG. 4 shows an embodiment in which the product of the present invention is applied to an electronic fuel injection type internal combustion engine.
【0020】エアクリーナ51から吸入された吸入空気
52は吸入ダクト53,スロットルボディ54及び燃料
が供給されるインジェクタ55を備えた吸気マニホール
ド56を経て、エンジンシリンダ57に吸入される。一
方、エンジンシリンダで発生したガス58は排気マニホ
ールド59を経て排出される。The intake air 52 sucked from the air cleaner 51 passes through an intake duct 53, a throttle body 54, and an intake manifold 56 having an injector 55 to which fuel is supplied, and is sucked into an engine cylinder 57. On the other hand, gas 58 generated in the engine cylinder is discharged through an exhaust manifold 59.
【0021】発熱抵抗式空気流量測定装置の駆動回路モ
ジュール60から出力される空気流量信号及び圧力信
号,吸気温度センサ61からの吸入空気温度信号,スロ
ットル角度センサ62から出力されるスロットルバルブ
角度信号,排気マニホールド59に設けられた酸素濃度
計63から出力される酸素濃度信号及び、エンジン回転
速度計64から出力されるエンジン回転速度信号等、こ
れらを入力するコントロールユニット65はこれらの信
号を逐次演算して最適な燃料噴射量とアイドルエアコン
トロールバルブ開度を求め、その値を使って前記インジ
ェクタ55及びアイドルコントロールバルブ66を制御
する。The air flow signal and pressure signal output from the drive circuit module 60 of the heating resistance type air flow measuring device, the intake air temperature signal from the intake temperature sensor 61, the throttle valve angle signal output from the throttle angle sensor 62, The control unit 65 that inputs these, such as the oxygen concentration signal output from the oxygen concentration meter 63 provided in the exhaust manifold 59 and the engine rotation speed signal output from the engine rotation speed meter 64, sequentially calculates these signals. The optimum fuel injection amount and the opening degree of the idle air control valve are obtained, and the injector 55 and the idle control valve 66 are controlled using the values.
【0022】[0022]
【発明の効果】発熱抵抗式流量測定装置に用いる副通路
の流路構成を、エンジンからの脈動影響対策など高性能
化を目的として複雑化しても、流速の向上と感温抵抗体
の冷却が両立でき、エンジンルーム内部での高温環境下
においても精度良く吸入空気流量の計測が可能になる。[Effects of the Invention] Even if the flow path configuration of the sub-passage used in the heating resistance type flow rate measuring device is complicated for the purpose of high performance such as countermeasures against pulsation from the engine, the improvement of the flow velocity and the cooling of the temperature-sensitive resistor can be achieved. Both are compatible, and the intake air flow rate can be measured accurately even in a high temperature environment inside the engine room.
【0023】また、通風溝の効果により段差部分で起こ
るはずの剥離領域に空気が流れ、迂回部下流まで剥離を
後らせることができる。このため発熱抵抗体周辺での整
流にも効果があり出力ノイズの低減にも効果が高い。更
に、流路を絞ることにより発熱抵抗体付近では、高流量
域で流路内圧が高まり、通風溝へ流れ込む空気の割合が
多くなる。このため副通路全体で見た流速は低下するこ
とになり、逆に低流量域ではそれほど流路内圧に変化が
起きないため2次流れの流速成分により通風溝にはあま
り空気が流れず目立った流速の低下が起きない。すなわ
ち、通風溝の設置により低流量域では比較的高い流速を
保ち、高流量域では流速を下げることが可能なため、計
測流量範囲を拡大できるという効果もある。In addition, the air flows into the separation region which should occur at the step due to the effect of the ventilation groove, and the separation can be delayed to the downstream of the bypass portion. For this reason, it is effective for rectification around the heating resistor, and is highly effective for reducing output noise. Furthermore, by narrowing the flow path, near the heating resistor, the internal pressure of the flow path increases in a high flow rate region, and the proportion of air flowing into the ventilation groove increases. For this reason, the flow velocity observed in the entire sub-passage decreases, and conversely, in the low flow rate region, the flow passage internal pressure does not change so much. No decrease in flow velocity occurs. In other words, the installation of the ventilation groove can maintain a relatively high flow velocity in a low flow rate area and can reduce the flow velocity in a high flow rate area.
【図1】(a)は本発明の一実施例を示す正面図、
(b)は(a)のA−A側面断面図。FIG. 1A is a front view showing one embodiment of the present invention,
(B) is AA side sectional drawing of (a).
【図2】図1(b)に符号5で示す副通路部のB−B水
平断面図。FIG. 2 is a BB horizontal sectional view of a sub-passage portion indicated by reference numeral 5 in FIG.
【図3】(a)は本発明の他の実施例を示す正面図、
(b)は(a)のC−C側面断面図。FIG. 3 (a) is a front view showing another embodiment of the present invention,
(B) is CC side sectional drawing of (a).
【図4】内燃機関に本発明品を適用した一実施例を示す
正面図。FIG. 4 is a front view showing an embodiment in which the product of the present invention is applied to an internal combustion engine.
1…発熱抵抗体、2…感温抵抗体、3…ターミナル部
材、4…電子回路、5…副通路、6…ケース部材、7…
保護カバー、8…主流方向、9…入口開口部、10…出
口開口部、11…通風溝、12…通風孔、51…エアク
リーナ、52…吸入空気、53…吸入ダクト、54…ス
ロットルボディ、55…インジェクタ、56…吸気マニ
ホールド、57…エンジンシリンダ、58…ガス、59
…排気マニホールド、60…駆動回路モジュール、61
…吸気温センサ、62…スロットル角度センサ、63…
酸素濃度計、64…回転速度計、65…コントロールユ
ニット、66…アイドルエアコントロールバルブ。DESCRIPTION OF SYMBOLS 1 ... Heating resistor, 2 ... Temperature sensitive resistor, 3 ... Terminal member, 4 ... Electronic circuit, 5 ... Sub passage, 6 ... Case member, 7 ...
Protective cover, 8: main flow direction, 9: inlet opening, 10: outlet opening, 11: ventilation groove, 12: ventilation hole, 51: air cleaner, 52: intake air, 53: intake duct, 54: throttle body, 55 ... Injector, 56 ... Intake manifold, 57 ... Engine cylinder, 58 ... Gas, 59
... exhaust manifold, 60 ... drive circuit module, 61
... intake air temperature sensor, 62 ... throttle angle sensor, 63 ...
Oxygen concentration meter, 64: tachometer, 65: control unit, 66: idle air control valve.
Claims (2)
と、その温度補償用の感温抵抗体と、流体の流量に応じ
た信号を出力する電子回路と、前記発熱抵抗体及び感温
抵抗体を支持し、前記電子回路と電気的に接続するため
のターミナル部材と、前記電子回路を内装保護するケー
ス部材とを一体化した回路モジュールに、少なくとも一
つの曲がり部を有する副通路を、前記発熱抵抗体と感温
抵抗体がその内部に位置するように固定し、更に前記感
温抵抗体が前記発熱抵抗体に対して、より回路モジュー
ルから離れた位置に取付けられている発熱抵抗式流量測
定装置において、前記発熱抵抗体の設置位置で前記副通
路を構成している流路が最狭部となるように、前記発熱
抵抗体を支持する前記ターミナル部材の先端方向の壁面
を、上流方向から見て前記感温抵抗体が壁面の影になる
位置まで傾斜させ、その壁面の発熱抵抗体付近では流路
のコーナ付近、感温抵抗体の直前では前記壁面の中央付
近、すなわち略Y字形に通風溝を設けたことを特徴とす
る発熱抵抗式流量測定装置。1. A heating resistor for detecting a flow rate of a fluid, a temperature sensing resistor for temperature compensation thereof, an electronic circuit for outputting a signal corresponding to the flow rate of the fluid, the heating resistor and a temperature sensing element. A terminal member for supporting a resistor and electrically connecting to the electronic circuit, and a circuit module integrating a case member for protecting the electronic circuit inside, a sub-passage having at least one bent portion, A heating resistor type in which the heating resistor and the temperature-sensitive resistor are fixed so as to be located inside thereof, and the temperature-sensitive resistor is attached to the heating resistor at a position further away from the circuit module. In the flow rate measuring device, the flow path forming the sub-passage at the installation position of the heating resistor is the narrowest portion, so that the wall surface in the distal direction of the terminal member that supports the heating resistor is located upstream. Seen from the direction The temperature-sensitive resistor is tilted to a position where it becomes a shadow of the wall surface, and near the heating resistor on the wall surface, near the corner of the flow path, and immediately before the temperature-sensitive resistor, near the center of the wall surface, that is, a substantially Y-shaped ventilation groove. A heating resistance type flow rate measuring device characterized by comprising:
と、その温度補償用の感温抵抗体と、流体の流量に応じ
た信号を出力する電子回路と、前記発熱抵抗体及び感温
抵抗体を支持し、前記電子回路と電気的に接続するため
のターミナル部材と、前記電子回路を内装保護するケー
ス部材とを一体化した回路モジュールに、少なくとも一
つの曲がり部を有する副通路を、前記発熱抵抗体と感温
抵抗体がその内部に位置するように固定し、更に前記感
温抵抗体が前記発熱抵抗体に対して、より回路モジュー
ルから離れた位置に取付けられている発熱抵抗式流量測
定装置において、前記発熱抵抗体の設置位置で前記副通
路を構成している流路が最狭部となるように、前記発熱
抵抗体を支持する前記ターミナル部材の先端方向の壁面
を、上流方向から見て前記感温抵抗体が壁面の影になる
位置まで傾斜させ、その傾斜面に前記感温抵抗体の上流
に空気流を導く通風孔を設けたことを特徴とする発熱抵
抗式流量測定装置。2. A heating resistor for detecting a flow rate of a fluid, a temperature sensing resistor for temperature compensation thereof, an electronic circuit for outputting a signal corresponding to the flow rate of the fluid, the heating resistor and a temperature sensing element. A terminal member for supporting a resistor and electrically connecting to the electronic circuit, and a circuit module integrating a case member for protecting the electronic circuit inside, a sub-passage having at least one bent portion, A heating resistor type in which the heating resistor and the temperature-sensitive resistor are fixed so as to be located inside thereof, and the temperature-sensitive resistor is attached to the heating resistor at a position further away from the circuit module. In the flow rate measuring device, the flow path forming the sub-passage at the installation position of the heating resistor is the narrowest portion, so that the wall surface in the distal direction of the terminal member that supports the heating resistor is located upstream. Seen from the direction Is inclined to a position where the temperature sensitive resistor is in the shadow of the wall, the heat generating resistance flow rate measuring apparatus characterized in that a ventilating hole for guiding the air flow upstream of the temperature sensitive resistor on the inclined surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11126721A JP2000314646A (en) | 1999-05-07 | 1999-05-07 | Heating resistance type flow measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11126721A JP2000314646A (en) | 1999-05-07 | 1999-05-07 | Heating resistance type flow measurement device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000314646A true JP2000314646A (en) | 2000-11-14 |
Family
ID=14942236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11126721A Pending JP2000314646A (en) | 1999-05-07 | 1999-05-07 | Heating resistance type flow measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000314646A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010145155A (en) * | 2008-12-17 | 2010-07-01 | Denso Corp | Device for measuring air flow rate |
-
1999
- 1999-05-07 JP JP11126721A patent/JP2000314646A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010145155A (en) * | 2008-12-17 | 2010-07-01 | Denso Corp | Device for measuring air flow rate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3193837B2 (en) | Heating resistance type flow measurement device | |
US5942683A (en) | Apparatus for measuring gas flow rate in a bypass passage and having a passage restriction portion downstream of the detecting element | |
US7523659B2 (en) | Flow measurement apparatus | |
US5892146A (en) | Heating resistor type air flow meter with a measuring module inside the main air flow passage body | |
JPH02163443A (en) | Controller for engine equipped with supercharger | |
WO2002103301A1 (en) | Heating resistor flow rate measuring instrument | |
JP4752472B2 (en) | Air flow measurement device | |
JP2000314646A (en) | Heating resistance type flow measurement device | |
JP2006234766A (en) | Gas flow measuring device | |
JP5542614B2 (en) | Flow measuring device | |
JP3561219B2 (en) | Heating resistance type flow measurement device | |
JP2001059759A (en) | Heating resistance type flow measurement device | |
JPS5861411A (en) | Measuring device for flow rate of gas | |
JPH06265385A (en) | Air flow measuring device | |
JP3383779B2 (en) | Heating resistance type flow measurement device and internal combustion engine control device | |
JPH1114421A (en) | Heating resistor type air flow measurement device | |
JP3189636B2 (en) | Heating resistance type flow measurement device | |
JPH08278179A (en) | Heat resistance type air flow rate measuring device | |
JP2003004496A (en) | Flow rate measuring instrument | |
JP2003161652A (en) | Flow measurement device | |
JP3593011B2 (en) | Heating resistance type flow measurement device | |
JPH08297039A (en) | Heat resistance type air flow rate measuring device | |
JP3593042B2 (en) | Heating resistance type flow measurement device | |
JP3582933B2 (en) | Flow measurement device | |
JP3205245B2 (en) | Thermal air flow meter |