[go: up one dir, main page]

JP2000311697A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP2000311697A
JP2000311697A JP11120387A JP12038799A JP2000311697A JP 2000311697 A JP2000311697 A JP 2000311697A JP 11120387 A JP11120387 A JP 11120387A JP 12038799 A JP12038799 A JP 12038799A JP 2000311697 A JP2000311697 A JP 2000311697A
Authority
JP
Japan
Prior art keywords
solid electrolyte
current collector
perovskite
crystal
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11120387A
Other languages
Japanese (ja)
Other versions
JP3580724B2 (en
Inventor
Yuji Tateishi
勇二 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP12038799A priority Critical patent/JP3580724B2/en
Publication of JP2000311697A publication Critical patent/JP2000311697A/en
Application granted granted Critical
Publication of JP3580724B2 publication Critical patent/JP3580724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】 【課題】還元雰囲気中におけるLaCrO3 系材料の体
積膨張を抑制するとともに、集電体の固体電解質との接
合を良好にできる固体電解質型燃料電池セルを提供す
る。 【解決手段】円筒状の空気極32の外面に、部分安定化
または安定化ZrO2 からなる固体電解質31、燃料極
33が順次形成され、且つ固体電解質31に設けられた
切欠部36を被覆する集電体35を、固体電解質31お
よび切欠部36から露出した空気極32に接合してなる
固体電解質型燃料電池セルにおいて、集電体35が、金
属元素としてLa、CrおよびMgを含有するぺロブス
カイト型結晶を主結晶とし、かつ、集電体35の固体電
解質側に、他の領域Bよりもぺロブスカイト型結晶のM
g置換量が多い高Mg置換結晶領域Aが存在する。
[PROBLEMS] To provide a solid oxide fuel cell capable of suppressing the volume expansion of a LaCrO 3 -based material in a reducing atmosphere and improving the junction between the current collector and the solid electrolyte. A solid electrolyte 31 made of partially stabilized or stabilized ZrO 2 and a fuel electrode 33 are sequentially formed on an outer surface of a cylindrical air electrode 32, and cover a cutout portion 36 provided in the solid electrolyte 31. In a solid oxide fuel cell unit in which the current collector 35 is joined to the solid electrolyte 31 and the air electrode 32 exposed from the notch 36, the current collector 35 contains La, Cr and Mg as metal elements. The main crystal is a lobskite-type crystal, and the perovskite-type crystal M
There is a high Mg-substituted crystal region A with a large g-substitution amount.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒状の空気極の
外面に、部分安定化または安定化ZrO2 からなる固体
電解質、燃料極が順次形成され、集電体を固体電解質お
よび切欠部から露出した空気極に接合してなる固体電解
質型燃料電池セルに関するものである。
BACKGROUND OF THE INVENTION The present invention, on the outer surface of the cylindrical air electrode, partially stabilized or stabilized ZrO 2 made of a solid electrolyte, a fuel electrode are sequentially formed, the current collector from the solid electrolyte and notch The present invention relates to a solid oxide fuel cell unit joined to an exposed air electrode.

【0002】[0002]

【従来技術】固体電解質型燃料電池セルはその作動温度
が900〜1050℃と高温であるため発電効率が高
く、第3世代の発電システムとして期待されている。
2. Description of the Related Art A solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 900 to 1050 ° C., and is expected as a third generation power generation system.

【0003】一般に固体電解質型燃料電池セルには、円
筒型と平板型が知られている。平板型の固体電界質型燃
料電池セルは、発電の単位体積当たり出力密度が高いと
いう特徴を有するが、実用化に関してはガスシール不完
全性やセル内の温度分布の不均一性などの問題がある。
それに対して、円筒型の固体電解質型燃料電池セルで
は、出力密度は低いものの、セルの機械的強度が高く、
またセル内の温度の均一性が保てるという特徴がある。
両形状の固体電解質型燃料電池セルとも、それぞれの特
徴を生かして積極的に研究開発が進められている。
[0003] In general, cylindrical and flat plate types of solid oxide fuel cells are known. Flat solid electrolyte fuel cells have the characteristic of high power density per unit volume of power generation.However, there are problems such as imperfect gas seals and non-uniform temperature distribution in the cells for practical use. is there.
In contrast, a cylindrical solid oxide fuel cell has a low output density but a high mechanical strength of the cell,
Another feature is that uniformity of the temperature inside the cell can be maintained.
Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective characteristics.

【0004】円筒型の固体電解質型燃料電池セルは、図
2に示すように開気孔率30〜40%程度のLaMnO
3 系材料からなる多孔性の空気極1を形成し、その表面
にY2 3 含有のZrO2 からなる固体電解質2を被覆
し、さらにこの表面に多孔性のNi−ジルコニアの燃料
極3が設けられている。燃料電池のモジュールにおいて
は、各単セルはLaCrO3 系の集電体(インターコネ
クタ)4を介して接続される。発電は、空気極1内部に
空気6(酸素)を、外部に燃料7(水素)を流し、10
00〜1050℃の温度で行われる。
As shown in FIG. 2, a cylindrical solid oxide fuel cell has a LaMnO having an open porosity of about 30 to 40%.
A porous air electrode 1 made of a ternary material is formed, the surface of which is coated with a solid electrolyte 2 made of ZrO 2 containing Y 2 O 3 , and a porous Ni-zirconia fuel electrode 3 is formed on this surface. Is provided. In the fuel cell module, each single cell is connected via a LaCrO 3 -based current collector (interconnector) 4. Power generation is performed by flowing air 6 (oxygen) inside the air electrode 1 and fuel 7 (hydrogen) outside the air electrode 1.
It is performed at a temperature of 00 to 1050 ° C.

【0005】上記のような円筒型の固体電解質型燃料電
池セルを製造する方法としては、近年、製造工程を簡略
化し、且つ製造コストを低減するために、各構成材料の
うち少なくとも2つを同時焼成する、いわゆる共焼結法
が提案されている。この共焼結法は、例えば、円筒型の
空気極成形体に、固体電解質成形体および集電体成形体
をロール状に巻き付けて同時焼成を行い、その後、固体
電解質表面に燃料極を形成する方法である。
[0005] In recent years, as a method for manufacturing a cylindrical solid oxide fuel cell as described above, in order to simplify the manufacturing process and reduce the manufacturing cost, at least two of the constituent materials are simultaneously used. A so-called co-sintering method for firing has been proposed. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound around a cylindrical air electrode molded body in a roll shape and simultaneously fired, and thereafter, a fuel electrode is formed on the solid electrolyte surface. Is the way.

【0006】例えば、特開平9−129245号公報に
は、円筒型の空気極成形体の表面に固体電解質のシート
状成形体を巻き付けた後、固体電解質のシート状成形体
の端部が開口した部分(切欠部)を研摩して平坦状とな
した後、集電体のシート状成形体を積層圧着し、焼成
し、この後、金属を含有するスラリーを固体電解質表面
に塗布して燃料極を形成した円筒型の固体電解質型燃料
電池セルが開示されている。
For example, Japanese Patent Application Laid-Open No. 9-129245 discloses that a solid electrolyte sheet-like molded body is wound around the surface of a cylindrical air electrode molded body, and then the end of the solid electrolyte sheet-like molded body is opened. After the portion (notch portion) is polished to a flat shape, a sheet-like formed body of the current collector is laminated and pressed, and baked. Then, a slurry containing a metal is applied to the surface of the solid electrolyte to form a fuel electrode. Discloses a solid oxide fuel cell having a cylindrical shape.

【0007】この円筒型の固体電解質型燃料電池セルに
おける空気極は、Laの15〜20原子%をCa、S
r、Baなどのアルカリ土類金属により置換したLaM
nO3系組成物からなり、固体電解質は、ZrO2 に対
してY2 3 、Yb2 3 などの安定化材を3〜15モ
ル%の割合で固溶させた部分安定化ZrO2 あるいは安
定化ZrO2 からなり、集電体はCa、Mg、Srを固
溶したLaCrO3 から構成されている。
The air electrode of the cylindrical solid oxide fuel cell comprises 15 to 20 atomic% of La, Ca, S
LaM substituted by alkaline earth metals such as r and Ba
consists nO 3 based compositions, solid electrolyte with respect to ZrO 2 Y 2 O 3, Yb 2 O 3 a stabilizing material, such as 3 to 15 mol% portion was dissolved in a proportion of stabilizing ZrO 2 or The collector is made of stabilized ZrO 2 , and the current collector is made of LaCrO 3 in which Ca, Mg, and Sr are dissolved.

【0008】そして、集電体の表面は、セルの外部に供
給される水素に晒されるとともに、セル内部の酸素に、
多孔質の空気極を介して晒されることになる。このた
め、集電体は酸化・還元の両雰囲気に対して化学的に安
定で、かつ、両雰囲気を遮断するために緻密であること
が要求される。金属を用いた場合は酸化雰囲気に晒され
る部分が酸化されてしまうため、導電性を有するセラミ
ックスが用いられる。
The surface of the current collector is exposed to hydrogen supplied to the outside of the cell, and is exposed to oxygen inside the cell.
It will be exposed through a porous air electrode. Therefore, the current collector is required to be chemically stable to both the oxidizing and reducing atmospheres and to be dense in order to shut off both the atmospheres. When a metal is used, a portion exposed to an oxidizing atmosphere is oxidized, and therefore, a conductive ceramic is used.

【0009】また、酸化・還元の両雰囲気は、緻密体で
ある集電体と固体電解質によって遮断されているが、集
電体と固体電解質の境界部分も隙間なく密着されている
必要がある。
[0009] Both the oxidizing and reducing atmospheres are shut off by the dense current collector and the solid electrolyte, but it is necessary that the boundary between the current collector and the solid electrolyte be closely adhered without any gap.

【0010】ところが、集電体に用いられるLaCrO
3 系ペロブスカイト材料は、Y2 3 含有の安定化また
は部分安定化ZrO2 との接合が困難であるため、La
CrO3 からなるぺロブスカイト型結晶のCrの一部を
Mgで置換して、集電体と固体電解質とを良好に接合す
ることが行われている。また、Mgによる置換により、
焼結性および導電性も向上する。
However, LaCrO used for current collectors
The three- system perovskite material is difficult to join with Y 2 O 3 -containing stabilized or partially stabilized ZrO 2, and therefore La
It has been practiced to substitute a part of Cr of the perovskite-type crystal made of CrO 3 with Mg to satisfactorily join the current collector and the solid electrolyte. Also, by substitution with Mg,
Sinterability and conductivity are also improved.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、集電体
の固体電解質への接合を良好なものにするためには、L
aCrO3 からなるぺロブスカイト型結晶のMgによる
置換量が多いほど望ましいが、一方で、Mgによる置換
量が多くなる程、水素等の還元雰囲気に晒されると体積
膨張が大きくなり、このため、セル作製の際や発電中に
温度サイクルが印加されると、セルが破損するという問
題があった。
However, in order to improve the bonding of the current collector to the solid electrolyte, it is necessary to use L
It is desirable that the perovskite-type crystal composed of aCrO 3 has a larger amount of substitution by Mg, but on the other hand, the larger the amount of substitution by Mg, the greater the volume expansion when exposed to a reducing atmosphere such as hydrogen. When a temperature cycle is applied during fabrication or during power generation, there is a problem that the cell is damaged.

【0012】一方、LaCrO3 からなるぺロブスカイ
ト型結晶のMgによる置換量が少なくなると、還元雰囲
気に晒されても体積膨張は小さくなるものの、集電体の
固体電解質側部分もMgによる置換量が少なくなるた
め、集電体の固体電解質への接合が不良となるという問
題があった。
On the other hand, when the perovskite-type crystal composed of LaCrO 3 is reduced in the amount of substitution with Mg, the volume expansion is reduced even when exposed to a reducing atmosphere, but the substitution amount of Mg in the solid electrolyte side of the current collector is also reduced. As a result, there has been a problem that bonding of the current collector to the solid electrolyte becomes poor.

【0013】即ち、LaCrO3 系材料はペロブスカイ
ト型結晶を有し、300℃付近で斜方晶系から菱面体晶
系への相変態が存在し、また、還元雰囲気では酸素イオ
ンの脱離に伴い残された陽イオンの反発による体積の増
大が起こることが知られている。
That is, the LaCrO 3 -based material has a perovskite-type crystal, has a phase transformation from an orthorhombic system to a rhombohedral system at around 300 ° C., and in a reducing atmosphere, accompanying the desorption of oxygen ions. It is known that an increase in volume occurs due to repulsion of the remaining cations.

【0014】この体積膨張はペロブスカイト型結晶中の
Mgの置換量が全金属に対して1〜9原子%の範囲では
小さな値を示すが、これら置換量の範囲では、実用の量
産化の観点から前述したようにLaCrO3 が難焼結性
であり、また、集電体の固体電解質への接合状況が思わ
しくなく、集電体と固体電解質との間から、ガスが漏出
するという問題があった。
This volume expansion shows a small value when the substitution amount of Mg in the perovskite type crystal is in the range of 1 to 9 atomic% with respect to all metals, but in the range of these substitution amounts, from the viewpoint of mass production for practical use. As described above, there is a problem that LaCrO 3 is difficult to sinter, the joining state of the current collector to the solid electrolyte is not good, and gas leaks from between the current collector and the solid electrolyte. .

【0015】[0015]

【課題を解決するための手段】本発明者は上記問題を解
決するため、上記LaCrO3 系材料の焼結性を改善
し、さらに還元雰囲気中におけるLaCrO3 系材料の
体積の増大を抑制し、導電率を向上・安定化させ、さら
に、固体電解質との接合性を向上する方法について検討
を重ねた結果、集電体を、LaCrO3 系材料の焼結性
を高めるため少量のMgで置換したLaCrO3 結晶を
主結晶とし、集電体の固体電解質と接する部分付近のペ
ロブスカイト型結晶中のMgの置換量を、その他の部分
よりも多くすることにより、還元雰囲気中におけるLa
CrO3 系材料の体積膨張を抑制するとともに、集電体
の固体電解質との接合を良好にできることを見出し、本
発明に至った。
Means for Solving the Problems To solve the above problems, the present inventors have improved the sinterability of the LaCrO 3 -based material, and further suppressed the increase in the volume of the LaCrO 3 -based material in a reducing atmosphere. As a result of repeated studies on a method for improving and stabilizing the conductivity and improving the bondability with the solid electrolyte, the current collector was replaced with a small amount of Mg to enhance the sinterability of the LaCrO 3 material. By using a LaCrO 3 crystal as a main crystal and replacing the Mg in the perovskite-type crystal in the vicinity of a portion in contact with the solid electrolyte of the current collector with a larger amount than in other portions, La in a reducing atmosphere is reduced.
The present inventors have found that the volume expansion of the CrO 3 -based material can be suppressed and that the current collector can be favorably joined to the solid electrolyte, and the present invention has been accomplished.

【0016】即ち、本発明は、円筒状の空気極の外面
に、部分安定化または安定化ZrO2からなる固体電解
質、燃料極が順次形成され、且つ前記固体電解質に設け
られた切欠部を被覆する集電体を、前記固体電解質およ
び前記切欠部から露出した前記空気極に接合してなる固
体電解質型燃料電池セルにおいて、前記集電体が、金属
元素としてLa、CrおよびMgを含有するぺロブスカ
イト型結晶を主結晶とし、かつ、前記集電体の固体電解
質側に、前記ぺロブスカイト型結晶のMg置換量が他の
領域よりも多い高Mg置換結晶領域が存在するものであ
る。
That is, according to the present invention, a solid electrolyte composed of partially stabilized or stabilized ZrO 2 and a fuel electrode are sequentially formed on the outer surface of a cylindrical air electrode, and a notch provided in the solid electrolyte is covered. In a solid oxide fuel cell unit in which a current collector is joined to the solid electrolyte and the air electrode exposed from the notch, the current collector contains La, Cr and Mg as metal elements. The perovskite-type crystal is a main crystal, and a high Mg-substituted crystal region in which the perovskite-type crystal has a higher Mg substitution amount than other regions exists on the solid electrolyte side of the current collector.

【0017】ここで、高Mg置換結晶領域におけるぺロ
ブスカイト型結晶のMg置換量が、前記ぺロブスカイト
型結晶の全金属元素のうち10原子%以上であることが
望ましい。また、集電体にはMgO結晶を含有すること
が望ましい。
Here, it is desirable that the perovskite-type crystal in the high Mg-substituted crystal region has an Mg substitution amount of at least 10 atomic% of all metal elements of the perovskite-type crystal. Further, the current collector preferably contains MgO crystals.

【0018】[0018]

【作用】本発明の固体電解質型燃料電池セルでは、少な
くとも、空気極、部分安定化または安定化ZrO2 から
なる固体電解質、および集電体を同時焼成するタイプの
セルにおいて、金属元素としてLa、CrおよびMgを
含有するぺロブスカイト型結晶を主結晶とする集電体の
固体電解質と接する部分に、他の領域よりもぺロブスカ
イト型結晶のMg置換量が多い高Mg置換結晶領域を存
在せしめたので、集電体の固体電解質と接する部分で
は、ぺロブスカイト型結晶中のMg置換量が多いため、
集電体の固体電解質への接合状態が良好となり、一方、
その他の部分、例えば、固体電解質と反対側の集電体で
はぺロブスカイト型結晶中のMg置換量が少ないため、
集電体が還元雰囲気に晒されても体積膨張が小さくな
る。
According to the solid oxide fuel cell of the present invention, at least a solid electrolyte composed of an air electrode, a partially stabilized or stabilized ZrO 2 , and a current collector is simultaneously fired with La, La as a metal element. A high Mg-substituted crystal region in which the perovskite-type crystal has a larger amount of Mg substitution than other regions was present in a portion of the current collector having a perovskite-type crystal containing Cr and Mg as a main crystal in contact with the solid electrolyte. Therefore, in the portion of the current collector in contact with the solid electrolyte, the perovskite-type crystal has a large amount of Mg substitution,
The bonding state of the current collector to the solid electrolyte becomes good,
Other parts, for example, in the current collector on the opposite side of the solid electrolyte, since the amount of Mg substitution in the perovskite-type crystal is small,
Even when the current collector is exposed to a reducing atmosphere, the volume expansion is reduced.

【0019】また、本発明の固体電解質型燃料電池セル
では、高Mg置換結晶領域におけるぺロブスカイト型結
晶のMg置換量を、ぺロブスカイト型結晶の全金属元素
のうち10原子%以上とすることにより、上記集電体の
固体電解質への接合状態をさらに良好とできる。
Further, in the solid oxide fuel cell of the present invention, the perovskite-type crystal in the high Mg-substituted crystal region has a Mg substitution amount of at least 10 atomic% of all metal elements of the perovskite-type crystal. In addition, the bonding state of the current collector to the solid electrolyte can be further improved.

【0020】さらに、本発明の固体電解質型燃料電池セ
ルでは、集電体にMgO結晶を含有せしめることによ
り、集電体の熱膨張係数を高くすることができ、固体電
解質や空気極のそれと一致させることができる。
Further, in the solid oxide fuel cell unit of the present invention, by including MgO crystals in the current collector, the thermal expansion coefficient of the current collector can be increased, and the current expansion coefficient of the current collector matches that of the solid electrolyte or the air electrode. Can be done.

【0021】即ち、固体電解質型燃料電池セルの集電体
として用いる場合、セル製造中や発電中における破損を
防止するため、集電体以外の部材、すなわち固体電解質
や空気極などと熱膨張係数を一致させる必要がある。そ
のためには、LaCrO3 より大きな熱膨張係数を有す
るMgO結晶をLaCrO3 結晶とともに存在させるこ
とにより、本来、固体電解質や空気極よりも熱膨張係数
が低い集電体の熱膨張係数を高くすることができ、固体
電解質や空気極の熱膨張係数と一致させることができ
る。
That is, when used as a current collector of a solid oxide fuel cell, the coefficient of thermal expansion of the material other than the current collector, ie, the solid electrolyte or the air electrode, is reduced to prevent damage during cell production or power generation. Need to match. For this purpose, the MgO crystal having a larger thermal expansion coefficient than LaCrO 3 is present together with the LaCrO 3 crystal to increase the thermal expansion coefficient of the current collector, which is originally lower than the solid electrolyte or the air electrode. Can be made to match the thermal expansion coefficient of the solid electrolyte or the air electrode.

【0022】[0022]

【発明の実施の形態】本発明における固体電解質型燃料
電池セルは、図1に示すように、円筒状の固体電解質3
1の内面に空気極32、外面に燃料極33を形成してセ
ル本体34が構成されており、このセル本体34の外面
に、空気極32と電気的に接続する集電体35が形成さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid oxide fuel cell according to the present invention has a cylindrical solid electrolyte 3 as shown in FIG.
A cell body 34 is formed by forming an air electrode 32 on the inner surface and a fuel electrode 33 on the outer surface. A current collector 35 electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34. ing.

【0023】即ち、固体電解質31の一部に切欠部36
が形成され、固体電解質31の内面に形成されている空
気極32の一部が露出しており、この露出面37および
切欠部36近傍の固体電解質31の両端部表面が集電体
35により被覆され、集電体35が、固体電解質31の
両端部表面、および固体電解質31の切欠部36から露
出した空気極32の表面に接合されている。
That is, the notch 36 is formed in a part of the solid electrolyte 31.
Is formed, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and both ends of the solid electrolyte 31 near the exposed surface 37 and the notch 36 are covered with the current collector 35. The current collector 35 is joined to the surfaces of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31.

【0024】空気極32と電気的に接続する集電体35
はセル本体34の外面に形成され、ほぼ段差のない連続
同一面39を覆うように形成されており、燃料極33と
は電気的に接続されていない。この集電体35は、セル
同士を接続する際に、他のセルの燃料極にNiフェルト
を介して電気的に接続され、これにより燃料電池モジュ
ールが構成される。連続同一面39は、固体電解質成形
体の両端部と空気極成形体の一部とが連続したほぼ同一
面となるまで、固体電解質成形体の両端部間を研摩する
ことにより形成される。
Current collector 35 electrically connected to air electrode 32
Is formed on the outer surface of the cell body 34 so as to cover the continuous same surface 39 having almost no level difference, and is not electrically connected to the fuel electrode 33. When connecting the cells, the current collector 35 is electrically connected to the fuel electrode of another cell via Ni felt, thereby forming a fuel cell module. The continuous same surface 39 is formed by polishing between both ends of the solid electrolyte molded body until both end portions of the solid electrolyte molded body and a part of the air electrode molded body become substantially the same continuous surface.

【0025】固体電解質31は、例えば3〜20モル%
のY2 3 あるいはYb2 3 を含有した部分安定化あ
るいは安定化ZrO2 が用いられ、空気極32は、例え
ば、LaおよびMnを含有するペロブスカイト型複合酸
化物を主成分とするもので、Caを酸化物換算で8〜1
0重量%、希土類元素のうち少なくとも一種を酸化物換
算で10〜20重量%含有しても良い。希土類元素とし
ては、Y、Nd、Dy、Er、Yb等があり、このうち
でもYが望ましい。燃料極33としては、例えば、50
〜80重量%Niを含むZrO2 (Y2 3 含有)サー
メットが用いられる。
The solid electrolyte 31 is, for example, 3 to 20 mol%
A partially stabilized or stabilized ZrO 2 containing Y 2 O 3 or Yb 2 O 3 is used, and the air electrode 32 is made of a perovskite-type composite oxide containing La and Mn as a main component. , Ca is 8 to 1 in terms of oxide.
0% by weight and at least one of the rare earth elements may be contained in an amount of 10 to 20% by weight in terms of oxide. Rare earth elements include Y, Nd, Dy, Er, Yb and the like, and among them, Y is desirable. As the fuel electrode 33, for example, 50
ZrO 2 (containing Y 2 O 3 ) cermet containing 8080 wt% Ni is used.

【0026】集電体35は、金属元素としてLa、Cr
およびMgを含有するぺロブスカイト型結晶を主結晶と
するものであり、希土類元素やアルカリ土類金属元素を
含有するものであっても良い。集電体35には、さらに
MgO結晶を含有することが、集電体35の熱膨張係数
を高くして、固体電解質31や空気極32のそれと一致
させることができるため望ましい。
The current collector 35 is composed of La and Cr as metal elements.
And a perovskite-type crystal containing Mg as a main crystal, and may contain a rare earth element or an alkaline earth metal element. It is desirable that the current collector 35 further contain MgO crystals since the thermal expansion coefficient of the current collector 35 can be increased to match that of the solid electrolyte 31 and the air electrode 32.

【0027】固体電解質31、空気極32、燃料極33
としては、上記例に限定されるものではなく、公知材料
を用いても良い。上記材料からなる固体電解質31の熱
膨張係数は、ほぼ10.5×10-6/℃である。
Solid electrolyte 31, air electrode 32, fuel electrode 33
Is not limited to the above example, and a known material may be used. The coefficient of thermal expansion of the solid electrolyte 31 made of the above material is approximately 10.5 × 10 −6 / ° C.

【0028】そして、本発明の固体電解質型燃料電池セ
ルでは、集電体35の固体電解質31と接する部分に、
ぺロブスカイト型結晶のMg置換量が他の領域Bよりも
多い高Mg置換結晶領域Aが存在することを特徴とす
る。
In the solid oxide fuel cell unit according to the present invention, a portion of the current collector 35 which is in contact with the solid electrolyte 31 is:
The present invention is characterized in that a high Mg-substituted crystal region A in which the perovskite-type crystal has a larger amount of Mg substitution than the other region B exists.

【0029】ここで、他の領域Bとは、例えば、切欠部
36近傍の集電体部分、外部に露出する集電体表面付近
をいう。ぺロブスカイト型結晶のMg置換量とは、集電
体のぺロブスカイト型結晶をLa1.0 Mg2xCr1.0-2x
3 と表した時のxの値である。
Here, the other region B refers to, for example, a portion of the current collector near the cutout portion 36 and a portion near the surface of the current collector exposed to the outside. The perovskite-type crystal of the perovskite-type crystal is La 1.0 Mg 2x Cr 1.0-2x
This is the value of x when expressed as O 3 .

【0030】高Mg置換結晶領域Aにおけるぺロブスカ
イト型結晶のMg置換量は、ぺロブスカイト型結晶の全
金属元素のうち10原子%以上、特には10〜13原子
%(0.1≦x≦0.13)であることが望ましい。こ
れは、10原子%以上の場合には、還元雰囲気に晒され
た場合の体積膨張を低く抑制しつつ、集電体35の固体
電解質31への接合状態をさらに良好とできるからであ
る。一方、13原子%よりも多くなると、還元雰囲気で
の体積膨張が大きくなり、集電体35と固体電解質31
とが剥離を生じる可能性があるからである また、他の領域Bでは、ぺロブスカイト型結晶のMg置
換量は、ぺロブスカイト型結晶の全金属元素のうち1〜
9原子%であることが、還元雰囲気に晒された場合の体
積膨張を抑制できるという点から望ましい。
The Mg content of the perovskite-type crystal in the high Mg-substituted crystal region A is at least 10 atomic%, particularly 10 to 13 atomic% (0.1 ≦ x ≦ 0%) of all metal elements of the perovskite crystal. .13). This is because when the content is 10 atomic% or more, the bonding state of the current collector 35 to the solid electrolyte 31 can be further improved while suppressing the volume expansion when exposed to a reducing atmosphere. On the other hand, if it exceeds 13 atomic%, the volume expansion in a reducing atmosphere increases, and the current collector 35 and the solid electrolyte 31
In another region B, the amount of Mg substitution in the perovskite-type crystal is 1 to 1 of all metal elements in the perovskite-type crystal.
It is desirable that the content be 9 atomic% from the viewpoint that volume expansion when exposed to a reducing atmosphere can be suppressed.

【0031】さらに、高Mg置換結晶領域Aは、集電体
の固体電解質側表面から50μmであることが、高Mg
置換結晶領域Aと他の領域Bとによる内部応力を緩和す
る点から望ましい。
Further, the high Mg-substituted crystal region A is preferably 50 μm from the solid electrolyte side surface of the current collector.
It is desirable from the viewpoint of relaxing the internal stress caused by the substitution crystal region A and the other region B.

【0032】本発明の固体電解質型燃料電池セルでは、
集電体35の固体電解質31側に、他の領域Bよりもぺ
ロブスカイト型結晶のMg置換量が多い高Mg置換結晶
領域Aが存在するため、集電体35の固体電解質31側
では、ぺロブスカイト型結晶中のMg置換量が多いた
め、集電体35の固体電解質31との接合状態が良好と
なり、一方、その他の部分では、ぺロブスカイト型結晶
中のMg置換量が少ないため、集電体35が還元雰囲気
に晒されても体積膨張が小さくなり、集電体35と固体
電解質31との間からのガスの漏出を防止でき、また、
集電体の体積膨張によるセルの破損を防止できる。
In the solid oxide fuel cell according to the present invention,
On the solid electrolyte 31 side of the current collector 35, there is a high Mg-substituted crystal region A having a larger amount of Mg substitution of the lobskite-type crystal than in the other region B. Therefore, on the solid electrolyte 31 side of the current collector 35, Since the substitution amount of Mg in the lobskite-type crystal is large, the bonding state of the current collector 35 with the solid electrolyte 31 is improved. On the other hand, in other portions, the substitution amount of Mg in the perovskite-type crystal is small, so Even when the body 35 is exposed to a reducing atmosphere, the volume expansion is reduced, and leakage of gas from between the current collector 35 and the solid electrolyte 31 can be prevented.
Cell breakage due to volume expansion of the current collector can be prevented.

【0033】本発明の固体電解質型燃料電池セルは、例
えば、円筒状の空気極成形体(または空気極仮焼体)の
外表面に、ドクターブレード法により作製した固体電解
質シートを、その両端が離間するように(開口部が形成
されるように)貼り付け、仮焼した後、固体電解質シー
トの両端間が同一平面となるまで研摩し、この部分に集
電体シートを貼り付け、さらに固体電解質シートの表面
に燃料極シートを貼り付け、その後1400〜1600
℃の温度で2〜10時間大気中で焼成して作製される。
この場合、燃料極の形成はスラリーを塗布して、共焼結
時に焼成しても良いし、共焼結後に焼成しても良い。ス
ラリーを塗布しただけでも良い。この場合には、発電中
に焼成されることになる。
In the solid oxide fuel cell of the present invention, for example, a solid electrolyte sheet produced by a doctor blade method is provided on the outer surface of a cylindrical air electrode molded body (or calcined air electrode body). After sticking so that they are separated (to form an opening) and calcining, polished until both ends of the solid electrolyte sheet are flush with each other. A fuel electrode sheet is attached to the surface of the electrolyte sheet, and thereafter, 1400 to 1600
It is produced by baking in air at a temperature of 2 to 10 hours.
In this case, the fuel electrode may be formed by applying a slurry and firing during co-sintering, or firing after co-sintering. The slurry may be simply applied. In this case, firing is performed during power generation.

【0034】集電体シートの作製方法について説明す
る。先ず、LaCO3 、Cr2 3 およびMgO粉末を
ジルコニアボールなどを用いて回転ミルなどの周知の方
法で混合した後、1000〜1500℃の温度で1〜1
0時間熱処理して、例えば、ぺロブスカイト型結晶のM
g置換量が、全金属元素のうち10〜13原子%のLa
CrO3 系ペロブスカイト原料粉末Aと、Mg置換量
が、全金属元素のうち1〜9原子%のLaCrO3 系ペ
ロブスカイト原料粉末Bの2種類の粉末A、Bを作製
し、これを粉砕して0.5〜5μmとする。
A method for manufacturing the current collector sheet will be described. First, LaCO 3 , Cr 2 O 3, and MgO powder are mixed using a zirconia ball or the like by a known method such as a rotary mill, and then mixed at a temperature of 1000 to 1500 ° C. and a temperature of 1 to 1 ° C.
After heat treatment for 0 hour, for example, the perovskite crystal M
g substitution amount of La of 10 to 13 atomic% of all metal elements
CrO 3 -based perovskite raw material powder A and LaCrO 3 -based perovskite raw material powder B having an Mg substitution amount of 1 to 9 atomic% of the total metal elements are produced, and these powders are pulverized to 0%. 0.5 to 5 μm.

【0035】この後、上記原料粉末A、Bを用いて、ド
クターブレードのような周知の方法によりシート成形
し、シートA、Bを作製する。
Thereafter, a sheet is formed from the raw material powders A and B by a well-known method such as a doctor blade to produce sheets A and B.

【0036】そして、空気極成形体の外表面に、固体電
解質シートを、その両端が離間するように貼り付け、仮
焼した後、固体電解質シートの両端間が同一平面となる
まで研摩し、この後、固体電解質シートの両端部にシー
トAをそれぞれ貼り付け、このシートAを被覆するよう
にシートBでを貼り付け、これを焼成することにより得
られる。
Then, a solid electrolyte sheet is attached to the outer surface of the air electrode molded body so that both ends thereof are separated from each other, calcined, and polished until both ends of the solid electrolyte sheet are flush with each other. Thereafter, the sheet A is attached to both ends of the solid electrolyte sheet, a sheet B is attached so as to cover the sheet A, and the sheet is fired.

【0037】尚、固体電解質の両端間の間隔、即ち、切
欠部幅だけ間隔を置いて、シートAを配置し、これらの
シートAの上にシートBを配置し、これをプレス成形し
て、集電体シートを作製し、この集電体シートのシート
Aが固体電解質シートの両端部に当接するように集電体
シートを貼り付け、これを焼成しても良い。
The sheets A are arranged at intervals between both ends of the solid electrolyte, that is, at intervals corresponding to the notch width, and the sheets B are arranged on these sheets A, which are press-formed. A current collector sheet may be prepared, and the current collector sheet may be attached and baked so that sheet A of the current collector sheet abuts on both ends of the solid electrolyte sheet.

【0038】[0038]

【実施例】市販の純度99.9%以上、平均結晶粒径1
〜2μmのLa2 CO3 、Cr23 、MgOの粉末を
調合し、ジルコニアボールを用いた回転ミルにて10時
間混合後、1200℃で2時間仮焼し、2種類のLaM
gCrO3 系のペロブスカイト型結晶粉末を作製し、こ
れらの仮焼粉末100重量部に対して、MgO粉末をそ
れぞれ表1に示す量だけ添加し、原料粉末A、Bを得
た。
EXAMPLES Commercially available purity of 99.9% or more, average crystal grain size of 1
22 μm of La 2 CO 3 , Cr 2 O 3 , and MgO powders were prepared, mixed for 10 hours in a rotary mill using zirconia balls, and then calcined at 1200 ° C. for 2 hours to obtain two types of LaM.
A gCrO 3 -based perovskite crystal powder was prepared, and MgO powder was added to 100 parts by weight of the calcined powder in amounts shown in Table 1 to obtain raw material powders A and B.

【0039】この後、原料粉末A、Bに対して有機系粘
結剤を混合し、ドクターブレード法によって厚み75μ
mのグリーンシートA、Bを作製した。
After that, an organic binder is mixed with the raw material powders A and B, and the thickness is 75 μm by a doctor blade method.
m of green sheets A and B were prepared.

【0040】空気極を形成する粉末として、市販の平均
結晶粒子径8μmのLa0.8 Sr0. 2 MnO3 粉末を用
い、焼結時の収縮率を制御するためにポア形成剤である
アビセル(商品名)を添加し、押出成形により外径18
mm、内径12mmの中空の円筒状空気極成形体を作製
した。
[0040] as a powder for forming the air electrode, using the La 0.8 Sr 0. 2 MnO 3 powder of commercial average crystal grain size 8 [mu] m, a pore-forming agent to control the shrinkage during sintering Avicel (trade ) Was added and the outer diameter was 18
mm, a hollow cylindrical air electrode molded body having an inner diameter of 12 mm was produced.

【0041】一方、固体電解質として市販の平均粒径が
0.6μmの10モル%Y2 3 /90モル%ZrO2
組成の粉末に有機系粘結剤を混合し、ドクターブレード
法によって厚み130μmのグリーンシートを作製し
た。
On the other hand, 10 mol% of a commercially available having an average particle size of 0.6μm as the solid electrolyte Y 2 O 3/90 mole% ZrO 2
An organic binder was mixed with the powder having the composition, and a green sheet having a thickness of 130 μm was prepared by a doctor blade method.

【0042】この後、空気極材料からなる円筒状成形体
表面に固体電解質シートを巻き付け、固体電解質シート
の両端部にそれぞれグリーンシートAを貼り付け、これ
らのグリーンシートAを被覆するように、グリーンシー
トBをグリーンシートAおよび空気極の露出面に貼り付
け、1500℃で3時間焼成した。
Thereafter, a solid electrolyte sheet is wound around the surface of the cylindrical molded body made of the air electrode material, green sheets A are attached to both ends of the solid electrolyte sheet, and the green sheets are coated so as to cover the green sheets A. The sheet B was attached to the green sheet A and the exposed surface of the air electrode, and fired at 1500 ° C. for 3 hours.

【0043】そして、80重量%NiO/20重量%Y
2 3 含有する部分安定化ZrO2の混合粉体を、固体
電解質表面に50μmの厚みに塗布し、1400℃大気
中1時間の熱処理を行い、図1に示す固体電解質型燃料
電池セルを作製した。
Then, 80% by weight NiO / 20% by weight Y
A mixed powder of partially stabilized ZrO 2 containing 2 O 3 was applied to the surface of the solid electrolyte to a thickness of 50 μm, and heat-treated at 1400 ° C. in the air for 1 hour to produce a solid oxide fuel cell shown in FIG. did.

【0044】作製した固体電解質型燃料電池セルは、空
気極が外径18mm、内径12mm、固体電解質の厚み
が100μm、集電体の厚みが100μm(高Mg置換
結晶領域の厚みが50μm)であった。
The manufactured solid oxide fuel cell has an air electrode having an outer diameter of 18 mm, an inner diameter of 12 mm, a thickness of the solid electrolyte of 100 μm, and a thickness of the current collector of 100 μm (the thickness of the high Mg substitution crystal region is 50 μm). Was.

【0045】得られた固体電解質型燃料電池セルについ
て、集電体の固体電解質側面から20μm地点(高Mg
置換結晶領域)と、70μm地点(他の領域)につい
て、ペロブスカイト型結晶のMg置換量をEPMA分析
より求めた。
Regarding the obtained solid oxide fuel cell, a point 20 μm from the side of the solid electrolyte of the current collector (high Mg)
The substitution amount of Mg in the perovskite type crystal was determined by EPMA analysis for the substituted crystal region) and the 70 μm point (other region).

【0046】次に、セルの内側に1kgf/cm2 の気
圧をかけ、水中に没し、初期状態のガスリークの有無に
ついて調べた。
Next, a pressure of 1 kgf / cm 2 was applied to the inside of the cell, the cell was immersed in water, and the presence or absence of gas leak in the initial state was examined.

【0047】この後、セルの内側に空気を、外側に水素
を流しながら室温から1000℃まで5時間で昇温し、
1000℃で1時間保持した後、室温まで5時間で冷却
した。この熱サイクルを20回繰り返し、その際のセル
のガスリークの有無を調べた。また、1000℃で1時
間保持した後に出力密度を測定した。これらの結果を表
2に示す
Thereafter, the temperature was raised from room temperature to 1000 ° C. for 5 hours while flowing air inside the cell and hydrogen outside the cell.
After being kept at 1000 ° C. for 1 hour, it was cooled to room temperature in 5 hours. This heat cycle was repeated 20 times, and the presence or absence of gas leak in the cell at that time was examined. After holding at 1000 ° C. for 1 hour, the output density was measured. The results are shown in Table 2.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】これらの表1、2から、集電体の固体電解
質と接する部分に高Mg置換結晶領域が存在する本発明
の試料では、出力密度が0.32W/cm2 以上で、初
期状態のガスリークもなく、熱サイクル後のガスリーク
も無かった。
From these Tables 1 and 2, it can be seen that the sample of the present invention in which the high Mg-substituted crystal region exists in the portion of the current collector in contact with the solid electrolyte has an output density of 0.32 W / cm 2 or more, There was no gas leak and no gas leak after the thermal cycle.

【0051】一方、高Mg置換結晶領域が存在しない試
料No.1では、ペロブスカイト型結晶中のMg置換量が
5原子%と一定であるため、Mg置換量が少なく、作製
時において固体電解質と集電体との接合が不良となり、
初期状態でガスリークが生じていることが判る。また、
高Mg置換結晶領域が存在しない試料No.10では、ペ
ロブスカイト型結晶中のMg置換量が12原子%と一定
であるため、作製時において固体電解質と集電体との接
合が良好であるが、集電体が還元雰囲気に晒されること
による体積膨張が大きく、内部応力が発生し、熱サイク
ル試験後においてガスリークが発生するようになること
が判る。
On the other hand, in Sample No. 1 in which the high Mg-substituted crystal region does not exist, the Mg substitution amount in the perovskite-type crystal is constant at 5 atomic%, so the Mg substitution amount is small, and the solid electrolyte and the solid electrolyte are collected at the time of fabrication. The connection with the conductor becomes poor,
It can be seen that a gas leak has occurred in the initial state. Also,
In Sample No. 10 in which the high Mg-substituted crystal region does not exist, the amount of Mg substitution in the perovskite-type crystal is constant at 12 atomic%, so that the junction between the solid electrolyte and the current collector during the production is good. It can be seen that the volume expansion due to the current collector being exposed to the reducing atmosphere is large, an internal stress is generated, and a gas leak occurs after the thermal cycle test.

【0052】[0052]

【発明の効果】本発明の固体電解質型燃料電池セルで
は、金属元素としてLa、CrおよびMgを含有するぺ
ロブスカイト型結晶を主結晶とする集電体の固体電解質
と接する部分に、他の領域よりもぺロブスカイト型結晶
のMg置換量が多い高Mg置換結晶領域が存在するの
で、集電体の固体電解質側では、ぺロブスカイト型結晶
中のMg置換量が多くなり、集電体の固体電解質への接
合状態が良好となり、一方、その他の部分、例えば、固
体電解質と反対側の集電体の部分ではぺロブスカイト型
結晶中のMg置換量が少なくなり、集電体が還元雰囲気
に晒されても体積膨張が小さくなり、集電体と固体電解
質を一体化させ、かつ、大気−還元雰囲気間での磁器の
体積変化を抑制して、各部材間の応力の発生を抑制し、
破損を防止することができる。
According to the solid oxide fuel cell of the present invention, a portion of the current collector mainly composed of perovskite crystals containing La, Cr and Mg as metal elements in contact with the solid electrolyte is formed in another region. Since there is a high Mg-substituted crystal region in which the perovskite-type crystal has a larger amount of Mg substitution than the perovskite-type crystal, the amount of Mg substitution in the perovskite-type crystal increases in the solid electrolyte side of the current collector, and In the other part, for example, the part of the current collector opposite to the solid electrolyte, the amount of Mg substitution in the perovskite-type crystal is reduced, and the current collector is exposed to the reducing atmosphere. Even when the volume expansion is small, the current collector and the solid electrolyte are integrated, and the volume change of the porcelain between the atmosphere and the reducing atmosphere is suppressed, and the generation of stress between the members is suppressed,
Damage can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒状の固体電解質型燃料電池セルを
示す断面図である。
FIG. 1 is a sectional view showing a cylindrical solid oxide fuel cell according to the present invention.

【図2】従来の円筒状の固体電解質型燃料電池セルを示
す斜視図である。
FIG. 2 is a perspective view showing a conventional cylindrical solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

32・・・空気極 31・・・固体電解質 33・・・燃料極 35・・・集電体 36・・・切欠部 A・・・高Mg置換結晶領域 B・・・他の領域 32 ... air electrode 31 ... solid electrolyte 33 ... fuel electrode 35 ... current collector 36 ... notch A ... high Mg substitution crystal area B ... other area

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円筒状の空気極の外面に、部分安定化また
は安定化ZrO2 からなる固体電解質、燃料極が順次形
成され、且つ前記固体電解質に設けられた切欠部を被覆
する集電体を、前記固体電解質および前記切欠部から露
出した前記空気極に接合してなる固体電解質型燃料電池
セルにおいて、前記集電体が、金属元素としてLa、C
rおよびMgを含有するぺロブスカイト型結晶を主結晶
とし、かつ、前記集電体の固体電解質側に、前記ぺロブ
スカイト型結晶のMg置換量が他の領域よりも多い高M
g置換結晶領域が存在することを特徴とする固体電解質
型燃料電池セル。
1. A current collector in which a solid electrolyte made of partially stabilized or stabilized ZrO 2 and a fuel electrode are sequentially formed on the outer surface of a cylindrical air electrode, and a cutout provided in the solid electrolyte is covered. Is bonded to the solid electrolyte and the air electrode exposed from the notch, wherein the current collector has La, C as a metal element.
a perovskite-type crystal containing r and Mg as a main crystal, and a high M content, on the solid electrolyte side of the current collector, in which the perovskite-type crystal has a larger amount of Mg substitution than other regions.
A solid oxide fuel cell comprising a g-substituted crystal region.
【請求項2】高Mg置換結晶領域におけるぺロブスカイ
ト型結晶のMg置換量が、前記ぺロブスカイト型結晶の
全金属元素のうち10原子%以上であることを特徴とす
る請求項1記載の固体電解質型燃料電池セル。
2. The solid electrolyte according to claim 1, wherein the Mg content of the perovskite-type crystal in the high Mg-substituted crystal region is at least 10 atomic% of all metal elements of the perovskite-type crystal. Type fuel cell.
JP12038799A 1999-04-27 1999-04-27 Solid oxide fuel cell Expired - Fee Related JP3580724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12038799A JP3580724B2 (en) 1999-04-27 1999-04-27 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12038799A JP3580724B2 (en) 1999-04-27 1999-04-27 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2000311697A true JP2000311697A (en) 2000-11-07
JP3580724B2 JP3580724B2 (en) 2004-10-27

Family

ID=14784959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12038799A Expired - Fee Related JP3580724B2 (en) 1999-04-27 1999-04-27 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3580724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140097A (en) * 2004-11-15 2006-06-01 Kyocera Corp Fuel cell and fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140097A (en) * 2004-11-15 2006-06-01 Kyocera Corp Fuel cell and fuel cell

Also Published As

Publication number Publication date
JP3580724B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
US7351487B2 (en) Fuel cell
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
KR20140102741A (en) Solid oxide fuel cell interconnects including a ceramic interconnect material and partially stabilized zirconia
US7297436B2 (en) Fuel cell
JP4462727B2 (en) Solid electrolyte fuel cell
JP2005216760A (en) Fuel cell and method for producing the same
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
US11522202B2 (en) Alloy member, cell stack, and cell stack device
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH09180731A (en) Solid oxide fuel cell
JP3580724B2 (en) Solid oxide fuel cell
JP4544874B2 (en) Fuel cell and fuel cell
JP3342541B2 (en) Solid oxide fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP3755545B2 (en) Composite ceramics, separator containing the same, and solid oxide fuel cell using the separator
JP3336171B2 (en) Solid oxide fuel cell
JP2002134133A (en) Solid oxide fuel cell
JP3740304B2 (en) Conductive ceramics
US20100297527A1 (en) Fast Ion Conducting Composite Electrolyte for Solid State Electrochemical Devices
JP3652932B2 (en) Solid oxide fuel cell
JP2002134132A (en) Solid oxide fuel cell and method for producing the same
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP4683830B2 (en) Support for fuel cell, fuel cell and fuel cell
JP3677404B2 (en) Cylindrical solid electrolyte fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees