[go: up one dir, main page]

JP2000306597A - Nickel-hydrogen secondary battery - Google Patents

Nickel-hydrogen secondary battery

Info

Publication number
JP2000306597A
JP2000306597A JP11116782A JP11678299A JP2000306597A JP 2000306597 A JP2000306597 A JP 2000306597A JP 11116782 A JP11116782 A JP 11116782A JP 11678299 A JP11678299 A JP 11678299A JP 2000306597 A JP2000306597 A JP 2000306597A
Authority
JP
Japan
Prior art keywords
battery
current collector
negative electrode
electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11116782A
Other languages
Japanese (ja)
Inventor
Kazuhiko Harada
和彦 原田
Kazuhiro Takeno
和太 武野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP11116782A priority Critical patent/JP2000306597A/en
Publication of JP2000306597A publication Critical patent/JP2000306597A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel-hydrogen secondary battery of low internal resistance in the battery and high reliability capable of conducting high-current discharge. SOLUTION: A collector sheet 15 of this nickel-hydrogen secondary battery is composed of a punched metal punched such that lines joining the center of three adjucent holes form sides 15A, 15B and 15C of an equilateral triangle, respectively. An electrode group is wound in the direction parallel to any one of the sides 15A, 15B and 15C. The end of a negative electrode carries current to a battery can through a collector plate welded with the end or directly carries current to the battery can.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル・水素二次
電池に関し、更に詳しくは電池の内部抵抗が低いので大
電流放電が可能であり、さらには信頼性の高いニッケル
・水素二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen secondary battery, and more particularly, to a nickel-hydrogen secondary battery capable of discharging a large current because of its low internal resistance and having high reliability.

【0002】[0002]

【従来の技術】各種の電動工具や電動補助付き自転車、
さらには最近開発が進められている電気自動車等の駆動
電源として、充放電可能でかつ携帯も可能な二次電池が
用いられている。特に、上記した用途においては大電流
放電が可能であるという特性が要求されており、この点
からニッケルカドミウム二次電池が多く採用されてい
る。
2. Description of the Related Art Various electric tools and bicycles with electric assist,
Further, as a driving power source for an electric vehicle or the like that is being developed recently, a secondary battery that can be charged and discharged and that is portable is used. In particular, in the above-mentioned applications, a characteristic that a large current discharge is possible is required, and from this point, nickel cadmium secondary batteries are often used.

【0003】ところが、ニッケルカドミウム二次電池の
場合、電気自動車の電源として用いるには電池容量の点
で難がある。このようなことから、ニッケルカドミウム
二次電池に比べて放電容量が約1.5〜2倍程度大きい
ニッケル・水素二次電池が注目されている。このニッケ
ル・水素二次電池は、電極活物質と結着剤から成るペー
ストを導電性の集電体シートに塗布して正極及び負極を
作製し、この正極と負極をセパレータを介して巻回して
成る電極群を、アルカリ電解液と共に電池缶に封入する
ことによって製造されている。
However, nickel cadmium secondary batteries have difficulty in terms of battery capacity when used as a power source for electric vehicles. For these reasons, attention has been paid to nickel-hydrogen secondary batteries whose discharge capacity is about 1.5 to 2 times larger than that of nickel cadmium secondary batteries. In this nickel-metal hydride secondary battery, a paste comprising an electrode active material and a binder is applied to a conductive current collector sheet to produce a positive electrode and a negative electrode, and the positive electrode and the negative electrode are wound through a separator. The electrode group thus formed is sealed in a battery can together with an alkaline electrolyte.

【0004】そして、ニッケル・水素二次電池は、ニッ
ケルカドミウム二次電池に比べて放電容量及び容積エネ
ルギ密度が大きいことから、同一サイズの電池を同じ時
間率で放電させた場合、ニッケルカドミウム二次電池に
比べて放電電流を大きくすることができる。
[0004] Since nickel-hydrogen secondary batteries have a larger discharge capacity and volume energy density than nickel-cadmium secondary batteries, when batteries of the same size are discharged at the same time rate, nickel-cadmium secondary batteries are used. The discharge current can be increased as compared with the battery.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
たニッケル・水素二次電池の場合、電池の内部抵抗が高
いために、高い放電率(大電流)で放電を行うと電池の
作動電圧が低下する。従って、電動工具や電気自動車等
の電源として使用する場合には、高い放電率で電池を作
動させても作動電圧が低下しないよう、電池の内部抵抗
を低減することが必要である。
However, in the case of the above-mentioned nickel-hydrogen secondary battery, since the internal resistance of the battery is high, when the battery is discharged at a high discharge rate (large current), the operating voltage of the battery decreases. . Therefore, when the battery is used as a power source of an electric tool or an electric vehicle, it is necessary to reduce the internal resistance of the battery so that the operating voltage does not decrease even when the battery is operated at a high discharge rate.

【0006】ところで、従来のニッケル・水素二次電池
の場合には、負極の外周部と電池缶の内面とを接触させ
て、負極と電池缶とを導通していた。この場合、微小電
流を取り出すのであれば、上記接触部は大きな電圧降下
を引き起こさないが、放電電流が大きくなると上記接触
部の抵抗が増大して電圧降下が大きくなり、作動電圧の
低下を招く可能性がある。従って、電池の内部抵抗を低
減するためには、負極と電池缶の間に別の低抵抗な導通
経路を組み込む、つまり負極と電池缶の接続方法の検討
が必要になってくる。
In the case of a conventional nickel-hydrogen secondary battery, the outer periphery of the negative electrode is brought into contact with the inner surface of the battery can to conduct the negative electrode and the battery can. In this case, if a small current is to be extracted, the contact portion does not cause a large voltage drop, but if the discharge current increases, the resistance of the contact portion increases and the voltage drop increases, which may cause a decrease in operating voltage. There is. Therefore, in order to reduce the internal resistance of the battery, it is necessary to incorporate another low-resistance conduction path between the negative electrode and the battery can, that is, consider a method of connecting the negative electrode and the battery can.

【0007】さらに、電池の内部抵抗を低減するために
は、電極抵抗を下げることが必要である。一般に、電極
を流れる電流は、電極表面から電極内部の集電体シート
を経て、電極に接続された外部端子へ至る導電経路をと
るものと考えられる。従って、電極抵抗を低減するため
には、集電体シートの抵抗値を下げることが極めて有効
である。
Further, in order to reduce the internal resistance of the battery, it is necessary to lower the electrode resistance. In general, it is considered that the current flowing through the electrode takes a conductive path from the electrode surface to the external terminal connected to the electrode through the current collector sheet inside the electrode. Therefore, in order to reduce the electrode resistance, it is extremely effective to reduce the resistance value of the current collector sheet.

【0008】一方、上記した集電体シートには、コスト
や強度の点からパンチドメタルが用いられることが多
く、この集電体シートを基体とする電極を巻回すると、
集電体シートに塗布したペーストが脱落したり、シート
が折曲して金属部分が露出し、絶縁不良が起きるおそれ
がある。この問題については、パンチドメタルの孔の配
置状態を改善し、巻回時にシートを狭い間隔で緩やかに
折曲させる技術が提案されている(特開平3−1415
54号公報を参照)。従って、この技術が有する効果を
そのまま維持し、さらに、電池の内部抵抗を低減できる
新規技術が要望されている。
[0008] On the other hand, punched metal is often used for the above-mentioned current collector sheet from the viewpoint of cost and strength.
The paste applied to the current collector sheet may fall off, or the sheet may be bent to expose the metal portion, resulting in poor insulation. To solve this problem, a technique has been proposed in which the arrangement of holes in the punched metal is improved, and the sheet is gently bent at narrow intervals during winding (JP-A-3-1415).
No. 54). Therefore, there is a demand for a new technology capable of maintaining the effect of this technology as it is and further reducing the internal resistance of the battery.

【0009】本発明は、ニッケル・水素二次電池におけ
る上記した電池の内部抵抗や絶縁不良の問題を解決する
ことができ、内部抵抗が低くて大電流放電が可能であ
り、かつ信頼性が高いニッケル・水素二次電池の提供を
目的とする。
The present invention can solve the above-mentioned problems of the internal resistance and insulation failure of the nickel-hydrogen secondary battery, and has a low internal resistance, enables large current discharge, and has high reliability. The purpose is to provide nickel-metal hydride secondary batteries.

【0010】[0010]

【課題を解決するための手段】本発明は、ニッケル・水
素二次電池の負極と電池缶の接続方法を改善し、さらに
電極抵抗を低くすることにより、電池の内部抵抗を総合
的に低減することを技術思想とするものであり、以下の
知見に基づいたものである。 (1)特開平3−141554号公報に開示される集電
体シートを基体とする電極を用い、特定の方向から集電
を行った場合に電極抵抗が著しく低減する。 (2)電極群を構成する負極の端部には、電極活物質を
含んだペーストが塗布されずに導電性の集電体シートが
露出した領域が形成されている。従って、この部分と電
池缶を接続することにより、負極と電池缶の間の接触面
積を増し、接続抵抗を低減できる可能性がある。
SUMMARY OF THE INVENTION The present invention improves the connection method between the negative electrode of a nickel-hydrogen secondary battery and a battery can, and further lowers the electrode resistance, thereby reducing the internal resistance of the battery as a whole. This is the technical idea, and is based on the following findings. (1) The electrode resistance is significantly reduced when current is collected from a specific direction using an electrode having a current collector sheet disclosed in JP-A-3-141554 as a base. (2) At the end of the negative electrode constituting the electrode group, there is formed a region where the paste containing the electrode active material is not applied and the conductive current collector sheet is exposed. Therefore, by connecting this portion to the battery can, there is a possibility that the contact area between the negative electrode and the battery can is increased and the connection resistance can be reduced.

【0011】すなわち、上記した目的を達成するため
に、請求項1記載の本発明においては、ニッケル・水素
二次電池の集電体シートは、互いに隣接する3つの孔の
中心を結んだ直線がそれぞれ正三角形の一辺を構成する
ように穿孔されたパンチドメタルから成り、電極群は前
記一辺のいずれか1つと平行な方向に巻回され、前記負
極の端部は該端部に溶着された集電板を介して前記電池
缶と導通し、又は前記負極の端部は直接前記電池缶と導
通していることを特徴とするニッケル・水素二次電池が
提供される。
That is, in order to achieve the above object, in the present invention according to claim 1, the current collector sheet of the nickel-metal hydride secondary battery has a straight line connecting the centers of three mutually adjacent holes. The electrode group was wound in a direction parallel to any one of the sides, and was made of punched metal perforated to form one side of an equilateral triangle, and the end of the negative electrode was welded to the end. A nickel-hydrogen secondary battery is provided, wherein the nickel-hydrogen secondary battery is electrically connected to the battery can via a current collector plate, or the end of the negative electrode is directly electrically connected to the battery can.

【0012】好ましくは前記負極の端部における前記集
電体シートには無開口部が形成されているのがよい(請
求項2)。
Preferably, a non-opening portion is formed in the current collector sheet at the end of the negative electrode (claim 2).

【0013】[0013]

【発明の実施の形態】以下に、本発明のニッケル・水素
二次電池(特に円筒形ニッケル・水素二次電池)の実施
形態を示す例を、図1乃至図8を参照して説明する。図
1において、ニッケル・水素二次電池は、正極2及び負
極4をセパレータ3を介して巻回して成る電極群5を、
図示しないアルカリ電解液と共に有底円筒状の電池缶1
内に収容することにより製造される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment showing a nickel-hydrogen secondary battery (particularly, a cylindrical nickel-hydrogen secondary battery) of the present invention will be described below with reference to FIGS. In FIG. 1, a nickel-hydrogen secondary battery includes an electrode group 5 formed by winding a positive electrode 2 and a negative electrode 4 with a separator 3 interposed therebetween.
Cylindrical battery can 1 with bottom together with alkaline electrolyte not shown
It is manufactured by being housed inside.

【0014】正極2及び負極4は、後述する導電性の集
電体シートに所定の電極活物質を含むペーストを塗布し
て製造されるが、正極2の一端部2Aには前記ペースト
が担持されずに集電体シートが帯状に表出した領域が形
成されている。同様に、負極4の一端部4Bにも集電体
シートが帯状に表出している。そして、端部2Aと端部
4Bを互いに反対向きにして正極2と負極4を重ねあわ
せ、負極4が外側になるように巻回して電極群5とし、
電池缶1の内部に収容する。以下、電極群5の端部のう
ち、電池缶1の開口部側に位置するものを「上端部」、
電池缶1の底面側に位置するものを「下端部」と称す
る。
The positive electrode 2 and the negative electrode 4 are manufactured by applying a paste containing a predetermined electrode active material to a conductive current collector sheet described later. One end 2A of the positive electrode 2 carries the paste. Instead, a region where the current collector sheet was exposed in a band shape was formed. Similarly, a current collector sheet is exposed in a band shape at one end 4 </ b> B of the negative electrode 4. Then, the positive electrode 2 and the negative electrode 4 are overlapped with the end 2A and the end 4B opposite to each other, and wound so that the negative electrode 4 is on the outside to form an electrode group 5,
It is housed inside the battery can 1. Hereinafter, of the end portions of the electrode group 5, those located on the opening side of the battery can 1 are referred to as "upper end portions".
The part located on the bottom side of the battery can 1 is referred to as a “lower end”.

【0015】負極4の下端部4Bの端面には、小片状を
した例えばニッケル製のタブ端子4tが溶接され、下端
部4Bのみを集電板6bと導通させることが可能になっ
ている。そして、タブ端子4tを介して下端部4Bが集
電板6bに溶着されている。集電板6bとしては、例え
ばNi板やステンレス鋼板等の導電性金属を円板状に加
工したものを用いることができる。溶着としては、例え
ば溶接を行うことができるが、この場合、下端部4Bと
集電板6bの間に20〜30個所の溶接点を形成するの
が好ましい。
A small tab terminal 4t made of, for example, nickel is welded to the end surface of the lower end 4B of the negative electrode 4, so that only the lower end 4B can be electrically connected to the current collector plate 6b. The lower end 4B is welded to the current collector 6b via the tab terminal 4t. As the current collector plate 6b, a plate obtained by processing a conductive metal such as a Ni plate or a stainless steel plate into a disk shape can be used. As the welding, for example, welding can be performed. In this case, it is preferable to form 20 to 30 welding points between the lower end portion 4B and the current collector plate 6b.

【0016】そして、詳しくは後述するが、負極4の下
端部4Bと電池缶1を導通させ、下端部4Bから集電を
行うことにより、集電体シートを流れる電流の方向が規
制され、電極抵抗が低減する。この集電板6bは、この
集電板を介して下端部4Bと外部端子(電池缶1)との
導通を確実に行わせ、両者の接続部での抵抗を低減する
機能を有するものであるが、負極4と電池缶1を確実に
導通させることができれば必ずしも集電板は必要ではな
い。図2〜7は、集電板6bを用いずに、下端部4Bを
電池缶1と直接導通させた場合の下端部4Bの形状、及
び下端部4Bと電池缶1を導通させる態様を示してい
る。
As will be described in detail later, the lower end 4B of the negative electrode 4 is electrically connected to the battery can 1, and current is collected from the lower end 4B, whereby the direction of the current flowing through the current collector sheet is regulated. Resistance is reduced. The current collecting plate 6b has a function of ensuring conduction between the lower end portion 4B and the external terminal (battery can 1) via the current collecting plate and reducing the resistance at the connection portion between the two. However, a current collector is not necessarily required as long as the negative electrode 4 and the battery can 1 can be reliably conducted. FIGS. 2 to 7 show the shape of the lower end portion 4B when the lower end portion 4B is directly connected to the battery can 1 without using the current collector plate 6b, and the mode in which the lower end portion 4B and the battery can 1 are connected. I have.

【0017】図2において、負極4の下端部4Bは正極
2の下端部より突出しており、下端部4Bには、その端
面に導電性の集電体シートが渦巻き状に表出している。
そして、この場合、下端部4B(集電体シートの端面)
を直接電池缶1の底面に溶接して両者を接続する(図
3)。なお、下端部4Bを突出させるためには、正極2
と負極4を重ねあわせる際に、負極4の下端部4Bを正
極2の下端部より下方にずらし、この状態で巻回して電
極群とすればよい。
In FIG. 2, a lower end 4B of the negative electrode 4 protrudes from a lower end of the positive electrode 2, and a conductive current collector sheet is spirally exposed on an end face of the lower end 4B.
In this case, the lower end 4B (the end face of the current collector sheet)
Are directly welded to the bottom surface of the battery can 1 to connect them (FIG. 3). In order to project the lower end 4B, the positive electrode 2
When the negative electrode 4 and the negative electrode 4 are overlapped, the lower end 4B of the negative electrode 4 may be shifted downward from the lower end of the positive electrode 2 and wound in this state to form an electrode group.

【0018】また、図4において、下端部4Bの周縁部
には、該端部から突出し負極側へ折り曲げられたリード
部4Lが形成されている。下端部4Bは、上述の場合と
同様に正極2の下端部より突出しており、リード部4L
を折り曲げた状態で該リード部はこの突出部と適宜接触
している。この場合、リード部4Lは電極群の空孔に達
するまで延長され、この空孔に挿入された溶接電極と電
池缶の外側に配置された別の溶接電極により、リード部
4Lが電池缶1の底面に溶接される(図5)。そして、
リード部4Lと接触している下端部4Bの間においても
導通がなされている。
In FIG. 4, a lead 4L protruding from the lower end 4B and bent toward the negative electrode is formed at the peripheral edge of the lower end 4B. The lower end 4B protrudes from the lower end of the positive electrode 2 as in the above-described case, and the lead 4L
The lead part is appropriately in contact with this protruding part in a state in which is bent. In this case, the lead portion 4L is extended until it reaches the hole of the electrode group, and the lead portion 4L is formed by the welding electrode inserted into this hole and another welding electrode arranged outside the battery can. Welded to the bottom (Fig. 5). And
Conduction is also provided between the lower end 4B in contact with the lead 4L.

【0019】さらに図6において、下端部4Bの最内巻
には該端部から突出するリード部4Vが形成され、下端
部4Bの周縁端にはリード部4Vより長いリード部4W
が形成されている。そして、電極群の空孔に相当する位
置でリード部4Vを内側にしてリード部4Vとリード部
4Wが重なり合うよう、両者は折り曲げられる。この場
合、上記と同様にしてこの空孔に挿入された溶接電極に
より、リード部4Vとリード部4Wが電池缶1の底面に
溶接される(図7)。なお、リード部4Vとリード部4
Wは上記空孔にその一端が位置していれば、重なり合っ
ている必要はなく、また、図3の場合と同様に下端部4
Bを正極2の下端部より突出させ、この突出部とリード
部4V、4Wとを適宜接触させてもよい。
Further, in FIG. 6, a lead portion 4V protruding from the lower end portion 4B is formed on the innermost winding of the lower end portion 4B, and a lead portion 4W longer than the lead portion 4V is formed on the peripheral edge of the lower end portion 4B.
Are formed. Then, both are bent so that the lead portion 4V and the lead portion 4W overlap with the lead portion 4V inside at a position corresponding to the hole of the electrode group. In this case, the lead portions 4V and 4W are welded to the bottom surface of the battery can 1 by the welding electrodes inserted into the holes in the same manner as described above (FIG. 7). Note that the lead portion 4V and the lead portion 4
W does not need to overlap if one end is located in the above-mentioned hole, and the lower end 4 is similar to the case of FIG.
B may be made to protrude from the lower end of the positive electrode 2, and this protruding portion may be appropriately brought into contact with the leads 4V and 4W.

【0020】ところで、上述のようにして下端部4Bと
集電板6b、又は下端部4Bと電池缶1を接続する際、
下端部4Bにおける集電体シートの端部に無開口部(図
8における15eで図示)を形成すると、下端部4Bと
集電板6b、又は下端部4Bと電池缶1の接触面積が増
大し、両者を接続した場合の抵抗を低減することができ
るので好ましい。また、同様に正極2の上端部2Aにも
無開口部を形成してもよい。
When the lower end 4B and the current collector 6b or the lower end 4B and the battery can 1 are connected as described above,
When a non-opening portion (shown by 15e in FIG. 8) is formed at the end of the current collector sheet at the lower end 4B, the contact area between the lower end 4B and the current collector plate 6b or the lower end 4B and the battery can 1 increases. It is preferable because the resistance when both are connected can be reduced. Similarly, a non-opening portion may be formed in the upper end portion 2A of the positive electrode 2 as well.

【0021】なお、集電板6bを用いる場合、上記した
タブ端子を形成させる方法の他に、上述のように正極2
の下端部より突出させた負極4の下端部4Bに集電板6
bを溶着することもできる。一方、正極2についても、
負極の場合と同様にその上端部2Aから集電が行われ
る。この場合、正極2を構成する集電体シートを流れる
電流も同様に規制され、正極の電極抵抗が低減される。
上端部2Aからの集電方法については特に制限されず、
例えば集電タブを形成してここを外部端子に導通させて
もよいが、図1に示すように、負極と同様に上端部2A
の端面にタブ端子2tを溶接し、このタブ端子2tを介
して上端部2Aを集電板6aに溶着するのが好ましい。
集電板を用いる理由は、上述した負極の場合と同様であ
る。また、正極2の上端部2Aを負極4の上端部より突
出させ、この突出部に集電板6aを溶着してもよい。
When the current collector plate 6b is used, in addition to the above-described method for forming the tab terminal, the positive electrode 2
Current collector plate 6 is attached to lower end 4B of negative electrode 4 protruding from the lower end of
b can also be welded. On the other hand, for the positive electrode 2,
As in the case of the negative electrode, current collection is performed from the upper end 2A. In this case, the current flowing through the current collector sheet constituting the positive electrode 2 is similarly regulated, and the electrode resistance of the positive electrode is reduced.
The method of collecting power from the upper end 2A is not particularly limited,
For example, a current collecting tab may be formed and electrically connected to an external terminal. However, as shown in FIG.
It is preferable that the tab terminal 2t is welded to the end face, and the upper end 2A is welded to the current collector plate 6a via the tab terminal 2t.
The reason for using the current collector plate is the same as in the case of the negative electrode described above. Further, the upper end 2A of the positive electrode 2 may be protruded from the upper end of the negative electrode 4, and the current collector plate 6a may be welded to the protruded portion.

【0022】そして、上記した集電板6a、6bは、例
えば以下の方法により電極群5の端部に溶接すればよ
い。まず、下端部4Bに集電板6bを対向して配置し、
集電板6bと下端部4Bを接触させて両者を溶接し、こ
の電極群5を電池缶1に収容する。次に、電極群5の空
孔から挿入した溶接電極と電池缶5の外側に配置した別
の溶接電極で集電板6bと電池缶1を挟み込んで加圧し
て通電し、集電板6bと電池缶1を溶接する。次いで、
上端部2Aに集電板6aを対向して配置し、集電板6a
と上端部2Aを接触させて両者を溶接する。
The above-mentioned current collecting plates 6a and 6b may be welded to the end of the electrode group 5 by, for example, the following method. First, the current collecting plate 6b is disposed facing the lower end 4B,
The current collector plate 6b and the lower end 4B are brought into contact with each other and welded together, and the electrode group 5 is housed in the battery can 1. Next, the current collector plate 6b and the battery can 1 are sandwiched between the welding electrode inserted from the hole of the electrode group 5 and another welding electrode arranged outside the battery can 5, and pressurized and energized, and the current collector plate 6b The battery can 1 is welded. Then
The current collecting plate 6a is disposed opposite to the upper end 2A, and the current collecting plate 6a
And the upper end 2A are brought into contact with each other to weld them.

【0023】このようにして電極群5を収容した電池缶
1の上部開口部には、中央に穴8aを有する円形封口板
8が配置され、さらに封口板8の周縁と電池缶1の上端
内面の間に、リング状の絶縁性ガスケット9が介装さ
れ、前記上端を内側に縮径するカシメ加工により、封口
板8はガスケット9を介して電池缶1に気密に固定され
ている。正極リード7は一端が集電板6aを介して正極
2の上端部2Aと、他端が封口板8の下面と接続してい
る。また、集電板6bは、電池缶1の底面に溶接されて
いる。
A circular sealing plate 8 having a hole 8a in the center is disposed at the upper opening of the battery can 1 containing the electrode group 5 as described above, and the peripheral edge of the sealing plate 8 and the inner surface of the upper end of the battery can 1 are further arranged. Between them, a ring-shaped insulating gasket 9 is interposed, and the sealing plate 8 is air-tightly fixed to the battery can 1 via the gasket 9 by caulking to reduce the upper end inward. One end of the positive electrode lead 7 is connected to the upper end 2A of the positive electrode 2 via the current collector plate 6a, and the other end is connected to the lower surface of the sealing plate 8. The current collecting plate 6b is welded to the bottom surface of the battery can 1.

【0024】帽子形状をなす正極端子10は、穴8aを
覆うようにして封口板8上に取付けられ、さらに正極端
子10と封口板8で囲まれた空間には、穴8aを閉塞す
るためのゴム製の安全弁11が充填されている。そし
て、絶縁材料から成る図示しないドーナツ状の押え板が
正極端子10上に配置され、該押え板の有する孔から正
極端子10が突出するようになっている。さらに、所定
の外装チューブが該押え板の周縁、並びに電池缶1の側
面及び底部周縁を被覆している。
The positive electrode terminal 10 in the form of a hat is mounted on the sealing plate 8 so as to cover the hole 8a, and a space surrounded by the positive electrode terminal 10 and the sealing plate 8 is used to close the hole 8a. A rubber safety valve 11 is filled. Then, a donut-shaped holding plate (not shown) made of an insulating material is disposed on the positive electrode terminal 10, and the positive electrode terminal 10 projects from a hole of the holding plate. Further, a predetermined outer tube covers the periphery of the holding plate and the side and bottom periphery of the battery can 1.

【0025】次に、正極2及び負極4を構成する集電体
シートについて説明する。図8(a)に示すように、こ
の集電体シート15は、特開平3−141554号公報
に記載されたものと同一の形状を有している。図8
(a)において、集電体シート15は多数の孔20が穿
設されたパンチドメタルから成り、互いに隣接する3つ
の孔20a、20b、20cの中心を結んだ直線15
A、15B、15Cが、それぞれ正三角形の一辺を構成
する。孔20を上述のように形成するのは、集電体の開
孔率を高めて活物質の充填率を向上させ、電池容量を増
大させるとともに、後述するように集電体シートの導電
経路を短くするためである。集電体シート15の材料と
しては、例えばニッケル、ステンレスやニッケルメッキ
鋼板を用いることができ、さらに、開口部周縁に突起状
バリを形成させた2.5次元構造の基板を使用すること
もできる。
Next, the current collector sheets constituting the positive electrode 2 and the negative electrode 4 will be described. As shown in FIG. 8A, the current collector sheet 15 has the same shape as that described in JP-A-3-141554. FIG.
In (a), the current collector sheet 15 is made of punched metal having a large number of holes 20 formed therein, and a straight line 15 connecting the centers of three adjacent holes 20a, 20b, and 20c.
A, 15B, and 15C each constitute one side of an equilateral triangle. Forming the holes 20 as described above increases the porosity of the current collector, improves the filling rate of the active material, increases the battery capacity, and reduces the conductive path of the current collector sheet as described later. This is to shorten it. As a material of the current collector sheet 15, for example, nickel, stainless steel, or a nickel-plated steel plate can be used, and a substrate having a 2.5-dimensional structure in which protruding burrs are formed on the periphery of the opening can also be used. .

【0026】そして、この集電体シート15(正極2及
び負極4)を、前記一辺15Aと平行なD1方向に巻回
する。なお、他の一辺15B又は15Cと平行な方向に
巻回してもよい。この集電体シート15を用い、負極4
の下端部4B(集電体シートの端部15eに相当)から
集電を行った場合、電流の流れる方向は図示上方から下
方となる。ここで、正三角形の2辺15B、15Cに平
行な方向には連続して無孔部が存在するので、電流はこ
の無孔部を通って流れる。つまり、集電体シートを流れ
る電流の経路として2つの等価な導電パスp1、p2が形
成され、このパスp1、p2を適宜通って最短の導電経路
が選択される。
[0026] Then, the current collector sheet 15 (the positive electrode 2 and negative electrode 4), wound around the one side 15A parallel to D 1 direction. It may be wound in a direction parallel to the other side 15B or 15C. Using this current collector sheet 15, the negative electrode 4
When current is collected from the lower end 4B (corresponding to the end 15e of the current collector sheet), the direction of current flow is from the upper side to the lower side in the figure. Here, since a non-porous portion exists continuously in a direction parallel to the two sides 15B and 15C of the equilateral triangle, the current flows through the non-porous portion. That is, two equivalent conductive paths p 1 and p 2 are formed as paths of the current flowing through the current collector sheet, and the shortest conductive path is selected through these paths p 1 and p 2 as appropriate.

【0027】なお、各孔20の配置状態が上記した正三
角形でなく、例えば二等辺三角形になっている場合、2
つの導電パスは幾何学的に対称ではなく、等価な状態に
ならないため、結果として、上記した場合に比べて導電
経路が長くなる。一方、集電体シート15の巻回方向が
一辺15A、15B、15Cのいずれとも平行にない場
合、例えば、図8(b)に示すように一辺15Aと垂直
な方向D 2に巻回される場合、導電経路は以下のように
なる。
It should be noted that the arrangement of the holes 20 is the same
If it is not a polygon but an isosceles triangle, for example,
The two conductive paths are not geometrically symmetric and are equivalent
As a result, the result is a more conductive
The path becomes longer. On the other hand, the winding direction of the current collector sheet 15 is
If not parallel to any of sides 15A, 15B, 15C
In this case, for example, as shown in FIG.
Direction D TwoWhen wound around, the conductive path is as follows
Become.

【0028】この場合、D2方向には孔20が千鳥状に
配列され、この方向には無孔部が連続して形成されてい
ない。このため、D2方向には電流が流れにくく、集電
体シートを流れる電流の経路は、D2方向に垂直なパス
3を通る場合に限られる。つまり、導電経路として最
短の経路を選ぶことができず、導電経路は図8(a)の
場合に比べて長くなる。
[0028] In this case, the D 2 direction hole 20 are arranged in a zigzag pattern, in this direction is not formed imperforate portion continuously. Therefore, D 2 direction is hardly current flows, the path of the current flowing through the current collector sheet, only when passing through the vertical path p 3 in D 2 direction. That is, the shortest path cannot be selected as the conductive path, and the conductive path becomes longer than that in the case of FIG.

【0029】なお、上記した説明は、正極2の上端部2
Aから集電を行う場合も同様であるので、その説明を省
略する。このように、正極2及び負極4を前記一辺15
A(または15B、15C)と平行な方向に巻回し、上
端部2A及び下端部4Bから集電を行うことにより、集
電体シート15の導電経路は短くなり、電極抵抗を低減
することができる。
The above description is based on the upper end 2 of the positive electrode 2.
The same applies to the case of collecting power from A, and a description thereof will be omitted. Thus, the positive electrode 2 and the negative electrode 4 are
By winding in the direction parallel to A (or 15B, 15C) and collecting current from the upper end 2A and the lower end 4B, the conductive path of the current collector sheet 15 is shortened, and the electrode resistance can be reduced. .

【0030】そして、上記した正極2や負極4は、特開
平3−141554号公報に開示の技術と同様にして、
絶縁性不良を改善することができる。この機構を以下に
簡単に説明する。まず、図8(a)に示すように、各電
極を前記一辺15A(または一辺15B又は15C)と
平行な方向D1に巻回した場合、集電体シート15は強
度が最も弱い部分、つまりD1に垂直でかつ各孔20の
中心を通る直線上で折れながら巻回される。このとき、
各孔20の間隔をmとすると、折線の間隔L1は、各孔
20の中心位置を巻回方向D1へ投影した像の間隔で与
えられ、 L1=(1/2)×m …(1) となる。
The above-described positive electrode 2 and negative electrode 4 are formed in the same manner as in the technique disclosed in Japanese Patent Application Laid-Open No. 3-141554.
Insulation failure can be improved. This mechanism is briefly described below. First, as shown in FIG. 8 (a), if the electrodes turned the side 15A (or side 15B or 15C) parallel to the direction D 1 wound, current collector sheet 15 is weakest strength, i.e. It is wound while being bent on a straight line perpendicular to D 1 and passing through the center of each hole 20. At this time,
Assuming that the interval between the holes 20 is m, the interval L 1 between the fold lines is given by the interval between the images obtained by projecting the center position of each hole 20 in the winding direction D 1 , and L 1 = (1 /) × m. (1)

【0031】一方、図8(b)に示すように、電極の巻
回方向が各辺15A、15B、15Cのいずれとも平行
にない場合、例えば、一辺15Aと垂直な方向D1に巻
回した場合、折線の間隔L2は、 L2=(√3/2)×m …(2) となる。
On the other hand, as shown in FIG. 8 (b), when the winding direction of the electrode is not parallel with any of the sides 15A, 15B, 15C, for example, turned side 15A and a direction perpendicular D 1 wound In this case, the interval L 2 between the fold lines is L 2 = (√3 / 2) × m (2).

【0032】すなわち、各電極を前記一辺15A(また
は一辺15B又は15C)と平行な方向に巻回すると、
折線の間隔は最も狭く、逆に折曲部同士のなす角度は大
きくなって、集電体シートはより緩やかに折曲すること
になる。そして、集電体が折損して電極外部に突出した
り、集電体に塗布された電極活物質が脱落することが防
止される。特に、巻回部分の内巻きでは曲率が大きくな
るので、上記効果が顕著となる。
That is, when each electrode is wound in a direction parallel to the one side 15A (or one side 15B or 15C),
The interval between the fold lines is the narrowest, and conversely, the angle between the folds increases, so that the current collector sheet bends more gently. Then, the current collector is prevented from being broken and protruding outside the electrode, and the electrode active material applied to the current collector is prevented from falling off. In particular, since the curvature becomes large in the inner winding of the winding portion, the above-mentioned effect becomes remarkable.

【0033】本発明の正極2及び負極4は、以下のよう
にして作製すればよい。まず、正極2に用いる正極材料
としては、例えば、水酸化ニッケルや酸化コバルトを含
むニッケル酸化物等のニッケル化合物が好適に使用でき
る。そして、上記正極材料を、導電剤、結着剤、及び水
と混練してペーストとし、上述の集電体シート15に塗
布して乾燥後、成形して任意の形状に加工して正極2と
すればよい。
The positive electrode 2 and the negative electrode 4 of the present invention may be manufactured as follows. First, as a positive electrode material used for the positive electrode 2, for example, a nickel compound such as nickel oxide containing nickel hydroxide or cobalt oxide can be suitably used. Then, the positive electrode material is kneaded with a conductive agent, a binder, and water to form a paste, applied to the above-described current collector sheet 15, dried, formed and processed into an arbitrary shape to form a positive electrode 2. do it.

【0034】導電剤としては、例えば、金属コバルト、
コバルト酸化物、コバルト水酸化物などが使用できる。
結着剤としては、例えば、カルボキシメチルセルロー
ス、メチルセルロース、ヒドロキシプロピルメチルセル
ロース、ポリアクリル酸ナトリウム、ポリテトラフルオ
ロエチレンなどが使用できる。
As the conductive agent, for example, metallic cobalt,
Cobalt oxide, cobalt hydroxide and the like can be used.
As the binder, for example, carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium polyacrylate, polytetrafluoroethylene and the like can be used.

【0035】そして、負極4に用いる負極材料として
は、水素吸蔵合金粉末が好適に使用できる。水素吸蔵合
金は、電解液中で水素の吸蔵と放出が行えるものであれ
ば特に制限はなく、例えば、AB5系、TiNi系、T
iFe系やMg2Ni系の合金を使用することができ
る。ここで、AはLa、Mm(ミッシュメタル)、また
はLm(La富化したミッシュメタル)である。そして
BはNi、または、NiとAl、Mn、Co、Ti、C
u、Zn、Zr、Cr及びBの群から選ばれる元素との
合金である。
As a negative electrode material used for the negative electrode 4, a hydrogen storage alloy powder can be suitably used. The hydrogen storage alloy is not particularly limited as long as it can store and release hydrogen in the electrolytic solution. For example, AB 5 type, TiNi type, T
iFe-based and Mg 2 Ni-based alloys can be used. Here, A is La, Mm (mish metal), or Lm (La-enriched misch metal). And B is Ni, or Ni and Al, Mn, Co, Ti, C
An alloy with an element selected from the group consisting of u, Zn, Zr, Cr and B.

【0036】このような負極材料を、導電剤、結着剤、
及び水と混練してペーストとし、集電体シート15に塗
布して乾燥後、成形して任意の形状に加工して負極4と
すればよい。導電剤としては、例えば、カーボンブラッ
クなどが使用できる。結着剤は、例えば、正極の製造に
用いたのと同じものとすればよい。本発明のニッケル・
水素二次電池に用いるアルカリ電解液としては、例え
ば、NaOHとLiOHの混合溶液、KOHとLiOH
の混合溶液の他、KOH、LiOH、及びNaOHから
成る混合溶液を使用することができる。
Such a negative electrode material is used as a conductive agent, a binder,
Then, the paste may be kneaded with water to form a paste, applied to the current collector sheet 15, dried, formed and processed into an arbitrary shape to form the negative electrode 4. As the conductive agent, for example, carbon black or the like can be used. The binder may be the same as that used in the production of the positive electrode, for example. Nickel of the present invention
Examples of the alkaline electrolyte used for the hydrogen secondary battery include a mixed solution of NaOH and LiOH, KOH and LiOH
, A mixed solution composed of KOH, LiOH, and NaOH can be used.

【0037】[0037]

【実施例】実施例1,比較例1 1.負極の製造 組成:LmNi4.2Co0.2Mn0.3Al0.3の水素吸蔵合
金粉末を、200メッシュのふるいを通過させて、20
0メッシュ下の粉末を分取した。
EXAMPLES Example 1 and Comparative Example 1 Production of Negative Electrode Composition: LmNi 4.2 Co 0.2 Mn 0.3 Al 0.3 hydrogen storage alloy powder was passed through a 200 mesh sieve,
The powder under 0 mesh was collected.

【0038】この粉末100重量部に対して、高分子結
着剤としてポリアクリル酸ナトリウム0.5重量部、カ
ルボキシメチルセルロース0.125重量部、ディスパ
ージョンタイプのポリテトラフルオロエチレン1.5重
量部、導電性粉末としてカーボンブラック1.0重量
部、及び純水を添加して混練し、ペーストとした。そし
て、このペーストを、60°千鳥状に穿孔されたパンチ
ドメタルから成る、図5(a)に示す集電体シート15
に塗布した後、ペーストを乾燥させた。次いでこのシー
トを圧延し、所定の大きさに裁断して負極4とした。
With respect to 100 parts by weight of this powder, 0.5 parts by weight of sodium polyacrylate, 0.125 parts by weight of carboxymethylcellulose, 1.5 parts by weight of dispersion-type polytetrafluoroethylene, 1.0 parts by weight of carbon black as a conductive powder and pure water were added and kneaded to obtain a paste. Then, this paste is made of a punched metal punched in a staggered shape at 60 °, and is made of a current collector sheet 15 shown in FIG.
, And the paste was dried. Next, this sheet was rolled and cut into a predetermined size to obtain a negative electrode 4.

【0039】2.正極の製造 所定量の酸化コバルト粉末をニッケル酸化物粉末と混合
し、上記混合物に所定の結着剤、及び導電剤を添加して
混練し、ペーストとした。そして、このペーストを、上
記負極に用いたのと同様な集電体シート15に塗布した
後、ペーストを乾燥させた。次いでこのシートを圧延
し、所定の大きさに裁断して正極2とした。
2. Manufacture of positive electrode A predetermined amount of cobalt oxide powder was mixed with nickel oxide powder, and a predetermined binder and a conductive agent were added to the above mixture and kneaded to obtain a paste. Then, this paste was applied to the same current collector sheet 15 as used for the negative electrode, and then the paste was dried. Next, this sheet was rolled and cut into a predetermined size to obtain a positive electrode 2.

【0040】3.電池の組立て ポリアミド不織布製のセパレータ3を上記負極4と正極
2の間に介装し、負極4を外側にして、図8(a)に示
すように、一辺15Aと平行な方向に渦巻状に巻回して
電極群5とした。次いで、負極4の下端部4Bにタブ端
子4tを溶接し、このタブ端子4tを介して集電板6b
を下端部4Bに溶接した。同様にして、正極2の上端部
2Aにタブ端子2tを溶接し、このタブ端子2tを介し
て集電板6aを上端部2Aに溶接した。そして、この電
極群5を電池缶1に収容し、さらに所定のアルカリ電解
液を注液して封口し、図1に示すニッケル・水素二次電
池を組み立てた。
3. Battery assembly A separator 3 made of a non-woven polyamide fabric is interposed between the negative electrode 4 and the positive electrode 2, and the negative electrode 4 is turned outside and spiraled in a direction parallel to one side 15 </ b> A as shown in FIG. This was wound into an electrode group 5. Next, a tab terminal 4t is welded to the lower end 4B of the negative electrode 4, and the current collector plate 6b is connected through the tab terminal 4t.
Was welded to the lower end 4B. Similarly, the tab terminal 2t was welded to the upper end 2A of the positive electrode 2, and the current collector plate 6a was welded to the upper end 2A via the tab terminal 2t. Then, the electrode group 5 was accommodated in the battery can 1, and a predetermined alkaline electrolyte was injected and sealed to assemble the nickel-hydrogen secondary battery shown in FIG.

【0041】4.絶縁抵抗の測定 上記した電池の正極と負極の間に100Vの直流電圧を
印加し、その時の正極−負極間の絶縁抵抗を測定した。
電池100個についてそれぞれ絶縁抵抗を測定し、抵抗
値が所定の値以下のものを絶縁不良が生じたとみなして
その個数を数えた。
4. Measurement of Insulation Resistance A DC voltage of 100 V was applied between the positive electrode and the negative electrode of the battery, and the insulation resistance between the positive electrode and the negative electrode at that time was measured.
The insulation resistance of each of the 100 batteries was measured, and those having a resistance value equal to or less than a predetermined value were regarded as having insulation failure, and the number was counted.

【0042】比較のために、図8(b)に示すように、
正極及び負極をセパレータを介して前記一辺15Aと垂
直な方向に巻回し、その他については実施例1と同様に
して電池を組み立てた。これを比較例1とする。
For comparison, as shown in FIG.
The battery was assembled in the same manner as in Example 1 except that the positive electrode and the negative electrode were wound in a direction perpendicular to the one side 15A via a separator. This is referred to as Comparative Example 1.

【0043】[0043]

【表1】 [Table 1]

【0044】(1)表1から明らかなように、本発明のニ
ッケル・水素二次電池は、比較例1に比べて絶縁不良の
発生率が少なく、絶縁性に優れている。 (2)各電極を前記一辺と垂直な方向に巻回した比較例1
の場合は、実施例1に比べて絶縁不良の発生率が高く、
絶縁性に劣ったものとなっている。このことから、正極
及び負極を前記一辺と平行な方向に巻回した本発明の優
位性が明らかである。
(1) As is clear from Table 1, the nickel-hydrogen secondary battery of the present invention has a lower rate of occurrence of insulation failure and is excellent in insulation as compared with Comparative Example 1. (2) Comparative Example 1 in which each electrode was wound in a direction perpendicular to the one side.
In the case of, the occurrence rate of insulation failure is higher than in Example 1,
It is inferior in insulation. This clearly shows the superiority of the present invention in which the positive electrode and the negative electrode are wound in a direction parallel to the one side.

【0045】実施例2,比較例2 実施例1と同様にして、円筒形ニッケル・水素二次電池
を組み立てた。この電池に対して、1時間率(hR)で
1.2時間の充電を行い、30分休止した後、10hRの
電流で放電したときの電池の作動電圧を測定した。放電
容量/公称容量を横軸にとったときの作動電圧の変化を
図9に示す。図9において、作動電圧が高いほど、大電
流放電特性に優れている。 (1)図9から明らかなように、本発明のニッケル・水素
二次電池は、比較例2に比べて放電時の電池の作動電圧
が高い。 (2)各電極を前記一辺と垂直な方向に巻回した比較例2
の場合は、実施例2に比べて放電時の電池の作動電圧が
低い。このことから、各電極を前記一辺と平行な方向に
巻回して電極群の端部から集電を行い、さらに、負極の
下端部と電池缶を溶着した本発明は、電池の内部抵抗が
低く大電流放電特性に優れている。
Example 2, Comparative Example 2 A cylindrical nickel-metal hydride secondary battery was assembled in the same manner as in Example 1. At an hourly rate (hR) for this battery
The battery was charged for 1.2 hours, and after resting for 30 minutes, the operating voltage of the battery when discharged at a current of 10 hR was measured. FIG. 9 shows the change in the operating voltage when the discharge capacity / nominal capacity is plotted on the horizontal axis. In FIG. 9, the higher the operating voltage is, the more excellent the large current discharge characteristic is. (1) As is clear from FIG. 9, the nickel-hydrogen secondary battery of the present invention has a higher operating voltage at the time of discharging than the comparative example 2. (2) Comparative Example 2 in which each electrode was wound in a direction perpendicular to the one side.
In the case of, the operating voltage of the battery at the time of discharging is lower than that of the second embodiment. From this, the present invention in which each electrode is wound in a direction parallel to the one side and current is collected from the end of the electrode group, and the lower end of the negative electrode and the battery can are welded, the present invention has a low internal resistance of the battery. Excellent in large current discharge characteristics.

【0046】[0046]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、正極及び負極を構成する集電体シートに開孔率
の高い穿孔パターンを有するパンチドメタルを用いてい
るので、従来のニッケル・水素二次電池に比べて、電池
容量を大きくすることができる。
As is clear from the above description, according to the present invention, since the current collector sheets constituting the positive electrode and the negative electrode are made of a punched metal having a perforation pattern having a high porosity, the conventional art Battery capacity can be increased as compared with the nickel-metal hydride secondary battery.

【0047】また、上記集電体シートを含む正極及び負
極を特定の方向に巻回し、電極群の端部からそれぞれ集
電しているので、集電体シートの各孔の配置状態に基づ
いて2つの等価な導電パスが形成され、集電体シートを
流れる電流の導電経路は短くなり、電極抵抗が低減す
る。さらに、負極の下端部は、該端部に溶着された集電
板を介して電池缶と導通し、又は直接電池缶と導通(溶
着)されているので、負極の外周部と電池缶を接触させ
る従来方式に比べて、負極と電池缶の間の接続抵抗も低
減する。そして、これらの相乗効果により電池の内部抵
抗が低減し、電池の作動電圧を高くすることができるの
で、従来のニッケル・水素二次電池では実現できなかっ
たような大電流放電(例えば5hRを超える)が可能で
ある。
Further, since the positive electrode and the negative electrode including the above-mentioned current collector sheet are wound in a specific direction and current is respectively collected from the end of the electrode group, it is determined based on the arrangement state of each hole of the current collector sheet. Two equivalent conductive paths are formed, the conductive path of the current flowing through the current collector sheet is shortened, and the electrode resistance is reduced. Further, the lower end of the negative electrode is electrically connected to the battery can via the current collector plate welded to the end or directly (fused) with the battery can, so that the outer peripheral portion of the negative electrode is brought into contact with the battery can. The connection resistance between the negative electrode and the battery can is also reduced as compared with the conventional method of performing the above. The synergistic effect reduces the internal resistance of the battery and increases the operating voltage of the battery, so that a large current discharge (for example, exceeding 5 hR) which cannot be realized with a conventional nickel-metal hydride secondary battery. ) Is possible.

【0048】さらに、上述のように各電極を特定の方向
に巻回しているため、巻回時に集電体は狭い間隔で折
れ、逆に折曲部同士のなす角度は大きくなって、集電体
はより緩やかに折曲するので、集電体が折損して電極外
部に突出したり、集電体の折れに伴う電極活物質の脱落
が防止される。特に、巻回部の内巻きでは曲率が大きく
なるので、これらの効果は顕著となる。
Further, since each electrode is wound in a specific direction as described above, the current collector is folded at a narrow interval at the time of winding, and conversely, the angle formed between the bent portions is increased. Since the body bends more gently, the current collector is prevented from being broken and protruding outside the electrode, and the electrode active material is prevented from falling off due to the current collector being broken. In particular, since the curvature becomes large in the case of the inner winding of the winding portion, these effects become remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るニッケル・水素二次電池の構造を
示す断面図である。
FIG. 1 is a sectional view showing a structure of a nickel-hydrogen secondary battery according to the present invention.

【図2】負極の下端部の形状を示す斜視図である。FIG. 2 is a perspective view showing a shape of a lower end portion of the negative electrode.

【図3】負極の下端部と電池缶を直接溶接した態様を示
す断面図である。
FIG. 3 is a cross-sectional view showing a mode in which a lower end of a negative electrode and a battery can are directly welded.

【図4】負極の下端部の別の形状を示す斜視図である。FIG. 4 is a perspective view showing another shape of the lower end of the negative electrode.

【図5】負極の下端部と電池缶を直接溶接した別の態様
を示す断面図である。
FIG. 5 is a sectional view showing another embodiment in which the lower end of the negative electrode and the battery can are directly welded.

【図6】負極の下端部のさらに別の形状を示す斜視図で
ある。
FIG. 6 is a perspective view showing still another shape of the lower end of the negative electrode.

【図7】負極の下端部と電池缶を直接溶接したさらに別
の態様を示す断面図である。
FIG. 7 is a sectional view showing still another embodiment in which the lower end of the negative electrode and the battery can are directly welded.

【図8】集電体シートの形状、巻回方向、及び導電パス
を示す図である。
FIG. 8 is a diagram showing a shape, a winding direction, and a conductive path of a current collector sheet.

【図9】電池の放電容量/公称容量と作動電圧の関係を
示すグラフである。
FIG. 9 is a graph showing a relationship between a discharge capacity / nominal capacity of a battery and an operating voltage.

【符号の説明】[Explanation of symbols]

1 電池缶 2 正極 2A 正極の上端部 4 負極 4B 負極の下端部 4L、4V、4W リード部 5 電極群 6a、6b 集電板 15 集電体シート 15A、15B、15C 正三角形の一辺 15e シートの端部 15f 無開口部 20 孔 DESCRIPTION OF SYMBOLS 1 Battery can 2 Positive electrode 2A Upper end of positive electrode 4 Negative electrode 4B Lower end of negative electrode 4L, 4V, 4W Lead part 5 Electrode group 6a, 6b Current collector plate 15 Current collector sheet 15A, 15B, 15C One side of regular triangle 15e Sheet End 15f No opening 20 holes

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H016 AA05 CC06 EE01 HH13 HH15 5H017 AA02 AS01 CC05 HH03 HH05 5H022 AA04 AA18 BB11 CC08 CC12 CC16 CC19 CC22 5H028 AA01 AA07 BB05 CC05 CC07 CC12 EE01 HH06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 集電体シートにニッケル化合物を含む正
極合剤を担持して成る正極と、集電体シートに水素吸蔵
合金を含む負極合剤を担持して成る負極がセパレータを
介して巻回されて成る電極群がアルカリ電解液と共に電
池缶に封入されているニッケル・水素二次電池におい
て、 前記集電体シートは、互いに隣接する3つの孔の中心を
結んだ直線がそれぞれ正三角形の一辺を構成するように
穿孔されたパンチドメタルから成り、 前記電極群は前記一辺のいずれか1つと平行な方向に巻
回され、 前記負極の端部は該端部に溶着された集電板を介して前
記電池缶と導通し、又は前記負極の端部は直接前記電池
缶と導通していることを特徴とするニッケル・水素二次
電池。
1. A positive electrode comprising a current collector sheet carrying a positive electrode mixture containing a nickel compound and a negative electrode comprising a current collector sheet carrying a negative electrode mixture comprising a hydrogen storage alloy via a separator. In a nickel-metal hydride secondary battery in which a turned electrode group is enclosed in a battery can together with an alkaline electrolyte, the current collector sheet has a straight line connecting the centers of three mutually adjacent holes each having an equilateral triangle. The electrode group is wound in a direction parallel to any one of the sides, and an end of the negative electrode is welded to the end. A nickel-hydrogen secondary battery, wherein the nickel-hydrogen secondary battery is electrically connected to the battery can via the first electrode, or the end of the negative electrode is directly electrically connected to the battery can.
【請求項2】 前記負極の端部における前記集電体シー
トには無開口部が形成されていることを特徴とする請求
項1に記載のニッケル・水素二次電池。
2. The nickel-hydrogen secondary battery according to claim 1, wherein an opening is not formed in the current collector sheet at an end of the negative electrode.
JP11116782A 1999-04-23 1999-04-23 Nickel-hydrogen secondary battery Pending JP2000306597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11116782A JP2000306597A (en) 1999-04-23 1999-04-23 Nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11116782A JP2000306597A (en) 1999-04-23 1999-04-23 Nickel-hydrogen secondary battery

Publications (1)

Publication Number Publication Date
JP2000306597A true JP2000306597A (en) 2000-11-02

Family

ID=14695585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11116782A Pending JP2000306597A (en) 1999-04-23 1999-04-23 Nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2000306597A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993177A (en) * 2015-07-29 2015-10-21 深圳市量能科技有限公司 High temperature nickel-hydrogen battery
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
WO2021229847A1 (en) * 2020-05-14 2021-11-18 株式会社村田製作所 Secondary battery
WO2022210138A1 (en) * 2021-03-30 2022-10-06 パナソニックIpマネジメント株式会社 Power storage device
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US12206063B2 (en) 2009-02-09 2025-01-21 Varta Microbattery Gmbh Button cells and method of producing same
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
CN104993177A (en) * 2015-07-29 2015-10-21 深圳市量能科技有限公司 High temperature nickel-hydrogen battery
CN104993177B (en) * 2015-07-29 2017-09-15 深圳市量能科技有限公司 A kind of high-temperature Ni/H 2 battery
WO2021229847A1 (en) * 2020-05-14 2021-11-18 株式会社村田製作所 Secondary battery
JPWO2021229847A1 (en) * 2020-05-14 2021-11-18
CN115552688A (en) * 2020-05-14 2022-12-30 株式会社村田制作所 Secondary battery
JP7540485B2 (en) 2020-05-14 2024-08-27 株式会社村田製作所 Secondary battery
WO2022210138A1 (en) * 2021-03-30 2022-10-06 パナソニックIpマネジメント株式会社 Power storage device

Similar Documents

Publication Publication Date Title
JPH09129213A (en) Manufacture of battery
JP5016236B2 (en) battery
WO2006129778A1 (en) Lead for enclosed battery, enclosed battery using the lead, and method of producing the battery
JP5018087B2 (en) An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
JP2000021435A (en) Battery
CN108376758A (en) The manufacturing method of current collection reed and secondary cell including the current collection reed
US3900340A (en) Galvanic cell structures employing coiled electrodes
JP2000251871A (en) Alkaline secondary battery
JP2000306597A (en) Nickel-hydrogen secondary battery
JP2002289170A (en) Alkaline secondary battery
JPH06124696A (en) Cylindrical battery
JP5157049B2 (en) Sealed battery, method for manufacturing the same, assembled battery including a plurality of sealed batteries, and method for manufacturing the same
JPH10223183A (en) Cylindrical battery
JP2002367607A (en) Non-sintered electrode for alkaline storage battery and alkaline storage battery using this electrode
JPH09147902A (en) Square sealed cell
JP2000082491A (en) Nickel-hydrogen secondary battery
JP2001006688A (en) Nickel-hydrogen secondary battery
JP2526211Y2 (en) Prismatic battery
JP2002280057A (en) Alkaline secondary battery
JP2000251867A (en) Cylindrical storage battery
JP2000260416A (en) Manufacture of battery
JPH0547366A (en) Rectangular metal hydride storage battery
JP2000030736A (en) Nickel hydrogen secondary battery
JP2000294219A (en) Square alkaline secondary battery
JP2001006724A (en) Cylindrical alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090422