[go: up one dir, main page]

JP2000303126A - Diamond-aluminum composite material and method for producing the same - Google Patents

Diamond-aluminum composite material and method for producing the same

Info

Publication number
JP2000303126A
JP2000303126A JP10804699A JP10804699A JP2000303126A JP 2000303126 A JP2000303126 A JP 2000303126A JP 10804699 A JP10804699 A JP 10804699A JP 10804699 A JP10804699 A JP 10804699A JP 2000303126 A JP2000303126 A JP 2000303126A
Authority
JP
Japan
Prior art keywords
diamond
component
aluminum
composite material
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10804699A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10804699A priority Critical patent/JP2000303126A/en
Publication of JP2000303126A publication Critical patent/JP2000303126A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

(57)【要約】 【課題】 放熱基板、特に半導体装置に有用な高い熱伝
導率のダイヤモンド−アルミニウム系複合材料を提供す
る。 【解決手段】 ダイヤモンド粒子を第一成分、アルミニ
ウムを主成分とする金属を第二成分として含むダイヤモ
ンド−アルミニウム系複合材料であって、同複合材料の
25℃での熱伝導率をzW/m・K、同ダイヤモンド粒
子の含有量をx重量%とした時、5≦xにおいて、−
0.0029x2+0.141x+281.08≦z≦
0.2239x2−12.017x+593.93の関
係を満たすダイヤモンド−アルミニウム系複合材料であ
る。この材料は、第一成分と第二成分とを含んだ原料を
混合・成形し、成形体をアルミニウムを主成分とする金
属の融点以上の温度で予備加熱し、短時間で熱間鍛造す
ることによって得られる。
PROBLEM TO BE SOLVED: To provide a diamond-aluminum-based composite material having a high thermal conductivity which is useful for a heat dissipation substrate, especially for a semiconductor device. SOLUTION: This is a diamond-aluminum composite material containing diamond particles as a first component and a metal mainly composed of aluminum as a second component, and has a thermal conductivity at 25 ° C. of zW / m · m. K, when the content of the diamond particles is x% by weight, at 5 ≦ x, −
0.0029x 2 + 0.141x + 281.08 ≦ z ≦
Diamond satisfy the relationship 0.2239x 2 -12.017x + 593.93 - is an aluminum-based composite material. For this material, a raw material containing the first component and the second component is mixed and molded, and the molded body is pre-heated at a temperature equal to or higher than the melting point of the metal mainly composed of aluminum, and hot forged in a short time. Obtained by

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種装置・機器に
用いられる放熱基板、特に半導体装置の放熱基板に用い
られる高い熱伝導性を有するダイヤモンド−炭化珪素系
複合材料およびそれを用いた半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-dissipating substrate used for various devices and equipment, in particular, a diamond-silicon carbide composite material having high thermal conductivity used for a heat-dissipating substrate of a semiconductor device, and a semiconductor device using the same. About.

【0002】[0002]

【従来の技術】近年半導体装置の高速演算・高集積化に
対する市場の要求は急速に高まりつつある。それととも
に、同装置の半導体素子搭載用放熱基板には、同素子か
ら発生する熱をより一層効率良く逃がすため、その熱伝
導率のより一層の向上が求められてきた。さらに同素子
ならびに同基板に隣接配置された同装置内の他の部材
(周辺部材)との間の熱歪みをより一層小さくするため
に、より一層それらに近い熱膨張係数を有するものであ
ることも求められてきた。 具体的には、半導体素子と
して通常用いられるSi、GaAsの熱膨張係数がそれ
ぞれ4.2×10-6/℃、6.5×10-6/℃であり、
半導体装置の外囲器材として通常用いられるアルミナセ
ラミックスのそれが6.5×10-6/℃程度であること
から、同基板の熱膨張係数はこれらの値に近いことが望
まれる。
2. Description of the Related Art In recent years, market demands for high-speed operation and high integration of semiconductor devices have been rapidly increasing. At the same time, the heat radiation board for mounting the semiconductor element of the device has been required to further improve the thermal conductivity in order to more efficiently release the heat generated from the element. Furthermore, other elements in the same device and the same device arranged adjacent to the same substrate
In order to further reduce the thermal strain between them and the (peripheral member), it is also required to have a thermal expansion coefficient closer to them. Specifically, Si usually used as the semiconductor element, the thermal expansion coefficient of GaAs are each 4.2 × 10 -6 /℃,6.5×10 -6 / ℃ ,
Since that of alumina ceramics usually used as an envelope of a semiconductor device is about 6.5 × 10 −6 / ° C., it is desired that the thermal expansion coefficient of the substrate be close to these values.

【0003】また近年のエレクトロニクス機器の応用範
囲の著しい拡張にともない、半導体装置の使用範囲はよ
り一層多様化しつつある。その中で、高出力の交流変換
機器・周波数変換機器等のいわゆる半導体パワーデバイ
ス機器への利用が増えつつある。これらのデバイスで
は、半導体素子からの発熱が半導体メモリーやマイクロ
プロセッサーに比べ数倍から数十倍(通常例えば数十W)
にも及ぶ。このためこれらの機器に使われる放熱基板
は、その熱伝導率を格段に向上させるとともに、その熱
膨張係数の周辺部材のそれとの整合性を高めることが重
要である。一方半導体メモリーやマイクロプロセッサー
のように、実用時に以上述べたパワーデバイスほど大き
な発熱を伴わない機器もある。このような機器は、多量
に製造されるためにパワーデバイス機器以上に安価なも
のが要求される。したがってこれに用いられる放熱基板
は、上記ほど高い放熱性は必要としないが、安価なもの
が要求される。このように機器の出力容量やその実用機
能レベルによって基板に要求される放熱性のレベルも千
差万別である。またそれぞれの機器での基板周辺の構造
によって、基板に要求される熱膨張係数の整合性の度合
いもまちまちである。
[0003] Further, with the remarkable expansion of the application range of electronic equipment in recent years, the use range of semiconductor devices has been further diversified. Among them, applications to so-called semiconductor power device devices such as high-output AC converters and frequency converters are increasing. In these devices, the heat generated by the semiconductor elements is several times to several tens times (typically, for example, several tens of watts) compared to semiconductor memories and microprocessors.
Extend to For this reason, it is important for the heat radiation board used in these devices to remarkably improve the thermal conductivity and to improve the matching of the thermal expansion coefficient with that of the peripheral members. On the other hand, there are devices such as semiconductor memories and microprocessors that do not generate as much heat as the power devices described above in practical use. Since such devices are manufactured in large quantities, they are required to be cheaper than power device devices. Therefore, the heat dissipation board used for this purpose does not need to have high heat dissipation as described above, but is inexpensive. As described above, the level of heat radiation required for the substrate varies depending on the output capacity of the device and its practical function level. Also, the degree of matching of the thermal expansion coefficient required for the substrate varies depending on the structure around the substrate in each device.

【0004】パワーデバイスの場合、通常の基本構造
は、例えば以下のようになっている。まずSi半導体素
子を第一の放熱基板である高熱伝導性の窒化アルミニウ
ム(以下単にAlNとも言う)セラミック基板上に載せ
る。次いでその第一の放熱基板の下に銅等のより高熱伝
導性の金属からなる第二の放熱基板を配置する。さらに
この第二の基板の下に、これを水冷または空冷可能な放
熱機構を配置する。以上のような構造によって外部に遅
滞なく熱を逃がす。したがって複雑な放熱構造とならざ
るを得ない。この構造においては、第一の放熱基板であ
るAlNセラミックスに170W/m・K程度のものを
用いるとすると、第二の放熱基板は、この第一の基板か
ら伝達された熱をその下の放熱機構に遅滞なく逃がす必
要がある。このため第二の基板としては、室温で少なく
とも200W/m・K以上の高い熱伝導率と第一の基板
との熱膨張係数の整合のため、10×10-6/℃以下、
特に8×10-6/℃以下の低い熱膨張係数を有するもの
が要求される。
[0004] In the case of a power device, a typical basic structure is as follows, for example. First, a Si semiconductor element is mounted on a high thermal conductive aluminum nitride (hereinafter, also simply referred to as AlN) ceramic substrate which is a first heat dissipation substrate. Next, a second heat radiating substrate made of a metal having higher thermal conductivity such as copper is arranged under the first heat radiating substrate. Further, a heat dissipating mechanism capable of water cooling or air cooling is disposed below the second substrate. The above structure allows heat to escape to the outside without delay. Therefore, a complicated heat dissipation structure is inevitable. In this structure, assuming that AlN ceramics of about 170 W / m · K is used as the first heat radiation substrate, the second heat radiation substrate transfers the heat transmitted from the first substrate to the heat radiation thereunder. It is necessary to escape to the mechanism without delay. For this reason, the second substrate has a high thermal conductivity of at least 200 W / m · K at room temperature and a thermal expansion coefficient of at least 10 × 10 −6 / ° C.
In particular, a material having a low coefficient of thermal expansion of 8 × 10 −6 / ° C. or less is required.

【0005】特にパワーデバイスの内でも実用時の発熱
量の大きなものでは、放熱基板自体の温度も100℃以
上に昇温することがあるため、このような温度での高い
熱伝導率を要求される場合もある。したがって、このよ
うな温度下でも150W/m・K以上の熱伝導率のもの
が要求される。またその容量が大きくなればなるほどS
i半導体素子のサイズも大きくなる。それ故それを搭載
する放熱基板も大きくせざるを得ない。例えばパソコン
用の基板が高々20〜40mm角程度のであるのに対
し、容量の大きなパワーデバイスでは、200mm角を
越えるものも求められつつある。このような大きな基板
では、実装時のその寸法精度のみならず高温でその精度
の低下しないことが要求されている。すなわち高温で基
板に反りや変形が生じると、上記した基板の下に配置さ
れる放熱機構(ラジエターやフィン等)との界面に隙間が
でき放熱効率が落ちる。また最悪の場合半導体素子が破
壊する場合もある。それ故高温での放熱基板の優れた熱
伝導性の確保は、重要な課題である。
In particular, among power devices which generate a large amount of heat in practical use, the temperature of the radiating substrate itself may rise to 100 ° C. or more, so that a high thermal conductivity at such a temperature is required. In some cases. Therefore, a material having a thermal conductivity of 150 W / m · K or more is required even at such a temperature. Also, the larger the capacity, the more S
The size of the i semiconductor element also increases. Therefore, the heat dissipating substrate on which it is mounted must be enlarged. For example, a substrate for a personal computer has a size of at most about 20 to 40 mm square, while a power device having a large capacity is required to have a size exceeding 200 mm square. In such a large substrate, it is required that not only the dimensional accuracy at the time of mounting but also the accuracy does not decrease at high temperatures. That is, when the substrate is warped or deformed at a high temperature, a gap is formed at an interface with a heat radiation mechanism (such as a radiator or a fin) disposed below the substrate, thereby lowering the heat radiation efficiency. In the worst case, the semiconductor element may be destroyed. Therefore, ensuring excellent thermal conductivity of the heat dissipation board at high temperatures is an important issue.

【0006】また以上述べた各種機器に用いられる放熱
基板には、従来より例えばCu−W系やCu−Mo系の
複合合金からなるものが用いられてきた。これらの基板
は、原料が高価なためにコスト高となる。さらに重量が
大きくなるという問題があった。そこで、最近は安価で
軽量な材料として各種のアルミニウム(以下単にAlと
も言う)複合合金が注目されるようになってきた。中で
もAlと炭化珪素(以下単にSiCとも言う)を主成分と
するAl−SiC系複合合金は、それらの原料が比較的
安価であり、軽量かつ高熱伝導性である。なお通常市販
されている純粋なAl、SiC単体の密度は、それぞれ
2.7g/cm3程度、3.2g/cm3程度、熱伝導率
は、それぞれ240W/m・K程度、200〜300W
/m・K程度までであるが、さらにその純度や欠陥濃度
を調整すれば、その熱伝導率のレベルはさらに向上する
ものと思われる。そのため、特に注目されている材料で
ある。また純粋なSiC単体、Al単体の熱膨張係数は
それぞれ4.2×10-6/℃程度、24×10-6/℃程
度であり、それらを複合化することによって、その熱膨
張係数が広い範囲で制御可能となる。したがってこの点
でも有利である。
As the heat radiation substrate used in the various devices described above, for example, a substrate made of a composite alloy of, for example, Cu-W or Cu-Mo has been used. These substrates are expensive because the raw materials are expensive. There is a problem that the weight is further increased. Therefore, recently, various aluminum (hereinafter, also simply referred to as Al) composite alloys have been attracting attention as inexpensive and lightweight materials. Above all, Al-SiC-based composite alloys containing Al and silicon carbide (hereinafter also simply referred to as SiC) as main components are relatively inexpensive, lightweight, and have high thermal conductivity. Note that the density of pure Al and SiC which are usually commercially available are about 2.7 g / cm 3 and about 3.2 g / cm 3 , respectively, and the thermal conductivity is about 240 W / m · K and 200 to 300 W, respectively.
/ M · K, but it is expected that the level of thermal conductivity will be further improved by further adjusting its purity and defect concentration. Therefore, it is a material that has received special attention. The thermal expansion coefficients of pure SiC alone and Al alone are about 4.2 × 10 −6 / ° C. and about 24 × 10 −6 / ° C., respectively. It becomes controllable in the range. Therefore, this point is also advantageous.

【0007】かかるAl−SiC系複合合金およびその
製造方法については、(1)特開平1−501489号公
報、(2)特開平2−343729号公報、(3)特開昭6
1−222668号公報および(4)特開平9−1577
73号公報に開示されている。(1)は、SiCとAlの
混合物中のAlを溶融させて鋳造法によって固化する方
法に関するものである。 (2)、(3)は、いずれもSi
C多孔体の空隙にAlを溶浸する方法に関するものであ
る。この内(3)は、加圧下でAlを溶浸する、いわゆる
加圧溶浸法に関するものである。また(4)は、SiCと
Alの混合粉末の成形体かまたはそれをホットプレスし
たものを型内に配置し、これを真空中、Alの融点以上
の温度で液相焼結する方法に関するものである。
[0007] The Al-SiC-based composite alloy and the method for producing the same are described in (1) Japanese Patent Application Laid-Open No. 1-1501489, (2) Japanese Patent Application Laid-Open No. 2-343729, and (3) Japanese Patent Application Laid-Open No. Sho 6
1-222668 and (4) JP-A-9-1577.
No. 73 is disclosed. (1) relates to a method in which Al in a mixture of SiC and Al is melted and solidified by a casting method. (2) and (3) are both Si
The present invention relates to a method of infiltrating Al into voids of a C porous body. (3) relates to a so-called pressure infiltration method in which Al is infiltrated under pressure. Further, (4) relates to a method of sintering a compact of a mixed powder of SiC and Al or a hot-pressed compact thereof in a mold and subjecting the compact to a liquid phase sintering at a temperature equal to or higher than the melting point of Al in a vacuum. It is.

【0008】本発明者等は、特願平9−136164号
にて、(5)液相焼結法によって得られ、その熱伝導率が
180W/m・K以上のアルミニウム−炭化珪素系複合
材料を提示している。この複合材料は、例えば10〜7
0重量%の粒子状SiC粉末とAl粉末との混合粉末を
成形した後、99体積%の窒素を含み、酸素濃度が20
0ppm以下、露点が−20℃以下の非酸化性雰囲気
中、600〜750℃で焼結する工程によって得られ
る。 また本発明者等は、特願平9−93467号に
て、(6)その熱膨張係数が18×10-6/℃以下、その
熱伝導率が230W/m・K以上であり、焼結後の寸法
が実用寸法に近い、いわゆるネットシェイプなアルミニ
ウム−炭化珪素系複合材料も提示している。さらに本発
明者等は、特願平10−41447号にて、(7)常圧焼
結法とHIP法とを組み合わせた同複合材料の製造方法
を提案している。それによれば、例えば粒子状SiCを
10〜70重量%混合したAl−SiC系混合粉末の成
形体を、窒素ガスを99%以上含む非酸化性雰囲気中、
600℃以上、Alの溶融温度以下の温度範囲で常圧焼
結し、その後金属容器に封入して700℃以上の温度で
HIPすることによって、均質でその熱伝導率が200
W/m・K以上のアルミニウム−炭化珪素系複合材料が
得られている。
The present inventors disclosed in Japanese Patent Application No. Hei 9-136164 (5) an aluminum-silicon carbide composite material obtained by a liquid phase sintering method and having a thermal conductivity of 180 W / m · K or more. Is presented. This composite material is, for example, 10-7
After molding a mixed powder of 0 wt% of particulate SiC powder and Al powder, it contains 99% by volume of nitrogen and has an oxygen concentration of 20%.
It is obtained by a step of sintering at 600 to 750 ° C in a non-oxidizing atmosphere having 0 ppm or less and a dew point of -20 ° C or less. Further, the present inventors have disclosed in Japanese Patent Application No. 9-93467 that (6) its thermal expansion coefficient is 18 × 10 −6 / ° C. or less, its thermal conductivity is 230 W / m · K or more, A so-called net-shaped aluminum-silicon carbide composite material whose subsequent dimensions are close to practical dimensions is also proposed. Further, the present inventors have proposed in Japanese Patent Application No. 10-41447 a method (7) for producing the same composite material by combining the normal pressure sintering method and the HIP method. According to this, for example, a compact of an Al—SiC-based mixed powder in which 10 to 70% by weight of particulate SiC is mixed is placed in a non-oxidizing atmosphere containing 99% or more of nitrogen gas.
By normal pressure sintering in the temperature range of 600 ° C. or more and Al melting temperature or less, and then sealed in a metal container and HIPed at a temperature of 700 ° C. or more, it is homogeneous and has a thermal conductivity of 200 ° C.
An aluminum-silicon carbide based composite material of W / m · K or more has been obtained.

【0009】さらに(8)特開平9−157773号公報
には、Al粉末とSiC粉末との混合物をホットプレス
し、成形と焼結とを同時に行う方法が開示されている。
その方法は、Al10〜80体積%、残部SiCの混合
粉末を成形し、Alの溶融点以上の温度下500kg/
cm2以上の圧力でホットプレスするものである。この
方法によって150〜280W/m・Kの熱伝導率のア
ルミニウム−炭化珪素系複合材料が得られている。
Further, (8) Japanese Patent Application Laid-Open No. 9-157773 discloses a method in which a mixture of an Al powder and a SiC powder is hot-pressed to simultaneously perform molding and sintering.
The method is to form a mixed powder of 10 to 80% by volume of Al and the balance of SiC, and 500 kg /
Hot pressing is performed at a pressure of 2 cm 2 or more. According to this method, an aluminum-silicon carbide composite material having a thermal conductivity of 150 to 280 W / m · K is obtained.

【0010】しかしながら以上述べたAl−SiC系の
複合材料においては、そのSiCの量が80重量%以下
の組成では熱伝導率は、高々300W/m・K程度であ
る。またその熱膨張係数の下限は、5×10-6/℃程度
である。したがってより半導体素子に近い熱膨張係数
で、より高い熱伝導率を有するヒートシンク材料が求め
られている。このような状況下でこれらに第三成分とし
て高い熱伝導率を有するダイヤモンドを加える試みが行
われつつある。ダイヤモンドは、結晶系によっては20
00W/m・Kの熱伝導率のものも得られている。
However, in the Al-SiC-based composite material described above, the thermal conductivity is at most about 300 W / m · K when the amount of SiC is 80% by weight or less. The lower limit of the coefficient of thermal expansion is about 5 × 10 −6 / ° C. Therefore, there is a need for a heat sink material having a thermal expansion coefficient closer to that of a semiconductor element and having a higher thermal conductivity. Under such circumstances, attempts have been made to add diamond having a high thermal conductivity as a third component to them. Diamond may be 20 depending on the crystal system.
A thermal conductivity of 00 W / m · K is also obtained.

【0011】例えばKey Engineering
Materialsの第127〜131巻(1997年
刊)の第141頁ないし第152頁には、ダイヤモンド
−Al−SiC系の研究結果が報告されている。その方
法は、以下の通りである。55体積%のダイヤモンド粉
末と20体積%のSiC粉末との混合物を成形した後、
同成形体の粒子表面に気相法によってSiCを被覆して
プレフォームとし、その後空孔中にアルミニウムを溶浸
する。この方法によってほぼ緻密な複合材料が得られ
る。しかしながらその熱伝導率は、高々325W/m・
Kである。
For example, Key Engineering
Materials, Vol. 127-131 (1997), pp. 141-152, report the results of research on diamond-Al-SiC systems. The method is as follows. After molding a mixture of 55% by volume diamond powder and 20% by volume SiC powder,
The particle surface of the compact is coated with SiC by a gas phase method to form a preform, and then aluminum is infiltrated into the pores. By this method, an almost dense composite material is obtained. However, its thermal conductivity is at most 325 W / m.
K.

【0012】本発明者がその原因を調査した結果は、以
下の通りである。ダイヤモンドと溶融アルミニウムとの
間の反応性は極めて高い。このため溶浸時に双方の界面
に熱伝導率の低いそれらの反応生成物炭化アルミニウム
(Al43)が形成される。その結果ダイヤモンドの高
い熱伝導性が活かされないからである。溶浸法では通常
厚みが数mm〜10mm程度の成形体に溶融アルミニウ
ムを溶浸する。その厚み方向に十分に溶融アルミニウム
を浸み込ませるためには、自発溶浸では数10時間、加
圧溶浸でも数分はかかり、時間とともに上記生成物の量
は増加する。そこでアルミニウムの表面張力を下げ、よ
り短時間でアルミニウムを溶浸するため、その融点より
かなり高い900℃程度まで加熱することも考えられ
る。しかしながら温度が上がれば上がるほど上記化合物
の生成反応は急速に進む。なお上記文献の方法では、そ
の反応を抑えるためにダイヤモンド粒子表面にSiCを
被覆してはいるが、その効果は小さい。いずれにしても
上記文献の方法を含め溶浸法では、上記生成物のある程
度の生成は避けられない。この問題は、三成分の混合物
を焼結する方法(焼結法)やホットプレスする方法(ホ
ットプレス法)および混合物中のアルミニウムを溶融し
て鋳型に鋳込む方法(鋳造法)でも同様に避けられな
い。
The results of an investigation by the present inventor for the cause are as follows. The reactivity between diamond and molten aluminum is very high. Therefore, at the time of infiltration, aluminum carbide (Al 4 C 3 ) having a low thermal conductivity is formed at both interfaces. As a result, the high thermal conductivity of diamond cannot be utilized. In the infiltration method, molten aluminum is usually infiltrated into a formed body having a thickness of about several mm to 10 mm. In order to sufficiently infiltrate the molten aluminum in the thickness direction, it takes several tens of hours for spontaneous infiltration and several minutes for pressure infiltration, and the amount of the above product increases with time. Therefore, in order to lower the surface tension of aluminum and infiltrate aluminum in a shorter time, heating to about 900 ° C., which is considerably higher than its melting point, may be considered. However, as the temperature increases, the formation reaction of the compound proceeds more rapidly. In the method of the above document, the surface of diamond particles is coated with SiC to suppress the reaction, but the effect is small. In any case, the infiltration method including the method of the above-mentioned literature inevitably produces the above-mentioned product to some extent. This problem can also be avoided by a method of sintering a mixture of three components (sintering method), a method of hot pressing (hot pressing method), and a method of melting aluminum in the mixture and casting it into a mold (casting method). I can't.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、ダイ
ヤモンドの高い熱伝導性を活かした従来に無い優れた熱
伝導性のヒートシンク材料を提供することである。した
がってその課題は、以上述べたようなダイヤモンドとア
ルミニウムを主成分とする金属との反応を抑え、SiC
も含め成分間の界面が完全に密着したダイヤモンド−炭
化珪素系複合材料を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an unprecedented heat-sink material having excellent thermal conductivity, which makes use of the high thermal conductivity of diamond. Therefore, the problem is to suppress the reaction between diamond and a metal mainly composed of aluminum as described above, and to reduce the SiC.
An object of the present invention is to provide a diamond-silicon carbide composite material in which the interface between the components, including both, is completely adhered.

【0014】[0014]

【課題を解決するための手段】上記した課題を解決する
ための本発明の手段は以下の通りである。すなわち本発
明の複合材料は、ダイヤモンド粒子を第一成分、アルミ
ニウムを主成分とする金属を第二成分として含むダイヤ
モンド−アルミニウム系複合材料であって、同複合材料
の25℃での熱伝導率をzW/m・K、ダイヤモンド粒
子の含有量をx重量%とした時、5≦xにおいて、zが
以下の式(1)の関係を満たすダイヤモンド−アルミニ
ウム系複合材料である。 −0.0029x2+0.141x+281.08≦z≦0.2239x2 −12.017x+593.93 式(1) さらに本発明には、上記の範囲内において、第一成分、
第二成分に加えて炭化珪素粒子からなる第三成分を含ん
でおり、第一成分と第三成分の合計量が30〜80重量
%を満たす範囲内にある複合材料も含まれる。
Means of the present invention for solving the above problems are as follows. That is, the composite material of the present invention is a diamond-aluminum-based composite material containing diamond particles as a first component and a metal mainly composed of aluminum as a second component, and has a thermal conductivity at 25 ° C. of the composite material. Assuming that zW / m · K and the content of diamond particles are x% by weight, z is a diamond-aluminum composite material satisfying the relationship of the following formula (1) when 5 ≦ x. −0.0029x 2 + 0.141x + 281.08 ≦ z ≦ 0.2239x 2 -12.017x + 593.93 Formula (1) Further, in the present invention, the first component,
A composite material which contains a third component composed of silicon carbide particles in addition to the second component, and in which the total amount of the first component and the third component is within a range satisfying 30 to 80% by weight is also included.

【0015】また本発明には、上記の範囲内において、
xが10重量%以上の時、zが以下の式(2)の関係を
満たすダイヤモンド−アルミニウム系複合材料も含まれ
る。 −0.0074x2+1.162x+291.18≦z≦0.2239x2 −12.017x+593.93 式(2) さらに本発明には、上記の範囲内において、xが30重
量%以上の時、zが以下の式(3)の関係を満たすダイ
ヤモンド−アルミニウム系複合材料も含まれる。 −0.0136x2+5.0264x+246.19≦z≦0.2239x2 −12.017x+593.93 式(3)
In the present invention, within the above range,
When x is 10% by weight or more, a diamond-aluminum-based composite material satisfying the relationship of the following formula (2) is also included. −0.0074x 2 + 1.162x + 291.18 ≦ z ≦ 0.2239x 2 -12.017x + 593.93 Formula (2) Further, within the above range, when x is 30% by weight or more, z is A diamond-aluminum-based composite material that satisfies the relationship of the following formula (3) is also included. −0.0136x 2 + 5.0264x + 246.19 ≦ z ≦ 0.2239x 2 -12.017x + 593.93 Equation (3)

【0016】さらに本発明には上記いずれかの復合材料
を用いた半導体装置も含まれる。
Further, the present invention includes a semiconductor device using any of the above-mentioned consolidation materials.

【0017】本発明の復合材料の製造方法は、上記第一
成分および第二成分を含む原料を準備する工程1と、同
原料を第一成分の量が5重量%以上となるように混合し
て混合物とする工程2と、同混合物を成形し成形体とす
る工程3と、同成形体を第二成分の融点以上の温度で予
備加熱し、鍛造して鍛造体とする工程4とを含む方法で
ある。また本発明には、上記工程1において第一成分、
第二成分に加えて炭化珪素粒子からなる第三成分の原料
を準備し、上記工程2においてこれらの原料を第二成分
の量が20〜70重量%、第一成分と第三成分の総量が
30〜80重量%となるように混合して混合物とする方
法も含まれる。さらに本発明には、上記工程1で準備す
る第一成分の原料として、Ib型またはIIa型の結晶粒
子を含むダイヤモンド粉末を用いる方法も含まれる。
In the method for producing a consolidated material according to the present invention, a step 1 of preparing a raw material containing the first component and the second component is mixed with the raw material so that the amount of the first component is 5% by weight or more. Step 2 of forming a mixture by mixing, and Step 3 of forming the mixture into a molded body, and Step 4 of preheating the molded body at a temperature equal to or higher than the melting point of the second component and forging to form a forged body. Is the way. Also, in the present invention, the first component in the above step 1,
In addition to the second component, a third component material consisting of silicon carbide particles is prepared. In step 2, the amount of the second component is 20 to 70% by weight, and the total amount of the first component and the third component is A method in which the mixture is mixed to be 30 to 80% by weight to form a mixture is also included. Further, the present invention includes a method of using diamond powder containing Ib-type or IIa-type crystal particles as a raw material of the first component prepared in the above step 1.

【0018】[0018]

【発明の実施の形態】本発明によって提供されるダイヤ
モンド−アルミニウム系(以下単にダイヤモンド−Al
系複合材料とも言う)複合材料は、第二成分がアルミニ
ウム(以下単にAlとも言う)を主成分とする金属から
なるものである。従来の炭化珪素を主成分とする復合材
料は、既に述べたように溶浸法、焼結法、鋳造法および
ホットプレス法によって製造されてきた。しかしいずれ
の方法でも加熱時間が比較的長いために、前記したAl
とダイヤモンドとの界面の多くの部分で低熱伝導性の反
応生成物炭化アルミニウム(Al43)が形成される。
この反応は、AlとSiCとの間でも起こる。
DETAILED DESCRIPTION OF THE INVENTION The diamond-aluminum system provided by the present invention (hereinafter simply referred to as diamond-Al
In the composite material, the second component is made of a metal containing aluminum (hereinafter, also simply referred to as Al) as a main component. Conventional consolidation materials containing silicon carbide as a main component have been produced by the infiltration method, the sintering method, the casting method, and the hot pressing method as described above. However, since the heating time is relatively long in either method, the above-mentioned Al
The reaction product of low thermal conductivity, aluminum carbide (Al 4 C 3 ), is formed at many portions of the interface between diamond and diamond.
This reaction also occurs between Al and SiC.

【0019】本発明者等は、既に特願平10−2600
03号にて、AlとSiCとの間で加熱時間を短縮し、
それら相互の反応を抑えるため、熱間鍛造によるAl−
SiC系材料の複合化を提案した。しかしながらこの方
法では特に300W/m・Kを越える高い熱伝導率のも
のを得るためには、比較的純度の高いSiC粉末を用い
る必要がある。このため高純度のSiC粉末を選ぶかま
たは市販のSiC粉末の純度を高めるために特別な処理
が必要である。またその熱伝導率の上限は、350W/
m・K程度である。そこで本発明者は、さらに優れた熱
伝導性のAl−SiC系材料を得るために、上記熱間鍛
造法の知見を参考にして、SiCの全量またはその一部
の量をダイヤモンドに代えたダイヤモンド−Al系複合
材料の研究を進めた結果、本発明を完成した。
The present inventors have already filed Japanese Patent Application No. Hei 10-2600.
In No. 03, the heating time was shortened between Al and SiC,
In order to suppress these mutual reactions, Al-
A composite of SiC-based material was proposed. However, in this method, it is necessary to use relatively pure SiC powder in order to obtain a material having a high thermal conductivity exceeding 300 W / m · K. For this reason, special treatment is required to select high-purity SiC powder or to increase the purity of commercially available SiC powder. The upper limit of the thermal conductivity is 350 W /
m · K. In order to obtain an even more thermally conductive Al-SiC-based material, the present inventor referred to the knowledge of the hot forging method described above and changed the total amount of SiC or a part thereof to diamond. As a result of research on Al-based composite materials, the present invention has been completed.

【0020】既に述べたように本発明のダイヤモンド−
Al系複合材料は、5重量%以上の量のダイヤモンド粒
子を含む。この量未満ではダイヤモンド添加による熱伝
導性向上の効果が小さい。この材料の熱伝導率zW/m
・Kとダイヤモンド含有量xとの間には、式(1)の関
係がある。さらに本発明には、上記の範囲内において、
第一成分、第二成分に加えて炭化珪素粒子からなる第三
成分を含んでおり、第一成分と第三成分の合計量が30
〜80重量%を満たす範囲内にある複合材料も含まれ
る。下限量未満では、成形後の加熱によってアルミニウ
ムを主成分とする金属が溶融する際に成形体の形が崩れ
易くなる。上限量を越えると溶融するアルミニウムを主
成分とする金属の量が少なくなり緻密化が進み難い。式
(1)より明らかなように、以上の組成範囲では、少な
くとも273W/m・K以上の熱伝導率のものが得られ
る。
As already mentioned, the diamond of the present invention
The Al-based composite material contains diamond particles in an amount of 5% by weight or more. Below this amount, the effect of improving the thermal conductivity by adding diamond is small. Thermal conductivity zW / m of this material
-There is a relation of the formula (1) between K and the diamond content x. Furthermore, the present invention provides, within the above range,
A third component comprising silicon carbide particles is contained in addition to the first component and the second component, and the total amount of the first component and the third component is 30.
Composite materials in the range satisfying 〜80% by weight are also included. If the amount is less than the lower limit, the shape of the molded body is likely to collapse when the metal mainly containing aluminum is melted by heating after molding. If the amount exceeds the upper limit, the amount of the metal containing aluminum as a main component to be melted becomes small, and it is difficult to proceed with densification. As is clear from the formula (1), in the above composition range, a material having a thermal conductivity of at least 273 W / m · K can be obtained.

【0021】式(1)ないし式(3)の関係を図1に示
す。一番下の線がz=−0.0029x2+0.141
x+281.08(ただしx≧5)の関係、その上の線
がz=−0.0074x2+1.162x+291.1
8(ただしx≧10)の関係、その上の線がz=−0.
0136x2+5.0264x+246.19(ただし
x≧30)の関係、さらに一番上の線がz=0.223
9x2−12.017x+593.93(ただし80≧
x≧5)の関係をそれぞれ満たす線である。例えばx=
50すなわちダイヤモンド粒子の量が50重量%の時、
zの値は、下から順にW/m・K単位でそれぞれ28
1、301、464、1065となる。したがって例え
ばダイヤモンドの量が50重量%の時、熱伝導率が28
1〜1065W/m・Kの範囲の材料が本発明には含ま
れる。
FIG. 1 shows the relationship between the equations (1) to (3). The bottom line is z = -0.0029x 2 +0.141
x + 281.08 (where x ≧ 5), and the line above it is z = −0.0074x 2 + 1.162x + 291.1
8 (where x ≧ 10), and the line above z = −0.
0136x 2 + 5.0264x + 246.19 (where x ≧ 30), and the top line is z = 0.223
9x 2 -12.017x + 593.93 (provided that 80 ≧
(x ≧ 5). For example, x =
50, ie when the amount of diamond particles is 50% by weight,
The value of z is 28 in W / m · K unit from the bottom in order.
1, 301, 464, and 1065. Therefore, for example, when the amount of diamond is 50% by weight, the thermal conductivity is 28%.
Materials in the range of 1-1065 W / mK are included in the present invention.

【0022】また本発明には、上記の組成範囲内におい
て、xが10重量%以上の時、zが式(2)の関係を満
たすダイヤモンド−アルミニウム系複合材料も含まれ
る。式(2)より明らかなように、この組成範囲(ダイ
ヤモンドの量が10〜80重量%の範囲)では、少なく
とも297W/m・K以上の熱伝導率のものが得られ
る。さらに本発明には、上記の組成範囲内において、x
が30重量%以上の時、zが式(3)の関係を満たすダ
イヤモンド−アルミニウム系複合材料も含まれる。式
(3)より明らかなように、この組成範囲(ダイヤモン
ドの量が30〜80重量%の範囲)では、少なくとも3
85W/m・K以上の熱伝導率のものが得られる。
The present invention also includes a diamond-aluminum composite material satisfying the relationship of the formula (2) when x is 10% by weight or more within the above composition range. As is clear from the formula (2), in this composition range (the range of the amount of diamond is 10 to 80% by weight), a material having a thermal conductivity of at least 297 W / m · K or more can be obtained. Further, the present invention provides x within the above composition range.
Is 30% by weight or more, z includes a diamond-aluminum-based composite material satisfying the relationship of the formula (3). As is clear from the equation (3), in this composition range (the range of the diamond amount is 30 to 80% by weight), at least 3
A material having a thermal conductivity of 85 W / m · K or more can be obtained.

【0023】また本発明には、以上述べた複合材料を部
材、特に放熱基板として用いた半導体装置が含まれる。
例えば図2に示すパワーモジュールが挙げられる。図2
において、1は本発明の上記複合材料からなる第二の放
熱基板、2は同基板上に配置され、その上面に(図示し
ないが)銅回路が形成されたセラミックスからなる電気
絶縁性の第一の基板、3はSi半導体素子、4は第二の
放熱基板の下に配置された放熱構造体である。なおこの
ジャッケットは、通常水冷ジャケットや空冷のフィン等
からなる。なお同図には半導体素子周辺の配線等につい
ては省略してある。本発明の複合材料は、以上述べたよ
うに熱伝導率が従来に無く極めて高く、その熱膨張係数
がSi他の半導体素子やその周辺のアルミナ、窒化アル
ミニウムのようなセラミックス製の外囲器材のそれとも
良く整合するため、特に以上述べたパワーモジュール用
の放熱基板として有用である。
The present invention also includes a semiconductor device using the above-described composite material as a member, particularly, a heat dissipation substrate.
For example, there is a power module shown in FIG. FIG.
Wherein 1 is a second heat radiation substrate made of the above-described composite material of the present invention, 2 is disposed on the substrate, and an electrically insulating first material made of ceramics (not shown) formed with a copper circuit (not shown) on its upper surface. Reference numeral 3 denotes a Si semiconductor element, and reference numeral 4 denotes a heat radiating structure disposed below the second heat radiating substrate. The jacket is usually composed of a water-cooled jacket, an air-cooled fin, or the like. It should be noted that wiring and the like around the semiconductor element are omitted in FIG. As described above, the composite material of the present invention has an extremely high thermal conductivity than before, and has a thermal expansion coefficient of a ceramic envelope material such as Si and other semiconductor elements and its surrounding alumina and aluminum nitride. Or, because of good matching, it is particularly useful as a heat dissipation board for the power module described above.

【0024】本発明の複合材料は、前記のような製造方
法で作製する。工程1で準備するダイヤモンド粉末、S
iC粒子を主成分とする粉末およびアルミニウムを主成
分とする粉末は、通常は市販のものでよく、その粒度、
純度および結晶型に制約は無いが、それ自体の熱伝導率
は高い方が望ましい。それ故いずれの粉末も可能な限り
純度の高いものが望ましい。ダイヤモンド粉末は、高純
度であるとともに特にダイヤモンドの中でも特に高い熱
伝導率を有するIb型またはIIa型の結晶型の粒子から
なる粉末を用いるのが望ましい。また前述の理由により
第一成分の量は、5〜80重量%の範囲とする。また第
一成分と第三成分を併用する場合のそれらの合計量は、
30〜80重量%の範囲とするのが望ましい。
The composite material of the present invention is manufactured by the above-described manufacturing method. Diamond powder prepared in step 1, S
The powder containing iC particles as the main component and the powder containing aluminum as the main component may be generally commercially available, and have a particle size,
There are no restrictions on the purity and crystal form, but it is desirable that the thermal conductivity of the substance itself be high. Therefore, it is desirable that all powders have as high a purity as possible. As the diamond powder, it is desirable to use powder composed of Ib-type or IIa-type crystal type particles having high purity and particularly high thermal conductivity among diamonds. For the above-mentioned reason, the amount of the first component is in the range of 5 to 80% by weight. When the first component and the third component are used together, their total amount is
It is desirable that the content be in the range of 30 to 80% by weight.

【0025】工程2の混合方法は、公知の手段であれば
よい。粉砕を伴う混合手段を採る場合には、例えば粉末
が直接接触する容器の壁は、摩耗を少なくし最終製品の
熱伝導性を損なう不純物(例えば遷移金属不純物やそれ
らの酸化物他)の混入を避けるためSiCを主成分とす
る材質とするとか、ダイヤモンドで被覆するとか工夫す
るのが望ましい。また混合時の器壁からの不純物の混入
を避けるためには、粉砕を伴わない混合法を採用するの
が望ましい。湿式混合法の場合には、溶媒はアルミニウ
ムの酸化を防ぐため非水溶媒が好ましい。また混合に媒
体を用いる場合(例えばボールミルのボール)は、上記
した器壁同様の工夫を行うのが望ましい。
The mixing method in step 2 may be any known means. When mixing means involving grinding are used, for example, the walls of the container in direct contact with the powder must be free of impurities (such as transition metal impurities and their oxides) that reduce wear and impair the thermal conductivity of the final product. In order to avoid this, it is desirable to devise a material such as SiC as a main component or coating with diamond. In order to avoid mixing of impurities from the vessel wall at the time of mixing, it is desirable to employ a mixing method without pulverization. In the case of the wet mixing method, the solvent is preferably a non-aqueous solvent to prevent oxidation of aluminum. When a medium is used for mixing (for example, a ball of a ball mill), it is desirable to perform the same contrivance as the above-described container wall.

【0026】工程3の成形方法は、公知の手段でよい
が、湿式・乾式を問わず成形の場合、成形によってかな
り負荷のかかる型や粉末の通路となる器壁は、耐摩耗性
の材質とする。したがって可能で有れば、その壁はSi
Cを主成分とする材質かまたはダイヤモンドで被覆する
とか工夫するのが望ましい。
The molding method in step 3 may be a known method, but in the case of molding regardless of a wet type or a dry type, a mold or a vessel wall which becomes a passage of powder due to the molding is made of a wear-resistant material. I do. Therefore, if possible, the wall is
It is desirable to devise a material containing C as a main component or coating with diamond.

【0027】工程4では、成形体をアルミニウムを主成
分とする金属の融点以上の温度に加熱後熱間鍛造する。
その融点未満の温度下で鍛造すると、他の成分粒子との
間の密着が完遂せず密度が低下する。この場合加熱は、
高速かつ均一に内部まで加熱できる方法が望ましい。例
えば電磁誘導方式の加熱やプラズマによる加熱方式があ
る。このような加熱方式を採ることによって品質・生産
性の双方を満たすことができる。なお前述のAlとダイ
ヤモンドとの界面反応を進展させないためには、最高温
度での保持時間は、短ければ短いほど望ましいが、以下
に述べる鍛造時間ほど短くなくてもよい。その理由は、
鍛造前の加熱の時点では、アルミニウムを主成分とする
金属の粒子表面は、通常アルミニウムの酸化物からなる
薄い被膜で覆われており、その被膜によってダイヤモン
ドとの界面反応が抑えられる。しかしながら鍛造時に
は、高い圧力がかかるためにその皮膜が瞬時に破れ、溶
融したアルミニウムがダイヤモンドと密着するため、両
者の反応がより早く進み易いからである。鍛造前の加熱
時間は、均熱になりさえすれば、15分以下がその目安
となる。鍛造は、予熱した型内でアルミニウムを主成分
とする金属が溶融した状態で、素早くかつ短時間で行う
のが望ましい。型の予熱温度の目安は、通常200〜5
00℃とするのが望ましい。この温度範囲の下限未満で
は、溶融金属が冷えすぎ複合化および緻密化が進まない
ことがある。また上限温度を越えてもその効果は上がら
ないことがある。型の材質は、例えば超硬合金のような
ものを用いるのが型の寿命を延ばす点で特に望ましい。
In step 4, the compact is heated to a temperature equal to or higher than the melting point of the metal containing aluminum as a main component and then hot forged.
When forging is performed at a temperature lower than the melting point, adhesion with other component particles is not completed and the density is reduced. In this case, the heating
It is desirable to use a method capable of heating the inside at high speed and uniformly. For example, there is an electromagnetic induction heating method or a plasma heating method. By adopting such a heating method, both quality and productivity can be satisfied. In order to prevent the above-described interfacial reaction between Al and diamond from progressing, the shorter the holding time at the maximum temperature, the better. The reason is,
At the time of heating before forging, the surface of a metal particle mainly composed of aluminum is usually covered with a thin film made of aluminum oxide, and the film suppresses an interfacial reaction with diamond. However, at the time of forging, a high pressure is applied, so that the film is instantaneously broken, and the molten aluminum adheres to the diamond, so that the reaction between the two easily proceeds more quickly. The heating time before forging is not more than 15 minutes as long as the temperature is uniform. Forging is desirably performed quickly and in a short time in a preheated mold in a state where a metal mainly composed of aluminum is molten. The standard of the preheating temperature of the mold is usually 200 to 5
Preferably, the temperature is set to 00 ° C. If the temperature is lower than the lower limit of the temperature range, the molten metal may be too cold and complexation and densification may not proceed. If the temperature exceeds the upper limit temperature, the effect may not be improved. It is particularly desirable to use a material such as a cemented carbide for the purpose of extending the life of the mold.

【0028】鍛造は、上記した理由によりできる限り短
時間で行う。その加圧時間は1秒以内とするのが望まし
い。例えばフリクションプレスを用いれば、通常0.1
秒程度で緻密化と複合化がほぼ達成できる。鍛造の圧力
は、少なくとも1ton/cm2とするのが好ましい。
この圧力未満ではアルミニウム表面の酸化物被膜が十分
破られず、ダイヤモンド粒子との密着が不十分になり易
く、その結果アルミニウムがSiCやダイヤモンドの粒
子表面を均一に覆わないことがある。またその結果若干
の空孔が残り熱伝導率が低下し易い。鍛造される成形体
の形状や型の材質によって左右されるが、より好ましい
圧力は、5ton/cm2以上である。その上限は、9
ton/cm2である。
Forging is performed in the shortest possible time for the above-mentioned reason. It is desirable that the pressurization time be within one second. For example, if a friction press is used, usually 0.1
Densification and compounding can be achieved almost in seconds. The forging pressure is preferably at least 1 ton / cm 2 .
If the pressure is less than this, the oxide film on the aluminum surface is not sufficiently broken, and the adhesion to the diamond particles tends to be insufficient. As a result, the aluminum may not uniformly cover the particle surfaces of SiC or diamond. As a result, some holes remain, and the thermal conductivity tends to decrease. Although it depends on the shape of the molded body to be forged and the material of the mold, a more preferable pressure is 5 ton / cm 2 or more. The upper limit is 9
ton / cm 2 .

【0029】[0029]

【実施例】(実施例1)平均粒径50μm、結晶型がI
b型のダイヤモンド粉末(原料1)、平均粒径が30μ
mでSiを10重量%、Mgを0.4重量%含むアルミ
ニウム合金粉末(原料2)および平均粒径30μmの純
度99%のアルミニウム粉末(原料3)を準備した。こ
れらの粉末を表1の「配合量」欄に記載の量比で秤取
し、乾式ボールミルによって混合した。なお表中の「A
l合金」および「純Al」の表示は、それぞれ原料2お
よび3である。混合粉末は真空乾燥し、低圧力で加圧し
た後これを分級する方式の加圧造粒法で顆粒状の粉末に
した。この粉末を8ton/cm2の圧力で直径100
mm、厚み10mmの形状に乾式成形した後、誘導加熱
炉内にこれを配置し、加熱速度600℃/分で昇温し
て、表1に記載の600〜850℃の範囲の温度で10
秒間保持した。次いでフリクションプレス方式の熱間鍛
造装置内に配置されている450℃に予備加熱したダイ
ス鋼製の型に、各試料を直ぐに入れ、8ton/cm2
の圧力で0.8秒間加圧して熱間鍛造した。なお表1の
試料10〜13は、予備加熱の保持温度のみを変えたも
の、試料14〜17は、鍛造圧力を変えたものである。
(Example 1) The average particle size is 50 μm, and the crystal type is I.
b type diamond powder (raw material 1), average particle size is 30μ
An aluminum alloy powder containing 10% by weight of Si and 0.4% by weight of Mg (raw material 2) and an aluminum powder having a mean particle size of 30 μm and a purity of 99% (raw material 3) were prepared. These powders were weighed out at the ratios shown in the column of "blending amount" in Table 1 and mixed by a dry ball mill. Note that "A" in the table
"1 alloy" and "pure Al" are raw materials 2 and 3, respectively. The mixed powder was vacuum-dried, pressurized at a low pressure, and then classified into a granular powder by a pressure granulation method of classifying the powder. This powder is pressed at a pressure of 8 ton / cm 2 to a diameter of 100
After being dry-formed into a shape having a thickness of 10 mm and a thickness of 10 mm, this was placed in an induction heating furnace, heated at a heating rate of 600 ° C./min, and heated at a temperature in the range of 600 to 850 ° C.
Hold for 2 seconds. Next, each sample was immediately placed in a die steel die preheated to 450 ° C., which was placed in a friction press hot forging apparatus, and 8 ton / cm 2.
And hot forging. Samples 10 to 13 in Table 1 were obtained by changing only the preheating holding temperature, and samples 14 to 17 were obtained by changing the forging pressure.

【0030】なお比較例として表2に記載のような配合
組成で溶浸法またはホットプレス法によって同じ形状の
試片を作製した。試料19〜22は、第二成分の原料を
10重量%添加したダイヤモンド−Al系粉末を上記同
様混合・成形し、この成形体と配合原料と同じ第二成分
の溶浸剤を窒素雰囲気炉内に接触配置した。その後85
0℃まで昇温して4時間(14400秒間)保持し、第
二成分の溶融液を成形体の空隙内に溶浸して、同表に記
載の成分組成比の溶浸体とした。また試料23は、上記
本発明例試料3と同じ成形体をアルミナ製の型に入れ、
窒素雰囲気中、850℃で1ton/cm2の圧力を6
0分間(3600秒間)負荷して焼結した。
As comparative examples, test pieces of the same shape were prepared by the infiltration method or the hot press method with the composition shown in Table 2. Samples 19 to 22 were prepared by mixing and molding a diamond-Al powder to which the raw material of the second component was added in an amount of 10% by weight in the same manner as described above. It was placed in contact. Then 85
The temperature was raised to 0 ° C. and maintained for 4 hours (14400 seconds), and the melt of the second component was infiltrated into the voids of the molded body to obtain an infiltrated body having the component composition ratio shown in the same table. Sample 23 was prepared by placing the same molded body as that of Sample 3 of the present invention in an alumina mold.
In a nitrogen atmosphere, a pressure of 1 ton / cm 2 at 850 ° C.
Sintering was performed for 0 minute (3600 seconds).

【0031】以上の手順で作製した各試料の評価結果を
表1および2に示す。相対密度は、水中法で確認した実
測密度の同じ組成の理論密度に対する割合である。表中
の界面層は、ダイヤモンド粒子と第二成分粒子の界面に
形成された炭化アルミニウムからなる層であり、その有
無および層の厚みは、透過電子顕微鏡によって確認し
た。熱伝導率はレーザーフラッシュ法によって、熱膨張
係数は差動トランス式熱膨張測定装置によって、それぞ
れ確認した。
Tables 1 and 2 show the evaluation results of each sample prepared by the above procedure. The relative density is a ratio of the measured density confirmed by the underwater method to the theoretical density of the same composition. The interface layer in the table is a layer made of aluminum carbide formed at the interface between the diamond particles and the second component particles, and the presence or absence and the thickness of the layer were confirmed by a transmission electron microscope. The thermal conductivity was confirmed by a laser flash method, and the coefficient of thermal expansion was confirmed by a differential transformer type thermal expansion measuring device.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】以上の結果より以下のことが分かる。本発
明の熱間鍛造法によれば、従来の溶浸法やホットプレス
法に比べ緻密であり、なおかつ格段に高い熱伝導性のダ
イヤモンド−アルミニウム系複合材料が得られる。これ
はダイヤモンド粒子とアルミニウムを主成分とする第二
成分粒子との界面に低熱伝導性の炭化アルミニウムが殆
ど生成せず、また両者の界面が急速に高い圧力で加圧さ
れるため十分に密着するからである。
The following can be understood from the above results. According to the hot forging method of the present invention, a diamond-aluminum-based composite material which is denser than conventional infiltration methods and hot press methods and has remarkably high thermal conductivity can be obtained. This is because aluminum carbide having low thermal conductivity is hardly generated at the interface between the diamond particles and the second component particles containing aluminum as a main component, and the interface between both is rapidly pressed with a high pressure, so that they are sufficiently adhered to each other. Because.

【0035】(実施例2)平均粒径50μm、結晶型が
IIa型のダイヤモンド粉末(原料5)、平均粒径40μ
m、結晶型が6H型のSiC粉末(原料6)および実施
例1で用いた原料3および4の第二成分の粉末を準備し
た。これらの粉末を表3の「配合量」欄に記載の量比で
秤取し、実施例1と同様の手順で混合・成形した。その
後誘導加熱炉内にこれを配置し、加熱速度600℃/分
で昇温して、表2に記載の600〜850℃の範囲の温
度で10秒間保持した。次いでフリクションプレス方式
の熱間鍛造装置内に配置されている450℃に予備加熱
したダイス鋼製の型に、各試料を直ぐに入れ、8ton
/cm2の圧力で10秒間加圧して熱間鍛造した。なお表
3の試料12〜14は、予備加熱の保持温度のみを変え
たもの、試料15〜19は、鍛造圧力を変えたものであ
る。
Example 2 The average particle size was 50 μm and the crystal type was
IIa type diamond powder (raw material 5), average particle size 40μ
m, SiC powder having a crystal type of 6H (raw material 6) and powders of the second components of raw materials 3 and 4 used in Example 1 were prepared. These powders were weighed at the ratios shown in the column of "Blending Amount" in Table 3 and mixed and molded in the same procedure as in Example 1. Thereafter, this was placed in an induction heating furnace, heated at a heating rate of 600 ° C./min, and kept at a temperature in the range of 600 to 850 ° C. shown in Table 2 for 10 seconds. Next, each sample was immediately put into a die steel mold preheated to 450 ° C., which was placed in a hot forging device of a friction press system, and 8 tonnes were prepared.
/ Cm 2 at a pressure of 10 seconds for hot forging. Samples 12 to 14 in Table 3 were obtained by changing only the preheating holding temperature, and samples 15 to 19 were obtained by changing the forging pressure.

【0036】なお比較例として表4に記載のような配合
組成で溶浸法またはホットプレス法によって同じ形状の
試片を作製した。試料20〜23は、第二成分の原料を
10重量%添加したダイヤモンド−Al系粉末を上記同
様混合・成形し、この成形体と配合原料と同じ第二成分
の溶浸剤を窒素雰囲気炉内に接触配置した。その後85
0℃まで昇温して4時間(14400秒間)保持し、第
二成分の溶融液を成形体の空隙内に溶浸して、同表に記
載の成分組成比の溶浸体とした。また試料24は、上記
本発明例試料4と同じ成形体をアルミナ製の型に入れ、
窒素雰囲気中、850℃で1ton/cm2の圧力を6
0分間(3600秒間)負荷して焼結した。以上の手順
で作製した各試料の評価を実施例1と同様に行い、その
結果を表3および4に示す。
As comparative examples, test pieces having the same shape were prepared by the infiltration method or the hot press method with the composition shown in Table 4. Samples 20 to 23 were prepared by mixing and compacting a diamond-Al-based powder to which 10% by weight of the raw material of the second component was added in the same manner as described above, and placing the molded product and the same infiltrant of the second component as the compounding raw material in a nitrogen atmosphere furnace. It was placed in contact. Then 85
The temperature was raised to 0 ° C. and maintained for 4 hours (14400 seconds), and the melt of the second component was infiltrated into the voids of the molded body to obtain an infiltrated body having the component composition ratio shown in the same table. Sample 24 was prepared by placing the same molded body as that of the present invention sample 4 in an alumina mold,
In a nitrogen atmosphere, a pressure of 1 ton / cm 2 at 850 ° C.
Sintering was performed for 0 minute (3600 seconds). Each sample produced by the above procedure was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】以上の結果より以下のことが分かる。本発
明の熱間鍛造法によれば、従来の溶浸法やホットプレス
法に比べ緻密であり、なおかつ格段に高い熱伝導性のダ
イヤモンドの一部をSiCに置き換えたダイヤモンド−
アルミニウム系複合材料が得られる。これはダイヤモン
ド粒子またはSiC粒子とアルミニウムを主成分とする
第二成分粒子との界面に低熱伝導性の炭化アルミニウム
が殆ど生成せず、また両者の界面が急速に高い圧力で加
圧されるため十分に密着するからである。
The following can be understood from the above results. According to the hot forging method of the present invention, a diamond that is denser than the conventional infiltration method or hot pressing method and has a part of diamond having much higher thermal conductivity replaced with SiC.
An aluminum-based composite material is obtained. This is because aluminum carbide having low thermal conductivity is hardly formed at the interface between diamond particles or SiC particles and the second component particles containing aluminum as a main component, and both interfaces are rapidly pressurized at a high pressure. This is because it adheres to.

【0040】(実施例3)以上述べた実施例の表1の試
料番号3〜5および表3の試料番号5〜7と同じ方法で
得たダイヤモンド−アルミニウム系複合材料を、それぞ
れ50個ずつ長さ200mm、幅200mm、厚み3m
mの形状の基材に仕上げ加工した。これを図2に模式的
に示すようなパワーモジュールに放熱基板として実装し
て、各実装段階も含めて温度サイクル試験を行った。本
実施例では、Si半導体素子を第一のセラミックス製基
板を介して6個搭載したモジュールとした。
(Example 3) The diamond-aluminum-based composite materials obtained by the same method as the sample numbers 3 to 5 in Table 1 and the sample numbers 5 to 7 in Table 3 of the above-described example were each 50 pieces long. 200mm in width, 200mm in width, 3m in thickness
The substrate was finished to a shape of m. This was mounted on a power module as schematically shown in FIG. 2 as a heat radiating board, and a temperature cycle test was performed including each mounting step. In the present embodiment, a module was used in which six Si semiconductor elements were mounted via the first ceramic substrate.

【0041】実装に先立ち第二の基板に直接第一の基板
を半田付けできないため、第二の基板の主面に予め平均
厚み5μmの無電解ニッケルメッキ層と平均厚み3μm
の電解ニッケルメッキ層を形成した。この内各4個の試
片は、ニッケルメッキ上に直径5mmの半球状のAg−
Sn系半田によって直径1mmの銅線をメッキ面に垂直
な方向に取り付けた。この試片の基板本体を治具に固定
して銅線を掴みメッキ面に垂直な方向に引っ張り、基板
へのメッキ層の密着強度を確認した。その結果いずれの
基板のメッキ層も1kg/mm2以上の引っ張り力でも
剥がれなかった。またメッキ層が形成された別の試片の
内から10個を抜き取って、−60℃で30分保持、1
50℃で30分保持の昇降温を1000サイクル繰り返
すヒートサイクル試験を実施し、試験後上記と同様の密
着強度を確認したところ、いずれの試片もメッキの密着
性で上記レベルを満足する結果が得られた。以上の結果
より本発明の複合材料からなる基板へのメッキの密着性
は、実用上問題の無いレベルであることが判明した。
Since the first substrate cannot be directly soldered to the second substrate prior to mounting, an electroless nickel plating layer having an average thickness of 5 μm and an average thickness of 3 μm
An electrolytic nickel plating layer was formed. Each of the four specimens was a 5 mm diameter hemispherical Ag-
A copper wire having a diameter of 1 mm was attached in a direction perpendicular to the plating surface by Sn-based solder. The substrate body of this specimen was fixed to a jig, a copper wire was grasped and pulled in a direction perpendicular to the plating surface, and the adhesion strength of the plating layer to the substrate was confirmed. As a result, none of the plating layers of any of the substrates was peeled off even with a tensile force of 1 kg / mm 2 or more. Also, 10 samples were taken out of another sample on which the plating layer was formed, and held at −60 ° C. for 30 minutes.
A heat cycle test was performed by repeating 1000 cycles of raising and lowering the temperature for 30 minutes at 50 ° C., and after the test, the same adhesion strength as above was confirmed. Obtained. From the above results, it was found that the adhesion of the plating to the substrate made of the composite material of the present invention was at a level having no practical problem.

【0042】次に第二の基板上に搭載するセラミックス
製の第一の基板として、熱伝導率が150W/m・K、
熱膨張係数が4.5×10-6/℃、3点曲げ強度450
MPaの窒化アルミニウムセラミックス製の基板Aおよ
び熱伝導率が120W/m・K、熱膨張係数が3.7×
10-6/℃、3点曲げ強度1300MPaの窒化珪素セ
ラミックス製の基板Bの二種の銅回路を形成した第一の
基板を、それぞれ18個ずつ準備した。これらの基板の
形状は、いずれも長さ90mm、幅60mm、厚み1m
mとした。これらの基板を第二の基板の200mm角の
主面上に2行3列で等間隔に配置し、同基板のニッケル
メッキ層を形成した面上にAg−Sn系半田によって固
定した。次にこのアッセンブリーの第二の基板の裏面側
と水冷ジャケットとを、その接触面にシリコンオイルコ
ンパウンドを塗布介在させてボルト閉め固定した。なお
この場合の第一の基板の取り付け穴は、予め素材段階で
その四隅に開けておいた下穴部に炭酸ガスレーザーを照
射して、それを直径3mmまで拡げる方法によって形成
した。この加工は他のセラミックス材やCu−W、Cu
−Moを対象とした場合に比べ、高精度かつ高速で行う
ことができた。この傾向は特に熱伝導率が高くなればな
るほど顕著であった。
Next, as a first ceramic substrate mounted on the second substrate, a thermal conductivity of 150 W / m · K,
Thermal expansion coefficient 4.5 × 10 -6 / ° C, three-point bending strength 450
A substrate made of aluminum nitride ceramics of MPa, thermal conductivity of 120 W / m · K, thermal expansion coefficient of 3.7 ×
10 -6 / ° C., first a substrate formed with two copper circuits of silicon nitride ceramic substrate B of 3-point bending strength 1300 MPa, were prepared by 18 each. Each of these substrates has a length of 90 mm, a width of 60 mm, and a thickness of 1 m.
m. These substrates were arranged at equal intervals in two rows and three columns on a 200 mm square main surface of the second substrate, and were fixed on the surface of the same substrate on which the nickel plating layer was formed by Ag-Sn solder. Next, the back surface of the second substrate of the assembly and the water-cooled jacket were fixed with bolts closed by applying a silicone oil compound to the contact surface thereof. In this case, the mounting holes of the first substrate were formed by irradiating a carbon dioxide gas laser to the prepared holes previously formed in the four corners at the material stage, and expanding the holes to a diameter of 3 mm. This processing is performed using other ceramic materials, Cu-W, Cu
-Higher accuracy and higher speed than in the case of Mo. This tendency was particularly remarkable as the thermal conductivity increased.

【0043】これらの各試片の中から第一の基板がAと
Bの物を各15個ずつ選び、上記と同じ単サイクル条件
で2000サイクルのヒートサイクル試験を行い、その
100サイクル毎のモジュールの出力の変化を確認し
た。その結果、全てのモジュールが、実用上問題が無い
とされる1000サイクルまで、その出力の低下は観測
されなかった。
From each of these test pieces, the first substrate was selected from 15 each of A and B, and a heat cycle test was performed for 2,000 cycles under the same single cycle conditions as described above. The change in output was confirmed. As a result, the output of all modules did not decrease until 1000 cycles, which is considered to be practically no problem.

【0044】以上の結果より、本発明のダイヤモンド−
アルミニウム系複合材料からなる第一の基板を用いたパ
ワーモジュールは、実用上問題の無いレベルのものとな
ることが分かる。なお別途熱伝導率が170W/m・K
以上の試料を、この種のモジュールに比べ低出力・低熱
(サイクル)負荷の高容量のパーソナルコンピューター等
の半導体素子搭載装置に放熱基板として実装・評価も行
ったが、その信頼性・実用性能上何ら問題は無かった。
From the above results, the diamond of the present invention
It can be seen that the power module using the first substrate made of the aluminum-based composite material has a practically acceptable level. The thermal conductivity is 170W / m · K separately.
These samples have lower power and lower heat than this type of module.
(Cycle) Mounting and evaluation as a heat dissipation board on a semiconductor device mounting device such as a personal computer with a high load capacity, but no problem in reliability and practical performance.

【0045】[0045]

【発明の効果】以上詳述したように本発明によれば、熱
間鍛造によってダイヤモンドの高い熱伝導性が十分に活
かされた従来に無い高い放熱性を有し、なおかつ低い熱
膨張係数を有する半導体装置用の材料が提供できる。本
発明によれば、ダイヤモンドやSiCの量の広い範囲に
わたって、少なくとも273W/m・K以上、通常50
0W/m・Kを悠に越える高い熱伝導率の材料も得ら
れ、各種半導体装置用の放熱基板に有用である。特に5
00W/m・K以上のものは、極めて大容量のパワーモ
ジュールにも用いることができる。
As described in detail above, according to the present invention, the high heat conductivity of diamond is fully utilized by the hot forging, so that it has a high heat dissipation and a low coefficient of thermal expansion. A material for a semiconductor device can be provided. According to the present invention, at least 273 W / m · K or more, typically 50 or more, over a wide range of the amount of diamond or SiC.
A material having a high thermal conductivity exceeding 0 W / m · K can be obtained, and is useful as a heat dissipation substrate for various semiconductor devices. Especially 5
Those having a power of 00 W / m · K or more can also be used for extremely large capacity power modules.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合材料のダイヤモンド量と熱伝導率
との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the amount of diamond and the thermal conductivity of the composite material of the present invention.

【図2】本発明の材料を基板に用いた半導体装置(パワ
ーモジュール)を模式的に示す図である。
FIG. 2 is a diagram schematically showing a semiconductor device (power module) using a material of the present invention for a substrate.

【符号の説明】[Explanation of symbols]

1:炭化珪素系複合材料からなる第一基板 2:第二基板 3:半導体素子 4:放熱構造体 1: a first substrate made of a silicon carbide composite material 2: a second substrate 3: a semiconductor element 4: a heat dissipation structure

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンド粒子を第一成分、アルミニ
ウムを主成分とする金属を第二成分として含むダイヤモ
ンド−アルミニウム系複合材料であって、該複合材料の
25℃での熱伝導率をzW/m・K、該ダイヤモンド粒
子の含有量をx重量%とした時、5≦xにおいて、−
0.0029x2+0.141x+281.08≦z≦
0.2239x2−12.017x+593.93の関
係を満たすダイヤモンド−アルミニウム系複合材料。
1. A diamond-aluminum composite material containing diamond particles as a first component and a metal containing aluminum as a main component as a second component, wherein the composite material has a thermal conductivity at 25 ° C. of zW / m. -K, when the content of the diamond particles is x% by weight, at 5 ≦ x, −
0.0029x 2 + 0.141x + 281.08 ≦ z ≦
0.2239x 2 -12.017x + 593.93 diamond satisfy the relationship of - aluminum-based composite material.
【請求項2】 前記第一成分、第二成分に加えて炭化珪
素粒子からなる第三成分を含んでおり、該第一成分と第
三成分との合計量が30〜80重量%、該第二成分の含
有量が20〜70重量%の範囲内にある請求項1に記載
のダイヤモンド−アルミニウム系複合材料。
2. The method according to claim 1, further comprising a third component comprising silicon carbide particles in addition to the first component and the second component, wherein a total amount of the first component and the third component is 30 to 80% by weight. The diamond-aluminum composite material according to claim 1, wherein the content of the two components is in the range of 20 to 70% by weight.
【請求項3】 前記25℃での熱伝導率zが、10≦x
において、−0.0074x2+1.162x+29
1.18≦z≦0.2239x2−12.017x+5
93.93の関係を満たす請求項1または2に記載のダ
イヤモンド−アルミニウム系複合材料。
3. The thermal conductivity z at 25 ° C. is 10 ≦ x
At −0.0074 × 2 + 1.162 × + 29
1.18 ≦ z ≦ 0.2239x2-12.017x + 5
The diamond-aluminum composite material according to claim 1 or 2, which satisfies a relationship of 93.93.
【請求項4】 前記25℃での熱伝導率zが、30≦x
において、−0.0136x2+5.0264x+24
6.19≦z≦0.2239x2−12.017x+5
93.93の関係を満たす請求項1または2に記載のダ
イヤモンド−アルミニウム系複合材料。
4. The thermal conductivity z at 25 ° C. is 30 ≦ x
At −0.0136 × 2 + 5.0264 × + 24
6.19 ≦ z ≦ 0.2239x 2 -12.017x + 5
The diamond-aluminum composite material according to claim 1 or 2, which satisfies a relationship of 93.93.
【請求項5】 請求項1ないし4のいずれかに記載のダ
イヤモンド−アルミニウム系複合材料を用いた半導体装
置。
5. A semiconductor device using the diamond-aluminum composite material according to claim 1.
【請求項6】 ダイヤモンド粒子を第一成分、アルミニ
ウムを主成分とする金属を第二成分として含むダイヤモ
ンド−アルミニウム系複合材料の製造方法であって、第
一成分および第二成分を含む原料を準備する工程1と、
該原料を第一成分の量が5重量%以上となるように混合
して混合物とする工程2と、該混合物を成形し成形体と
する工程3と、該成形体を第二成分の融点以上の温度で
予備加熱し、鍛造して鍛造体とする工程4とを含むダイ
ヤモンド−アルミニウム系複合材料の製造方法。
6. A method for producing a diamond-aluminum composite material containing diamond particles as a first component and a metal mainly composed of aluminum as a second component, wherein a raw material containing the first component and the second component is prepared. Step 1 of performing
Step 2 of mixing the raw materials so that the amount of the first component is 5% by weight or more to form a mixture; Step 3 of molding the mixture to form a molded body; Preheating at a temperature of 4 ° C. and forging into a forged body.
【請求項7】 前記工程1は、第一成分、第二成分に加
えて炭化珪素粒子からなる第三成分の原料を準備する工
程であり、前記工程2は、当該原料を第二成分の量が2
0〜70重量%、第一成分と第三成分の総量が30〜8
0重量%となるように混合して混合物とする工程である
請求項6に記載のダイヤモンド−アルミニウム系複合材
料の製造方法。
7. The step 1 is a step of preparing a raw material of a third component composed of silicon carbide particles in addition to the first component and the second component. Is 2
0 to 70% by weight, and the total amount of the first and third components is 30 to 8
The method for producing a diamond-aluminum-based composite material according to claim 6, which is a step of mixing the mixture so that the amount becomes 0% by weight to form a mixture.
【請求項8】 前記第一成分の原料は、Ib型またはII
a型の結晶粒子を含むダイヤモンドである請求項6また
は7に記載のダイヤモンド−アルミニウム系複合材料の
製造方法。
8. The raw material of the first component is Ib type or II type.
The method for producing a diamond-aluminum-based composite material according to claim 6 or 7, which is a diamond containing a-type crystal particles.
JP10804699A 1999-04-15 1999-04-15 Diamond-aluminum composite material and method for producing the same Pending JP2000303126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10804699A JP2000303126A (en) 1999-04-15 1999-04-15 Diamond-aluminum composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10804699A JP2000303126A (en) 1999-04-15 1999-04-15 Diamond-aluminum composite material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2000303126A true JP2000303126A (en) 2000-10-31

Family

ID=14474570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10804699A Pending JP2000303126A (en) 1999-04-15 1999-04-15 Diamond-aluminum composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2000303126A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040420A1 (en) * 2001-11-09 2003-05-15 Sumitomo Electric Industries, Ltd. Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it
JP2006245575A (en) * 2005-03-03 2006-09-14 Mitac Technology Corp Printed circuit board structure and its manufacturing method
WO2010007922A1 (en) 2008-07-17 2010-01-21 電気化学工業株式会社 Aluminum-diamond composite and method for producing the same
WO2010007974A1 (en) 2008-07-17 2010-01-21 電気化学工業株式会社 Process for production of aluminum-diamond composite
WO2010017302A3 (en) * 2008-08-05 2010-05-14 Baker Hughes Incorporated Heat dissipater for electronic components in downhole tools and methods for using the same
US7791188B2 (en) 2007-06-18 2010-09-07 Chien-Min Sung Heat spreader having single layer of diamond particles and associated methods
WO2011009022A3 (en) * 2009-07-17 2011-04-28 Baker Hughes Incorporated Method and apparatus of heat dissipaters for electronic components in downhole tools
US8531026B2 (en) 2010-09-21 2013-09-10 Ritedia Corporation Diamond particle mololayer heat spreaders and associated methods
KR20140063618A (en) 2011-07-28 2014-05-27 덴끼 가가꾸 고교 가부시키가이샤 Heat dissipating component for semiconductor element
US8778784B2 (en) 2010-09-21 2014-07-15 Ritedia Corporation Stress regulated semiconductor devices and associated methods
US8803183B2 (en) 2010-10-13 2014-08-12 Ho Cheng Industrial Co., Ltd. LED heat-conducting substrate and its thermal module
US9006086B2 (en) 2010-09-21 2015-04-14 Chien-Min Sung Stress regulated semiconductor devices and associated methods
JPWO2015182576A1 (en) * 2014-05-27 2017-04-20 デンカ株式会社 Semiconductor package and manufacturing method thereof
WO2018123380A1 (en) 2016-12-28 2018-07-05 デンカ株式会社 Heat dissipation component for semiconductor element
JP2018129325A (en) * 2017-02-06 2018-08-16 株式会社豊田中央研究所 Semiconductor module and method of manufacturing the same
US10115655B2 (en) 2014-10-09 2018-10-30 Superufo291 Tec Heat dissipation substrate and method for producing heat dissipation substrate
US10302375B2 (en) 2014-04-25 2019-05-28 Denka Company Limited Aluminum-diamond composite, and heat dissipating component using same
US10358704B2 (en) 2014-07-03 2019-07-23 Denka Company Limited Composite body and method for manufacturing same
US10539379B2 (en) 2014-09-02 2020-01-21 Denka Company Limited Heat dissipation component for semiconductor element
US10640853B2 (en) 2016-03-15 2020-05-05 Denka Company Limited Aluminum-diamond-based composite and heat dissipation component
US10751912B2 (en) 2015-10-13 2020-08-25 Denka Company Limited Aluminum-diamond-based composite and method for producing same
CN116162819A (en) * 2023-03-23 2023-05-26 哈尔滨工业大学 Preparation method of multiphase interface high-heat-conductivity diamond/aluminum composite material
CN116393677A (en) * 2023-04-07 2023-07-07 哈尔滨工业大学 Method for preparing diamond/aluminum composite material by high-flux near-net forming
CN119220848A (en) * 2024-12-03 2024-12-31 辽宁材料实验室 A three-dimensional continuous diamond/metal composite material and its preparation method and application
KR102834474B1 (en) 2022-11-10 2025-07-15 한국생산기술연구원 Al alloy with good interfacial adhesion to diamond

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040420A1 (en) * 2001-11-09 2003-05-15 Sumitomo Electric Industries, Ltd. Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it
US7528413B2 (en) 2001-11-09 2009-05-05 Sumitomo Electric Industries, Ltd. Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it
JP2006245575A (en) * 2005-03-03 2006-09-14 Mitac Technology Corp Printed circuit board structure and its manufacturing method
US7791188B2 (en) 2007-06-18 2010-09-07 Chien-Min Sung Heat spreader having single layer of diamond particles and associated methods
WO2010007922A1 (en) 2008-07-17 2010-01-21 電気化学工業株式会社 Aluminum-diamond composite and method for producing the same
WO2010007974A1 (en) 2008-07-17 2010-01-21 電気化学工業株式会社 Process for production of aluminum-diamond composite
CN105886825A (en) * 2008-07-17 2016-08-24 电气化学工业株式会社 Aluminum-Diamond Composite And Method For Producing The Same
KR20110040923A (en) 2008-07-17 2011-04-20 덴끼 가가꾸 고교 가부시키가이샤 Aluminum-diamond based composite and method for producing same
US9017824B2 (en) 2008-07-17 2015-04-28 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum-diamond composite and manufacturing method
KR20160072847A (en) 2008-07-17 2016-06-23 덴카 주식회사 Aluminum-diamond composite and method for producing the same
CN102149493A (en) * 2008-07-17 2011-08-10 电气化学工业株式会社 Aluminum-diamond composite and method for producing the same
JP5940244B2 (en) * 2008-07-17 2016-06-29 デンカ株式会社 Aluminum-diamond composite and method for producing the same
JP5496888B2 (en) * 2008-07-17 2014-05-21 電気化学工業株式会社 Method for producing aluminum-diamond composite
US8322398B2 (en) 2008-07-17 2012-12-04 Denki Kagaku Kogyo Kabushiki Kaisha Manufacturing method of aluminum-diamond composite
WO2010017302A3 (en) * 2008-08-05 2010-05-14 Baker Hughes Incorporated Heat dissipater for electronic components in downhole tools and methods for using the same
GB2474814B (en) * 2008-08-05 2012-10-31 Baker Hughes Inc Heat dissipater for electronic components in downhole tools and methods for using the same
US8763702B2 (en) 2008-08-05 2014-07-01 Baker Hughes Incorporated Heat dissipater for electronic components in downhole tools and methods for using the same
GB2474814A (en) * 2008-08-05 2011-04-27 Baker Hughes Inc Heat dissipater for electronic components in downhole tools and methods for using the same
GB2483613B (en) * 2009-07-17 2014-05-07 Baker Hughes Inc Method and apparatus of heat dissipaters for electronic components in downhole tools
GB2483613A (en) * 2009-07-17 2012-03-14 Baker Hughes Inc Method and apparatus of heat dissipaters for electronic components in downhole tools
WO2011009022A3 (en) * 2009-07-17 2011-04-28 Baker Hughes Incorporated Method and apparatus of heat dissipaters for electronic components in downhole tools
US8826984B2 (en) 2009-07-17 2014-09-09 Baker Hughes Incorporated Method and apparatus of heat dissipaters for electronic components in downhole tools
US9006086B2 (en) 2010-09-21 2015-04-14 Chien-Min Sung Stress regulated semiconductor devices and associated methods
US8778784B2 (en) 2010-09-21 2014-07-15 Ritedia Corporation Stress regulated semiconductor devices and associated methods
US8531026B2 (en) 2010-09-21 2013-09-10 Ritedia Corporation Diamond particle mololayer heat spreaders and associated methods
US8803183B2 (en) 2010-10-13 2014-08-12 Ho Cheng Industrial Co., Ltd. LED heat-conducting substrate and its thermal module
KR20140063618A (en) 2011-07-28 2014-05-27 덴끼 가가꾸 고교 가부시키가이샤 Heat dissipating component for semiconductor element
US9524918B2 (en) 2011-07-28 2016-12-20 Denka Company Limited Heat dissipating component for semiconductor element
US10302375B2 (en) 2014-04-25 2019-05-28 Denka Company Limited Aluminum-diamond composite, and heat dissipating component using same
JPWO2015182576A1 (en) * 2014-05-27 2017-04-20 デンカ株式会社 Semiconductor package and manufacturing method thereof
US10358704B2 (en) 2014-07-03 2019-07-23 Denka Company Limited Composite body and method for manufacturing same
US10539379B2 (en) 2014-09-02 2020-01-21 Denka Company Limited Heat dissipation component for semiconductor element
US10115655B2 (en) 2014-10-09 2018-10-30 Superufo291 Tec Heat dissipation substrate and method for producing heat dissipation substrate
US10751912B2 (en) 2015-10-13 2020-08-25 Denka Company Limited Aluminum-diamond-based composite and method for producing same
US10640853B2 (en) 2016-03-15 2020-05-05 Denka Company Limited Aluminum-diamond-based composite and heat dissipation component
WO2018123380A1 (en) 2016-12-28 2018-07-05 デンカ株式会社 Heat dissipation component for semiconductor element
US10541189B2 (en) 2016-12-28 2020-01-21 Denka Company Limited Heat dissipation component for semiconductor element
JP2018129325A (en) * 2017-02-06 2018-08-16 株式会社豊田中央研究所 Semiconductor module and method of manufacturing the same
KR102834474B1 (en) 2022-11-10 2025-07-15 한국생산기술연구원 Al alloy with good interfacial adhesion to diamond
CN116162819A (en) * 2023-03-23 2023-05-26 哈尔滨工业大学 Preparation method of multiphase interface high-heat-conductivity diamond/aluminum composite material
CN116162819B (en) * 2023-03-23 2024-01-26 哈尔滨工业大学 A method for preparing multi-phase interface high thermal conductivity diamond/aluminum composite materials
CN116393677A (en) * 2023-04-07 2023-07-07 哈尔滨工业大学 Method for preparing diamond/aluminum composite material by high-flux near-net forming
CN116393677B (en) * 2023-04-07 2023-11-03 哈尔滨工业大学 Method for preparing diamond/aluminum composite material by high-flux near-net forming
CN119220848A (en) * 2024-12-03 2024-12-31 辽宁材料实验室 A three-dimensional continuous diamond/metal composite material and its preparation method and application

Similar Documents

Publication Publication Date Title
JP2000303126A (en) Diamond-aluminum composite material and method for producing the same
EP1114807B1 (en) Semiconductor device or heat dissipating substrate therefor using a composite material
US6114048A (en) Functionally graded metal substrates and process for making same
EP0987231B1 (en) Silicon carbide based composite material and manufacturing method thereof
US6238454B1 (en) Isotropic carbon/copper composites
KR20060090824A (en) High thermal conductivity metal matrix composites
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
CN103501939A (en) Composite material for heat dissipating substrate, and method for manufacturing composite material for heat dissipating substrate
JP2001335859A (en) Aluminum-silicon carbide based composite material and method for producing the same
JP2000297301A (en) Silicon carbide-based composite material, powder thereof, and production method thereof
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
JP3449683B2 (en) Ceramic circuit board and method of manufacturing the same
JP4314675B2 (en) Silicon carbide powder, composite material using the same, and manufacturing method thereof
JP4305986B2 (en) Method for producing silicon carbide composite material
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JP2001180919A (en) Silicon carbide-carbon composite powder and composite material using the same
JP4253932B2 (en) Method for producing silicon carbide composite material
JPH11116361A (en) Silicon carbide-based composite and heat radiating part using the same
JP4461513B2 (en) Aluminum-silicon carbide based composite material and method for producing the same
JP4233133B2 (en) Silicon carbide composite and heat dissipation component using the same
JP3948797B2 (en) Method for producing silicon carbide composite
JP2002121639A (en) Heat dissipation board and high power high frequency transistor package using it
JP2001217364A (en) Al-SiC COMPOSITE
JPH11157964A (en) Tabular composite and heat dissipating component using the same
JP2001158933A (en) Al-SiC-based composite material, method of manufacturing the same, and semiconductor device using the same