JP2000302912A - Hydrous silicic acid for rubber reinforcement filling and rubber composition using the same - Google Patents
Hydrous silicic acid for rubber reinforcement filling and rubber composition using the sameInfo
- Publication number
- JP2000302912A JP2000302912A JP11112602A JP11260299A JP2000302912A JP 2000302912 A JP2000302912 A JP 2000302912A JP 11112602 A JP11112602 A JP 11112602A JP 11260299 A JP11260299 A JP 11260299A JP 2000302912 A JP2000302912 A JP 2000302912A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- silicic acid
- hydrous silicic
- rubber composition
- bet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 62
- 239000005060 rubber Substances 0.000 title claims abstract description 62
- 235000012239 silicon dioxide Nutrition 0.000 title claims abstract description 53
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000000203 mixture Substances 0.000 title claims abstract description 23
- 238000011049 filling Methods 0.000 title claims abstract description 9
- 230000002787 reinforcement Effects 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000011148 porous material Substances 0.000 claims abstract description 17
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 12
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 11
- 229920003051 synthetic elastomer Polymers 0.000 claims abstract description 8
- 238000004448 titration Methods 0.000 claims abstract description 8
- 244000043261 Hevea brasiliensis Species 0.000 claims abstract description 7
- 229920003052 natural elastomer Polymers 0.000 claims abstract description 7
- 229920001194 natural rubber Polymers 0.000 claims abstract description 7
- 239000005061 synthetic rubber Substances 0.000 claims abstract description 7
- 150000001993 dienes Chemical class 0.000 claims abstract description 6
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 8
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 7
- 229960004029 silicic acid Drugs 0.000 abstract description 65
- 238000005299 abrasion Methods 0.000 abstract description 20
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 abstract description 19
- 125000005624 silicic acid group Chemical group 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 38
- 239000000243 solution Substances 0.000 description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 26
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 239000000377 silicon dioxide Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 239000002253 acid Substances 0.000 description 8
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 description 7
- 239000011707 mineral Substances 0.000 description 7
- 235000010755 mineral Nutrition 0.000 description 7
- 125000005372 silanol group Chemical group 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 238000004073 vulcanization Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 229910052911 sodium silicate Inorganic materials 0.000 description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 238000013329 compounding Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- -1 glycidoxy group Chemical group 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000020477 pH reduction Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000004636 vulcanized rubber Substances 0.000 description 3
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010058 rubber compounding Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- HFGLXKZGFFRQAR-UHFFFAOYSA-N 3-(1,3-benzothiazol-2-yltetrasulfanyl)propyl-trimethoxysilane Chemical compound C1=CC=C2SC(SSSSCCC[Si](OC)(OC)OC)=NC2=C1 HFGLXKZGFFRQAR-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- AKQWHIMDQYDQSR-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylthiirane-2-carboxylate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C1(C)CS1 AKQWHIMDQYDQSR-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- VRYFMEIHARGTRZ-UHFFFAOYSA-N CN(C(=O)SSSSC(N(C)C)=O)C Chemical compound CN(C(=O)SSSSC(N(C)C)=O)C VRYFMEIHARGTRZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001441571 Hiodontidae Species 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
(57)【要約】
【課題】 ゴムの引張強度と耐磨耗性とを改善すること
ができる含水珪酸、引張強度と耐磨耗性とが改善された
ゴム組成物及び引張強度と耐磨耗性とが改善されたゴム
組成物を用いた空気入りタイヤを提供すること。
【解決手段】 BET法比表面積(m2/g)が120〜220の範囲
にある珪酸であって、シアーズ滴定量V(NaOH滴定量ml/
g)とBET法比表面積BET(m2/g)との関係式V=(1.5/10
0)×BET+CにおけるC値が4.0〜5.5の範囲であり、かつ
N2法で測定した細孔直径のピーク値A(オングストロー
ム)と水銀法で測定した細孔直径のピーク値B(オングス
トローム)との比A/Bが1.4以上であるゴム補強充填用含
水珪酸。天然ゴム及び/又はジエン系合成ゴム100重
量部に対して上記含水珪酸5〜100重量部を配合して
なるゴム組成物。このゴム組成物をトレッドゴムに用い
た空気入りタイヤ。PROBLEM TO BE SOLVED: To provide a hydrated silica capable of improving the tensile strength and abrasion resistance of rubber, a rubber composition having improved tensile strength and abrasion resistance, and a tensile strength and abrasion resistance. To provide a pneumatic tire using a rubber composition having improved properties. SOLUTION: It is a silicic acid having a BET specific surface area (m 2 / g) in a range of 120 to 220, and a Sears titration V (NaOH titration ml /
g) and the BET specific surface area BET (m 2 / g): V = (1.5 / 10
0) The C value in × BET + C is in the range of 4.0 to 5.5, and
A hydrous silicic acid for rubber reinforcing filling, wherein the ratio A / B between the peak value A (angstrom) of the pore diameter measured by the N 2 method and the peak value B (angstrom) of the pore diameter measured by the mercury method is 1.4 or more. A rubber composition comprising 5 to 100 parts by weight of the above hydrated silicic acid with respect to 100 parts by weight of natural rubber and / or diene synthetic rubber. A pneumatic tire using this rubber composition for tread rubber.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ゴム補強充填用珪
酸に関する。特に、加硫ゴムの引っ張り強度及び耐摩耗
性を向上させることができるゴム補強充填用含水珪酸及
びこの含水珪酸を用いたゴム組成物並びにこのゴム組成
物を用いた空気入りタイヤに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to silicic acid for filling rubber reinforcement. In particular, the present invention relates to hydrated silicic acid for rubber reinforcing filling capable of improving the tensile strength and wear resistance of vulcanized rubber, a rubber composition using the hydrated silicic acid, and a pneumatic tire using the rubber composition.
【0002】[0002]
【従来の技術】従来、ゴム補強用充填剤としてタイヤ関
係には特にカーボンブラックが多用されてきた。しかし
ながらゴム技術の向上と共に無機系充填剤のうち白色充
填剤である含水珪酸が、自由な着色ができることから見
直され、タイヤ用の弾性ゴム混合物に使用されるように
なってきた。含水珪酸は加硫ゴムの耐熱老化性、引裂抵
抗性、耐屈曲亀裂性、接着性等に優れている。反面、高
充填配合時に配合物の粘度が高く加工性が劣ること、並
びに一般的なゴム特性の中で引張強度及び耐磨耗性がカ
ーボンブラックに比べて劣っている。これらの欠点を解
消するため、シランカップリング剤やその他の有機配合
物の併用配合等が行われている。しかし、未だ満足のい
くゴム物性を提供できる含水珪酸は得られておらず、ゴ
ム配合処方の研究とともに、含水珪酸のさらなる改質が
強く望まれている。2. Description of the Related Art Conventionally, carbon black has been frequently used as a filler for reinforcing rubber in tires. However, with the improvement of rubber technology, hydrated silica, which is a white filler among inorganic fillers, has been reviewed because it can be freely colored, and has been used in elastic rubber mixtures for tires. Hydrous silicic acid is excellent in heat aging resistance, tear resistance, flex crack resistance, adhesiveness, etc. of the vulcanized rubber. On the other hand, at the time of high filling compounding, the viscosity of the compound is high and processability is inferior, and among general rubber properties, tensile strength and abrasion resistance are inferior to carbon black. In order to solve these disadvantages, a combination use of a silane coupling agent and other organic compounds has been performed. However, hydrous silicic acid which can provide satisfactory rubber properties has not yet been obtained, and further improvement of hydrous silicic acid is strongly desired along with research on rubber compounding formulations.
【0003】[0003]
【発明が解決しようとする課題】近年、ゴム分野におい
ては多様化が進み、更には環境汚染が世界的な問題とし
て取りざたされている。中でも特に自動車タイヤ部門に
おいて、転がり抵抗削減による省エネルギーの必要性が
唱えられ、それに伴うタイヤ性能の向上が強く求められ
ている。最近の動向では省エネルギー性を追求したタイ
ヤ配合には含水珪酸が補強充填剤として有利であること
が見直されつつあり、その方向での研究が盛んである。
しかし、これらの推進には前述の含水珪酸の欠点である
引張強度及び耐磨耗性の改良が大きな課題となる。そこ
で、本発明の目的は、ゴムの引張強度と耐磨耗性とを改
善することができる含水珪酸を提供することにある。さ
らに本発明の目的は、引張強度と耐磨耗性とが改善され
たゴム組成物及び引張強度と耐磨耗性とが改善されたゴ
ム組成物を用いた空気入りタイヤを提供することにあ
る。In recent years, rubber has been diversified in the field of rubber, and environmental pollution has been taken up as a global problem. Particularly in the automobile tire sector, the necessity of energy saving by reducing rolling resistance has been advocated, and accordingly, improvement in tire performance has been strongly demanded. In recent trends, it has been reconsidered that hydrated silica is advantageous as a reinforcing filler in tire formulations pursuing energy saving, and research in that direction is being actively pursued.
However, in these propulsion, improvement of tensile strength and abrasion resistance, which are the drawbacks of the above-mentioned hydrated silica, is a major problem. Then, an object of the present invention is to provide hydrated silica capable of improving the tensile strength and abrasion resistance of rubber. It is a further object of the present invention to provide a rubber composition having improved tensile strength and abrasion resistance and a pneumatic tire using the rubber composition having improved tensile strength and abrasion resistance. .
【0004】[0004]
【課題を解決するための手段】本発明は、BET法比表面
積(m2/g)が120〜220の範囲にある珪酸であって、シアー
ズ滴定量V(NaOH滴定量ml/g)とBET法比表面積BET(m2/g)
との関係式V=(1.5/100)×BET+CにおけるC値が4.
0〜5.5の範囲であり、かつN2法で測定した細孔直径のピ
ーク値A(オングストローム)と水銀法で測定した細孔直
径のピーク値B(オングストローム)との比A/Bが1.4以上
であるゴム補強充填用含水珪酸に関する。さらに本発明
は、 天然ゴム及び/又はジエン系合成ゴム100重量
部に対して本発明の含水珪酸5〜100重量部を配合し
てなるゴム組成物に関する。加えて、本発明は、本発明
のゴム組成物をトレッドゴムに用いた空気入りタイヤに
関する。SUMMARY OF THE INVENTION The present invention relates to a silicic acid having a BET specific surface area (m 2 / g) in the range of 120 to 220, comprising a Sears titration V (NaOH titration ml / g) and a BET Normal specific surface area BET (m 2 / g)
And the C value at V = (1.5 / 100) × BET + C is 4.
In the range of 0 to 5.5, and the peak value A (angstrom) of pore diameter measured by N 2 method and the peak value of pore diameter measured by mercury method B (Å) ratio A / B of 1.4 or more Hydrated silica for rubber reinforcement filling. Furthermore, the present invention relates to a rubber composition obtained by blending 5 to 100 parts by weight of the hydrous silicate of the present invention with 100 parts by weight of natural rubber and / or a diene-based synthetic rubber. In addition, the present invention relates to a pneumatic tire using the rubber composition of the present invention for a tread rubber.
【0005】ゴム補強のメカニズムは充填剤である含水
珪酸の分散機能と構造性にあると考えられている。分散
機能は充填剤の比表面積や粒子間の結合力、或いは表面
シラノール基数や細孔容積、粒子径、ストラクチャーと
呼ばれる三次元構造等のいわゆる構造性によって左右さ
れる。カーボンブラックは一般的にストラクチャーが発
達しており、粒子表面の官能基も多種存在し、ポリマー
分子との結合が強くゴム補強剤として今日まで広く使用
されてきた。[0005] The mechanism of rubber reinforcement is considered to be the dispersion function and structure of hydrated silica as a filler. The dispersing function depends on the specific surface area of the filler, the bonding strength between particles, or the so-called structural properties such as the number of surface silanol groups, pore volume, particle diameter, and three-dimensional structure called structure. In general, carbon black has a well-developed structure, has various types of functional groups on the particle surface, has a strong bond with polymer molecules, and has been widely used as a rubber reinforcing agent to date.
【0006】一方、含水珪酸は表面シラノール基(Si
−OH)が存在し、補強効果をもたらす反面、分散を阻
害したり薬剤の効果を低下させるという弱点がある。こ
のように含水珪酸は粒子表面にシロキサン基及びシラノ
ール基が存在するのみであって、カーボンブラック程の
官能基を持たない為にポリマーとの反応性が弱く、ゴム
補強性能も相対的に低くなる。これに対してシランカッ
プリング剤等を使用することで補強効果を高めることも
行われているが、これだけではタイヤ用シリカとしては
不十分である。On the other hand, hydrous silicic acid has a surface silanol group (Si
—OH) presents a reinforcing effect, but has the disadvantage of inhibiting dispersion and reducing the effect of the drug. As described above, the hydrous silicic acid has only siloxane groups and silanol groups on the particle surface and does not have the same functional group as carbon black, so that the reactivity with the polymer is weak and the rubber reinforcing performance is relatively low. . On the other hand, the use of a silane coupling agent or the like has been used to enhance the reinforcing effect, but this alone is insufficient as silica for tires.
【0007】そこで、BET表面積から算出される一次
粒子径(2700/BET=一次粒子径nm)や表面シ
ラノール基密度或いは粒子凝集力や粒子の構造性などを
変化させて含水珪酸の物性を改善することが考えられ
る。特に、耐摩耗性の向上には含水珪酸の構造性が重要
であり、ポリマー分子との化学的な結合と共に、含水珪
酸とポリマーとの強い絡み合いが重要となる。含水珪酸
とポリマーとが強く絡み合うためには、含水珪酸の一次
粒子サイズやゴム中に入り込み易い粒子構造を持たせ、
それにより含水珪酸とゴム分子の結合を補って補強効果
を高めることができるものと考えられる。このような観
点から、本発明者は鋭意研究を重ねた結果、前記の特定
した範囲の含水珪酸において優れた補強効果を発揮し
て、ゴムの引っ張り強度や耐摩耗性の向上が図られるこ
とを見出し本発明を完成するに至った。Therefore, the physical properties of hydrated silica are improved by changing the primary particle diameter (2700 / BET = primary particle diameter nm) calculated from the BET surface area, the density of surface silanol groups, the particle cohesion and the structure of the particles. It is possible. In particular, the structure of the hydrous silicic acid is important for improving the wear resistance, and the strong entanglement between the hydrous silicic acid and the polymer is important together with the chemical bonding with the polymer molecules. In order for the hydrated silica and the polymer to be strongly entangled with each other, the hydrated silica must have a primary particle size and a particle structure that easily enters the rubber,
It is considered that the reinforcing effect can be enhanced by compensating for the bond between the hydrated silica and the rubber molecules. From such a viewpoint, the present inventor has conducted intensive studies, and as a result, has demonstrated that an excellent reinforcing effect is obtained in the above-mentioned hydrous silicate in the specified range, thereby improving the tensile strength and wear resistance of rubber. The present invention has been completed.
【0008】[0008]
【発明の実施の形態】本発明を更に詳しく説明する。本
発明の含水珪酸は、BET法比表面積(m2/g)が120〜220の
範囲にある珪酸である。BET法比表面積が120m2/
g未満では、ゴム補強効果が劣り、耐摩耗性や引っ張り
強度が低下する。一方、220m2/gを超えると加硫の
遅れ現象を起こし易く、含水珪酸の凝集力が強過ぎて分
散不良を起し、加工性も悪く、耐摩耗性低下の原因とな
る場合がある。特に、耐摩耗性の改善効果が優れるとい
う観点から、BET法比表面積は140〜180m2/gの
範囲であることが好ましい。更に、表面シラノール基密
度や細孔分布などの粒子構造について種々調査した結
果、シアーズ滴定量Vや比A/Bが以下の範囲にある含水珪
酸が、引っ張り強度や耐摩耗性を特に改善されることが
判明した。DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail. The hydrous silicic acid of the present invention is a silicic acid having a BET specific surface area (m 2 / g) in the range of 120 to 220. BET specific surface area is 120m 2 /
If it is less than g, the rubber reinforcing effect is inferior, and the abrasion resistance and tensile strength decrease. On the other hand, when it exceeds 220 m 2 / g, the vulcanization delay phenomenon is liable to occur, the cohesive force of the hydrous silicic acid is too strong, causing poor dispersion, poor workability and poor wear resistance in some cases. In particular, the BET specific surface area is preferably in the range of 140 to 180 m 2 / g from the viewpoint that the effect of improving wear resistance is excellent. Furthermore, as a result of various investigations on the particle structure such as surface silanol group density and pore distribution, hydrated silica having a Sears titer V and a ratio A / B in the following ranges is particularly improved in tensile strength and wear resistance. It has been found.
【0009】本発明の含水珪酸は、シアーズ滴定量V(Na
OH滴定量ml/g)とBET法比表面積BET(m2/g)との関係式V=
(1.5/100)×BET+CにおけるC値が4.0〜5.5の範囲
である。BET法比表面積が前記範囲に有る場合、シアー
ズ滴定量であるV値が小さ過ぎても大き過ぎても耐摩耗
性等の改善は見られず、C値が4.0〜5.5の範囲にあると
きにのみ、優れた耐摩耗性の改善効果が得られる。C値
が4.0未満の場合、表面シラノール基が少なくなり過ぎ
るため、ゴムの補強効果が低下し、更には耐摩耗性も低
下する傾向がある。一方、C値が5.5を超えると表面シラ
ノール基が多くなり過ぎて、シリカ同士の自己凝集が起
こり易く、分散阻害や薬剤(加硫促進剤等)の効果を低下
させる傾向があり好ましくない。例えば、既存の市販品
である、ニップシールE−200A(後述の比較例3)
やニップシールNS−T(後述の比較例2)等は、上記
C値が2.5〜2.7と小さく、耐摩耗性も十分ではな
い。C値は、好ましくは、4.4〜5.0の範囲であ
る。The hydrated silica of the present invention has a Sears titration V (Na
OH titer ml / g) and relationship between the BET specific surface area BET (m 2 / g) V =
The C value at (1.5 / 100) × BET + C is in the range of 4.0 to 5.5. When the BET specific surface area is in the above range, no improvement in abrasion resistance or the like is observed even when the V value as the Sears titer is too small or too large, and when the C value is in the range of 4.0 to 5.5. Only the effect of improving excellent wear resistance can be obtained. When the C value is less than 4.0, the number of surface silanol groups becomes too small, so that the rubber reinforcing effect is reduced, and the abrasion resistance tends to be reduced. On the other hand, when the C value exceeds 5.5, the surface silanol groups become too large, and self-aggregation of silica tends to occur, which tends to inhibit dispersion and reduce the effect of a drug (such as a vulcanization accelerator), which is not preferable. For example, an existing commercially available nip seal E-200A (Comparative Example 3 described later)
C and the nip seal NS-T (Comparative Example 2 described later) have a small C value of 2.5 to 2.7, and have insufficient wear resistance. The C value is preferably in the range of 4.4 to 5.0.
【0010】さらに本発明の含水珪酸は、N2法で測定し
た細孔直径のピーク値A(オングストローム)と水銀法で
測定した細孔直径のピーク値B(オングストローム)との
比A/Bが1.4以上である。比A/Bが1.4以上であることで、
引っ張り強度や耐摩耗性が特に改善される。比A/Bは、
好ましくは2.5以下である。一般に含水珪酸の細孔ピ
ーク位置は、水銀圧入法により測定した値に比し、N 2
吸着法により測定した値の方が大きくなる傾向が見られ
る。これは、水銀圧入法では、細孔分布測定時に圧力に
よる含水珪酸粒子の圧壊が起こり、微細孔部分が残存す
ることで、見掛け上細孔ピーク位置の違いが起こる。逆
に、この圧壊の起こり易いものは含水珪酸粒子の構造強
度が弱く、ゴム中へ良く分散することが予想される。但
し、前記範囲より大きいBET比表面積を有する含水珪
酸でも同様にこの傾向が見られる。しかし、BET比表
面積が高すぎると、粒子同士の凝集性が強くなり、分散
不良等を生じ好ましくない。このような観点から、本発
明の含水珪酸では比A/Bが1.4以上である。A/B比が
1.4未満では含水珪酸の粒子構造が強くなりすぎ、水
銀法による水銀圧入時に二次粒子以下への破壊の進行が
少なく、ゴム中に於いても分散が困難となりゴム補強効
果も低下する。The hydrated silica of the present invention further comprises NTwoMethod
Peak diameter A (angstrom) and the mercury method
Measured pore diameter peak value B (angstrom)
The ratio A / B is 1.4 or more. By the ratio A / B being 1.4 or more,
The tensile strength and wear resistance are particularly improved. The ratio A / B is
Preferably it is 2.5 or less. Generally, pores of hydrous silica
The arc position is compared with the value measured by the mercury intrusion method, Two
The value measured by the adsorption method tends to be larger.
You. In the mercury intrusion method, this is
Crushing of the hydrated silicate particles, leaving micropores
This causes a difference in apparent pore peak position. Reverse
On the other hand, those which are susceptible to crushing are the structural strength of hydrated silicate particles.
It is expected to disperse well in rubber with a low degree. However
And a hydrated silica having a BET specific surface area larger than the above range.
This tendency is also observed for acids. However, BET ratio table
If the area is too high, the cohesiveness of the particles becomes strong, and the particles are dispersed.
It is not preferable because it causes defects and the like. From this point of view,
The ratio A / B of light hydrated silica is 1.4 or more. A / B ratio
If it is less than 1.4, the particle structure of the hydrated silica becomes too strong,
During the mercury injection by the silver method, the destruction of secondary particles
Less, difficult to disperse even in rubber, rubber reinforcing effect
Fruits also decrease.
【0011】含水珪酸の湿式製造方法は、一般に、アル
カリ金属珪酸塩水溶液と鉱酸とを反応させることにより
行われることは知られている。本発明の含水珪酸の製造
方法も基本的にはこの方法に基づく。本発明の含水珪酸
は、例えば、アルカリ金属珪酸塩と鉱酸とを並行して反
応槽に添加する方法を用い、かつ反応溶液の温度を90
℃以上、好ましくは96℃以上に維持し、かつ反応液の
アルカリ濃度が0.01〜0.03mol/リットルの
範囲で過剰となるように、珪酸アルカリと鉱酸の添加量
を調整して、反応液中の固体濃度が40〜65g/リッ
トルの範囲になるまで反応を行う方法により製造するこ
とができる。It is known that the wet process for producing hydrous silicic acid is generally carried out by reacting an aqueous solution of an alkali metal silicate with a mineral acid. The method for producing hydrous silicic acid of the present invention is also basically based on this method. The hydrous silicic acid of the present invention is, for example, a method in which an alkali metal silicate and a mineral acid are added to a reaction vessel in parallel, and the temperature of the reaction solution is adjusted to 90.
C. or more, preferably 96 ° C. or more, and adjusting the addition amount of the alkali silicate and the mineral acid so that the alkali concentration of the reaction solution becomes excessive in the range of 0.01 to 0.03 mol / L, It can be produced by a method in which the reaction is carried out until the solid concentration in the reaction solution is in the range of 40 to 65 g / liter.
【0012】上記反応に於いて、アルカリ金属珪酸塩は
特に限定しないが、例えば、珪酸ナトリウム水溶液を用
いることができる。また鉱酸も特に限定しないが、硫酸
が好適である。反応温度は得られる含水珪酸のBET比
表面積と相関があり、反応温度が高いほど一次粒子の成
長が早くBET比表面積は低くなる傾向にある。反応温
度が90℃未満ではゾルの成長が遅く、本発明の目的で
あるゴム中で分散性の良い含水珪酸を得ることが困難と
なり、96℃以上の温度とすることで、特に優れたゴム
中で分散性の良好な含水珪酸を得ることができる。In the above reaction, the alkali metal silicate is not particularly limited. For example, an aqueous solution of sodium silicate can be used. The mineral acid is not particularly limited, but sulfuric acid is preferred. The reaction temperature has a correlation with the BET specific surface area of the obtained hydrous silicate, and the higher the reaction temperature, the faster the primary particles grow and the lower the BET specific surface area. When the reaction temperature is lower than 90 ° C., the growth of the sol is slow, and it is difficult to obtain a hydrous silicic acid having good dispersibility in the rubber, which is the object of the present invention. Thus, hydrous silicic acid having good dispersibility can be obtained.
【0013】また、アルカリの過剰濃度が0.01mo
l/リットル未満では反応溶液全体をアルカリ性域に維
持することが困難となり、反応液が部分的に酸性域にな
りやすくなり、安定した物性を有する含水珪酸を得るこ
とが困難となる。また、アルカリの過剰濃度が0.03
mol/リットルを超えると、BET法比表面積が高く
なりすぎ、かつシアーズ滴定量とBETの関係式におけ
るC値が5.5を越えてしまい、結果的に、目的とする
耐摩耗性を有する含水珪酸を得ることが困難となる。ま
た、上記反応に於いて、珪酸アルカリと鉱酸の滴下終了
時に反応液中の固体濃度が40g/リットル未満では、
得られる含水珪酸のBET法比表面積が220m2/gを
越える場合が出て来る。さらに、得られた含水珪酸は、
凝集力が強く分散不良を起し易くなる。また、反応終了
時の固体濃度が65g/リットルを越えると、得られる
含水珪酸のBET法比表面積は120m2/gより低くな
る傾向があると同時にゴムの補強効果も低下してくるの
で適当ではない。The excess concentration of the alkali is 0.01 mol.
If the amount is less than 1 / liter, it is difficult to maintain the entire reaction solution in an alkaline region, the reaction solution is likely to be partially in an acidic region, and it is difficult to obtain hydrous silicic acid having stable physical properties. When the excess concentration of the alkali is 0.03
If it exceeds mol / liter, the specific surface area of the BET method becomes too high, and the C value in the relational expression between the Sears titer and the BET exceeds 5.5. It is difficult to obtain silicic acid. In addition, in the above reaction, if the solid concentration in the reaction solution is less than 40 g / liter at the end of the dropwise addition of the alkali silicate and the mineral acid,
In some cases, the obtained hydrous silicic acid has a BET specific surface area exceeding 220 m 2 / g. Furthermore, the obtained hydrous silicate is
The cohesive force is strong, and poor dispersion is likely to occur. If the solid concentration at the end of the reaction exceeds 65 g / l, the resulting hydrous silicic acid tends to have a BET specific surface area of less than 120 m 2 / g, and at the same time the reinforcing effect of rubber is reduced. Absent.
【0014】上記反応は、例えば、撹拌翼を付けた反応
容器に所定量の水とNa2O濃度が0.01〜0.03
mol/リットルになるようにアルカリ金属珪酸塩水溶
液を充填し、撹拌しながら所定の反応溶液温度を保ちな
がら、アルカリ金属珪酸塩水溶液と鉱酸を同時に滴下を
することで行うことができる。反応の途中段階で反応溶
液は白濁が進み粘度が急激に上昇するゲル化現象が起こ
る。反応液の固体濃度が所定の値になったところで、p
Hを5以下になるように鉱酸を添加して反応を停止させ
る。得られた沈澱物を濾過、水洗、乾燥させ、場合によ
り粉砕又は顆粒状にすることにより、本発明の沈澱珪酸
は得られる。具体的には、得られた沈澱物をフィルター
プレス等で濾過し、pH5.5〜7.5、電気伝導度が
200μs/cm以下になるまで水洗することで含水珪酸
ケーキを得る。得られた湿潤ケーキを乾燥した後必要に
応じて粉砕分級あるいは顆粒化を行って本発明の含水珪
酸を得ることができる。In the above reaction, for example, a predetermined amount of water and a Na 2 O concentration of 0.01 to 0.03 are added to a reaction vessel equipped with a stirring blade.
The reaction can be carried out by filling an aqueous solution of an alkali metal silicate so as to have a mol / liter, and simultaneously dropping the aqueous solution of an alkali metal silicate and a mineral acid while maintaining a predetermined reaction solution temperature with stirring. During the course of the reaction, a gelation phenomenon occurs in which the reaction solution becomes cloudy and the viscosity sharply increases. When the solid concentration of the reaction solution reaches a predetermined value, p
The reaction is stopped by adding a mineral acid so that H is 5 or less. The precipitated silicic acid of the present invention can be obtained by filtering, washing, drying and, if necessary, pulverizing or granulating the obtained precipitate. Specifically, the obtained precipitate is filtered with a filter press or the like, and washed with water until the pH becomes 5.5 to 7.5 and the electric conductivity becomes 200 μs / cm or less, to obtain a hydrated silica cake. After drying the obtained wet cake, if necessary, pulverization classification or granulation can be performed to obtain the hydrous silicic acid of the present invention.
【0015】本発明のゴム組成物において、ゴムとして
は、天然ゴム(NR)又はジエン系合成ゴムを単独又は
これらをブレンドして使用することができる。合成ゴム
としては、例えば、合成ポリイソプレンゴム(IR)、
ポリブタジエンゴム(BR)やスチレンブタジエンゴム
(SBR)、アクリロニトリルブタジエンゴム(NB
R)、ブチルゴム(IIR)等が挙げられる。天然ゴム
及び/又はジエン系合成ゴム100重量部に対して本発
明の含水珪酸5〜100重量部を配合でき、含水珪酸の
配合量が5重量部未満では補強性及び耐摩耗性が不十分
となり、含水珪酸の配合量が100重量部を超える含水
珪酸の分散が不良となる傾向があり、補強性及び耐摩耗
性が悪化する。本発明の含水珪酸の配合量は、天然ゴム
及び/又はジエン系合成ゴム100重量部に対して好ま
しくは10〜90重量部の範囲である。In the rubber composition of the present invention, natural rubber (NR) or diene-based synthetic rubber can be used alone or as a blend of these rubbers. Examples of the synthetic rubber include synthetic polyisoprene rubber (IR),
Polybutadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NB
R), butyl rubber (IIR) and the like. The hydrous silicic acid of the present invention can be blended in an amount of 5 to 100 parts by weight with respect to 100 parts by weight of natural rubber and / or a diene-based synthetic rubber. If the amount of the hydrous silicic acid is less than 5 parts by weight, the reinforcing property and wear resistance become insufficient. In addition, the dispersion of hydrated silicic acid containing more than 100 parts by weight of hydrated silicic acid tends to be inferior, and the reinforcing property and abrasion resistance deteriorate. The compounding amount of the hydrous silicic acid of the present invention is preferably in the range of 10 to 90 parts by weight based on 100 parts by weight of natural rubber and / or diene-based synthetic rubber.
【0016】本発明で用いるシランカップリング剤は、
下記式(I)〜式(III)に示される少なくとも一つが
挙げられる。The silane coupling agent used in the present invention is
At least one of the following formulas (I) to (III) is exemplified.
【化1】 (CnH2n+1O)mX3-mSi−(CH2)p−Sq−(CH2)p−Si(CnH2n+1 O)mX3-m …(I) (式中、Xは炭素数1〜3のアルキル基又は塩素原子、
nは1〜3の整数、mは1〜3の整数、pは1〜9の整
数を表し、qは1以上の整数で分布を有する場合もあ
る)## STR1 ## (C n H 2n + 1 O ) m X 3-m Si- (CH 2) p -S q - (CH 2) p -Si (C n H 2n + 1 O) m X 3-m ... (I) (wherein, X is an alkyl group having 1 to 3 carbon atoms or a chlorine atom,
n is an integer of 1 to 3, m is an integer of 1 to 3, p is an integer of 1 to 9, and q is an integer of 1 or more and may have a distribution.)
【化2】 (CnH2n+1O)mX3-mSi−(CH2)p−Y …(II) (式中、Xは炭素数1〜3のアルキル基又は塩素原子、
Yはメルカプト基、ビニル基、アミノ基、イミド基、グ
リシドキシ基、メタクリロキシ基またはエポキシ基、n
は1〜3の整数、mは1〜3の整数、pは1〜9の整数
を表す。) Embedded image (C n H 2n + 1 O) m X 3-m Si— (CH 2 ) p —Y (II) (wherein X is an alkyl group having 1 to 3 carbon atoms or a chlorine atom;
Y is a mercapto group, vinyl group, amino group, imide group, glycidoxy group, methacryloxy group or epoxy group, n
Represents an integer of 1 to 3, m represents an integer of 1 to 3, and p represents an integer of 1 to 9. )
【化3】 (CnH2n+1O)mX3-mSi−(CH2)p−Sq−Z …(III) (式中、Xは炭素数1〜3のアルキル基又は塩素原子、
Zはベンゾチアゾリル基、N,N−ジメチルチオカルバ
モイル基またはメタクリレート基、nは1〜3の整数、
mは1〜3の整数、pは1〜9の整数を表し、qは1以
上の整数で分布を有する場合もある。)## STR3 ## (C n H 2n + 1 O ) m X 3-m Si- (CH 2) p -S q -Z ... (III) ( wherein, X is 1 to 3 carbon atoms alkyl group or a chlorine atom,
Z is a benzothiazolyl group, N, N-dimethylthiocarbamoyl group or methacrylate group, n is an integer of 1 to 3,
m represents an integer of 1 to 3, p represents an integer of 1 to 9, and q may be an integer of 1 or more and has a distribution. )
【0017】具体的には、ビス(3−トリエトキシシリ
ルプロピル)ポリスルフィド、γ−メルカプトプロピル
トリメトキシシラン、γ−メルカプトプロピルトリエト
キシシラン、γ−アミノプロピルトリメトキシシラン、
γ−アミノプロピルトリエトキシシラン、ビニルトリメ
トキシシラン、ビニルトリエトキシシラン、γ−グリシ
ドキシプロピルトリメトキシシラン、γ−グリシドキシ
プロピルメチルジエトキシシラン、3−トリメトキシシ
リルプロピル−N、N−ジメチルカルバモイルテトラス
ルフィド、3−トリメトキシシリルプロピルベンゾチア
ゾリルテトラスルフィド、3−トリメトキシシリルプロ
ピルメタクリレートモノスルフィド、等が挙げられる。
シランカップリング剤の配合量は、含水ケイ酸の重量に
対し1〜20重量%、好ましくは2〜15重量%であ
る。シランカップリング剤の配合量が1重量%未満で
は、カップリング効果が小さく、20重量%超過では、
補強性、耐磨耗性ともに悪化し、好ましくない。Specifically, bis (3-triethoxysilylpropyl) polysulfide, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-aminopropyltrimethoxysilane,
γ-aminopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, 3-trimethoxysilylpropyl-N, N- Examples include dimethylcarbamoyltetrasulfide, 3-trimethoxysilylpropylbenzothiazolyltetrasulfide, and 3-trimethoxysilylpropyl methacrylate monosulfide.
The compounding amount of the silane coupling agent is 1 to 20% by weight, preferably 2 to 15% by weight, based on the weight of the hydrous silicic acid. If the amount of the silane coupling agent is less than 1% by weight, the coupling effect is small.
Both the reinforcing property and the abrasion resistance are deteriorated, which is not preferable.
【0018】なお、本発明においては、上記のゴム、含
水ケイ酸、シランカップリング剤以外に、必要に応じ
て、カーボンブラック、軟化剤(ワックス、オイル)、
老化防止剤、加硫剤、加硫促進剤、加硫促進助剤等の通
常ゴム工業で使用される配合剤を適宜配合することがで
きる。本発明のゴム組成物は、上記ゴム成分、含水ケイ
酸、シランカップリング剤、上記必要に応じて配合する
上記カーボンブラック、ゴム配合剤等をバンバリーミキ
サーなどの混練機で調製することができる。In the present invention, in addition to the rubber, hydrous silicic acid, and silane coupling agent, carbon black, a softener (wax, oil), if necessary,
Compounding agents usually used in the rubber industry, such as an antioxidant, a vulcanizing agent, a vulcanization accelerator, and a vulcanization accelerator, can be appropriately compounded. The rubber composition of the present invention can be prepared by kneading the rubber component, hydrated silicic acid, a silane coupling agent, the above-described carbon black, a rubber compounding agent, and the like, as necessary, with a kneader such as a Banbury mixer.
【0019】本発明のゴム組成物は、タイヤ、コンベア
ベルト、ホースなどのゴム製品に好適に適用できるもの
であり、製品となったタイヤ、コンベアベルト、ホース
などのゴム製品は補強性、高耐磨耗性等に優れたものと
なる。また、本発明の空気入りタイヤは、上記ゴム組成
物をタイヤトレッド部に使用したものであるので、タイ
ヤトレッド部の補強性、高耐磨耗性に優れた空気入りタ
イヤが得られることとなる。The rubber composition of the present invention can be suitably applied to rubber products such as tires, conveyor belts and hoses, and the resulting rubber products such as tires, conveyor belts and hoses have reinforcing properties and high durability. It is excellent in abrasion property and the like. In addition, since the pneumatic tire of the present invention uses the rubber composition for a tire tread portion, a pneumatic tire having excellent tire tread portion reinforcement and high abrasion resistance can be obtained. .
【0020】[0020]
【発明の効果】本発明によれば、ゴム中への分散性が改
善され、加工性、補強性に優れ、加硫ゴムの引っ張り強
度及び耐摩耗性に優れた特性を有するゴム補強充填用含
水珪酸を提供することができる。さらに本発明によれ
ば、引っ張り強度及び耐摩耗性に優れたゴム組成物及び
タイヤを提供することが出来る。According to the present invention, a water-containing rubber for filling rubber reinforcement has improved dispersibility in rubber, excellent workability and reinforcement, and excellent properties of vulcanized rubber in tensile strength and abrasion resistance. Silicic acid can be provided. Further, according to the present invention, it is possible to provide a rubber composition and a tire excellent in tensile strength and wear resistance.
【0021】[0021]
【実施例】以下、本発明の含水珪酸及びその製造方法に
ついて更に具体的に説明するため、実施例及び比較例を
挙げて説明する。含水珪酸の物性測定方法及びゴム物性
の試験方法を以下に示す。 BET法比表面積の測定 BET法比表面積はJIS Z−8830(気体吸着に
よる粉体の比表面積測定方法)に準じ、全自動粉体比表
面積測定装置 AMS−8000〔(株)大倉理研社
製〕を用いて1点法により測定した。サンプルは約0.
05gを200℃×30分の前処理を行って測定した。
単位=m2/g シアーズ滴定量(NaOH滴定量;ml/g) G.Wシアーズ法による。(ANALYICAL CH
EMISTRY VOLUME28,No12,DEC
EMBER,1956、1981〜83頁記載の方法) N2法ピーク細孔径 ASAP2400〔島津製作所製〕を用いて、非晶質シ
リカを200℃、100ミリトール以下の条件で、2時
間脱気した後、窒素の吸脱着等温線を測定し、その結果
を、Barrett-Joyner-Halenda法、J.Am.Chem.Soc.、73、37
3(1951)記載の方法をもちいて、ピーク細孔径を求め
た。 水銀法細孔容積 水銀ポロシメーター2000型〔伊国 Carlo Erba社
製〕を用いて、水銀圧入法によって測定した。圧力を1
〜2000barまで変化させて、細孔直径15μm〜
74Åの水銀圧入量を測定し、細孔直径のピーク位置を
求めた。 ムーニー粘度 ムーニー粘度計SMV−200型〔島津製作所製〕を用
い、L型ローターにて125℃、5分後の数値を読み取
った。その他はJIS K6300のムーニー粘度試験
方法による。 キュラストタイムT90 JSR型キュラストメーターIIF型〔日合商事(株)社
製〕により、最適加硫時間(T90)を測定した。T9
0は測定温度150℃で得られる加硫曲線を10等分し
て、その90%を数値として示した。 加硫物特性 一般加硫物特性 旧JIS K6301のゴム物性試験
方法に準じて測定した。摩耗試験はアクロン型摩耗試験
機で測定。 傾角:15°、荷重:6ポンド、試験回数:2000r
pmでの摩耗減量を測定し、比較例1を100として指
数で表示。(数値の高い方が耐摩耗は良) 配合及び調製方法 バンバリーミキサー(容量1.7リットル)にて、11
0部のJSR1712と20部のBR01を30秒間素
練り後、ステアリン酸を2部、パラフィンワックスを1
部、アロマ油を20部、実施例または比較例の沈澱珪酸
を80部、シランSi69を8部の割合で投入し、全練
り時間5分後取り出す。取り出し時のコンパウンド温度
を140〜150℃となるようにラム圧や回転数で調整
する。コンパウンドを室温にて冷却した後、更に老化防
止剤810NAを1部、亜鉛華を4部、加硫促進剤D
(大内新興化学工業製、ノクセラーD-P(ジフェニルグア
ニジン))を1.5部、加硫促進剤CZ(大内新興化学
工業製、ノクセラーCZ-G(N-シクロヘキシル-2-ベンゾチ
アジルスルフェンアミド)を1.5部、加硫剤として硫
黄を1.75部添加して約1分間混練り(取り出し時の
温度を110℃以下とする)後、8インチロールにてシ
ーティングして未加硫物及び加硫物特性を測定した。そ
の結果を表1に示した。EXAMPLES Hereinafter, the hydrous silicic acid of the present invention and the method for producing the same will be described more specifically with reference to examples and comparative examples. The method for measuring the physical properties of hydrous silicic acid and the method for testing the physical properties of rubber are shown below. Measurement of BET specific surface area The BET specific surface area conforms to JIS Z-8830 (a method for measuring the specific surface area of powder by gas adsorption), and a fully automatic powder specific surface area measuring device AMS-8000 (manufactured by Okura Riken Co., Ltd.) Was measured by a one-point method. The sample is approximately 0.
05 g was pretreated at 200 ° C. for 30 minutes and measured.
Unit = m 2 / g Sears titration (NaOH titration; ml / g) According to the W Sears method. (ANALYICAL CH
EMISTRY VOLUME28, No12, DEC
EMBER, The method according page 1956,1981~83) with N 2 method peak pore diameter ASAP2400 [manufactured by Shimadzu Corporation], the amorphous silica 200 ° C., under the following conditions 100 millitorr, was degassed for 2 hours, The adsorption and desorption isotherms of nitrogen were measured, and the results were measured using the Barrett-Joyner-Halenda method, J. Am. Chem. Soc., 73, 37.
3 (1951), the peak pore diameter was determined. Mercury Pore Volume Using a mercury porosimeter 2000 (manufactured by Carlo Erba, Italy), the pore volume was measured by a mercury intrusion method. Pressure 1
~ Up to 2000 bar, pore diameter 15μm ~
The mercury intrusion at 74 ° was measured, and the peak position of the pore diameter was determined. Mooney Viscosity Using a Mooney Viscometer SMV-200 (manufactured by Shimadzu Corporation), the value was read at 125 ° C. for 5 minutes using an L-type rotor. Others are based on the Mooney viscosity test method of JIS K6300. Curast time T90 The optimal vulcanization time (T90) was measured by a JSR type curast meter IIF [manufactured by Nichigo Corporation]. T9
In the case of 0, the vulcanization curve obtained at the measurement temperature of 150 ° C. was divided into 10 equal parts, and 90% thereof was shown as a numerical value. Vulcanizate properties General vulcanizate properties Measured according to the rubber physical properties test method of the former JIS K6301. Abrasion test was measured with an Akron abrasion tester. Tilt: 15 °, Load: 6 pounds, Test frequency: 2000r
The loss in abrasion in pm was measured, and the result was indicated by an index with Comparative Example 1 being 100. (The higher the numerical value, the better the abrasion resistance.) Mixing and Preparation Method 11 with Banbury mixer (1.7 liter capacity)
After kneading 0 parts of JSR1712 and 20 parts of BR01 for 30 seconds, 2 parts of stearic acid and 1 part of paraffin wax are mixed.
Parts, 20 parts of aroma oil, 80 parts of precipitated silicic acid of Example or Comparative Example, and 8 parts of silane Si69 at a ratio of 5 minutes. The compound temperature at the time of removal is adjusted by the ram pressure and the number of revolutions so as to be 140 to 150 ° C. After cooling the compound at room temperature, 1 part of anti-aging agent 810NA, 4 parts of zinc white, vulcanization accelerator D
1.5 parts of Noxeller DP (diphenylguanidine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd. Amide) and 1.75 parts of sulfur as a vulcanizing agent were added and kneaded for about 1 minute (the temperature at the time of removal was set to 110 ° C. or less). The sulphate and vulcanizate properties were measured and the results are shown in Table 1.
【0022】(実施例1)撹拌器を備えたステンレス製
200リットル反応槽に、水85リットル及び珪酸ナト
リウム水溶液(SiO2160g/リットル、SiO2/
Na2O重量比3.3)2.3リットルを入れ、96℃
に加熱した。この時の溶液pHは10.4、Na2O濃
度は0.02mol/リットル、シリカ濃度は5.5g
/リットルであった。上記水溶液の温度96℃を維持し
ながら、珪酸ナトリウム水溶液(上記の濃度)流量70
0ミリリットル/分と硫酸(18mol/リットル)流
量25ミリリットル/分を同時に添加を始め、反応溶液
中のNa2O濃度が0.015〜0.025mol/リ
ットルを維持するように流量を調整しながら反応を行
う。反応の途中から反応溶液は白濁をはじめ、35分目
に粘度が上昇してゲル状溶液となった、更に添加を続け
て60分で反応を停止した。この時の溶液中のシリカ濃
度は54g/リットルであった。引き続いて上記と同様
の硫酸を添加して、溶液pH3で酸性化を終了して珪酸
スラリーを得た。得られた珪酸スラリーをフィルタープ
レスで濾過、水洗を行って湿潤ケーキを得た。次いで湿
潤ケーキを乳化装置を用いてスラリーとして、噴霧式乾
燥機で乾燥して湿式法含水珪酸を得た。[0022] (Example 1) In a stainless steel 200 liters reaction vessel equipped with a stirrer, water 85 liters and an aqueous solution of sodium silicate (SiO 2 160 g / l, SiO 2 /
Na 2 O weight ratio 3.3) 2.3 liters, 96 ° C
Heated. At this time, the solution pH was 10.4, the Na 2 O concentration was 0.02 mol / L, and the silica concentration was 5.5 g.
/ Liter. While maintaining the temperature of the aqueous solution at 96 ° C, the sodium silicate aqueous solution (above concentration) flow rate 70
0 ml / min and a flow rate of sulfuric acid (18 mol / l) of 25 ml / min were simultaneously started, and the flow rates were adjusted so that the Na 2 O concentration in the reaction solution was maintained at 0.015 to 0.025 mol / l. Perform the reaction. During the course of the reaction, the reaction solution became cloudy and the viscosity increased at 35 minutes to become a gel-like solution. The addition was continued and the reaction was stopped in 60 minutes. At this time, the silica concentration in the solution was 54 g / liter. Subsequently, the same sulfuric acid as above was added, and the acidification was completed at a solution pH of 3 to obtain a silicic acid slurry. The obtained silicic acid slurry was filtered with a filter press and washed with water to obtain a wet cake. Next, the wet cake was formed into a slurry using an emulsifying apparatus and dried with a spray drier to obtain wet-process hydrous silicic acid.
【0023】(実施例2)実施例1と同様な装置及び原
料を用いて、水85リットルと珪酸ナトリウム水溶液
2.3リットルを入れ、98℃に加熱し水溶液の温度を
維持しながら、珪酸ナトリウム水溶液流量700ミリリ
ットル/分と硫酸流量25ミリリットル/分を同時に添
加し、反応溶液中のNa2O濃度が0.015〜0.0
25mol/リットルを維持するように流量を調整しな
がら反応を行う。反応の途中から反応溶液は白濁をはじ
め、33分目に粘度が上昇してゲル状溶液となった、更
に添加を続けて60分で反応を停止した。この時の溶液
中のシリカ濃度は52g/リットルであった。引き続い
て上記と同様の硫酸を添加して、溶液pH3で酸性化を
終了して珪酸スラリーを得た。以下、実施例1と同様の
方法で湿式法含水珪酸を得た。Example 2 Using the same apparatus and raw materials as in Example 1, 85 liters of water and 2.3 liters of an aqueous solution of sodium silicate were added and heated to 98 ° C. while maintaining the temperature of the aqueous solution. An aqueous solution flow rate of 700 ml / min and a sulfuric acid flow rate of 25 ml / min were simultaneously added, and the Na 2 O concentration in the reaction solution was adjusted to 0.015 to 0.05.
The reaction is performed while adjusting the flow rate so as to maintain 25 mol / liter. During the course of the reaction, the reaction solution became cloudy and the viscosity increased at 33 minutes to become a gel-like solution. The addition was continued and the reaction was stopped for 60 minutes. At this time, the silica concentration in the solution was 52 g / liter. Subsequently, the same sulfuric acid as above was added, and the acidification was completed at a solution pH of 3 to obtain a silicic acid slurry. Thereafter, wet hydrated silica was obtained in the same manner as in Example 1.
【0024】(実施例3)実施例1と同様な装置及び原
料を用いて、水105リットルと珪酸ナトリウム水溶液
1.4リットルを入れ、98℃に加熱した。この時の溶
液pHは9.8、Na2O濃度は0.01mol/リッ
トル、シリカ濃度は2.0g/リットルであった。上記
水溶液の温度98℃を維持しながら、珪酸ナトリウム水
溶液流量148ミリリットル/分と硫酸流量59.5ミ
リリットル/分を同時に添加を始め、反応溶液中のNa
2O濃度を0.01〜0.015mol/リットルを維
持しながら同時滴下反応を行った。反応の途中から反応
溶液は白濁が進み、22分目に溶液粘度が上昇してゲル
状溶液となった、更に添加を続けて50分で反応を停止
した。この時の溶液中のシリカ濃度は58g/リットル
であった。引き続いて硫酸を添加して、溶液pH3で酸
性化を終了して珪酸スラリーを得た。以下、実施例1と
同様な方法で湿式法含水珪酸を得た。Example 3 Using the same apparatus and raw materials as in Example 1, 105 liters of water and 1.4 liters of an aqueous solution of sodium silicate were charged, and heated to 98 ° C. At this time, the solution pH was 9.8, the Na 2 O concentration was 0.01 mol / L, and the silica concentration was 2.0 g / L. While maintaining the temperature of the aqueous solution at 98 ° C., the addition of a sodium silicate aqueous solution at a flow rate of 148 ml / min and a sulfuric acid flow rate of 59.5 ml / min was simultaneously started, and Na in the reaction solution was started.
Simultaneous dropping reaction was performed while maintaining the 2 O concentration at 0.01 to 0.015 mol / L. The reaction solution became cloudy from the middle of the reaction, and the solution viscosity increased at 22 minutes to become a gel-like solution. The addition was continued, and the reaction was stopped in 50 minutes. At this time, the silica concentration in the solution was 58 g / liter. Subsequently, sulfuric acid was added to terminate the acidification at a solution pH of 3 to obtain a silicic acid slurry. Thereafter, wet method hydrous silicic acid was obtained in the same manner as in Example 1.
【0025】(比較例1) Nipsil AQ(日本
シリカ工業社製) (比較例2) Nipsil NST(日本シリカ工業
社製) (比較例3) Nipsil E-200A(日本シリ
カ工業社製) (比較例4) Nipsil HD-R(日本シリカ工
業社製) (比較例5)Ultrasil VN3(独国デグッサ
社製)(Comparative Example 1) Nipsil AQ (Nippon Silica Industry Co., Ltd.) (Comparative Example 2) Nipsil NST (Nippon Silica Industry Co., Ltd.) (Comparative Example 3) Nipsil E-200A (Nippon Silica Industry Co., Ltd.) (Comparative Example) 4) Nipsil HD-R (manufactured by Nippon Silica Industry Co., Ltd.) (Comparative Example 5) Ultrasil VN3 (manufactured by Degussa, Germany)
【0026】[0026]
【表1】 [Table 1]
Claims (7)
にある珪酸であって、シアーズ滴定量V(NaOH滴定量ml/
g)とBET法比表面積BET(m2/g)との関係式V=(1.5/10
0)×BET+CにおけるC値が4.0〜5.5の範囲であり、かつ
N2法で測定した細孔直径のピーク値A(オングストロー
ム)と水銀法で測定した細孔直径のピーク値B(オングス
トローム)との比A/Bが1.4以上であるゴム補強充填用含
水珪酸。1. A BET specific surface area (m 2 / g) is a silicate in the range of 120 to 220, Sears titration V (NaOH titer ml /
g) and the BET specific surface area BET (m 2 / g): V = (1.5 / 10
0) The C value in × BET + C is in the range of 4.0 to 5.5, and
A hydrous silicic acid for rubber reinforcing filling, wherein the ratio A / B between the peak value A (angstrom) of the pore diameter measured by the N 2 method and the peak value B (angstrom) of the pore diameter measured by the mercury method is 1.4 or more.
にある請求項1に記載の含水珪酸。2. The hydrous silicic acid according to claim 1, wherein the BET specific surface area (m 2 / g) is in the range of 140 to 180.
は2に記載の含水珪酸。3. The hydrous silicic acid according to claim 1, wherein the C value is in the range of 4.4 to 5.0.
ずれか1項に記載の含水珪酸。4. The hydrous silicic acid according to claim 1, wherein the ratio A / B is 2.5 or less.
00重量部に対して請求項1〜4のいずれか1項に記載
の含水珪酸5〜100重量部を配合してなるゴム組成
物。5. Natural rubber and / or diene synthetic rubber 1
A rubber composition comprising 5 to 100 parts by weight of the hydrous silicic acid according to any one of claims 1 to 4 based on 00 parts by weight.
100重量部に対して1〜20重量%の割合で配合して
なる請求項5に記載のゴム組成物。6. A silane coupling agent comprising a hydrated silicic acid
The rubber composition according to claim 5, which is blended at a ratio of 1 to 20% by weight based on 100 parts by weight.
レッドゴムに用いた空気入りタイヤ。7. A pneumatic tire using the rubber composition according to claim 5 for a tread rubber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11112602A JP2000302912A (en) | 1999-04-20 | 1999-04-20 | Hydrous silicic acid for rubber reinforcement filling and rubber composition using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11112602A JP2000302912A (en) | 1999-04-20 | 1999-04-20 | Hydrous silicic acid for rubber reinforcement filling and rubber composition using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000302912A true JP2000302912A (en) | 2000-10-31 |
Family
ID=14590849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11112602A Pending JP2000302912A (en) | 1999-04-20 | 1999-04-20 | Hydrous silicic acid for rubber reinforcement filling and rubber composition using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000302912A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180017143A (en) | 2015-06-12 | 2018-02-20 | 토소실리카 가부시키가이샤 | Silicone rubber reinforced functional silicate |
KR20200018571A (en) | 2017-06-09 | 2020-02-19 | 토소실리카 가부시키가이샤 | Water-containing silicic acid for rubber reinforcement filling and preparation method thereof |
KR20200142495A (en) * | 2018-08-10 | 2020-12-22 | 토소실리카 가부시키가이샤 | Hydrous silicate for filling rubber reinforcement |
KR20210005284A (en) * | 2018-08-10 | 2021-01-13 | 토소실리카 가부시키가이샤 | Hydrous silicate for filling rubber reinforcement |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10182878A (en) * | 1996-12-27 | 1998-07-07 | Bridgestone Corp | Rubber composition and pneumatic tire made the same |
JPH10194722A (en) * | 1996-12-27 | 1998-07-28 | Nippon Silica Ind Co Ltd | Water-containing silicic acid for elastomer reinforcement and its production |
JPH10194723A (en) * | 1996-12-27 | 1998-07-28 | Nippon Silica Ind Co Ltd | Water-containing silicic acid for rubber reinforcement and its production |
JPH11240982A (en) * | 1998-02-25 | 1999-09-07 | Bridgestone Corp | Rubber composition and pneumatic tire using the same |
-
1999
- 1999-04-20 JP JP11112602A patent/JP2000302912A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10182878A (en) * | 1996-12-27 | 1998-07-07 | Bridgestone Corp | Rubber composition and pneumatic tire made the same |
JPH10194722A (en) * | 1996-12-27 | 1998-07-28 | Nippon Silica Ind Co Ltd | Water-containing silicic acid for elastomer reinforcement and its production |
JPH10194723A (en) * | 1996-12-27 | 1998-07-28 | Nippon Silica Ind Co Ltd | Water-containing silicic acid for rubber reinforcement and its production |
JPH11240982A (en) * | 1998-02-25 | 1999-09-07 | Bridgestone Corp | Rubber composition and pneumatic tire using the same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180017143A (en) | 2015-06-12 | 2018-02-20 | 토소실리카 가부시키가이샤 | Silicone rubber reinforced functional silicate |
KR102405234B1 (en) | 2015-06-12 | 2022-06-07 | 토소실리카 가부시키가이샤 | Hydrous silicic acid for rubber reinforcement filling |
KR20200018571A (en) | 2017-06-09 | 2020-02-19 | 토소실리카 가부시키가이샤 | Water-containing silicic acid for rubber reinforcement filling and preparation method thereof |
KR20200142495A (en) * | 2018-08-10 | 2020-12-22 | 토소실리카 가부시키가이샤 | Hydrous silicate for filling rubber reinforcement |
KR20210005284A (en) * | 2018-08-10 | 2021-01-13 | 토소실리카 가부시키가이샤 | Hydrous silicate for filling rubber reinforcement |
KR102243113B1 (en) | 2018-08-10 | 2021-04-21 | 토소실리카 가부시키가이샤 | Hydrous silicate for filling rubber reinforcement |
KR102243112B1 (en) | 2018-08-10 | 2021-04-21 | 토소실리카 가부시키가이샤 | Hydrous silicate for filling rubber reinforcement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1321488B1 (en) | Preparation of reinforced elastomer, elastomer composite, and tire having component thereof | |
EP0890602B1 (en) | Addition of salts to improve the interaction of silica with rubber | |
RU2461592C2 (en) | Rubber mixure and tyre | |
JP4405849B2 (en) | Rubber composition for tire tread and tire using the same | |
US7211612B2 (en) | Tread rubber composition and pneumatic tire employing the same | |
JP4975356B2 (en) | Rubber composition for tire tread | |
KR102405234B1 (en) | Hydrous silicic acid for rubber reinforcement filling | |
EP2754689B1 (en) | Composite and method for producing the same, rubber composition, and pneumatic tire | |
KR20000022337A (en) | Process for producing modified carbon black for reinforcing rubber and process for producing rubber composition containing modified carbon black | |
JP2007138069A (en) | Rubber composition and pneumatic tire | |
EP1188786B1 (en) | Process to produce silica reinforced rubber compositions | |
JPH11240982A (en) | Rubber composition and pneumatic tire using the same | |
JP4071343B2 (en) | Rubber composition and pneumatic tire using the same | |
JP2000302912A (en) | Hydrous silicic acid for rubber reinforcement filling and rubber composition using the same | |
JPH10194722A (en) | Water-containing silicic acid for elastomer reinforcement and its production | |
JP5734187B2 (en) | Pneumatic tire | |
JP3445080B2 (en) | Rubber composition and pneumatic tire using the rubber composition | |
JPH11228741A (en) | Rubber composition and pneumatic tire made therefrom | |
JP3445081B2 (en) | Rubber composition and pneumatic tire using the rubber composition | |
KR102709274B1 (en) | Hydrous silicate and hydrous silicate-containing rubber composition for rubber reinforcing filler | |
JP5570150B2 (en) | tire | |
KR20250088707A (en) | Master batch, method for producing master batch, rubber composition for tire, method for producing rubber composition for tire, rubber material for tire and tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060901 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061011 |