[go: up one dir, main page]

JP2000297819A - Bearings using ceramic coated balls - Google Patents

Bearings using ceramic coated balls

Info

Publication number
JP2000297819A
JP2000297819A JP11106935A JP10693599A JP2000297819A JP 2000297819 A JP2000297819 A JP 2000297819A JP 11106935 A JP11106935 A JP 11106935A JP 10693599 A JP10693599 A JP 10693599A JP 2000297819 A JP2000297819 A JP 2000297819A
Authority
JP
Japan
Prior art keywords
ball
bearing
temperature
ceramic
preload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11106935A
Other languages
Japanese (ja)
Other versions
JP2000297819A5 (en
Inventor
Chuichi Sato
忠一 佐藤
Yuichi Sumida
雄一 隅田
Akifumi Horiie
章史 堀家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP11106935A priority Critical patent/JP2000297819A/en
Priority to US09/549,164 priority patent/US6357923B1/en
Priority to DE10018688A priority patent/DE10018688B4/en
Priority to DE10066340A priority patent/DE10066340B4/en
Publication of JP2000297819A publication Critical patent/JP2000297819A/en
Publication of JP2000297819A5 publication Critical patent/JP2000297819A5/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/2009Turntables, hubs and motors for disk drives; Mounting of motors in the drive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/02Carbon based material
    • F16C2206/04Diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Rolling Contact Bearings (AREA)
  • Rotational Drive Of Disk (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

(57)【要約】 【課題】フレッチング磨耗防止と予圧抜け防止の両方を
同時に可能とする玉軸受を提供する。 【解決手段】玉軸受の玉を、その玉軸受の軌道輪と略同
じ線膨張係数を持つ金属材料で形成するとともに、玉表
面にセラミックス材をコーティングしてなるセラミック
スコーティングボールとした。軸受組立時と使用時とで
温度差があっても、軌道輪と玉とが同じように膨張また
は収縮するため、セラミックス製玉のように予圧抜けや
予圧過大は防止できる。また、玉と軌道輪とがセラミッ
クス層を介して接触するからフィレッチング磨耗も防止
できる、高い回転性能・音響性能が得られる。
(57) [Problem] To provide a ball bearing which can simultaneously prevent both fretting wear and preload loss. A ball of a ball bearing is formed of a metal material having substantially the same linear expansion coefficient as the race of the ball bearing, and a ceramic coated ball is formed by coating the ball surface with a ceramic material. Even if there is a temperature difference between the time of assembling the bearing and the time of use, the raceway and the ball expand or contract in the same manner, so that preload loss or excessive preload can be prevented as with a ceramic ball. In addition, since the ball and the bearing ring are in contact with each other via the ceramic layer, high rotational performance and high acoustic performance that can prevent filleting wear can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックスコー
ティングボールを用いた軸受に係り、特に、表面に硬質
セラミックス皮膜を形成して耐フィレッチング性を高め
るとともに、温度変化に伴う予圧抜けの現象をも防止で
きるようにした転動体を用いHDDスピンドルモータ装
置等に好適な軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing using a ceramic coated ball, and more particularly, to forming a hard ceramic film on the surface to enhance filleting resistance, and also to prevent a phenomenon of preload loss due to a temperature change. The present invention relates to a bearing suitable for an HDD spindle motor device or the like using a rolling element made possible.

【0002】[0002]

【従来の技術】例えば、HDD装置用の軸受として、図
5に示すスピンドルモータや図6に示すスイングアーム
モータ等に、小型のアンギュラ玉軸受が多用されてい
る。前者の玉軸受1は、図外の磁気ディスクが装着され
るカップ形のフランジ2を、ベース3に立設された軸4
の回りにモータMで滑らかに回転駆動させるのに使用さ
れ、特に高い回転・音響性能が要求される。また、後者
のスイングアーム用の玉軸受1は、磁気ディスクDの有
効エリアにヘッド6をアクセスして位置決めを行うスイ
ングアーム7を、ベース8に立設された軸9の回りにモ
ータで滑らかに揺動駆動させるのに使用される。これら
の玉軸受1には軸支持剛性を高めるために室温で予圧が
かけられるが、HDD装置のモータの場合は小型化が要
求されるため、スペースを必要とする定圧予圧方式が採
用できない。そのため、上から荷重をかけて予圧した状
態で2個の玉軸受の内輪1nを軸4,9に、外輪1gを
被回転体であるフランジ2又はスリーブ10の内周面
に、それぞれ接着剤で固定する定位置予圧方式が採られ
ている。
2. Description of the Related Art For example, as a bearing for an HDD device, a small angular ball bearing is frequently used in a spindle motor shown in FIG. 5 and a swing arm motor shown in FIG. The former ball bearing 1 includes a cup-shaped flange 2 on which a magnetic disk (not shown) is mounted, and a shaft 4 erected on a base 3.
The motor M is used to smoothly rotate around the motor, and particularly high rotational and acoustic performance is required. In the latter ball bearing 1 for a swing arm, the swing arm 7 for positioning the head 6 by accessing the effective area of the magnetic disk D is smoothly moved around a shaft 9 erected on a base 8 by a motor. Used to swing drive. Preload is applied to these ball bearings 1 at room temperature in order to increase the shaft support rigidity. However, in the case of a motor of an HDD device, downsizing is required, so that a constant-pressure preload method requiring a space cannot be adopted. Therefore, the inner rings 1n of the two ball bearings are mounted on the shafts 4 and 9 and the outer ring 1g is mounted on the inner peripheral surface of the flange 2 or the sleeve 10 as an object to be rotated by an adhesive, respectively, in a state where a load is applied from above and preloaded. A fixed position preloading method is adopted.

【0003】上記HDD装置の玉軸受1は、装置の輸送
時に回転部分(2,10)が回転方向に微小振動するこ
とによりフレッチング磨耗(微動磨耗)が発生して、音
響性能や振動性能に悪影響をうけやすい。このフレッチ
ング磨耗は軸受1の玉Bに発生する。そこで、フレッチ
ング磨耗対策として、軸受の玉Bにセラミックス材を使
用することが行われ始めている。これは、セラミックス
の表面特性,硬度,機械的強度,化学的安定性,磨耗係
数等が軸受鋼をはじめとする鋼材よりも優れているため
である。
In the ball bearing 1 of the HDD device, fretting wear (fine motion wear) occurs due to minute vibration of the rotating portion (2, 10) in the rotation direction during transportation of the device, which adversely affects acoustic performance and vibration performance. Easy to receive. This fretting wear occurs on the ball B of the bearing 1. Therefore, as a countermeasure against fretting wear, use of a ceramic material for the ball B of the bearing has begun to be performed. This is because the surface properties, hardness, mechanical strength, chemical stability, wear coefficient and the like of ceramics are superior to steel materials such as bearing steel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、セラミ
ックス製の玉は、表面特性は優れていても、鋼材製に比
べると線膨張係数が70%も小さく、縦弾性係数が50
%大きい。そのため、HDD装置のモータ用の玉軸受の
ように定位置予圧方式が採られるものでは、装置の使用
時に温度が高くなると、玉とその転動面間の接触最大応
力の変化が大きくなって軸受剛性(予圧)が大きく減少
し、極端な場合には使用時に予圧がゼロになるいわゆる
予圧抜けが発生する可能性がある。
However, even though the ceramic balls have excellent surface characteristics, they have a 70% smaller linear expansion coefficient and a 50% lower elastic modulus than steel balls.
%large. For this reason, in the case of a fixed-position preloading system such as a ball bearing for a motor of an HDD device, when the temperature increases during use of the device, a change in the maximum contact stress between the ball and its rolling surface increases, and the bearing increases. The rigidity (preload) is greatly reduced, and in extreme cases, there is a possibility that so-called preload loss occurs in which the preload becomes zero during use.

【0005】以下、その予圧抜け発生の可能性について
検討してみる。玉と転動面とが転がり接触する接触部の
弾性変形と応力については、ヘルツの弾性接触理論が適
用できる。一般的には、図7(a)に示したように、滑
らかな表面を持つ弾性体である二つの物体I ,IIが接触
するとき、その接点付近には対称面で互いに直交してい
る主曲率面1と2が存在する。そして、図7(b)に示
すように、物体I には主曲率面1と2の断面内にそれぞ
れ主曲率半径rI1とrI2が、また物体IIには主曲率面1
と2の断面内にそれぞれ主曲率半径rII1 とrII 2 が存
在する。これら各主曲率半径rI1,rI2,rII1 ,r
II2 (各主曲率半径は凸面のとき正とし、凹面のとき負
の符号をつけて区別する)の逆数である主曲率を、それ
ぞれρI1,ρI2,ρII1 ,ρII2 とする。
Hereinafter, the possibility of occurrence of the preload loss will be examined. For the elastic deformation and stress of the contact portion where the ball and the rolling surface are in rolling contact, Hertz's elastic contact theory can be applied. Generally, as shown in FIG. 7 (a), when two objects I and II, which are elastic bodies having a smooth surface, come into contact with each other, a main surface which is orthogonal to each other in a plane of symmetry near the contact point. Curvature surfaces 1 and 2 exist. Then, as shown in FIG. 7 (b), the main curvature radii r I1 and r I2 in the cross section of the main curvature surfaces 1 and 2, respectively, and the main curvature surface 1
And 2 have principal radii of curvature r II1 and r II 2 respectively. These principal radii of curvature r I1 , r I2 , r II1 , r
The principal curvatures, which are reciprocals of II2 (each principal curvature radius is positive for a convex surface and distinguished by a negative sign for a concave surface) are ρ I1 , ρ I2 , ρ II1 , and ρ II2 , respectively.

【0006】この接触部には、互いに直交する2つの長
さの半径(長半径aと短半径b)をもつ接触楕円Aが形
成される。いま、接触楕円A部に加わる垂直荷重Qによ
り接触楕円Aの中心に作用する最大接触応力をσmax
荷重Qによる両弾性体I,IIの接近量をδとすると、σ
max 、δはそれぞれ次式で与えられる。
[0006] In this contact portion, a contact ellipse A having two radii of a length orthogonal to each other (a major radius a and a minor radius b) is formed. Now, the maximum contact stress acting on the center of the contact ellipse A due to the vertical load Q applied to the contact ellipse A is σ max ,
Assuming that the amount of approach between the two elastic bodies I and II due to the load Q is δ, σ
max and δ are given by the following equations, respectively.

【0007】[0007]

【数1】 (Equation 1)

【0008】そこで、上式を図8に示すようなアンギュ
ラ玉軸受1における玉Bと外輪1gの転動溝及び内輪1
nの転動溝との接触に適用して検討する。いま、玉Bが
セラミックス製で、外輪1g、内輪1nが鋼製とする。
セラミックス材は 縦弾性係数EI =3.20×104 kg/mm2 ポアソン比mI =10/2.7 線膨張係数AI =3.2 ×10-6/℃ 熱伝導率BI =10.8 w/m,k 鋼材は 縦弾性係数EII=2.12×104 kg/mm2 ポアソン比mII=10/3 線膨張係数AII=11.8×10-6/℃ 熱伝導率BII =76 w/m,k であるから、セラミックス製玉の場合の最大接触応力σ
max 及び接近量δは σmax =210 ×(1/μν) 3√{( Σρ)2Q} ……… (1) δ=(1.13 /103 )(2K/πμ)3√{ΣρQ2 } ……… (2) μν,2K/πμはρの関数となる。
Therefore, the ball B and the rolling groove of the outer ring 1g and the inner ring 1 in the angular ball bearing 1 as shown in FIG.
Consider applying to contact with n rolling grooves. Now, the ball B is made of ceramic, and the outer ring 1g and the inner ring 1n are made of steel.
The ceramic material has a longitudinal modulus of elasticity E I = 3.20 × 10 4 kg / mm 2 Poisson's ratio m I = 10 / 2.7 Linear expansion coefficient A I = 3.2 × 10 −6 / ° C. Thermal conductivity B I = 10.8 w / m, k steel longitudinal elastic modulus E II = 2.12 × 10 4 kg / mm 2 Poisson's ratio m II = 10/3 linear expansion coefficient A II = 11.8 × 10 -6 / ℃ thermal conductivity B II = 76 w / m, with k Therefore, the maximum contact stress σ for ceramic balls
The maximum and the approach amount δ are σ max = 210 × (1 / μν) 3 √ {(Σρ) 2 Q} (1) δ = (1.13 / 10 3 ) (2K / πμ) 3 √ {ΣρQ 2 } (2) μν, 2K / πμ is a function of ρ.

【0009】図8において、玉Bの直径をd、外輪1g
の軌道溝の軸受軸線を含む断面における溝曲面の曲率半
径をro 、軸受軸線に直交する断面における溝曲面の曲
率半径をRO とし、また内輪1nの軌道溝の軸受軸線を
含む断面における溝曲面の曲率半径をri 、軸線lに直
交する断面における溝曲面の曲率半径をRi とすると、
主曲率和Σρ=ρI1+ρI2+ρII1 +ρII2 は次の式で
表される。
In FIG. 8, the diameter of the ball B is d, and the outer ring 1 g
Groove curvature radius r o of the groove curved in cross section including the bearing axis of the raceway groove, the radius of curvature of the groove curved in a cross section perpendicular to the bearing axis and R O, also in a cross section including the bearing axis of the raceway groove of the inner ring 1n Assuming that the radius of curvature of the curved surface is r i , and the radius of curvature of the groove curved surface in a cross section orthogonal to the axis l is R i ,
The principal curvature sum Σρ = ρ I1 + ρ I2 + ρ II1 + ρ II2 is represented by the following equation.

【0010】 内輪と玉とでは、 Σρ=4 /d+(1/Ri ) −(1/ri ) ……… (3) 外輪と玉とでは、 Σρ=4 /d+(1/Ro ) −(1/ro ) ……… (4) また補助変数cosτ=|(ρI1−ρI2)+(ρII1
ρII2 )|/Σρは、 内輪と玉の場合 cosτ={(1/ri )+(1/Ri ) }/Σρ … (5) 外輪と玉の場合 cosτ={(1/ro )−(1/Ro ) }/Σρ … (6) である。
For the inner ring and the ball, Σρ = 4 / d + (1 / R i ) − (1 / r i ) (3) For the outer ring and the ball, Σρ = 4 / d + (1 / R o ) − (1 / r o ) (4) and the auxiliary variable cos τ = | (ρ I1 −ρ I2 ) + (ρ II1
ρ II2) | / Σρ in the case of the inner ring and the ball cosτ = {(1 / r i ) + (1 / R i)} / Σρ ... (5) If the outer ring and the ball cosτ = {(1 / r o ) − (1 / R o )} / Σρ (6)

【0011】ばね定数k=dQ/dδ より k=1/{(1.13 /103 )(2K/πμ) }・3 /2 ・ 3 √(Q/Σρ)(7) ここで、HDD用玉軸受である名番B5−39(内径5
mm,外径13mm,幅3mm)における直径2mmの
玉をセラミックス製にしたと仮定して数値計算を行って
みる。
[0011] k than the spring constant k = dQ / dδ = 1 / {(1.13 / 10 3) (2K / πμ)} · 3/2 · 3 √ (Q / Σρ) (7) Here, ball bearings for HDD Name B5-39 (inner diameter 5
Numerical calculations are performed on the assumption that a ball having a diameter of 2 mm (mm, outer diameter 13 mm, width 3 mm) is made of ceramics.

【0012】玉直径d=2.0mm ri =1.07mm(平均)、 ro =1.07mm
(平均) Ri =3.5mm、 Ro =5.50mm+δs =5.
508mm ただし、すきまδs =16μm(平均) これらの値を式(3)〜(6)に当てはめてΣρ、co
sτを算出し、μ,ν,μν,2K/πμを求めた結果を
表1に示す。
Ball diameter d = 2.0 mm r i = 1.07 mm (average), r o = 1.07 mm
(Average) R i = 3.5 mm, R o = 5.50 mm + δ s = 5.
508 mm where clearance δ s = 16 μm (average) By applying these values to equations (3) to (6), Σρ, co
Table 1 shows the results of calculating sτ and obtaining μ, ν, μν, and 2K / πμ.

【0013】[0013]

【表1】 [Table 1]

【0014】また、式(1),(2)及び(7)より、
内輪,外輪それぞれの最大接触応力σmax 、接近量(変
形量)δを求めると この式(8)より k∝3 √Q∝σmaxiの関係が成立す
る。
From equations (1), (2) and (7),
When the maximum contact stress σ max and the approach amount (deformation amount) δ of each of the inner and outer rings are calculated, This relationship of kα 3 √Qασ maxi from the equation (8) is satisfied.

【0015】次に、玉が鋼製で、外輪,内輪も鋼製とし
た場合について述べると、鋼製玉の場合の最大接触応力
σmax 及び接近量δは σmax =187 ×(1/μν) 3√{( Σρ)2Q} δ=(1.28 /103 )(2K/πμ)3√{ΣρQ2 } である。よって、同じ最大接触応力σ’maxiに対する鋼
玉の荷重Q’及び接近量δc ’をセラミックス玉の荷重
Q及び接近量δc と比べると、 ただし、δc =δi +δo である。
Next, the case where the ball is made of steel and the outer ring and the inner ring are also made of steel will be described. In the case of a steel ball, the maximum contact stress σ max and the approach amount δ are σ max = 187 × (1 / μν ) 3 √ {(Σρ) 2 Q} δ = (1.28 / 10 3 ) (2K / πμ) 3 √ {ΣρQ 2 }. Therefore, when comparing the same maximum contact stress σ and proximity amount [delta] c 'corundum load Q of relative maxi' 'the load Q and proximity amount [delta] c of the ceramic balls, Here, δ c = δ i + δ o .

【0016】鋼玉の場合の荷重Q’及び接近量δ’は、
いずれもセラミックス玉の1.4 倍となることがわかる。
σmaxiの値を20,40,60,80,100,12
0,140kg/mm2として、セラミックス玉と鋼玉
との荷重−接近量を計算した結果を、図9にプロットし
て示した。一般に軸受の予圧の大きさσmax は100k
g/mm2 であり、そのときのセラミックス玉の接触点
の弾性変形量(接近量)δc は、図9からδc =0.522
μmとなり、相当小さい値である。
The load Q 'and the approach amount δ' for a steel ball are
It can be seen that in each case, it is 1.4 times that of ceramic balls.
The values of σ maxi are 20, 40, 60, 80, 100, 12
FIG. 9 plots the result of calculating the load-approach amount between the ceramic ball and the steel ball with 0,140 kg / mm 2 . Generally, the magnitude of the bearing preload σ max is 100k
g / mm 2 , and the elastic deformation amount (approach amount) δ c of the contact point of the ceramic ball at that time is δ c = 0.522 from FIG.
μm, which is a considerably small value.

【0017】以下、軸受予圧に対する温度差の影響を、
セラミックス玉と鋼玉との場合について比較検討する。
鋼材とセラミックス材との線膨張係数の差ΔAは、 ΔA=11.8×10-6/℃( 鋼)−3.2 ×10-6/℃( セ)=
8.6 ×10-6/℃ 玉と内輪軌道面との接触剛性はその最大接触応力σmaxi
に比例し、接触点の弾性変形量δc が0.2μm以下で
は急激に接触剛性の値は小さくなる。そこでいま、鋼と
セラミックスとの弾性変形量(接近量)の差Δδc =0.
2 μmに相当する温度変化ΔTの値を、玉径d=2mm
とした場合について計算すると ΔT=Δδc /ΔA・玉径=0.2 /(8.6 ×10-6×2×
103 )=11.6(℃) になる。したがって、上記の一般的なσmax =100k
g/mm2 におけるセラミックス玉の弾性変形量δc
0.522 μm(図2参照)の値は30.3℃の温度差に相当す
る。つまり、セラミックス玉では、予圧設定時と軸受使
用時との温度差が30.3℃に達したとき予圧が無くな
りσmaxi=0となって予圧抜け現象が生じる。
Hereinafter, the effect of the temperature difference on the bearing preload will be described.
A comparison is made between the case of ceramic balls and the case of steel balls.
The difference ΔA of the coefficient of linear expansion between the steel material and the ceramic material is ΔA = 11.8 × 10 −6 / ° C (steel) −3.2 × 10 −6 / ° C (° C) =
8.6 × 10 -6 / ℃ The contact rigidity between the ball and the inner ring raceway surface is the maximum contact stress σ maxi
When the amount of elastic deformation δ c at the contact point is 0.2 μm or less, the value of the contact stiffness rapidly decreases. Therefore, now, the difference Δδ c between the steel and ceramics in the amount of elastic deformation (approach) is 0.
The value of the temperature change ΔT corresponding to 2 μm is calculated as the ball diameter d = 2 mm
Calculating for the case where ΔT = Δδ c /ΔA·Diameter=0.2/(8.6×10 −6 × 2 ×
10 3 ) = 11.6 (℃). Therefore, the above general σ max = 100k
g / mm 2 elastic deformation amount of ceramic ball δ c =
A value of 0.522 μm (see FIG. 2) corresponds to a temperature difference of 30.3 ° C. That is, when the temperature difference between the preload setting and the use of the bearing reaches 30.3 ° C., the preload disappears, and σ maxi = 0, so that the preload release phenomenon occurs.

【0018】セラミックス製玉と鋼製内外輪の組合せで
は、温度差ΔTにより玉径dのみが変化する。その変化
量Δdは、 Δd=ΔA×ΔT×d=8.6 ×10-6×ΔT×d …(10) 例えば、d=2mmで最大接触応力σmaxi=100kg
/mm2 とすると、このときのセラミックス玉の弾性変
形量δc =0.52μmであり、 (イ)組立時温度20℃、使用時温度80℃とするとΔ
T=60℃となり、 Δd=8.6 ×10-6×60×2.0 ×103 μm=−1.032 μ
m 予圧抜けが生じる条件は寸法差Δ=δc +Δd<0であ
るから、この場合は予圧が抜ける。
In the combination of ceramic balls and steel inner and outer rings, only the ball diameter d changes due to the temperature difference ΔT. The change amount Δd is as follows: Δd = ΔA × ΔT × d = 8.6 × 10 −6 × ΔT × d (10) For example, when d = 2 mm, the maximum contact stress σ maxi = 100 kg
/ Mm 2 , the elastic deformation amount δ c of the ceramic ball at this time is δ c = 0.52 μm. (A) When the assembling temperature is 20 ° C. and the operating temperature is 80 ° C., Δ
T = 60 ° C, Δd = 8.6 × 10 -6 × 60 × 2.0 × 10 3 μm = -1.032 μ
m The preload loss condition is a dimensional difference Δ = δ c + Δd <0. In this case, the preload is released.

【0019】(ロ)組立時温度6 0℃、使用時温度80
℃とするとΔT=2 0℃となり、 Δd=8.6 ×10-6×20×2.0 ×103 μm=−0.344 μ
m の寸法差がつくことになる。この場合は、Δ=0.18μm
であるから予圧は抜けない。しかし、図9からセラミッ
クス玉の弾性変形量δc =0.18μmのときの最大接触応
力σmaxi≒60kg/mm2 であるから、剛性は最初の
σmax =100kg/mm2 の時の剛性値に対し40%
減少したことになる。
(B) Assembling temperature 60 ° C., operating temperature 80
° C, ΔT = 20 ° C, Δd = 8.6 × 10 -6 × 20 × 2.0 × 10 3 μm = -0.344 μ
There will be a dimensional difference of m. In this case, Δ = 0.18 μm
Therefore, the preload does not come off. However, from FIG. 9, since the maximum contact stress σ maxi max 60 kg / mm 2 when the amount of elastic deformation δ c = 0.18 μm of the ceramic ball is, the rigidity is the rigidity value when the initial σ max = 100 kg / mm 2. 40%
This means that it has decreased.

【0020】(ハ)組立時温度6 0℃、これを輸送する
時の温度が20〜0℃と低下した場合は、温度変化ΔT
=−40〜−60℃となり、Δd=0.69〜1.0 μmにな
るからΔ=δc +Δd=1.21〜1.52μmと、予圧が増加
する方向になる。Δ=δc とおいて最大接触応力σmaxi
を求めてみる。(8)式より、セラミックス玉の弾性変
形量δc は δc =δi +δo =(8.05×10-4+8.43×10-43 √Q2 =16.48 ×10-42/3 よって Q1/3 =√(δc ・104 /16.48 )=24.633√δc 同じく(8)式より、 σmaxi=1.78×102 3 √Q =1.78×102 ×24.633√δc =43.85 ×102 √δc …(11) すなわち、 δc =1.21×10-3mmではσmaxi=152.5 kg/mm2 δc =1.52×10-3mmではσmaxi=171 kg/mm2
あり、σmaxi=100 kg/mm2 に対して、温度が組立
時より下がると予圧力が増大して接触圧が大となる。
(C) When the temperature at the time of assembling is lowered to 60 ° C. and the temperature at the time of transportation is lowered to 20 to 0 ° C., the temperature change ΔT
= −40 ° C. to −60 ° C. and Δd = 0.69 to 1.0 μm, so that Δ = δ c + Δd = 1.21 to 1.52 μm, and the preload increases. Maximum contact stress σ maxi for Δ = δ c
Try to find. From the equation (8), the elastic deformation amount δ c of the ceramic ball is δ c = δ i + δ o = (8.05 × 10 −4 + 8.43 × 10 −4 ) 3 √Q 2 = 16.48 × 10 −4 Q 2 / 3 Thus Q 1/3 = √ (δ c · 10 4 /16.48) = 24.633√δ c than similarly (8), σ maxi = 1.78 × 10 2 3 √Q = 1.78 × 10 2 × 24.633√δ c = 43.85 × 10 2 √δ c (11) That is, when δ c = 1.21 × 10 -3 mm, σ maxi = 152.5 kg / mm 2 When δ c = 1.52 × 10 -3 mm, σ maxi = 171 kg / mm 2 Yes , for σ maxi = 100 kg / mm 2 , if the temperature is lower than during assembly, the preload increases and the contact pressure increases.

【0021】以上の試算から明らかなように、セラミッ
クスと鋼との線膨張率αの差が予圧の増減をきたし、軸
受使用温度が組立温度より上がると予圧抜け、下がると
予圧力の増大をきたす。このように軸受剛性が変化する
と、例えばHDDスピンドルモータの固有振動数が変化
し、玉軸受の持つ玉,内外輪転動面のそれぞれの幾何学
的誤差成分の山数の組合せにより発生する特定周波数振
動に一致することによる振動共振の可能性が大きくな
る。しかも、回転の始動時から温度が安定するまでの時
間的変化を考えると、必然的に共振が出現することにな
る。
As is clear from the above calculation, the difference in the coefficient of linear expansion α between the ceramics and the steel causes an increase or decrease in the preload. When the bearing operating temperature rises above the assembling temperature, the preload drops, and when it falls, the preload increases. . When the bearing rigidity changes in this way, for example, the natural frequency of the HDD spindle motor changes, and a specific frequency vibration generated by a combination of the number of peaks of the geometric error components of the ball of the ball bearing and the inner and outer ring rolling surfaces. , The possibility of vibration resonance increases. In addition, considering the temporal change from the start of rotation to the temperature stabilization, resonance will inevitably appear.

【0022】そこで、本発明は、このような従来の問題
点に着目してなされたものであり、フレッチング磨耗防
止と予圧抜け防止の両方を同時に可能とする玉軸受を提
供することを目的とする。
Accordingly, the present invention has been made in view of such conventional problems, and has as its object to provide a ball bearing which can simultaneously prevent both fretting wear and preload loss. .

【0023】[0023]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る本発明は、玉軸受の玉が、当該玉
軸受の軌道輪と略同じ線膨張係数を持つ金属材料からな
る金属ボールの表面にセラミックス材をコーティングし
てなることを特徴とする。この発明の玉軸受の玉は、そ
の表面がセラミックス材でコーティングしてあるから、
表面硬度,機械的強度,化学的安定性に優れ、セラミッ
クス製玉と同様の耐フレッチング特性を有し、しかも玉
の本体は鋼などの金属製であるから線膨張係数が内外輪
と同じ値で、軸受全体の温度上昇に対し接触部の最大応
力変化が発生しない。従って使用時に温度上昇しても、
軸受剛性の低下や予圧抜けという現象は発現しない。
To achieve the above object, according to the present invention, a ball of a ball bearing is made of a metal material having substantially the same linear expansion coefficient as the race of the ball bearing. It is characterized in that the surface of a metal ball is coated with a ceramic material. Since the surface of the ball of the ball bearing of the present invention is coated with a ceramic material,
It has excellent surface hardness, mechanical strength, and chemical stability, and has the same fretting resistance as ceramic balls. Moreover, since the ball body is made of metal such as steel, it has the same linear expansion coefficient as the inner and outer rings. In addition, the maximum stress change in the contact portion does not occur with respect to the temperature rise of the entire bearing. Therefore, even if the temperature rises during use,
Phenomena such as a decrease in bearing rigidity and loss of preload do not occur.

【0024】また、温度変化の過渡現象に対しても、セ
ラミックス製玉より縦弾性係数が小さく、熱伝導度も大
であるから有利である。
In addition, it is advantageous for a transient phenomenon of a temperature change because the ceramic ball has a smaller longitudinal elastic modulus and a higher thermal conductivity than a ceramic ball.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。実施形態1: 本発明の第1の実施形態として、HDD用
玉軸受(B5−39)の転動体に用いる直径2mmの表
面被覆球体(玉)をとり上げる。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 As a first embodiment of the present invention, a surface-coated sphere (ball) having a diameter of 2 mm used as a rolling element of a ball bearing (B5-39) for HDD will be described.

【0026】その成膜工程の概要を述べると、 熱処理後に研磨仕上げして最終仕上げの直前の精度と
した直径2mmの鋼球の表面に、PVD法によりTiN
を所定の処理温度でコーティング処理する。 その後、真空炉にて焼入れ,焼戻し処理を行って、前
記コーティング処理温度による硬度低下を回復させる。
An outline of the film forming process is as follows. The surface of a steel ball having a diameter of 2 mm, which was polished after heat treatment and had an accuracy just before final finishing, was coated with TiN by PVD.
At a predetermined processing temperature. Thereafter, quenching and tempering are performed in a vacuum furnace to recover the hardness decrease due to the coating temperature.

【0027】次いで、コーティング膜厚さ0.2〜
2.5μmになるまでダイヤモンドラップ加工すること
により、熱処理変形を取り除き、表面粗さ,ウエービネ
ス,真円度,寸法精度を所定の精度に整える。 なお、上記〜の工程は、被膜強度を強くするため
に、ワークの鋼球を200〜600℃という比較的高温
の範囲で適宜に選択した温度でPVD処理する高温成膜
の場合である。工程省略してコストダウンを図るとき
は、ワークの鋼球を160℃という低温でPVD処理
し、その後の熱処理を省いてから直接の工程に進
む。
Next, a coating film thickness of 0.2 to
By performing diamond wrap processing until the thickness becomes 2.5 μm, heat treatment deformation is removed, and surface roughness, waviness, roundness, and dimensional accuracy are adjusted to predetermined accuracy. The above-mentioned steps (1) to (4) are for high-temperature film formation in which steel balls of a workpiece are PVD-treated at a temperature appropriately selected within a relatively high temperature range of 200 to 600 ° C. in order to increase the film strength. In order to reduce the cost by omitting the process, the steel ball of the work is subjected to PVD processing at a low temperature of 160 ° C., and the subsequent heat treatment is omitted before proceeding to the direct process.

【0028】この実施形態1では、160℃という低温
PVD処理を行った。 (1)PVD処理工程の例 図1に示すようなHCD方式のPVD装置を用いる。こ
の装置の上蓋1を開けて、チャンバ2内に、ワークであ
る鋼球Wを多数個配列する。 (イ)チャンバ内を排気し高真空にする(10-10 〜1
-13 Torr)。
In the first embodiment, a low-temperature PVD process at 160 ° C. was performed. (1) Example of PVD Processing Step An HCD type PVD apparatus as shown in FIG. 1 is used. The upper lid 1 of the apparatus is opened, and a large number of steel balls W, which are works, are arranged in the chamber 2. (A) The inside of the chamber is evacuated to a high vacuum (10 -10 to 1)
0 -13 Torr).

【0029】(ロ)成膜用金属母材3であるTiをるつ
ぼ4内に装着する。 (ハ)その成膜用金属母材3を電子ビーム銃5により加
熱溶融して蒸発させる。 (ニ)反応ガスのN2 をキャリアガスのArと共にチャ
ンバ2内に導入し、チャンバ内を10-3〜10-4Tor
rに調整する。
(B) Ti, which is a metal base material 3 for film formation, is mounted in the crucible 4. (C) The metal base material 3 for film formation is heated and melted by the electron beam gun 5 and evaporated. (D) The reaction gas N 2 is introduced into the chamber 2 together with the carrier gas Ar, and the inside of the chamber is set to 10 −3 to 10 −4 Torr.
Adjust to r.

【0030】(ホ)プラズマ電子銃6と成膜用金属母材
3との間にグロー放電を行い、Tiをイオン化しプラズ
マ状態にしてワークWの表面にTiNの膜を生成させ
る。このときの反応は 2Ti+N2 →2TiN (なお、TiCを生成するときは、N2 に代えてC2
2 を導入し、2Ti+C2 2 →2TiC+H2 とする
ことができる。) (ヘ)この時、ワークWと成膜用金属母材3との間に
は、数100〜数1000Vの電位差を選択する。
(E) Glow discharge is performed between the plasma electron gun 6 and the metal base material 3 for film formation to ionize Ti to form a plasma state, thereby forming a TiN film on the surface of the work W. The reaction at this time is 2Ti + N 2 → 2TiN (When TiC is formed, C 2 H is used instead of N 2.
2 can be introduced to make 2Ti + C 2 H 2 → 2TiC + H 2 . (F) At this time, a potential difference of several hundreds to several thousand volts is selected between the workpiece W and the metal base material 3 for film formation.

【0031】成膜厚さは、予め成膜速度(概ね数〜数1
0μm/hr)を正しく求めておき、時間で制御する。
この実施形態1の例では、0.5〜1μm/hrであっ
た。また、ワークWは予め100℃以上に予熱しておく
のが望ましい。この実施形態例では、PVD成膜時のワ
ークWの温度は160℃を選択したが、200〜600
℃の処理温度で適宜に選択できる。先にも述べたよう
に、工程省略によるコストダウンを図るときは低温成膜
が、被膜強度を強くしたい時は高温成膜が望ましい。 (2)フレッチング評価試験 上記の低温PVD処理の工程を経て膜厚2.5μmのT
iN被覆に成膜した直径2mmの表面被覆球体を、膜厚
2.0μmになるまでダイヤモンドラップ加工し、寸法
精度を整えたものを転動体として、HDD装置のスピン
ドルモータ用の玉軸受(B5−39)を4個組み立て
た。これを試験体として図2に示す試験装置によりフレ
ッチング耐久試験を行った。
The film thickness is determined in advance by the film forming speed (approximately
0 μm / hr) is correctly obtained and controlled by time.
In the example of the first embodiment, it was 0.5 to 1 μm / hr. It is desirable that the work W is preheated to 100 ° C. or higher in advance. In this embodiment, the temperature of the work W at the time of PVD film formation is selected to be 160 ° C.
It can be selected as appropriate at a processing temperature of ° C. As described above, low-temperature film formation is desirable when cost is to be reduced by omitting steps, and high-temperature film formation is desirable when it is desired to increase film strength. (2) Fretting evaluation test Through the above low temperature PVD process, a 2.5 μm thick T
A 2 mm diameter surface-coated sphere formed on an iN coating is diamond-wrapped to a film thickness of 2.0 μm, and a ball bearing (B5- 39) were assembled. Using this as a test body, a fretting durability test was performed using a test apparatus shown in FIG.

【0032】図2において、10はワッシャと予圧バネ
からなる軸方向付勢手段で、軸11に固定されている。
軸11は回転止め12で固定されている。下部をサポー
ト軸受14で支持したハウジング16はACサーボモー
タ17に連結されており、設定した角度,回数で揺動回
転駆動される。20は4個の試験軸受で、転動体20A
として上記の表面被覆球体が組み込まれている。各試験
軸受20は、その外輪20−1をハウジング16の内径
に嵌合するとともに内輪20−2を軸11に通し、軸1
1とは別体のスリーブ21A,21Bを交互に重ねて装
着され、軸,内輪は回転せず、ハウジング,外輪が回転
可能に支持される。軸方向付勢手段10の皿バネ22で
スリーブ21A,21Bが軸方向に押圧されて、試験軸
受20の内輪20−2,外輪20−1,転動体20Aに
予圧(Fa)が加えられる。
In FIG. 2, reference numeral 10 denotes an axial biasing means comprising a washer and a preload spring, which is fixed to the shaft 11.
The shaft 11 is fixed by a rotation stopper 12. A housing 16 whose lower part is supported by a support bearing 14 is connected to an AC servomotor 17 and is driven to swing and rotate at a set angle and number of times. Reference numeral 20 denotes four test bearings.
The above-mentioned surface-coated sphere is incorporated. In each test bearing 20, the outer ring 20-1 is fitted to the inner diameter of the housing 16 and the inner ring 20-2 is passed through the shaft 11, and
The sleeves 21A and 21B, which are separate from the sleeve 1, are alternately mounted on each other. The shaft and the inner ring do not rotate, and the housing and the outer ring are rotatably supported. The sleeves 21A and 21B are pressed in the axial direction by the disc spring 22 of the axial biasing means 10, and a preload (Fa) is applied to the inner ring 20-2, the outer ring 20-1, and the rolling element 20A of the test bearing 20.

【0033】試験条件は次のように設定した。 試験軸受 :B5−39 周波数 :27Hz 揺動角度 :2° 荷重Fa :14.7N 揺動回数 :1×105 回 グリース量:12mg(NS7) 以上の条件で試験を行った後、4個の試験軸受20を取
り出して、その平均の軸受音響値を求め、その値を転動
体20Aである表面被覆球体の被膜厚さとの関係で整理
した。 (3)フレッチング評価結果 図3に、フレッチング試験にかける前の音響性能db
(マイクロホン音圧計による)と被膜厚さとの関係を示
す。
The test conditions were set as follows. Test bearing: B5-39 Frequency: 27 Hz Swing angle: 2 ° Load Fa: 14.7 N Swing frequency: 1 × 10 5 times Grease amount: 12 mg (NS7) After the test under the above conditions, 4 The test bearing 20 was taken out, its average bearing acoustic value was determined, and the value was arranged in relation to the coating thickness of the surface-coated sphere as the rolling element 20A. (3) Evaluation result of fretting FIG. 3 shows the acoustic performance db before the fretting test.
4 shows the relationship between the thickness (based on a microphone sound pressure gauge) and the coating thickness.

【0034】図4に、フレッチング試験後の音響性能d
bと被膜厚さとの関係を示す。図3,図4とも、縦軸の
音響性能は、試験前の被膜厚さ2.0μmの試験軸受
(B5−39)の音圧(db)を1.0とした比で示し
た。図3に示すように、ダイヤモンドラップ加工済の完
成被膜厚さが0.2μm未満では、不均一成膜となって
ムラが生じ、表面粗さ,真円度,寸法精度が不十分のた
め音響性能がバラツキ且つその値が悪くなっている。ま
た、被膜厚さとコストとの関係については、時間との関
係で正の比例相関があるものの、膜厚2.5μmを越え
るあたりから比例関係がくずれて成膜速度がやや低下し
てくることから、コストの立ち上がりがみられる。この
ことから、転動体として完成された表面被覆球体の被膜
厚さは0.2〜2.5μmの範囲が、音響性能上及びコ
ストの点から望ましいといえる。
FIG. 4 shows the acoustic performance d after the fretting test.
The relation between b and the coating thickness is shown. 3 and 4, the acoustic performance on the vertical axis is represented by a ratio where the sound pressure (db) of the test bearing (B5-39) having a coating thickness of 2.0 μm before the test is set to 1.0. As shown in FIG. 3, when the completed film thickness after diamond wrapping is less than 0.2 μm, the film becomes uneven and unevenness occurs, and the surface roughness, roundness, and dimensional accuracy are insufficient. The performance varies and the value is poor. In addition, although the relationship between the film thickness and the cost has a positive proportional correlation with the time, the proportional relationship is broken from around a film thickness of more than 2.5 μm, and the deposition rate is slightly reduced. , Rising costs. From this, it can be said that the coating thickness of the surface-coated sphere completed as a rolling element is preferably in the range of 0.2 to 2.5 μm from the viewpoint of acoustic performance and cost.

【0035】なお、このフレッチング評価試験における
PVD処理において、処理温度400℃の高温成膜工程
を選択した場合、その後の真空焼入れ,焼戻し後に球体
表面に形成されたTiNの被膜に、熱き裂と思われるき
裂が発生するものもあることが確認された。この点から
も、成膜厚さは2.5μm以下にしておく必要がある。
また、音響性能の面からみると、図3から明らかなよう
に、膜厚が0.2μm以上で安定した性能が得られてお
り、下限を0.2μmにすることが望ましいといえる。
In the PVD process in the fretting evaluation test, when a high-temperature film-forming step at a processing temperature of 400 ° C. is selected, it is considered that the TiN film formed on the sphere surface after the vacuum quenching and tempering is considered to be a thermal crack. It was confirmed that some cracks occurred. From this point as well, it is necessary to keep the film thickness to 2.5 μm or less.
In addition, from the viewpoint of acoustic performance, as is apparent from FIG. 3, stable performance is obtained when the film thickness is 0.2 μm or more, and it can be said that the lower limit is desirably 0.2 μm.

【0036】図4には、フレッチング試験にかけた後の
音響性能dbと被膜厚さとの関係を示した(×印)。こ
の揺動試験後の音響特性においても、完成球体被膜厚さ
0.2μm未満では顕著な音響劣化がみられる。また、
膜厚2.5μmを越えると、被膜の一部が疲労剥離して
損傷し、被膜の劣化による音響性能の低下がみられる。
このことから、図3の場合と同様に、被膜厚さは0.2
〜2.5μmの範囲が耐フレッチングに優れていること
がわかる。実施形態2: 本発明の第2の実施形態として、HDD用
玉軸受(B5−39)の転動体に用いる直径2mmの鋼
球表面に、400℃でPVD処理してTiN被膜を成膜
した場合について説明する。
FIG. 4 shows the relationship between the acoustic performance db and the film thickness after the fretting test. Regarding the acoustic characteristics after the rocking test, remarkable acoustic degradation is observed when the film thickness of the completed sphere is less than 0.2 μm. Also,
If the film thickness exceeds 2.5 μm, a part of the coating is peeled off and fatigued, and the acoustic performance is deteriorated due to the deterioration of the coating.
Therefore, as in the case of FIG.
It can be seen that the range of 2.5 μm is excellent in fretting resistance. Embodiment 2: As a second embodiment of the present invention, a case where a TiN film is formed by performing PVD processing at 400 ° C. on a surface of a steel ball having a diameter of 2 mm used for a rolling element of an HDD ball bearing (B5-39). Will be described.

【0037】この例のPVD処理工程は、図1に示した
HCD方式のPVD装置を用い、処理温度以外は実施形
態1 と同じ条件下で、膜厚2.5μmのTiN被覆の成
膜を行った。400℃という高温でPVD処理された鋼
球は、前工程の焼入れ,焼戻し時における焼戻し温度よ
り高い温度で加熱されることになり硬度が低下する。そ
こで真空炉内で830℃,30分間の加熱を施し、その
後、焼入れ,焼戻しを行い、母材硬さHRC60〜63
にして前記コーティング処理温度による硬度低下を回復
させた。次いで、コーティング膜厚さ2.0μmになる
までダイヤモンドラップ加工して表面粗さ,真円度,寸
法精度等を所定の精度に整えた。
In the PVD processing step of this example, a 2.5 μm-thick TiN coating was formed using the HCD type PVD apparatus shown in FIG. 1 under the same conditions as in Embodiment 1 except for the processing temperature. Was. The steel ball that has been subjected to PVD processing at a high temperature of 400 ° C. is heated at a temperature higher than the tempering temperature at the time of quenching and tempering in the previous process, and the hardness decreases. Then, heating is performed at 830 ° C. for 30 minutes in a vacuum furnace, and thereafter, quenching and tempering are performed to obtain a base material hardness HRC of 60 to 63.
Thus, the decrease in hardness due to the coating temperature was recovered. Then, the surface roughness, roundness, dimensional accuracy and the like were adjusted to predetermined accuracy by diamond wrapping until the coating film thickness became 2.0 μm.

【0038】この実施形態例では、試験球体の熱処理後
の変形も大きく、したがって加工コストが上昇するが、
処理温度160℃の場合(実施形態1)に比べて被膜材
と試験球体表面との密着性が高くなるため、過酷な使用
条件下では音響寿命の点で有利になる。図4は、被膜厚
さ0.2〜2.5μmの範囲において、160℃の低温
PVD処理(×印)よりも400℃の高温PVD処理
(○印)を行ったものの方が、音響性能のバラツキが少
なく、音響劣化にも優れていることを示している。
In this embodiment, although the deformation of the test sphere after the heat treatment is large, the processing cost is increased.
Since the adhesion between the coating material and the surface of the test sphere is higher than in the case of the treatment temperature of 160 ° C. (Embodiment 1), it is advantageous in terms of acoustic life under severe use conditions. FIG. 4 shows that in the range of the coating thickness of 0.2 to 2.5 μm, the high-temperature PVD treatment at 400 ° C. (marked by ○) was lower than the low-temperature PVD treatment at 160 ° C. (marked with ○). It shows that there is little variation and that it is also excellent in sound degradation.

【0039】なお、上記各実施形態では硬質被膜として
TiN被膜について説明したが、これに限らずTiC,
AlN,TiAlN,ZrN,HfN,CrN,TiC
N,WC,ダイヤモンド,Al2 3 被膜等についても
同様に本発明が適用できる。また、硬質被膜をPVD法
により形成する場合について述べたが、CVD法もこれ
らの成膜法として同様に有効である。
In each of the above embodiments, the TiN film is described as the hard film.
AlN, TiAlN, ZrN, HfN, CrN, TiC
The present invention can be similarly applied to N, WC, diamond, Al 2 O 3 coating and the like. Although the case where the hard coating is formed by the PVD method has been described, the CVD method is similarly effective as these film forming methods.

【0040】また、表面被覆球体の母材材料について
は、2次硬化能を有する各種超硬合金,SKHのような
高速度鋼,SKDのような耐摩不変形用特殊鋼、SUS
440Cのようなマルテンサイト系ステンレス鋼などで
は、成膜時の高温処理でも硬度低下が生じないので、成
膜時の焼入れ,焼戻し処理を省くことができる。また、
PVD処理前の球体の精度を高精度にしておくことによ
り、成膜後のダイヤモンドラップ加工工程を省略するこ
とができる。
The base material of the surface-coated sphere is made of various cemented carbides having secondary hardening ability, high-speed steel such as SKH, special steel for wear-resistant and non-deformable such as SKD, and SUS.
In the case of martensitic stainless steel such as 440C, the hardness does not decrease even in the high-temperature treatment at the time of film formation, so that the quenching and tempering treatment at the time of film formation can be omitted. Also,
By setting the accuracy of the sphere before the PVD process to be high, the diamond wrapping process after the film formation can be omitted.

【0041】また、ダイヤモンドラップに代えて、B
N,SiCなどの砥粒を使用することもできる。また、
玉径がより小さくなっても、例えばd=1/16インチ
(1.588 1.20mm)として2mm玉と比較しても、玉
径比は0.794 倍、δc は0.809 倍だから、最大接触応力
(予圧変化)もほぼ同様の値である。
Also, instead of diamond wrap, B
Abrasive grains such as N and SiC can also be used. Also,
Also the ball diameter becomes smaller, for example, even when compared with the d = 1/16 inches (1.588 1.20 mm) as 2mm ball, the ball diameter ratio 0.794 times, [delta] c is because 0.809 times, the maximum contact stress (preload change ) Are almost the same value.

【0042】以上のように、特に、耐フレッチング性能
が要求されるスピンドル用転がり軸受やHDD装置のス
イングアーム用軸受の転動体に、膜厚0.2〜2.5μ
mの硬質被膜をPVD法やCVD法によって成膜するこ
とにより、当該軸受の音響特性を向上せしめ、しかも低
コストの要求を満たす転がり軸受を提供することができ
る。
As described above, in particular, the rolling element of the spindle rolling bearing or the swing arm bearing of the HDD device which requires the anti-fretting performance has a thickness of 0.2 to 2.5 μm.
By forming the hard coating of m by the PVD method or the CVD method, it is possible to improve the acoustic characteristics of the bearing and to provide a rolling bearing that satisfies low-cost requirements.

【0043】[0043]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、球体表面に硬質被膜を0.2〜2.5μm
の厚さで成膜して、耐フレッチング性に優れた表面被覆
球体を低コストで提供することができる。また、請求項
2に係る発明によれば、請求項1の表面被覆球体を転動
体として、長寿命で音響特性の良好な低コストの軸受装
置を提供できる。
As described above, according to the first aspect of the present invention, a hard coating is formed on the surface of a sphere in a thickness of 0.2 to 2.5 μm.
To provide a surface-coated sphere having excellent fretting resistance at low cost. According to the second aspect of the present invention, it is possible to provide a low-cost bearing device having a long life and good acoustic characteristics using the surface-coated sphere of the first aspect as a rolling element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】HCD方式のPVD装置の概要図である。FIG. 1 is a schematic view of an HCD type PVD apparatus.

【図2】フレッチング評価試験装置の概要図である。FIG. 2 is a schematic diagram of a fretting evaluation test apparatus.

【図3】球体被覆膜厚とフレッチング試験前の音響性能
及び製造コストとの関係を示した図である。
FIG. 3 is a diagram showing a relationship between a spherical coating film thickness, acoustic performance before a fretting test, and manufacturing cost.

【図4】球体被覆膜厚とフレッチング試験後の音響性能
との関係を、PVD処理温度別に示した図である。
FIG. 4 is a diagram showing a relationship between a sphere coating film thickness and acoustic performance after a fretting test for each PVD processing temperature.

【図5】HDDスピンドルモータの断面図である。FIG. 5 is a sectional view of an HDD spindle motor.

【図6】HDDスイングアームモータの一部切り欠き斜
視図である。
FIG. 6 is a partially cutaway perspective view of the HDD swing arm motor.

【図7】二つの曲面の点接触部の主曲率面と主曲率半径
とを説明する図で、(a)は斜視図、(b)は断面図で
ある。
FIGS. 7A and 7B are diagrams illustrating a main curvature surface and a main curvature radius of a point contact portion between two curved surfaces, where FIG. 7A is a perspective view and FIG. 7B is a cross-sectional view.

【図8】アンギュラ玉軸受の部分断面図である。FIG. 8 is a partial sectional view of an angular contact ball bearing.

【図9】セラミックス玉と鋼玉とにおける荷重Q−接近
量δc の計算値と最大接触応力σmaxiとの相関を示す図
である。
9 is a diagram showing the correlation between the calculated value and the maximum contact stress sigma maxi load Q- approaching amount [delta] c in the ceramic ball and steel ball.

【符号の説明】[Explanation of symbols]

1 玉軸受 1n 内輪 1g 外輪 B 玉 1 Ball bearing 1n Inner ring 1g Outer ring B Ball

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀家 章史 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 Fターム(参考) 3J101 AA02 AA42 AA54 AA62 BA10 DA03 DA05 DA11 EA02 EA05 EA06 EA41 EA42 EA43 EA44 EA78 FA01 FA15 FA35 FA60 GA53 5D109 BB04 BB13 BB16 BB21 BB27 5H605 AA00 AA05 BB05 CC04 DD05 EA19 EB04 EB10 FF00 FF10 GG10  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Arifori Horie 1-5-50 Kugenuma Shinmei, Fujisawa-shi, Kanagawa F-term in NSK Ltd. (reference) 3J101 AA02 AA42 AA54 AA62 BA10 DA03 DA05 DA11 EA02 EA05 EA06 EA41 EA42 EA43 EA44 EA78 FA01 FA15 FA35 FA60 GA53 5D109 BB04 BB13 BB16 BB21 BB27 5H605 AA00 AA05 BB05 CC04 DD05 EA19 EB04 EB10 FF00 FF10 GG10

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 玉軸受の玉が、当該玉軸受の軌道輪と略
同じ線膨張係数を持つ金属材料からなる金属ボールの表
面にセラミックス材をコーティングしてなることを特徴
とするセラミックスコーティングボールを用いた軸受。
1. A ceramic coated ball, wherein the ball of the ball bearing is formed by coating a ceramic material on the surface of a metal ball made of a metal material having substantially the same linear expansion coefficient as the race of the ball bearing. Bearing used.
JP11106935A 1999-02-19 1999-04-14 Bearings using ceramic coated balls Withdrawn JP2000297819A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11106935A JP2000297819A (en) 1999-04-14 1999-04-14 Bearings using ceramic coated balls
US09/549,164 US6357923B1 (en) 1999-02-19 2000-04-13 Rolling bearing and bearing device
DE10018688A DE10018688B4 (en) 1999-04-14 2000-04-14 Bearing device, in particular for a hard disk drive with a spindle motor
DE10066340A DE10066340B4 (en) 1999-04-14 2000-04-14 Bearing for hard disc drive spindle motor, includes metallic balls coated with ceramic material such that linear expansion coefficient of balls is approximately same as bearing washer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11106935A JP2000297819A (en) 1999-04-14 1999-04-14 Bearings using ceramic coated balls

Publications (2)

Publication Number Publication Date
JP2000297819A true JP2000297819A (en) 2000-10-24
JP2000297819A5 JP2000297819A5 (en) 2006-04-06

Family

ID=14446262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11106935A Withdrawn JP2000297819A (en) 1999-02-19 1999-04-14 Bearings using ceramic coated balls

Country Status (2)

Country Link
JP (1) JP2000297819A (en)
DE (1) DE10018688B4 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006050122A1 (en) * 2006-10-25 2008-04-30 Schaeffler Kg Needle bearing has bearing ring, where bearing ring has hardened austenitic steel with total carbon and nitrogen content and needles roll on bearing surface of bearing ring
DE202013002328U1 (en) 2013-03-09 2013-03-26 Wieland-Werke Ag storage system
JP6400300B2 (en) 2013-03-09 2018-10-03 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Bearing system
DE102013004151B4 (en) 2013-03-09 2015-11-26 Wieland-Werke Ag storage system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360077A (en) * 1991-06-07 1992-12-14 Hitachi Ltd Rotary actuator for magnetic disk drives
JPH07127644A (en) * 1993-10-29 1995-05-16 Ntn Corp Corrosion resistant bearing
JPH07282551A (en) * 1994-04-05 1995-10-27 Toshiba Corp Rotary type actuator
US5593234A (en) * 1995-05-16 1997-01-14 Ntn Corporation Bearing assembly with polycrystalline superlattice coating
EP0971141B1 (en) * 1997-04-03 2006-07-19 JTEKT Corporation Rolling bearing
JPH1145145A (en) * 1997-07-25 1999-02-16 Koji Toda Ultrasonic instruction controller
JP3867354B2 (en) * 1997-07-29 2007-01-10 株式会社デンソー Touch switch device
NL1007046C2 (en) * 1997-09-16 1999-03-17 Skf Ind Trading & Dev Coated rolling bearing.
JPH11106935A (en) * 1997-09-30 1999-04-20 Fuji Photo Film Co Ltd Method for producing metal oxide thin film and metal oxide thin film

Also Published As

Publication number Publication date
DE10018688B4 (en) 2006-07-27
DE10018688A1 (en) 2001-08-09

Similar Documents

Publication Publication Date Title
EP0685439B1 (en) Seal or bearing
JPH09133138A (en) Bearing device
US6357923B1 (en) Rolling bearing and bearing device
JP2001193743A (en) Rolling bearing
JP3326912B2 (en) Rolling bearing
US6527447B2 (en) Sliding of polycrystallized glass
JP2000297819A (en) Bearings using ceramic coated balls
JP7373341B2 (en) Rolling bearings and main shaft support devices for wind power generation
JP7079175B2 (en) Multi-row self-aligning roller bearings and spindle support devices for wind power generation equipped with them
JP3519548B2 (en) Rolling bearing and manufacturing method thereof
JP2008169939A (en) Rolling bearing for vacuum pump and vacuum pump using the same
US6733182B2 (en) Rolling bearing
WO2000037813A1 (en) Ball bearing
JPH11218134A (en) Surface-coated sphere and bearing incorporating the same
JPH11236976A (en) Sliding material
JP2008274984A (en) Conveying roller and vacuum conveying apparatus provided with the same
TWI833113B (en) Angled ball bearings
JP3548918B2 (en) Rolling bearing
JPH11344037A (en) Rotary support device for spindle motor of information apparatus
JPH07317752A (en) Dynamical pressure gas bearing
JPH08232964A (en) Rolling part and its manufacturing method
WO2020067334A1 (en) Rolling bearing, and main shaft support device for wind power generation
JPH11100647A (en) Rolling bearing and production thereof
JP2002070844A (en) Bearing mechanism
JPH0919805A (en) Preload adjusting mechanism for spindle bearing of machine tool

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080804

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080919