JP2000282169A - Steel with excellent forgeability and machinability - Google Patents
Steel with excellent forgeability and machinabilityInfo
- Publication number
- JP2000282169A JP2000282169A JP11095733A JP9573399A JP2000282169A JP 2000282169 A JP2000282169 A JP 2000282169A JP 11095733 A JP11095733 A JP 11095733A JP 9573399 A JP9573399 A JP 9573399A JP 2000282169 A JP2000282169 A JP 2000282169A
- Authority
- JP
- Japan
- Prior art keywords
- machinability
- steel
- mns
- effect
- forging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】
【課題】 鍛造加工性と被削性の良い鋼を提供する。
【解決手段】 重量%で、C :0.1〜0.85%、
Si:0.01〜1.5%、Mn:0.05〜2.0
%、P :0.003〜0.2%、S :0.003〜
0.5%を含有し、さらに、Zr:0.0003〜0.
01%、Te:0.003〜0.005%、Ca:0.
0002〜0.005%、Mg:0.0003〜0.0
05%のうち1種または2種以上を含有するとともに、
Al≦0.01%、total−O≦0.02%、to
tal−N≦0.02%に制限し、残部がFeおよび不
可避的不純物よりなる鋼であって、この鋼は、硫化物の
形状を球状化したことにより鍛造加工性に優れ、かつ、
良好な被削性を有している。
(57) [Summary] [PROBLEMS] To provide steel having good forgeability and machinability. SOLUTION: In weight%, C: 0.1 to 0.85%,
Si: 0.01 to 1.5%, Mn: 0.05 to 2.0
%, P: 0.003 to 0.2%, S: 0.003 to
0.5%, and Zr: 0.0003-0.
01%, Te: 0.003-0.005%, Ca: 0.
0002-0.005%, Mg: 0.0003-0.0
While containing one or more of the above 05%,
Al ≦ 0.01%, total-O ≦ 0.02%, to
tal-N ≦ 0.02%, with the balance being Fe and unavoidable impurities. This steel is excellent in forging workability due to spheroidized sulfide shape, and
Has good machinability.
Description
【0001】[0001]
【発明の属する技術分野】本発明は自動車や一般機械な
どに用いられる鋼に関するものであり、特に鍛造性とそ
の後の機械的性質および被削性に優れた鋼に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to steel used in automobiles and general machines, and more particularly to steel excellent in forgeability and subsequent mechanical properties and machinability.
【0002】[0002]
【従来の技術】近年鋼の高強度化が進む反面、加工性が
低下するため、切削能率の低下させない鋼に対するニー
ズが高まっている。被削性を向上させるために被削性向
上元素を添加するのが有効であることが知られている
が、それら被削性向上元素は高温延性を低下させたり、
圧延や鍛造による異方性を大きくするので、鍛造時や加
工後の部品に割れを生じ易くする。たとえばPb、Bi
は被削性を向上し、鍛造への影響も比較的少ないとされ
ているが、高温延性を低減することが知られている。こ
のことは鋳造時や熱間鍛造時に割れの原因となり易い。
またPに関しても被削性を向上させることが知られてい
るが、鋼の融点を下げるために鋳造時に割れを生じ易す
く、添加量に限界がある。また被削性向上効果にもP
b、Bi等と比較すると小さい。SはMnSのような切
削環境下で軟質となる介在物を形成して被削性を向上さ
せるが、MnS寸法はPb等の粒子に比べて大きく、応
力集中元となり易い。特に鍛造や圧延によりMnSは伸
延すると異方性を生じ、特定の方向に極端に弱くなる。
また設計上もその様な異方性を考慮する必要が生じる。
したがってこのような快削元素の異方性を最低限にする
技術が必要になる。Teを添加すれば異方性が解消され
ることが主張されているが(特開昭55−41943号
公報)、Teは鋳造時および圧延、鍛造時に割れを生じ
易い。2. Description of the Related Art In recent years, while the strength of steel has been increasing, the workability has been reduced, and there is a growing need for steel that does not reduce the cutting efficiency. It is known that it is effective to add machinability improving elements in order to improve machinability, but those machinability improving elements reduce high-temperature ductility,
Since the anisotropy due to rolling or forging is increased, cracks are likely to occur in parts during forging or processing. For example, Pb, Bi
Is said to improve machinability and have relatively little effect on forging, but is known to reduce high-temperature ductility. This tends to cause cracking during casting or hot forging.
Although it is known that the machinability of P is also improved, it is liable to crack during casting to lower the melting point of steel, and the amount of P added is limited. In addition, P
It is small compared to b, Bi, etc. S forms an inclusion that becomes soft under a cutting environment such as MnS to improve machinability, but the MnS size is larger than particles such as Pb and tends to be a source of stress concentration. In particular, when MnS is elongated by forging or rolling, anisotropy occurs and becomes extremely weak in a specific direction.
It is also necessary to consider such anisotropy in design.
Therefore, a technique for minimizing the anisotropy of such free-cutting elements is required. It has been argued that the addition of Te eliminates anisotropy (Japanese Patent Application Laid-Open No. 55-41943), but Te tends to crack during casting, rolling and forging.
【0003】そこでこのような熱間延性と被削性を両立
した鋼は、これまでに存在していないのが実状であっ
て、さらなる技術革新が必要である。[0003] Therefore, such steel having both hot ductility and machinability has not existed so far, and further technical innovation is required.
【0004】[0004]
【発明が解決しようとする課題】本発明は上記実状に対
応するため、熱間延性、加工後の異方性および被削性の
良好な鋼を提供することを目的とするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a steel having good hot ductility, anisotropy after working and machinability, in order to meet the above-mentioned situation.
【0005】[0005]
【課題を解決するための手段】被削性を向上させるため
には快削元素Sの添加が有効である。一般に鋼は圧延や
鍛造により加工が加わるが、その際の塑性流動により、
MnSが変形し、機械的性質に異方性を生じる。鍛造時
にはその異方性に起因する割れが実質の鍛造限界を示
す。したがって鍛造性を向上させるには介在物の形状を
極力球形に近くし、異方性を最低限に抑制することが有
効である。また、たとえ介在物が塑性流動によって長く
伸延しても介在物の寸法が小さければ、異方性の影響は
小さくできる。そのため、被削性を向上させるMnSを
微細に分散し、かつその形状を球状に維持するための鋼
材成分とすることが望ましい。In order to improve the machinability, the addition of a free-cutting element S is effective. Generally, steel is processed by rolling or forging, but due to plastic flow at that time,
MnS is deformed, causing anisotropy in mechanical properties. During forging, cracks caused by the anisotropy show a substantial forging limit. Therefore, in order to improve the forgeability, it is effective to make the shape of the inclusion as close to a sphere as possible and to minimize the anisotropy. Further, even if the inclusion is elongated by plastic flow, if the size of the inclusion is small, the influence of the anisotropy can be reduced. Therefore, it is desirable that MnS for improving machinability is finely dispersed and used as a steel component for maintaining its shape in a spherical shape.
【0006】本発明は以上の知見に基づいてなされたも
のであって、その要旨は以下に示すとおりである。[0006] The present invention has been made based on the above findings, and the gist thereof is as follows.
【0007】(1) 重量%で、C :0.1〜0.8
5%、Si:0.01〜1.5%、Mn:0.05〜
2.0%、P :0.003〜0.2%、S :0.0
03〜0.5%を含有し、さらに、Zr:0.0003
〜0.01%、Te:0.003〜0.005%、C
a:0.0002〜0.005%、Mg:0.0003
〜0.005%のうち1種または2種以上を含有すると
ともに、Al≦0.01%、total−O≦0.02
%、total−N≦0.02%に制限し、残部がFe
および不可避的不純物よりなることを特徴とする鍛造性
と被削性に優れる鋼。(1) In weight%, C: 0.1 to 0.8
5%, Si: 0.01 to 1.5%, Mn: 0.05 to
2.0%, P: 0.003 to 0.2%, S: 0.0
And Zr: 0.0003%.
To 0.01%, Te: 0.003 to 0.005%, C
a: 0.0002 to 0.005%, Mg: 0.0003
≦ 0.005%, Al ≦ 0.01%, total-O ≦ 0.02
%, Total-N ≦ 0.02%, and the balance is Fe
A steel excellent in forgeability and machinability characterized by being composed of unavoidable impurities.
【0008】(2) 重量%で、C :0.1〜0.8
5%、Si:0.01〜1.5%、Mn:0.05〜
2.0%、P :0.003〜0.2%、S :0.0
03〜0.5%を含有し、さらに、Zr:0.0003
〜0.01%、Te:0.003〜0.005%、C
a:0.0002〜0.005%、Mg:0.0003
〜0.005%のうち1種または2種以上を含有すると
ともに、Al≦0.01%、total−O≦0.02
%、total−N≦0.02%に制限し、さらに、C
r:0.01〜2.0%、Ni:0.05〜2.0%、
Mo:0.05〜1.0%、B :0.0005〜0.
005%のうち1種または2種以上を含み、残部がFe
および不可避的不純物よりなることを特徴とする鍛造性
と被削性に優れる鋼。(2) C: 0.1-0.8% by weight
5%, Si: 0.01 to 1.5%, Mn: 0.05 to
2.0%, P: 0.003 to 0.2%, S: 0.0
And Zr: 0.0003%.
To 0.01%, Te: 0.003 to 0.005%, C
a: 0.0002 to 0.005%, Mg: 0.0003
≦ 0.005%, Al ≦ 0.01%, total-O ≦ 0.02
%, Total-N ≦ 0.02%, and C
r: 0.01 to 2.0%, Ni: 0.05 to 2.0%,
Mo: 0.05 to 1.0%, B: 0.0005 to 0.
005%, one or more of which contain Fe,
A steel excellent in forgeability and machinability characterized by being composed of unavoidable impurities.
【0009】(3) 上記(1)または上記(2)に記
載の鋼が、さらに、重量%で、V :0.05〜1.0
%、Nb:0.005〜0.2%、Ti:0.005〜
0.1%のうち1種または2種以上を含むことを特徴と
する鍛造性と被削性に優れる鋼。(3) The steel according to the above (1) or (2) further comprises, by weight%, V: 0.05 to 1.0.
%, Nb: 0.005 to 0.2%, Ti: 0.005 to
A steel excellent in forgeability and machinability, characterized by containing one or more of 0.1%.
【0010】(4) 上記(1)乃至上記(3)のいず
れかに記載の鋼が、さらに、重量%で、Bi:0.05
〜0.5%、Pb:0.01〜0.5%のうち1種また
は2種を含むことを特徴とする鍛造性と被削性に優れる
鋼。(4) The steel according to any one of the above (1) to (3) further contains Bi: 0.05% by weight.
A steel excellent in forgeability and machinability, characterized by containing one or two of Pb: 0.01% to 0.5%.
【0011】[0011]
【発明の実施の形態】本発明の鋼成分の限定理由につい
て説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the steel components of the present invention will be described.
【0012】Cは鋼材の基本強度に大きな影響を及ぼす
元素であり、十分な強度を得るために0.1〜0.85
%とした。0.1%未満では十分な強度を得られず、他
の合金元素をさらに多量に投入せざるを得ず、0.85
%を超えると過共析に近くなり、硬質の炭化物を多く析
出するので被削性を著しく低下させる。C is an element that has a great effect on the basic strength of steel, and is 0.1 to 0.85 in order to obtain a sufficient strength.
%. If it is less than 0.1%, sufficient strength cannot be obtained, and other alloy elements must be added in a larger amount.
%, It becomes close to hypereutectoid and a large amount of hard carbide is precipitated, so that the machinability is remarkably reduced.
【0013】Siは脱酸元素として添加されるが、フェ
ライトの強化や焼戻し軟化抵抗を付与するために添加す
る。本発明においては脱酸元素としても必要である。
0.01%未満ではその効果は認められず、1.5%を
超えると脆化し、高温での変形抵抗も増加するのでこれ
を上限とした。[0013] Si is added as a deoxidizing element, but is added to strengthen ferrite and impart tempering softening resistance. In the present invention, it is also required as a deoxidizing element.
When the content is less than 0.01%, the effect is not recognized. When the content exceeds 1.5%, the material becomes brittle and the deformation resistance at high temperature increases.
【0014】Mnは鋼中硫黄をMnSとして固定・分散
させるために必要であるとともに、マトリックスに固溶
させて焼入れ性の向上や焼入れ後の強度を確保するため
に必要である。その下限値は0.05%で、それ未満で
あるとSがFeSとなり脆くなる。Mn量が大きくなる
と素地の硬さが大きくなり冷間加工性が低下するととも
に、強度や焼入れ性に及ぼす影響も飽和するので、2.
0%を上限とした。Mn is necessary not only for fixing and dispersing sulfur in steel as MnS, but also for forming a solid solution in a matrix to improve hardenability and secure strength after quenching. The lower limit is 0.05%, and if it is less than that, S becomes FeS and becomes brittle. If the amount of Mn increases, the hardness of the base increases, the cold workability decreases, and the effect on strength and hardenability is saturated.
0% was made the upper limit.
【0015】Pは鋼中において素地の硬さが大きくな
り、冷間加工性だけでなく、熱間加工性や鋳造特性が低
下するので、その上限を0.2%にしなければならな
い。一方、被削性に効果がある元素で下限値を0.00
3%とした。[0015] Since the hardness of the base material in steel increases in the steel, and not only the cold workability but also the hot workability and casting properties decrease, the upper limit must be made 0.2%. On the other hand, the lower limit of elements that are effective in machinability is 0.00
3%.
【0016】SはMnと結合してMnS介在物として存
在する。MnSは被削性を向上させるが、伸延したMn
Sは鍛造時の異方性を生じる原因の一つである。異方性
の程度と要求される被削性によって調整されるべきであ
るが、同時に熱間および冷間鍛造における割れの原因と
なり易いので、その上限値を0.5%とした。下限は現
状の工業生産レベルでコストが大幅に上昇しない限界で
ある0.003%とした。S bonds with Mn and exists as MnS inclusions. MnS improves machinability, but MnS
S is one of the causes of anisotropy during forging. It should be adjusted according to the degree of anisotropy and the required machinability, but at the same time, it tends to cause cracks in hot and cold forging, so the upper limit was made 0.5%. The lower limit is set to 0.003%, which is a limit at which the cost does not increase significantly at the current industrial production level.
【0017】次に、Zr、Ca、Mg、Teについての
限定理由を説明する。Next, the reasons for limitation of Zr, Ca, Mg, and Te will be described.
【0018】Zrは脱酸元素であり、酸化物を生成す
る。酸化物はZrO2と考えられZrO2がMnSの析出
核となるので、MnSの析出サイトを増やし、MnSを
均一分散させる。またZrはMnSに固溶して複合硫化
物を生成してその変形能を低下させ、圧延や熱間鍛造し
てもMnS形状の伸延を抑制する働きがある。したがっ
て異方性の低減に有効な元素である。0.0003%未
満ではその効果は顕著ではなく、0.01%以上添加し
ても歩留まりが極端に悪くなるばかりでなく、硬質のZ
rO2やZrSなどを大量に生成し、かえって被削性や
衝撃値や疲労特性などの機械的性質を低下させる。した
がって成分範囲を0.0003〜0.01%と規定し
た。Zr is a deoxidizing element and forms an oxide. Since the oxide is considered to be ZrO 2 and ZrO 2 serves as a nucleus for precipitation of MnS, the number of MnS precipitation sites is increased and MnS is uniformly dispersed. Zr also forms a solid sulfide in MnS to form a complex sulfide, thereby reducing its deformability, and has a function of suppressing the elongation of the MnS shape even in rolling or hot forging. Therefore, it is an element effective for reducing anisotropy. If the content is less than 0.0003%, the effect is not remarkable. Even if 0.01% or more is added, not only the yield is extremely deteriorated, but also the hard Z
Generates a large amount of rO 2 , ZrS, etc., but rather degrades mechanical properties such as machinability, impact value and fatigue properties. Therefore, the component range was defined as 0.0003 to 0.01%.
【0019】Caは脱酸元素であり、軟質酸化物を生成
し、被削性を向上させるだけでなく、MnSに固溶して
その変形能を低下させ、圧延や熱間鍛造してもMnS形
状の伸延を抑制する働きがある。したがって異方性の低
減に有効な元素である。0.0002%未満ではその効
果は顕著ではなく、0.005%以上添加しても歩留ま
りが極端に悪くなるばかりでなく、硬質のCaOを大量
に生成し、かえって被削性を低下させる。したがって成
分範囲を0.0002〜0.005%と規定した。Ca is a deoxidizing element, which forms a soft oxide and not only improves the machinability, but also dissolves in MnS to lower its deformability, so that MnS can be formed even by rolling or hot forging. It has the function of suppressing shape elongation. Therefore, it is an element effective for reducing anisotropy. If the content is less than 0.0002%, the effect is not remarkable. Even if 0.005% or more is added, not only the yield is extremely deteriorated, but also a large amount of hard CaO is generated, and the machinability is rather reduced. Therefore, the component range was defined as 0.0002 to 0.005%.
【0020】Mgは脱酸元素であり、酸化物を生成す
る。酸化物はMnSの析出核になりMnSの微細均一分
散に効果がある。したがって異方性の低減に有効な元素
である。0.0003%未満ではその効果は顕著ではな
く、0.005%以上添加しても歩留まりが極端に悪く
なるばかりで効果は飽和する。したがって成分範囲を
0.0003〜0.005%と規定した。Mg is a deoxidizing element and forms an oxide. The oxide serves as a precipitation nucleus of MnS, and is effective in fine and uniform dispersion of MnS. Therefore, it is an element effective for reducing anisotropy. If the content is less than 0.0003%, the effect is not remarkable. Even if 0.005% or more is added, the yield is extremely deteriorated and the effect is saturated. Therefore, the component range was defined as 0.0003 to 0.005%.
【0021】Teは被削性向上元素である。またMnT
eを生成したり、MnSと共存することでMnSの変形
能を低下させてMnS形状の伸延を抑制する働きがあ
る。したがって異方性の低減に有効な元素である。この
効果は0.0003%未満では認められず、0.005
%を超えると効果が飽和するとともに高温延性を低下さ
せ、鋳造時の割れの原因となり易い。Te is a machinability improving element. MnT
By generating e or coexisting with MnS, it has a function of reducing the deformability of MnS and suppressing the elongation of the MnS shape. Therefore, it is an element effective for reducing anisotropy. This effect is not observed at less than 0.0003%,
%, The effect is saturated and the high-temperature ductility is reduced, which tends to cause cracking during casting.
【0022】Zr、Caは酸化物、硫化物、窒化物など
さまざまな介在物を生成する。そのような場合、単一元
素の多量添加より、複合添加することでより効果的に硫
化物の析出核および変形能低減を達成でき、硫化物の球
状化を促進できる。すなわちZr、Te、Ca、Mg
は、これらの1種または2種以上を複合させることでそ
れぞれ最小限の添加量で大きな効果を得ることができ
る。Zr and Ca generate various inclusions such as oxides, sulfides and nitrides. In such a case, the nucleation of sulfides and the reduction of deformability can be more effectively achieved by adding them in combination than in the case of adding a large amount of a single element, and spheroidization of sulfides can be promoted. That is, Zr, Te, Ca, Mg
By combining one or two or more of these, a large effect can be obtained with a minimum addition amount.
【0023】Alは脱酸元素で鋼中ではAl2O3を形成
する。Al2O3は硬質なので切削時に工具損傷の原因と
なり、摩耗を促進させる。またAlを添加するとOが少
なくなり、ZrO2が生成しにくい。また微細なZrO2
のを均一分散させるためにもAlを添加しない方が良
い。この影響はZrの添加量や歩留まり、そしてMnS
の分布や形状に大きく影響し、本発明では硬質Al2O3
の抑制とZrO2を微細均一分散させるために0.01
%以下に制限した。このことでZrの添加量を大きく低
減でき、Zr添加の析出核としての効果とMnSとの複
合化効果を大きくすることができる。Al is a deoxidizing element and forms Al 2 O 3 in steel. Since Al 2 O 3 is hard, it causes tool damage during cutting and promotes wear. Further, when Al is added, O decreases, and ZrO 2 is hardly generated. In addition, fine ZrO 2
It is better not to add Al in order to uniformly disperse this. This effect is due to the addition amount of Zr, the yield, and MnS
Greatly affects the distribution and shape of the hard Al 2 O 3
0.01 in order to suppress ZrO 2
%. As a result, the amount of Zr added can be greatly reduced, and the effect of Zr addition as a precipitation nucleus and the effect of compounding with MnS can be increased.
【0024】Oはfreeで存在する場合には冷却時に
気泡となり、ピンホールの原因となる。またSi、A
l、Zr、Ca、Mgなどと結合すると硬質酸化物を生
成するため、制限が必要である。本鋼ではZr、Ca、
Mgの微細分散効果が無くなる0.02%を上限として
制限した。When O is present in a free state, it becomes a bubble during cooling and causes pinholes. Also, Si, A
When combined with l, Zr, Ca, Mg, etc., a hard oxide is generated, so that a restriction is required. In this steel, Zr, Ca,
The upper limit was set to 0.02% at which the fine dispersion effect of Mg was lost.
【0025】Nは固溶Nの場合、鋼を硬化させる。特に
切削においては動的ひずみ時効によって刃先近傍で硬化
し、工具の寿命を低下させる。またTi、Al、Vなど
の窒化物として存在する場合もオーステナイト粒の成長
を抑制するので制限が必要である。特に高温域ではTi
NやZrNを生成する。また窒化物を生成しない場合で
も鋳造途中に気泡を生成し、疵などの原因となる。本発
明ではその弊害が顕著になる0.02%を上限とした。When N is solid solution N, it hardens the steel. In particular, in cutting, hardening occurs near the cutting edge due to dynamic strain aging, and the life of the tool is reduced. Also, when nitrides such as Ti, Al, and V are present, the growth of austenite grains is suppressed, so that a restriction is required. Especially in the high temperature range, Ti
Generate N and ZrN. Even when nitride is not formed, bubbles are generated during casting, which causes flaws and the like. In the present invention, the upper limit is set to 0.02% at which the adverse effect is remarkable.
【0026】次に、Cr、Ni、Mo、Bのうちの1種
または2種以上を含有させることの限定理由を説明す
る。Next, the reason for limiting the use of one or more of Cr, Ni, Mo, and B will be described.
【0027】Crは焼入れ性向上、焼戻し軟化抵抗付与
元素である。そのため高強度化が必要な鋼には添加され
る。その場合、0.01%以上の添加を必要とする。し
かし多量に添加するとCr炭化物を生成し脆化させるた
め、2.0%を上限とした。Cr is an element for improving hardenability and imparting softening resistance to tempering. Therefore, it is added to steels requiring high strength. In that case, 0.01% or more of addition is required. However, when added in a large amount, Cr carbides are formed and embrittled, so the upper limit is 2.0%.
【0028】Niはフェライトを強化し、延性を向上さ
せるとともに焼入れ性向上、耐食性向上にも有効であ
る。0.05%未満ではその効果は認められず、2.0
%を超えて添加しても、機械的性質の点では効果が飽和
するので、これを上限とした。Ni is effective for strengthening ferrite, improving ductility, improving hardenability and improving corrosion resistance. If less than 0.05%, the effect is not recognized, and 2.0%
%, The effect saturates in terms of mechanical properties, so the upper limit was set.
【0029】Moは焼戻し軟化抵抗を付与するととも
に、焼入れ性を向上させる元素である。0.05%未満
ではその効果が認められず、1.0%を超えて添加して
もその効果が飽和しているので、0.05〜1.0%を
添加範囲とした。Mo is an element that imparts temper softening resistance and improves hardenability. If the content is less than 0.05%, the effect is not recognized, and even if added over 1.0%, the effect is saturated. Therefore, the addition range is set to 0.05 to 1.0%.
【0030】Bは固溶している場合は粒界強化や焼入れ
性に効果があり、析出する場合にはBNとして析出する
ので被削性に効果がある。これらの効果は0.0005
%未満では顕著でなく、0.005%を超えて添加して
もその効果が飽和し、BNが多く析出しすぎるとかえって
鋼の機械的性質を損なう。そこで0.0005〜0.0
05%を範囲とした。B has an effect on grain boundary strengthening and hardenability when B is dissolved, and has an effect on machinability since it precipitates as BN when precipitated. These effects are 0.0005
%, It is not remarkable. Even if it is added more than 0.005%, the effect is saturated, and if too much BN is precipitated, the mechanical properties of the steel are impaired. So 0.0005-0.0
The range was 05%.
【0031】次に、V、Nb、Tiのうちの1種または
2種以上を含有させることの限定理由を説明する。Next, the reasons for limiting the inclusion of one or more of V, Nb and Ti will be described.
【0032】Vは炭窒化物を形成し、二次析出硬化によ
り鋼を強化することができる。0.05%以下では高強
度化に効果はなく、1.0%を超えて添加すると多くの
炭窒化物を析出し、かえって機械的性質を損なうので、
これを上限とした。V forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.05%, there is no effect on increasing the strength, and if it exceeds 1.0%, a large amount of carbonitride precipitates, which in turn impairs the mechanical properties.
This was the upper limit.
【0033】Nbも炭窒化物を形成し、二次析出硬化に
より鋼を強化することができる。0.005%以下では
高強度化に効果はなく、0.2%を超えて添加すると多
くの炭窒化物を析出し、かえって機械的性質を損なうの
で、これを上限とした。Nb also forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.005%, there is no effect on increasing the strength, and if it exceeds 0.2%, a large amount of carbonitride precipitates, which impairs the mechanical properties.
【0034】Tiも炭窒化物を形成し、鋼を強化する。
また脱酸元素でもあり、軟質酸化物を形成させることで
被削性を向上させることが可能である。0.005%以
下ではその効果が認められず、0.1%を超えて添加し
てもその効果が飽和する。またTiは高温でも窒化物と
なりオーステナイト粒の成長を抑制する。そこで上限を
0.1%とした。[0034] Ti also forms carbonitrides and strengthens the steel.
It is also a deoxidizing element, and can improve machinability by forming a soft oxide. If the content is less than 0.005%, the effect is not recognized, and even if it exceeds 0.1%, the effect is saturated. Further, Ti becomes a nitride even at a high temperature and suppresses the growth of austenite grains. Therefore, the upper limit is set to 0.1%.
【0035】BiおよびPbは被削性向上に効果のある
元素である。その効果は0.05%以下では認められ
ず、0.5%を超えて添加しても被削性向上効果が飽和
するだけでなく、熱間鍛造特性が低下して疵の原因とな
り易い。したがって、Bi0.05〜0.5%、Pb
0.05〜0.5%の範囲とし、これらの1種または2
種を含有させることとした。Bi and Pb are elements effective in improving machinability. The effect is not recognized at 0.05% or less, and even if added over 0.5%, not only the machinability improving effect is saturated, but also the hot forging property is reduced, which is likely to cause flaws. Therefore, Bi 0.05-0.5%, Pb
In the range of 0.05 to 0.5%, one or two of these
Seeds were included.
【0036】[0036]
【実施例】本発明の効果を実施例によって説明する。EXAMPLES The effects of the present invention will be described with reference to examples.
【0037】表1に示す供試材は2t真空溶解炉で溶製
後、ビレットに分解圧延、さらにφ60mmに圧延し
た。圧延後、熱間加工性評価用熱間据え込み試験片、冷
間加工評価用冷間据え込み試験片を切り出して据え込み
試験を行った。また一部は熱処理として1200℃に加
熱後、放冷して切削試験に供した。The test materials shown in Table 1 were melted in a 2t vacuum melting furnace, decomposed and rolled into billets, and further rolled to φ60 mm. After rolling, a hot upsetting test piece for evaluating hot workability and a cold upsetting test piece for evaluating cold work were cut out and subjected to an upsetting test. A part was heated to 1200 ° C. as a heat treatment, then allowed to cool and subjected to a cutting test.
【0038】ここで鋼中Zrの分析方法であるが、JI
S G 1237−1997付属書3と同様の方法でサ
ンプルを処理した後ICPによって測定した。ただし本
発明での実施例の測定に供したサンプルは2g/鋼種
で、ICPにおける検量線も微量Zrに適するように設
定して測定した。Here, the method for analyzing Zr in steel is described in JI.
The samples were processed in the same manner as in SG 1237-1997 Appendix 3 and then measured by ICP. However, the sample used for the measurement in the examples of the present invention was 2 g / steel type, and the calibration curve in ICP was set so as to be suitable for a trace amount of Zr.
【0039】[0039]
【表1】 [Table 1]
【0040】図1は据え込み試験片の切り出し方向で、
切り出し位置1に示すように、鋼中MnS2が長手方向
になるように熱間据え込み試験片3およびノッチ5を形
成した冷間据え込み試験片4を切り出した。据え込み試
験では図2に示すように荷重6で負荷をかけて試験片が
変形後の試験片7のように変形すると外周部に周方向に
引張応力が生じる。その際、多くの場合、鋼中のMnS
が破壊源となり割れ8を生じる場合が多い。このように
切り出した試験片の据え込み試験により、鍛造時の加工
性を評価できる。FIG. 1 shows the cutting direction of the upsetting test piece.
As shown in the cutting position 1, the hot upsetting test piece 3 and the cold upsetting test piece 4 having the notch 5 formed therein were cut out so that MnS2 in the steel was in the longitudinal direction. In the upsetting test, when a load is applied with a load 6 as shown in FIG. 2 and the test piece is deformed like the deformed test piece 7, a tensile stress is generated in the outer peripheral portion in the circumferential direction. At that time, MnS in steel is often used.
Often becomes a fracture source and cause cracks 8. The workability during forging can be evaluated by the upsetting test of the test piece cut out in this way.
【0041】図3に示すように、熱間における据え込み
試験片はφ20mm×30mmで熱電対を取り付けてあ
り、高周波により1000℃まで加熱し、荷重6により
負荷をかけて3s以内に据え込み鍛造を行った。試験片
は、変形前9から変形後10のように変形する。さまざ
まなひずみで鍛造し、割れの発生するひずみを限界ひず
みとして測定した。ここでひずみとは式(1)で定義さ
れる、いわゆる公称ひずみである。As shown in FIG. 3, the hot upsetting test piece had a φ20 mm × 30 mm thermocouple attached, was heated to 1000 ° C. by high frequency, and was loaded with a load 6 within 3 seconds. Was done. The test piece deforms from 9 before deformation to 10 after deformation. Forging was performed at various strains, and the strain at which cracks occurred was measured as the critical strain. Here, the strain is a so-called nominal strain defined by the equation (1).
【0042】ε=(H0−H)/H0 式(1)Ε = (H 0 −H) / H 0 Equation (1)
【0043】ここでε:ひずみ、H0:変形前の試験片
高さ、H:変形後の試験片高さで図3に示した。Here, FIG. 3 shows ε: strain, H 0 : test piece height before deformation, and H: test piece height after deformation.
【0044】また冷間加工性を評価するために冷間据え
込み試験を行った。図1のように切り出した素材を85
0℃から焼き入れた後、700℃で12hrの球状化焼
鈍した。その後、機械加工で2mmのノッチ付きφ7m
m×14mm冷間据え込み試験片を作成した。ひずみの
定義は式(1)と同様である。In order to evaluate the cold workability, a cold upsetting test was performed. The material cut out as shown in FIG.
After quenching from 0 ° C., spheroidizing annealing was performed at 700 ° C. for 12 hours. After that, φ7m with 2mm notch by machining
An mx14 mm cold upsetting test piece was prepared. The definition of strain is the same as in equation (1).
【0045】さらに被削性評価はドリル穿孔試験で行
い、表2にその切削条件を示す。累積穴深さ1000m
mまで切削可能な最高の切削速度(いわゆるVL100
0)で被削性を評価した。Further, the machinability was evaluated by a drilling test, and Table 2 shows the cutting conditions. Cumulative hole depth 1000m
m (the so-called VL100)
In 0), the machinability was evaluated.
【0046】[0046]
【表2】 [Table 2]
【0047】表1に加工性を評価した実施例を示す。表
1実施例1〜22はS45Cをベースとした鋼でS量を
変化させ、Zr、Te、Ca、Mgのいずれかが添加さ
れている。その比較例として実施例23〜27はZr、
Te、Ca、Mgのいずれも添加していない鋼である。
表1中には熱間鍛造における限界ひずみ、冷間鍛造にお
ける限界ひずみおよび被削性VL1000を示した。熱
間鍛造における限界ひずみに関しては図4に図示した。
これらの比較の結果、S添加量が多くなると限界ひずみ
が小さくなるが、その減少量はZr、Te、Ca、Mg
のいずれかが添加されている場合は小さく、添加しない
場合は大きく減少した。この傾向は冷間鍛造における限
界ひずみでも同様であった。Table 1 shows examples in which the workability was evaluated. Table 1 Examples 1 to 22 are S45C-based steels in which the amount of S is changed, and one of Zr, Te, Ca, and Mg is added. Examples 23 to 27 are Zr as comparative examples.
It is a steel to which none of Te, Ca and Mg is added.
Table 1 shows the critical strain in hot forging, the critical strain in cold forging, and the machinability VL1000. FIG. 4 shows the critical strain in hot forging.
As a result of these comparisons, as the amount of S added increases, the critical strain decreases, but the amount of decrease is Zr, Te, Ca, Mg.
Is small when any one of them is added, and greatly decreases when no one is added. This tendency was the same for the critical strain in cold forging.
【0048】次に表3は、Zr、Te、Ca、Mgの添
加量を変化させた場合の限界ひずみと工具寿命VL10
00の関係を示す。また、表3の実施例および該実施例
とS量がほぼ同程度の表1の実施例に関して、図5にZ
rおよびTeを変化させた場合の限界ひずみ、工具寿命
VL1000、硫化物アスペクト比および硫化物の単位
面積当たりの個数を示す。ZrとTeを複合して添加し
た場合、横軸をZr+Teの値で整理した。図5と同様
の実施例に関して、図6にはCaおよびMgの添加量を
変化させた場合の限界ひずみ、工具寿命VL1000、
硫化物アスペクト比および硫化物の単位面積当たりの個
数を示す。ZrまたはTeと複合させた場合にはそのC
aまたはMg量で整理した。また実施例41はAlを規
定より多く添加し、Zr、Te、Ca、Mgを添加しな
かった比較例である。この結果によるとZr、Te、C
a、Mgを添加しない場合、限界ひずみが小さい。また
規定を超えて添加した場合には限界ひずみまたは工具寿
命VL1000のいずれかが低下する。硫化物が球状化
するにもかかわらず、限界ひずみが低下する傾向にある
のはZr、Te、Ca、MgがMnSの析出物やMnS
との複合硫化物とならず、窒化物や単独の硫化物を形成
するためと考えられている。またAlを添加した場合に
は限界ひずみだけでなく、工具寿命VL1000が他に
比べて極端に低い。Next, Table 3 shows the critical strain and the tool life VL10 when the addition amounts of Zr, Te, Ca, and Mg were changed.
00 is shown. FIG. 5 shows the examples of Table 3 and the examples of Table 1 in which the amount of S is almost the same as the examples.
The critical strain, the tool life VL1000, the sulfide aspect ratio, and the number of sulfides per unit area are shown when r and Te are changed. When Zr and Te were added in combination, the horizontal axis was arranged by the value of Zr + Te. With respect to the embodiment similar to FIG. 5, FIG. 6 shows the critical strain, the tool life VL1000, and the tool life when the addition amounts of Ca and Mg were changed.
The sulfide aspect ratio and the number of sulfides per unit area are shown. When compounded with Zr or Te,
Sorted by a or Mg amount. Example 41 is a comparative example in which more Al was added than specified and Zr, Te, Ca, and Mg were not added. According to this result, Zr, Te, C
When a and Mg are not added, the critical strain is small. In addition, when the amount exceeds the specified range, either the critical strain or the tool life VL1000 decreases. Despite spheroidization of sulfide, the tendency that the critical strain tends to decrease is that Zr, Te, Ca, and Mg are precipitates of MnS or MnS
It is considered to form a nitride or a single sulfide without forming a composite sulfide with the same. When Al is added, not only the critical strain but also the tool life VL1000 is extremely low as compared with the others.
【0049】なお、図4〜6において、図中の添字は、
実施例No.を示し、図中の印の表示は、共通してい
る。In FIGS. 4 to 6, the subscripts in the figures are as follows:
Example No. , And the indications of the marks in the figure are common.
【0050】[0050]
【表3】 [Table 3]
【0051】表4に他の元素への影響を検討した実施例
を示す。その製造方法と熱間加工性および被削性評価方
法は表1に示す実施例と同様である。実施例42〜78
はさまざまな合金元素を添加した場合の熱間限界ひずみ
と被削性を示した。比較例は被削性の差は小さくとも熱
間限界ひずみの点で大きく劣った。また実施例70〜7
5に示すような基本的な強度をC量によって変化させた
場合にも発明例は比較例より優れる。このように本発明
は構造用鋼の範囲に広範に適用することができる。実施
例76〜78はそれぞれtotal−O量とtotal
−N量を発明の範囲外にした比較例である。これらはた
とえZr、Te、Ca、Mg、Al等を規定内に調整し
てもtotal−O量とtotal−N量が異なると熱
間限界ひずみと被削性の両面で劣った。このように本発
明に含まれる実施例は同一のS量で比較した場合、良好
な加工性と被削性を両立していることがわかる。Table 4 shows examples in which the effects on other elements were examined. The manufacturing method and the method for evaluating hot workability and machinability are the same as the examples shown in Table 1. Examples 42 to 78
Showed the hot limit strain and machinability when various alloying elements were added. The comparative example was significantly inferior in terms of hot limit strain even though the difference in machinability was small. Examples 70 to 7
The invention example is also superior to the comparative example when the basic strength as shown in FIG. 5 is changed by the C amount. Thus, the present invention can be widely applied to the range of structural steel. In Examples 76 to 78, the total-O amount and the total
It is a comparative example in which the -N amount was outside the range of the invention. Even if Zr, Te, Ca, Mg, Al, etc. were adjusted within the specified range, if the total-O amount and the total-N amount were different, both the hot limit strain and the machinability were inferior. Thus, it can be seen that the examples included in the present invention have both good workability and machinability when compared at the same S amount.
【0052】[0052]
【表4】 [Table 4]
【0053】[0053]
【発明の効果】本発明は熱間加工性、機械的性質、被削
性を兼ね備えた鋼を供することができる。特に本発明の
技術は熱処理やミクロ組織などの影響を大きく受けず、
硫化物の形状制御を基本としているので、広範な鋼に適
用できる。また加工に関しても熱間鍛造だけでなく、冷
間鍛造に対しても有効で、鍛造加工性、機械的性質、被
削性を必要とする広範囲な鋼に対して有効である。According to the present invention, a steel having both hot workability, mechanical properties and machinability can be provided. In particular, the technology of the present invention is not significantly affected by heat treatment and microstructure,
Since it is based on sulfide shape control, it can be applied to a wide range of steels. The working is effective not only for hot forging but also for cold forging, and is effective for a wide range of steels requiring forging workability, mechanical properties, and machinability.
【図1】鍛造加工性(熱間、冷間)評価用試験片切り出
し位置と試験片形状を説明するための図である。FIG. 1 is a diagram for explaining a test piece cutout position and a test piece shape for forging workability (hot and cold) evaluation.
【図2】据え込み試験での割れ発生位置を説明する図で
ある。FIG. 2 is a diagram illustrating a crack generation position in an upsetting test.
【図3】鍛造加工性評価(据え込み試験)時のひずみの定
義を説明する図である。FIG. 3 is a diagram illustrating the definition of strain during forging processability evaluation (upsetting test).
【図4】表1の実施例に関して熱間鍛造性に及ぼすS量
の影響を示す図である。FIG. 4 is a graph showing the effect of the amount of S on hot forgeability in Examples of Table 1.
【図5】表3の実施例に関して熱間鍛造限界ひずみと工
具寿命VL1000へのZrおよびTeの影響を示す図
である。FIG. 5 is a view showing the influence of Zr and Te on the hot forging limit strain and the tool life VL1000 for the examples in Table 3.
【図6】表3の実施例に関して熱間鍛造限界ひずみと工
具寿命VL1000へのCaおよびMgの影響を示す図
である。FIG. 6 is a diagram showing the influence of Ca and Mg on the hot forging limit strain and the tool life VL1000 for the examples in Table 3.
1 切り出し位置 2 MnS 3 熱間据え込み試験片 4 冷間据え込み試験片 5 ノッチ 6 荷重 7 変形後の試験片 8 割れ 9 変形前 10 変形後 H0 変形前の試験片高さ H 変形後の試験片高さReference Signs List 1 cut-out position 2 MnS 3 hot upsetting test piece 4 cold upsetting test piece 5 notch 6 load 7 deformed test piece 8 crack 9 before deformation 10 after deformation H 0 test piece height before deformation H after deformation Specimen height
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/60 C22C 38/60 (72)発明者 磯部 浩一 室蘭市仲町12番地 新日本製鐵株式会社室 蘭製鐵所内 (72)発明者 福安 憲次 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/60 C22C 38/60 (72) Inventor Koichi Isobe 12 Nakamachi, Muroran Nippon Steel Corporation Room (72) Inventor Kenji Fukuyasu Inside Nippon Steel Corporation 2-6-3 Otemachi, Chiyoda-ku, Tokyo
Claims (4)
Si:0.01〜1.5%、Mn:0.05〜2.0
%、P :0.003〜0.2%、S :0.003〜
0.5%を含有し、さらに、Zr:0.0003〜0.
01%、Te:0.003〜0.005%、Ca:0.
0002〜0.005%、Mg:0.0003〜0.0
05%のうち1種または2種以上を含有するとともに、
Al≦0.01%、total−O≦0.02%、to
tal−N≦0.02%に制限し、残部がFeおよび不
可避的不純物よりなることを特徴とする鍛造性と被削性
に優れる鋼。(1) C: 0.1 to 0.85% by weight,
Si: 0.01 to 1.5%, Mn: 0.05 to 2.0
%, P: 0.003 to 0.2%, S: 0.003 to
0.5%, and Zr: 0.0003-0.
01%, Te: 0.003-0.005%, Ca: 0.
0002-0.005%, Mg: 0.0003-0.0
While containing one or more of the above 05%,
Al ≦ 0.01%, total-O ≦ 0.02%, to
tal-N ≦ 0.02%, the balance being Fe and inevitable impurities, characterized by excellent forgeability and machinability.
Si:0.01〜1.5%、Mn:0.05〜2.0
%、P :0.003〜0.2%、S :0.003〜
0.5%を含有し、さらに、Zr:0.0003〜0.
01%、Te:0.003〜0.005%、Ca:0.
0002〜0.005%、Mg:0.0003〜0.0
05%のうち1種または2種以上を含有するとともに、
Al≦0.01%、total−O≦0.02%、to
tal−N≦0.02%に制限し、さらに、Cr:0.
01〜2.0%、Ni:0.05〜2.0%、Mo:
0.05〜1.0%、B :0.0005〜0.005
%のうち1種または2種以上を含み、残部がFeおよび
不可避的不純物よりなることを特徴とする鍛造性と被削
性に優れる鋼。2. C: 0.1 to 0.85% by weight,
Si: 0.01 to 1.5%, Mn: 0.05 to 2.0
%, P: 0.003 to 0.2%, S: 0.003 to
0.5%, and Zr: 0.0003-0.
01%, Te: 0.003-0.005%, Ca: 0.
0002-0.005%, Mg: 0.0003-0.0
While containing one or more of the above 05%,
Al ≦ 0.01%, total-O ≦ 0.02%, to
tal-N ≦ 0.02%.
01-2.0%, Ni: 0.05-2.0%, Mo:
0.05-1.0%, B: 0.0005-0.005
% Or more, with the balance being Fe and unavoidable impurities, the steel being excellent in forgeability and machinability.
さらに、重量%で、V :0.05〜1.0%、Nb:
0.005〜0.2%、Ti:0.005〜0.1%の
うち1種または2種以上を含むことを特徴とする鍛造性
と被削性に優れる鋼。3. The steel according to claim 1 or 2,
Further, by weight%, V: 0.05 to 1.0%, Nb:
A steel having excellent forgeability and machinability, characterized by containing one or more of 0.005 to 0.2% and 0.005 to 0.1% of Ti.
の鋼が、さらに、重量%で、Bi:0.05〜0.5
%、Pb:0.01〜0.5%のうち1種または2種を
含むことを特徴とする鍛造性と被削性に優れる鋼。4. The steel according to claim 1, further comprising Bi: 0.05 to 0.5% by weight.
%, Pb: steel having excellent forgeability and machinability, characterized by containing one or two of 0.01 to 0.5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09573399A JP3954751B2 (en) | 1999-04-02 | 1999-04-02 | Steel with excellent forgeability and machinability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09573399A JP3954751B2 (en) | 1999-04-02 | 1999-04-02 | Steel with excellent forgeability and machinability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000282169A true JP2000282169A (en) | 2000-10-10 |
JP3954751B2 JP3954751B2 (en) | 2007-08-08 |
Family
ID=14145688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09573399A Expired - Fee Related JP3954751B2 (en) | 1999-04-02 | 1999-04-02 | Steel with excellent forgeability and machinability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3954751B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1184477A1 (en) * | 2000-08-31 | 2002-03-06 | Kabushiki Kaisha Kobe Seiko Sho | Free machining steel for use in machine structure of excellent mechanical characteristics |
JP3270035B2 (en) | 2000-02-02 | 2002-04-02 | 愛知製鋼株式会社 | Lead-free mechanical structural steel with excellent machinability and low strength anisotropy |
JP2002194480A (en) * | 2000-12-21 | 2002-07-10 | Kobe Steel Ltd | Steel having excellent machinability and cold workability and machine parts |
EP1312689A1 (en) * | 2001-11-15 | 2003-05-21 | Sumitomo Metal Industries, Ltd. | Steel for machine structural use |
WO2003064715A1 (en) * | 2002-01-29 | 2003-08-07 | Tanaka Seimitsu Kogyo Co., Ltd. | Bainite type non-refined steel for nitriding, method for production thereof and nitrided product |
WO2004005567A1 (en) * | 2002-07-03 | 2004-01-15 | Mitsubishi Steel Mfg. Co.,Ltd. | Sulfur free cutting steel for machine structural use |
JP2004300502A (en) * | 2003-03-31 | 2004-10-28 | Nippon Steel Corp | Steel manufacturing method |
EP1270757A4 (en) * | 2000-02-10 | 2004-11-10 | Sanyo Special Steel Co Ltd | Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy |
JP2005273000A (en) * | 2004-02-26 | 2005-10-06 | Sanyo Special Steel Co Ltd | Steel for machine structural use having improved machinability |
JP2005350702A (en) * | 2004-06-08 | 2005-12-22 | Sanyo Special Steel Co Ltd | Steel having superior machinability for machine structural use |
RU2433200C2 (en) * | 2008-12-05 | 2011-11-10 | Федеральное Государственное Унитарное Предприятие "Научно-исследовательский и экспериментальный институт автомобильной электроники и электрооборудования" (ФГУП НИИАЭ) | Automatic steel and item made from it |
JP2014019911A (en) * | 2012-07-18 | 2014-02-03 | Kobe Steel Ltd | Bearing steel material and bearing part with excellent rolling fatigue characteristic |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS514934B1 (en) * | 1969-03-26 | 1976-02-16 | ||
JPS60208414A (en) * | 1984-03-31 | 1985-10-21 | Kobe Steel Ltd | Manufacture of directly-hardened hot-forged article |
JPH03285042A (en) * | 1990-03-30 | 1991-12-16 | Sumitomo Metal Ind Ltd | Non-thermal free-cutting steel with excellent high-temperature ductility |
JPH04187742A (en) * | 1990-11-21 | 1992-07-06 | Nippon Steel Corp | Electric resistance welded steel tube for machine structure excellent in machinability |
JPH073386A (en) * | 1993-04-23 | 1995-01-06 | Nippon Steel Corp | Non-heat treated steel for hot forging excellent in fatigue strength and method for manufacturing non-heat treated hot forged product using the steel |
JPH0734189A (en) * | 1993-07-15 | 1995-02-03 | Nippon Steel Corp | High-strength steel bar with excellent machinability |
JPH09310152A (en) * | 1996-05-21 | 1997-12-02 | Kobe Steel Ltd | Non-heat treated steel for hot forging |
JPH10237582A (en) * | 1997-02-27 | 1998-09-08 | Sumitomo Metal Ind Ltd | High-strength, high-toughness free-cut non-heat treated steel |
JPH10265891A (en) * | 1997-03-24 | 1998-10-06 | Sumitomo Metal Ind Ltd | Ferrite / pearlite non-heat treated steel |
JP2000256785A (en) * | 1999-03-09 | 2000-09-19 | Nippon Steel Corp | Steel with excellent machinability and its manufacturing method |
-
1999
- 1999-04-02 JP JP09573399A patent/JP3954751B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS514934B1 (en) * | 1969-03-26 | 1976-02-16 | ||
JPS60208414A (en) * | 1984-03-31 | 1985-10-21 | Kobe Steel Ltd | Manufacture of directly-hardened hot-forged article |
JPH03285042A (en) * | 1990-03-30 | 1991-12-16 | Sumitomo Metal Ind Ltd | Non-thermal free-cutting steel with excellent high-temperature ductility |
JPH04187742A (en) * | 1990-11-21 | 1992-07-06 | Nippon Steel Corp | Electric resistance welded steel tube for machine structure excellent in machinability |
JPH073386A (en) * | 1993-04-23 | 1995-01-06 | Nippon Steel Corp | Non-heat treated steel for hot forging excellent in fatigue strength and method for manufacturing non-heat treated hot forged product using the steel |
JPH0734189A (en) * | 1993-07-15 | 1995-02-03 | Nippon Steel Corp | High-strength steel bar with excellent machinability |
JPH09310152A (en) * | 1996-05-21 | 1997-12-02 | Kobe Steel Ltd | Non-heat treated steel for hot forging |
JPH10237582A (en) * | 1997-02-27 | 1998-09-08 | Sumitomo Metal Ind Ltd | High-strength, high-toughness free-cut non-heat treated steel |
JPH10265891A (en) * | 1997-03-24 | 1998-10-06 | Sumitomo Metal Ind Ltd | Ferrite / pearlite non-heat treated steel |
JP2000256785A (en) * | 1999-03-09 | 2000-09-19 | Nippon Steel Corp | Steel with excellent machinability and its manufacturing method |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3270035B2 (en) | 2000-02-02 | 2002-04-02 | 愛知製鋼株式会社 | Lead-free mechanical structural steel with excellent machinability and low strength anisotropy |
US7445680B2 (en) | 2000-02-10 | 2008-11-04 | Sanyo Special Steel Co., Ltd. | Lead-free steel for machine structural use with excellent machinability and low strength anisotropy |
US7195736B1 (en) | 2000-02-10 | 2007-03-27 | Sanyo Special Steel Co., Ltd. | Lead-free steel for machine structural use with excellent machinability and low strength anisotropy |
EP1270757A4 (en) * | 2000-02-10 | 2004-11-10 | Sanyo Special Steel Co Ltd | Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy |
EP1184477A1 (en) * | 2000-08-31 | 2002-03-06 | Kabushiki Kaisha Kobe Seiko Sho | Free machining steel for use in machine structure of excellent mechanical characteristics |
US6579385B2 (en) | 2000-08-31 | 2003-06-17 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Free machining steel for use in machine structure of excellent mechanical characteristics |
JP2002194480A (en) * | 2000-12-21 | 2002-07-10 | Kobe Steel Ltd | Steel having excellent machinability and cold workability and machine parts |
EP1312689A1 (en) * | 2001-11-15 | 2003-05-21 | Sumitomo Metal Industries, Ltd. | Steel for machine structural use |
US6797231B2 (en) | 2001-11-15 | 2004-09-28 | Sumitomo Metal Industries, Ltd. | Steel for machine structural use |
WO2003064715A1 (en) * | 2002-01-29 | 2003-08-07 | Tanaka Seimitsu Kogyo Co., Ltd. | Bainite type non-refined steel for nitriding, method for production thereof and nitrided product |
US7014812B2 (en) | 2002-07-03 | 2006-03-21 | Mitsubishi Steel Mfg. Co., Ltd. | Sulfur-containing free-cutting steel for machine structural use |
WO2004005567A1 (en) * | 2002-07-03 | 2004-01-15 | Mitsubishi Steel Mfg. Co.,Ltd. | Sulfur free cutting steel for machine structural use |
JP2004300502A (en) * | 2003-03-31 | 2004-10-28 | Nippon Steel Corp | Steel manufacturing method |
JP2005273000A (en) * | 2004-02-26 | 2005-10-06 | Sanyo Special Steel Co Ltd | Steel for machine structural use having improved machinability |
JP2005350702A (en) * | 2004-06-08 | 2005-12-22 | Sanyo Special Steel Co Ltd | Steel having superior machinability for machine structural use |
RU2433200C2 (en) * | 2008-12-05 | 2011-11-10 | Федеральное Государственное Унитарное Предприятие "Научно-исследовательский и экспериментальный институт автомобильной электроники и электрооборудования" (ФГУП НИИАЭ) | Automatic steel and item made from it |
JP2014019911A (en) * | 2012-07-18 | 2014-02-03 | Kobe Steel Ltd | Bearing steel material and bearing part with excellent rolling fatigue characteristic |
Also Published As
Publication number | Publication date |
---|---|
JP3954751B2 (en) | 2007-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100336339B1 (en) | Steel wire for high-strength springs and method of producing the same | |
JP4568362B2 (en) | Machine structural steel with excellent machinability and strength characteristics | |
EP2465963B1 (en) | High strength spring steel and steel wire | |
JP4267260B2 (en) | Steel with excellent machinability | |
EP2058411A1 (en) | Steel for high-strength spring and heat-treated steel wire for high-strength spring | |
JPH1129839A (en) | High toughness spring steel | |
JP5181619B2 (en) | Hardened steel with excellent machinability and hardenability | |
JP4267234B2 (en) | Hot rolled steel for machine structure with excellent forgeability and machinability | |
JP2000282169A (en) | Steel with excellent forgeability and machinability | |
JP6620490B2 (en) | Age-hardening steel | |
JP4478072B2 (en) | High strength spring steel | |
CN109790602B (en) | steel | |
JPH1180882A (en) | Carburized parts with excellent bending strength and impact properties | |
JP3739958B2 (en) | Steel with excellent machinability and its manufacturing method | |
JP2003313635A (en) | Hot work tool steel with high toughness | |
JP6265048B2 (en) | Case-hardened steel | |
EP1666621A1 (en) | Hot forged non-heat treated steel for induction hardening | |
JP2000017374A (en) | Age hardening type high strength bainitic steel and its production | |
JP4315049B2 (en) | Thin steel strip with excellent strength, fatigue strength, corrosion resistance and wear resistance, and manufacturing method thereof | |
JP2000319751A (en) | Steel with excellent forgeability and machinability | |
JPH111743A (en) | High-strength, high-toughness tempered steel with excellent machinability | |
JPH11236646A (en) | Coarse-grained case hardening steel material, surface hardened part excellent in strength and toughness, and method for producing the same | |
JP2007177309A (en) | Crankshaft and manufacturing method thereof | |
JP2002194483A (en) | Steel for machine structure | |
JPH11199968A (en) | High-strength, low-ductility non-heat treated steel with excellent machinability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070427 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110511 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120511 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140511 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |