JP2000278078A - Piezoelectric resonator - Google Patents
Piezoelectric resonatorInfo
- Publication number
- JP2000278078A JP2000278078A JP11086449A JP8644999A JP2000278078A JP 2000278078 A JP2000278078 A JP 2000278078A JP 11086449 A JP11086449 A JP 11086449A JP 8644999 A JP8644999 A JP 8644999A JP 2000278078 A JP2000278078 A JP 2000278078A
- Authority
- JP
- Japan
- Prior art keywords
- film
- sio
- diamond
- piezoelectric
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010408 film Substances 0.000 claims abstract description 147
- 239000010432 diamond Substances 0.000 claims abstract description 42
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 42
- 239000010409 thin film Substances 0.000 claims abstract description 41
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 42
- 239000000758 substrate Substances 0.000 abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000010897 surface acoustic wave method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/56—Monolithic crystal filters
- H03H9/564—Monolithic crystal filters implemented with thin-film techniques
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は圧電共振子に関し、
圧電体薄膜の両面に電極を形成した振動体の厚み縦振動
の共振を利用した圧電共振子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric resonator,
The present invention relates to a piezoelectric resonator utilizing resonance of thickness longitudinal vibration of a vibrating body having electrodes formed on both surfaces of a piezoelectric thin film.
【0002】[0002]
【従来技術】無線通信や電気回路に用いられる周波数の
高周波数化に伴い、これらの電気信号に対して用いられ
るフィルターも高周波数に対応したものが開発されてい
る。2. Description of the Related Art As the frequencies used for wireless communication and electric circuits have become higher, filters used for these electric signals have been developed to correspond to higher frequencies.
【0003】特に、最近注目されているのは、固体の表
面を伝わる音響波である表面弾性波の共振を用いる、S
AWレゾネーターを用いたフィルターである。このフィ
ルターは、固体表面上に形成した櫛形の電極間に印加さ
れる高周波電界と表面弾性波の共振を用いており、1G
Hz程度までの共振周波数を持つフィルターが作製され
ている。[0003] In particular, attention has recently been paid to an S-wave which uses the resonance of a surface acoustic wave, which is an acoustic wave transmitted on the surface of a solid.
This is a filter using an AW resonator. This filter uses the resonance of a high-frequency electric field applied between comb-shaped electrodes formed on a solid surface and surface acoustic waves, and
Filters having a resonance frequency up to about Hz have been manufactured.
【0004】しかしながら、SAWフィルターは、その
櫛形電極間距離が共振周波数に反比例するという関係に
あるため、1GHzを越える周波数領域では櫛形電極間
距離がサブミクロンオーダーとなり、電極作製が非常に
困難であった。However, in the SAW filter, the inter-electrode distance is inversely proportional to the resonance frequency. Therefore, in a frequency region exceeding 1 GHz, the inter-electrode distance is on the order of submicrons, and it is very difficult to manufacture electrodes. Was.
【0005】今後、無線通信に用いられる電磁波の周波
数は、ますます高くなるものと予想され、既に、数GH
z以上の規格策定の動きもあることから、それらの周波
数に対応した、安価で高性能なフィルターが求められて
いる。[0005] In the future, the frequency of electromagnetic waves used for wireless communication is expected to become higher and higher, and several GHs are already in use.
Since there is a movement to establish a standard of z or more, an inexpensive and high-performance filter corresponding to those frequencies is required.
【0006】こうした要求に対して、新たに、圧電性を
示す薄膜の共振を利用した共振子が提案されている。こ
れは、入力される高周波電気信号に対して、圧電体薄膜
が振動を起こし、その振動が、圧電体薄膜の厚さ方向に
おいて共振を起こすことを用いた共振子である。In response to such demands, a resonator utilizing the resonance of a piezoelectric thin film has been proposed. This is a resonator using the fact that the piezoelectric thin film causes vibration in response to an input high-frequency electric signal, and the vibration causes resonance in the thickness direction of the piezoelectric thin film.
【0007】この共振子は、表面弾性波ではなく固体中
を伝播する弾性波を用いることから、バルク・ アコース
ティック・ ウェーブ・ レゾネーター(以下、BAWRと
いう)と呼ばれている。このBAWRを構成する圧電体
薄膜の膜厚の制御は、サブミクロン以下の精度で可能で
あるため、SAWフィルターに比べて、より高い周波数
の共振周波数を持つレゾネーターの作製が可能となると
期待され、開発が進められてきた。[0007] Since this resonator uses an elastic wave propagating in a solid instead of a surface acoustic wave, it is called a bulk acoustic wave resonator (hereinafter referred to as BAWR). Since it is possible to control the thickness of the piezoelectric thin film constituting the BAWR with an accuracy of submicron or less, it is expected that a resonator having a higher resonance frequency than the SAW filter can be manufactured. Development has been advanced.
【0008】従来のBAWRとしては、図2に示すよう
に、基体11と、該基体11表面に形成された支持膜1
3と、該支持膜13上に形成されたバッファー層15
と、該バッファー層15上に形成された下側電極16
と、該下側電極16上に形成された圧電体薄膜17と、
該圧電体薄膜17上に形成された一対の上側電極18と
からなるものである(USP4,320,365参
照)。支持膜13は、振動空間Aを被覆するように基体
11上面に形成されている。As shown in FIG. 2, a conventional BAWR includes a base 11 and a support film 1 formed on the surface of the base 11.
3 and a buffer layer 15 formed on the support film 13
And a lower electrode 16 formed on the buffer layer 15
And a piezoelectric thin film 17 formed on the lower electrode 16;
It comprises a pair of upper electrodes 18 formed on the piezoelectric thin film 17 (see US Pat. No. 4,320,365). The support film 13 is formed on the upper surface of the base 11 so as to cover the vibration space A.
【0009】従来のBAWRでは、圧電体薄膜材料とし
てZnO、AlN、CdS等が用いられ、基体材料とし
て主にSiが用いられ、電極材料としてAl、Auが用
いられており、圧電体薄膜を支える支持膜としてはアモ
ルファスSiO2 が用いられてきた。In a conventional BAWR, ZnO, AlN, CdS, etc. are used as a piezoelectric thin film material, Si is mainly used as a base material, Al and Au are used as electrode materials, and the piezoelectric thin film is supported. Amorphous SiO 2 has been used as a support film.
【0010】例えば、特開昭60−68710号公報に
は、圧電体薄膜材料としてZnO、AlN、CdS、基
体材料としてSi、電極材料としてAl、Au、支持膜
材料としてアモルファスSiO2 が用いられている。For example, Japanese Patent Application Laid-Open No. 60-68710 discloses the use of ZnO, AlN, CdS as a piezoelectric thin film material, Si as a base material, Al and Au as electrode materials, and amorphous SiO 2 as a support film material. I have.
【0011】支持膜としてアモルファスSiO2 が用い
られているが、これはアモルファスSiO2 がSi基板
上に容易に作製できることと、文献(Electronics Lett
ersvol.17, No.14, pp507-509(1981))に報告されてい
るように、アモルファスSiO2 が圧電体薄膜の弾性的
温度係数と逆符号の温度係数を持つため、共振子の共振
周波数の変化を補償できるためである。[0011] Amorphous SiO 2 is used as a support film. This is because amorphous SiO 2 can be easily formed on a Si substrate and is described in the literature (Electronics Lett).
ersvol.17, No.14, pp.507-509 (1981)), amorphous SiO 2 has a temperature coefficient with the opposite sign to the elastic temperature coefficient of the piezoelectric thin film, so that the resonance frequency of the resonator This can compensate for the change in.
【0012】また、上記文献には、ZnOを圧電体薄膜
として用いた場合、ZnOに対するSiO2 の膜厚比
が、基本波で0.5の時、2次波で0.25、0.7
5、1.25の時零温度係数を得ることができ、かつ高
い電気機械結合係数ktが得られることが報告されてい
る。Further, in the above document, when ZnO is used as the piezoelectric thin film, when the thickness ratio of SiO 2 to ZnO is 0.5 for the fundamental wave, it is 0.25 for the secondary wave, and 0.7 for the secondary wave.
It has been reported that a zero temperature coefficient can be obtained at 5, 1.25 and a high electromechanical coupling coefficient kt can be obtained.
【0013】[0013]
【発明が解決しようとする課題】しかしながら、このB
AWRは、振動の伝播によって共振を得ているため、圧
電体薄膜の振動特性はもとより、この圧電体薄膜を支え
る支持膜の振動特性がレゾネーターの特性に大きく影響
する。However, this B
Since the AWR obtains resonance by the propagation of vibration, not only the vibration characteristics of the piezoelectric thin film but also the vibration characteristics of the support film supporting the piezoelectric thin film greatly affect the characteristics of the resonator.
【0014】即ち、従来の1GHz以下の周波数で用い
るBAWRではZnOの膜厚が2.5μm以上となる
が、上記文献に報告されているように、零温度係数を実
現するためにSiO2 を用いると、アモルファスSiO
2 の膜厚はZnOの膜厚の0.25〜1.25倍である
が、SiO2 の膜厚が小さすぎると支持膜としての強度
が低下し、BAWレゾネーターとしては使用できないた
め、現実に使用されるSiO2 の膜厚は2〜3μm程度
と厚いものであった。That is, in the conventional BAWR used at a frequency of 1 GHz or less, the thickness of ZnO is 2.5 μm or more. However, as reported in the above-mentioned document, SiO 2 is used to realize a zero temperature coefficient. And amorphous SiO
The film thickness of 2 is 0.25 to 1.25 times the film thickness of ZnO. However, if the film thickness of SiO 2 is too small, the strength as a support film decreases, and the film cannot be used as a BAW resonator. The thickness of SiO 2 used was as thick as about 2 to 3 μm.
【0015】そして、SiO2 は非晶質であることか
ら、振動の減衰、すなわち挿入損失が大きく、零温度係
数を得るために膜厚を大きくすると音響媒体としてのパ
スが大きくなるため、損失が大きくなるという問題があ
った。Since SiO 2 is amorphous, the attenuation of vibration, that is, insertion loss is large, and when the film thickness is increased to obtain a zero temperature coefficient, the path as an acoustic medium becomes large. There was a problem of becoming larger.
【0016】また、現在主流になりつつある2GHzの
周波数で動作させるためには、ZnOの膜厚は1.3μ
m程度となるが、ZnOの弾性的温度係数を補償し、零
温度係数を実現するためにはSiO2 は1μm以下の膜
厚が要求され、挿入損失は低減されるが、非晶質である
SiO2 を1μm以下で安定に形成するのは困難であ
り、共振子自体の製造が困難であった。一方、ZnOの
膜厚を1.3μm程度とし、SiO2 を厚くすると、S
iO2 の弾性的性質が支配的になり、損失が大きくな
り、また、温度係数が大きくなり、さらに、高次モード
になるため電気機械結合係数が小さくなるという問題が
あった。In order to operate at a frequency of 2 GHz, which is becoming mainstream at present, the thickness of ZnO is 1.3 μm.
m, but in order to compensate for the elastic temperature coefficient of ZnO and achieve a zero temperature coefficient, SiO 2 must have a film thickness of 1 μm or less, and insertion loss is reduced, but it is amorphous. It was difficult to form SiO 2 stably below 1 μm, and it was difficult to manufacture the resonator itself. On the other hand, when the thickness of ZnO is set to about 1.3 μm and the thickness of SiO 2 is increased, S
There is a problem that the elastic property of iO 2 becomes dominant, the loss becomes large, the temperature coefficient becomes large, and the electromechanical coupling coefficient becomes small due to the higher-order mode.
【0017】上記課題を解決するためには、アモルファ
スSiO2 の膜厚をできる限り小さくし、零温度係数を
実現するとともに、支持膜の強度を大きくし、さらに温
度係数を極めて小さくする必要があった。In order to solve the above problems, it is necessary to reduce the thickness of the amorphous SiO 2 as much as possible to realize a zero temperature coefficient, increase the strength of the support film, and further reduce the temperature coefficient. Was.
【0018】[0018]
【課題を解決するための手段】本発明の圧電共振子は、
振動空間を有する基体と、該基体表面に形成され、前記
振動空間を被覆する支持膜と、該支持膜上に、前記支持
膜を介して前記振動空間と対向するように形成され、圧
電体薄膜の両面に電極を形成してなる振動体とを具備す
るとともに、前記支持膜がSiO2 膜とダイアモンド膜
との積層膜であることを特徴とする。ここで、ダイアモ
ンド膜が振動空間に面していることが望ましい。また、
圧電体薄膜がc軸配向したZnO膜であることが望まし
い。According to the present invention, there is provided a piezoelectric resonator comprising:
A substrate having a vibration space, a support film formed on the surface of the substrate and covering the vibration space, and a piezoelectric thin film formed on the support film so as to face the vibration space via the support film. And a vibrator having electrodes formed on both surfaces thereof, and the support film is a laminated film of a SiO 2 film and a diamond film. Here, it is desirable that the diamond film faces the vibration space. Also,
It is desirable that the piezoelectric thin film is a ZnO film with c-axis orientation.
【0019】[0019]
【作用】本発明の圧電共振子では、SiO2 膜とダイア
モンド膜の2層積層体を支持膜として用いたので、高強
度のダイアモンド膜により支持膜としての強度を向上す
ることができるとともに、ダイアモンド膜は共振周波数
の温度変化率が極めて小さいため、支持膜としての共振
周波数の温度変化率がSiO2 膜に支配され、温度変化
率がSiO2 膜とほぼ同等で、高強度の支持膜を得るこ
とができる。In the piezoelectric resonator according to the present invention, the two-layer laminate of the SiO 2 film and the diamond film is used as the supporting film. Therefore, the strength of the supporting film can be improved by the high-strength diamond film, Since the film has a very small temperature change rate of the resonance frequency, the temperature change rate of the resonance frequency as the support film is dominated by the SiO 2 film, and the temperature change rate is almost equal to that of the SiO 2 film, and a high-strength support film is obtained. be able to.
【0020】即ち、例えば、ZnOからなる圧電体薄膜
は正の温度係数を有し、アモルファスSiO2 は負の温
度係数を有するが、本発明の圧電共振子では、支持膜が
SiO2 膜とダイアモンド膜の2層積層体であり、ダイ
アモンド膜自体の弾性定数が大きいため弾性的温度変化
が14ppm/℃と極めて小さいため、ダイアモンド膜
の共振周波数の温度変化率が殆ど零に近く、このため支
持膜の温度係数はSiO2 膜の温度係数に支配されて負
となり、正の温度係数を有するZnOからなる圧電体薄
膜と、負の温度係数を有する支持膜により、振動する部
分(支持膜および振動体)の共振周波数の温度係数を零
に近づけることができる。That is, for example, a piezoelectric thin film made of ZnO has a positive temperature coefficient, and amorphous SiO 2 has a negative temperature coefficient. However, in the piezoelectric resonator of the present invention, the supporting film is made of a SiO 2 film and a diamond. Since the diamond film itself has a large elastic constant and a very small elastic temperature change of 14 ppm / ° C., the temperature change rate of the resonance frequency of the diamond film is almost zero. The temperature coefficient is negatively influenced by the temperature coefficient of the SiO 2 film, and becomes vibrated by the piezoelectric thin film made of ZnO having a positive temperature coefficient and the supporting film having a negative temperature coefficient (the supporting film and the vibrating body). ) Can bring the temperature coefficient of the resonance frequency close to zero.
【0021】また、従来のSiO2 からなる支持膜で
は、充分な機械的強度を得るために、薄層化の限界があ
り、例えばZnOからなる圧電体薄膜とSiO2 からな
る支持膜の組み合わせで、共振周波数が1.5GHzを
越える圧電共振子は得られなかったが、本発明のSiO
2 膜とダイアモンド膜の2層積層体を支持膜として用い
ると、ダイアモンド膜自体が高強度であるため、SiO
2 膜を薄層化しても支持膜としての構造を維持すること
ができる。Further, the conventional support film made of SiO 2 has a limit of thinning in order to obtain sufficient mechanical strength. For example, a combination of a piezoelectric thin film made of ZnO and a support film made of SiO 2 is required. A piezoelectric resonator having a resonance frequency exceeding 1.5 GHz could not be obtained,
When a two-layer laminate of a two-layer film and a diamond film is used as a support film, the diamond film itself has high strength.
Even if the two films are thinned, the structure as a support film can be maintained.
【0022】さらに、ダイアモンド膜は、ZnO圧電体
薄膜とSiO2 支持膜により構成される振動部の音速と
比較して、5倍程度の音速を持つため、ZnOおよびS
iO2 の合計厚みが1μm程度の膜厚の時、ダイアモン
ド膜は5μm程度で良い。この時、ZnO/SiO2 /
ダイアモンドにより構成される振動部に3次の定在波が
立ち、電気機械結合係数が大きくなる。Further, since the diamond film has a sound speed approximately five times as high as the sound speed of the vibrating portion composed of the ZnO piezoelectric thin film and the SiO 2 support film, the ZnO and S
When the total thickness of iO 2 is about 1 μm, the diamond film may be about 5 μm. At this time, ZnO / SiO 2 /
A tertiary standing wave is generated in the vibrating portion made of diamond, and the electromechanical coupling coefficient increases.
【0023】また、大きな電気機械結合係数を得るため
には、ダイアモンド膜の膜厚が小さく、ZnO/SiO
2 により構成される振動部に2次の定在波が立つことが
望ましい。ダイアモンド膜の厚みが1μm程度では電気
機械結合係数を殆ど減少させることなく、ZnO/Si
O2 により構成される振動部に最も強く励振される2次
波を発生させることができる。ダイアモンド膜を用いる
ことで、支持膜としての機械的強度を向上しつつ、限界
膜厚を小さくできる。このため、従来技術による場合と
比較して、高い共振周波数を実現できる。Further, in order to obtain a large electromechanical coupling coefficient, the thickness of the diamond film is small and ZnO / SiO
It is desirable that a secondary standing wave be generated in the vibrating portion constituted by 2 . When the thickness of the diamond film is about 1 μm, the ZnO / Si
It is possible to generate a secondary wave that is most strongly excited in the vibrating section constituted by O 2 . By using a diamond film, the critical thickness can be reduced while improving the mechanical strength of the support film. For this reason, a higher resonance frequency can be realized than in the case of the related art.
【0024】振動空間には、ダイアモンド膜が面するこ
とが望ましい。これはダイヤモンド膜が高強度であるた
め、支持膜を充分に支持できるからである。It is desirable that a diamond film faces the vibration space. This is because the diamond film has high strength and can sufficiently support the support film.
【0025】[0025]
【発明の実施の形態】本発明の圧電共振子は、図1に示
すように、振動空間Aを有する基体1と、基体1上に配
置され、振動空間Aを被覆するように配置された支持膜
2と、振動空間Aに面する支持膜2の位置に配置された
振動体3とから構成されており、この振動体3は、圧電
体薄膜4の下面に下側電極5、上面に一対の上側電極6
を形成して構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a piezoelectric resonator according to the present invention comprises a base 1 having a vibration space A, and a support disposed on the base 1 so as to cover the vibration space A. It comprises a membrane 2 and a vibrating body 3 arranged at the position of the supporting film 2 facing the vibration space A. The vibrating body 3 is composed of a lower electrode 5 on the lower surface of the piezoelectric thin film 4 and a pair of lower electrodes 5 on the upper surface. Upper electrode 6
Is formed.
【0026】基体1は、例えばシリコンからなり、エッ
チングすることにより振動空間Aが形成されている。基
体1の振動空間Aとは、振動体3の振動を基体1に伝達
しない空間を言い、基体1に貫通孔を形成したり、基体
1の支持膜を形成する部分に凹部を形成したりすること
により形成される。The substrate 1 is made of, for example, silicon, and a vibration space A is formed by etching. The vibration space A of the base 1 refers to a space in which the vibration of the vibrating body 3 is not transmitted to the base 1, and a through hole is formed in the base 1 or a concave portion is formed in a portion of the base 1 where the support film is formed. It is formed by this.
【0027】圧電体薄膜4には、ZnO、AlN、Cd
S、PbTiO3 等が用いられるが、厚み縦振動の電気
機械結合係数が大きい等の理由からPbTiO3 を主成
分とすることが望ましい。また、共振子全体の温度係数
を零に近づけるという点からc軸配向したZnOが望ま
しい。ZnO圧電体は、c軸方向にのみ圧電性を発現す
るために、厚み縦振動を用いるBAW共振子においては
c軸配向膜である必要がある。The piezoelectric thin film 4 includes ZnO, AlN, Cd
S, although PbTiO 3 or the like is used, it is desirable that the main component PbTiO 3 for reasons such as electromechanical coupling coefficient of thickness longitudinal vibration is large. In addition, c-axis oriented ZnO is desirable from the viewpoint that the temperature coefficient of the entire resonator approaches zero. Since a ZnO piezoelectric material develops piezoelectricity only in the c-axis direction, it needs to be a c-axis oriented film in a BAW resonator using thickness longitudinal vibration.
【0028】このPbTiO3 を主成分とする圧電体薄
膜は、成膜時に結晶軸をc軸方向に配向させることによ
り、大きな圧電性を示すことができ、圧電性が弱い場合
には直流電圧を印加して圧電性を付与しても良い。The piezoelectric thin film containing PbTiO 3 as a main component can exhibit large piezoelectricity by orienting the crystal axis in the c-axis direction at the time of film formation. When the piezoelectricity is weak, a DC voltage is applied. It may be applied to impart piezoelectricity.
【0029】この圧電体薄膜4を挟持する電極5、6に
は、従来より多く用いられているAl、Pt、Au等比
較的反応性が低い金属材料が用いられる。圧電体薄膜4
との反応を考慮すると、電極材料としては反応性の低い
Ptが望ましい。The electrodes 5 and 6 sandwiching the piezoelectric thin film 4 are made of a metal material having relatively low reactivity, such as Al, Pt, and Au, which are used more frequently than before. Piezoelectric thin film 4
Considering the reaction with Pt, Pt with low reactivity is desirable as the electrode material.
【0030】そして、本発明の圧電共振子では、支持膜
2がSiO2 膜8とダイアモンド膜9との積層膜で構成
した。SiO2 膜8の膜厚t1 は、ZnO膜の膜厚t2
に対するSiO2 膜の膜厚t1 の比(t1 /t2 )が
0.25≦(t1 /t2 )≦0.75が望ましい。これ
は、(t1 /t2 )<0.25の場合や0.75<(t
1 /t2 )≦1.25の時ZnO/ SiO2 はダイアモ
ンドと同じ負の温度係数を示し温度特性が悪くなるから
である。また、(t1 /t2 )>1.25の時、SiO
2 /ZnOは正の温度係数を示すが、SiO2 膜8の膜
厚が大きく、超音波の吸収が大きく、損失が大きくなる
ためである。Further, in the piezoelectric resonator of the present invention, the support film 2 is constituted by a laminated film of the SiO 2 film 8 and the diamond film 9. The thickness t 1 of the SiO 2 film 8 is equal to the thickness t 2 of the ZnO film.
It is desirable that the ratio (t 1 / t 2 ) of the thickness t 1 of the SiO 2 film to the ratio (t 1 / t 2 ) ≦ 0.25 ≦ (t 1 / t 2 ) ≦ 0.75. This is the case when (t 1 / t 2 ) <0.25 or 0.75 <(t
When 1 / t 2 ) ≦ 1.25, ZnO / SiO 2 has the same negative temperature coefficient as diamond and deteriorates temperature characteristics. When (t 1 / t 2 )> 1.25, SiO
Although 2 / ZnO shows a positive temperature coefficient, the thickness of the SiO 2 film 8 is large, the absorption of ultrasonic waves is large, and the loss is large.
【0031】本発明のSiO2 膜はアモルファスでも結
晶質でも良いが、アモルファスの方が製造上容易であ
り、望ましい。また、ダイアモンド膜9は、アモルファ
スでも結晶質でも良いが、Qの低下を防止するため結晶
質が望ましい。The SiO 2 film of the present invention may be amorphous or crystalline, but amorphous is preferable because it is easier to manufacture. The diamond film 9 may be amorphous or crystalline, but is preferably crystalline in order to prevent a decrease in Q.
【0032】また、ダイアモンド膜9の膜厚t3 は薄け
れば薄いほど良いが、自立膜として形成するには1μm
以上が必要である。R TH、ZnO圧電体薄膜は比誘
電率が小さいため、共振子の静電容量で決まるインピー
ダンスを50Ωにマッチングさせるためには、数100
μm□のサイズの自立膜が必要であり、このサイズの自
立膜を安定的に作製するためには、1μm膜厚が必要と
なる。The thinner the film thickness t 3 of the diamond film 9 is, the better it is.
The above is necessary. Since the RTH, ZnO piezoelectric thin film has a small relative dielectric constant, to match the impedance determined by the capacitance of the resonator to 50Ω, several hundreds of
A free-standing film having a size of μm □ is required, and a film thickness of 1 μm is required to stably produce a free-standing film of this size.
【0033】本発明の圧電共振子では、SiO2 膜8と
ダイアモンド膜9の2層積層体を支持膜2として用いた
ので、高強度のダイアモンド膜9により支持膜2として
の強度を向上することができるとともに、ダイアモンド
膜9は共振周波数の温度変化率が極めて小さいため、支
持膜2としての共振周波数の温度変化率がSiO2 膜8
に支配され、温度変化率がSiO2 膜8とほぼ同等で、
高強度の支持膜を得ることができる。In the piezoelectric resonator of the present invention, since the two-layer laminate of the SiO 2 film 8 and the diamond film 9 is used as the support film 2, the strength of the support film 2 can be improved by the high-strength diamond film 9. it is, because the diamond film 9 has an extremely small temperature coefficient of the resonant frequency, the temperature change rate is SiO 2 film in the resonance frequency of the supporting film 2 8
And the temperature change rate is almost equal to that of the SiO 2 film 8,
A high-strength support membrane can be obtained.
【0034】また、ZnOからなる圧電体薄膜4は正の
温度係数を有し、アモルファスSiO2 は負の温度係数
を有するが、本発明の圧電共振子では、支持膜2がSi
O2膜8とダイアモンド膜9の2層積層体であり、ダイ
アモンド膜9自体が共振周波数の温度変化率が殆ど零に
近く、このため支持膜2の温度係数はSiO2 膜8の温
度係数に支配されて負となり、正の温度係数を有するZ
nOからなる圧電体薄膜4と、負の温度係数を有する支
持膜2により、振動する部分(支持膜および振動体)の
共振周波数の温度係数を零に近づけることができる。The piezoelectric thin film 4 made of ZnO has a positive temperature coefficient and amorphous SiO 2 has a negative temperature coefficient. However, in the piezoelectric resonator of the present invention, the support film 2 is made of Si.
The diamond film 9 is a two-layer laminate of the O 2 film 8 and the diamond film 9, and the temperature change rate of the resonance frequency of the diamond film 9 is almost zero, so that the temperature coefficient of the support film 2 is lower than that of the SiO 2 film 8. Dominated and negative, Z with positive temperature coefficient
With the piezoelectric thin film 4 made of nO and the support film 2 having a negative temperature coefficient, the temperature coefficient of the resonance frequency of the vibrating part (the support film and the vibrator) can be made close to zero.
【0035】[0035]
【実施例】まず、プラズマCVD法により、Si(10
0)基体上にダイアモンド薄膜を形成する。成長条件
は、減圧下でCH4 、CO2 、H2 混合ガスを用いて、
マイクロ波を6KWで入力し、膜厚が1μmのものを作
製した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, Si (10
0) A diamond thin film is formed on a substrate. The growth conditions are as follows, using a mixed gas of CH 4 , CO 2 , and H 2 under reduced pressure.
A microwave having a thickness of 1 μm was produced by inputting microwaves at 6 KW.
【0036】天然のダイアモンドの特性は、ヤング率
1.2×1012N/m2 、密度3.51g/cm3 、音
速は18500m/sであると報告されている。作製し
たダイアモンド薄膜の特性は、密度が3.4g/c
m3 、ヤング率が9.6×1011N/m2 であり、音速
は16800m/sであった。これは、天然のダイアモ
ンドに比べれば若干小さいものの、SiO2 (溶融石
英)の音速5700m/sに比べても約3倍の値であ
り、アモルファスのSiO2 膜に比べると、さらに高音
速である。The properties of natural diamond are reported to have a Young's modulus of 1.2 × 10 12 N / m 2 , a density of 3.51 g / cm 3 , and a sound speed of 18,500 m / s. The characteristics of the prepared diamond thin film is that the density is 3.4 g / c.
m 3 , Young's modulus was 9.6 × 10 11 N / m 2 , and sound velocity was 16800 m / s. Although this is slightly smaller than natural diamond, it is about three times as high as the sound velocity of SiO 2 (fused quartz) of 5700 m / s, and is even higher than the amorphous SiO 2 film. .
【0037】次に、この基体の裏側よりSiをエッチン
グし、ダイアモンド膜に達するビアホールを作製する。
ここで用いているダイアモンド膜は結晶質であり、しか
も内部残留応力が小さいことが特徴である。そのため、
1μmの膜厚でも、残留応力によって自己破壊すること
なく自立膜を形成できる。Next, Si is etched from the back side of the substrate to form a via hole reaching the diamond film.
The diamond film used here is characterized by being crystalline and having small internal residual stress. for that reason,
Even with a film thickness of 1 μm, a self-standing film can be formed without self-destruction due to residual stress.
【0038】こうして作製したダイアモンドのダイアフ
ラムの上に、熱CVD法によりSiO2 膜を形成する。
SiO2 膜の膜厚は1.0μmであった。次に、マグネ
トロンスパッタ法を用いて、Pt下部電極層、ZnO圧
電体薄膜、Al上部電極層を順次積層する。成長温度
は、Pt電極層が500℃、圧電体薄膜とAl電極層が
ともに200℃である。An SiO 2 film is formed on the diamond diaphragm thus manufactured by a thermal CVD method.
The thickness of the SiO 2 film was 1.0 μm. Next, a Pt lower electrode layer, a ZnO piezoelectric thin film, and an Al upper electrode layer are sequentially stacked by magnetron sputtering. The growth temperature is 500 ° C. for the Pt electrode layer and 200 ° C. for both the piezoelectric thin film and the Al electrode layer.
【0039】膜厚は、下部電極層、上部電極層ともに1
00nm、圧電体薄膜が1.3μmである。また、これ
らの薄膜の厚さを制御することにより、共振周波数の大
きさを制御することができる。The film thickness is 1 for both the lower electrode layer and the upper electrode layer.
00 nm, and the thickness of the piezoelectric thin film is 1.3 μm. Further, by controlling the thickness of these thin films, the magnitude of the resonance frequency can be controlled.
【0040】評価は図1に示す共振子構造においてイン
ピーダンス測定により行った。RFインピーダンスアナ
ライザと、RF用ウエハマイクロプローブを用い、イン
ピーダンスの周波数特性を測定することにより、1.7
GHzにおいて圧電共振(反共振)を得た。The evaluation was performed by impedance measurement in the resonator structure shown in FIG. 1.7 is measured by using an RF impedance analyzer and an RF wafer microprobe to measure the frequency characteristics of impedance.
A piezoelectric resonance (anti-resonance) was obtained at GHz.
【0041】また、Si(100)基体上に熱CVD法
により1.5μmのSiO2 膜を形成し、基体の裏側よ
りSiをエッチングし、SiO2 膜に達するビアホール
を作製したところ、強度が低く自立膜を形成できなかっ
た。A 1.5 μm SiO 2 film was formed on a Si (100) substrate by thermal CVD, and the Si was etched from the back side of the substrate to form a via hole reaching the SiO 2 film. A free-standing film could not be formed.
【0042】以上のように、本発明のSiO2 /ダイア
モンド支持膜を用いた薄膜圧電共振子は、SiO2 支持
膜を用いた薄膜圧電共振子に比べ、よりSiO2 膜の膜
厚の小さい自立膜が形成できるため、共振周波数を決め
るZnO圧電体膜厚も小さくでき、共振周波数が大きな
共振子を構成できる。As described above, the thin-film piezoelectric resonator using the SiO 2 / diamond support film of the present invention has a smaller thickness of the SiO 2 film than the thin-film piezoelectric resonator using the SiO 2 support film. Since the film can be formed, the thickness of the ZnO piezoelectric material that determines the resonance frequency can be reduced, and a resonator having a high resonance frequency can be formed.
【0043】[0043]
【発明の効果】本発明の圧電共振子では、SiO2 膜と
ダイアモンド膜の2層積層体を支持膜として用いたの
で、高強度のダイアモンド膜により支持膜としての強度
を向上することができるとともに、ダイアモンド膜は共
振周波数の温度変化率が極めて小さいため、支持膜とし
ての共振周波数の温度変化率がSiO2 膜に支配され、
温度変化率がSiO2 膜とほぼ同等で、高強度の支持膜
を得ることができる。これにより、例えば、ZnOから
なる圧電体薄膜を用いた場合には、正の温度係数を有す
るZnOからなる圧電体薄膜と、負の温度係数を有する
支持膜により、振動する部分(支持膜および振動体)の
共振周波数の温度係数を零に近づけることができる。従
って、温度変化率が小さく、かつ従来のSiO2 からな
る支持膜では得られなかった高い共振周波数を有する圧
電共振子を得ることができる。According to the piezoelectric resonator of the present invention, since the two-layer laminate of the SiO 2 film and the diamond film is used as the support film, the strength of the support film can be improved by the high-strength diamond film. Since the temperature change rate of the resonance frequency of the diamond film is extremely small, the temperature change rate of the resonance frequency as the support film is dominated by the SiO 2 film,
The temperature change rate is almost the same as that of the SiO 2 film, and a high-strength support film can be obtained. Accordingly, for example, when a piezoelectric thin film made of ZnO is used, the vibrating portion (the supporting film and the vibration film) is formed by the piezoelectric thin film made of ZnO having a positive temperature coefficient and the support film having a negative temperature coefficient. The temperature coefficient of the resonance frequency of the body can be close to zero. Therefore, it is possible to obtain a piezoelectric resonator having a small temperature change rate and a high resonance frequency that cannot be obtained with a conventional support film made of SiO 2 .
【図1】本発明の圧電共振子を示す断面図である。FIG. 1 is a cross-sectional view showing a piezoelectric resonator of the present invention.
【図2】従来の圧電共振子を示す断面図である。FIG. 2 is a cross-sectional view showing a conventional piezoelectric resonator.
1・・・基体 2・・・支持膜 3・・・振動体 4・・・圧電体薄膜 5・・・下側電極 6・・・上側電極 8・・・SiO2 膜 9・・・ダイアモンド膜 A・・・振動空間1 ... base 2 ... support film 3 ... vibrator 4 ... piezoelectric film 5 ... lower electrode 6 ... upper electrode 8 ... SiO 2 film 9 ... diamond film A: Vibration space
Claims (3)
成され、前記振動空間を被覆する支持膜と、該支持膜上
に、前記支持膜を介して前記振動空間と対向するように
形成され、圧電体薄膜の両面に電極を形成してなる振動
体とを具備するとともに、前記支持膜がSiO2 膜とダ
イアモンド膜との積層膜であることを特徴とする圧電共
振子。1. A base having a vibration space, a support film formed on the surface of the base and covering the vibration space, and formed on the support film so as to face the vibration space via the support film. And a vibrator having electrodes formed on both surfaces of a piezoelectric thin film, and the support film is a laminated film of a SiO 2 film and a diamond film.
とを特徴とする請求項1記載の圧電共振子。2. The piezoelectric resonator according to claim 1, wherein the diamond film faces the vibration space.
ことを特徴とする請求項1または2記載の圧電共振子。3. The piezoelectric resonator according to claim 1, wherein the piezoelectric thin film is a c-axis oriented ZnO film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11086449A JP2000278078A (en) | 1999-03-29 | 1999-03-29 | Piezoelectric resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11086449A JP2000278078A (en) | 1999-03-29 | 1999-03-29 | Piezoelectric resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000278078A true JP2000278078A (en) | 2000-10-06 |
Family
ID=13887249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11086449A Pending JP2000278078A (en) | 1999-03-29 | 1999-03-29 | Piezoelectric resonator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000278078A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6778038B2 (en) | 2001-10-05 | 2004-08-17 | Tdk Corporation | Piezoelectric resonant filter, duplexer, and method of manufacturing same |
KR100488617B1 (en) * | 2001-07-03 | 2005-05-11 | 가부시키가이샤 무라타 세이사쿠쇼 | Piezoelectric resonator, filter, and electronic communication device |
KR100488615B1 (en) * | 2001-07-02 | 2005-05-11 | 가부시키가이샤 무라타 세이사쿠쇼 | Piezoelectric resonator, manufacturing method for the same, piezoelectric filter, manufacturing method for the same, duplexer, and electronic communication device |
US6906451B2 (en) | 2002-01-08 | 2005-06-14 | Murata Manufacturing Co., Ltd. | Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and method for manufacturing piezoelectric resonator |
US6977563B2 (en) | 2002-09-27 | 2005-12-20 | Tdk Corporation | Thin-film piezoelectric resonator and method for fabricating the same |
JP2006186831A (en) * | 2004-12-28 | 2006-07-13 | Kyocera Kinseki Corp | Piezoelectric thin film device and manufacturing method thereof |
US7078984B2 (en) | 2002-02-27 | 2006-07-18 | Tdk Corporation | Duplexer and method of manufacturing same |
US7304551B2 (en) | 2002-11-08 | 2007-12-04 | Murata Manufacturing Co., Ltd. | Branching filter and communication device |
JP2011015423A (en) * | 2001-01-24 | 2011-01-20 | Koninkl Philips Electronics Nv | Array of ultrasonic transducers |
CN109164846A (en) * | 2018-10-06 | 2019-01-08 | 烟台大学 | The temperature regulating device and temperature control method measured for SAW resonance, anti-resonance frequency |
JP2020524453A (en) * | 2017-06-19 | 2020-08-13 | アールエフエイチアイシー コーポレイション | Volume acoustic wave filter |
-
1999
- 1999-03-29 JP JP11086449A patent/JP2000278078A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011015423A (en) * | 2001-01-24 | 2011-01-20 | Koninkl Philips Electronics Nv | Array of ultrasonic transducers |
KR100488615B1 (en) * | 2001-07-02 | 2005-05-11 | 가부시키가이샤 무라타 세이사쿠쇼 | Piezoelectric resonator, manufacturing method for the same, piezoelectric filter, manufacturing method for the same, duplexer, and electronic communication device |
KR100488617B1 (en) * | 2001-07-03 | 2005-05-11 | 가부시키가이샤 무라타 세이사쿠쇼 | Piezoelectric resonator, filter, and electronic communication device |
US6778038B2 (en) | 2001-10-05 | 2004-08-17 | Tdk Corporation | Piezoelectric resonant filter, duplexer, and method of manufacturing same |
US6906451B2 (en) | 2002-01-08 | 2005-06-14 | Murata Manufacturing Co., Ltd. | Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and method for manufacturing piezoelectric resonator |
US7240410B2 (en) | 2002-01-08 | 2007-07-10 | Murata Manufacturing Co., Ltd. | Method for manufacturing a piezoelectric resonator |
US7078984B2 (en) | 2002-02-27 | 2006-07-18 | Tdk Corporation | Duplexer and method of manufacturing same |
US6977563B2 (en) | 2002-09-27 | 2005-12-20 | Tdk Corporation | Thin-film piezoelectric resonator and method for fabricating the same |
US7304551B2 (en) | 2002-11-08 | 2007-12-04 | Murata Manufacturing Co., Ltd. | Branching filter and communication device |
JP2006186831A (en) * | 2004-12-28 | 2006-07-13 | Kyocera Kinseki Corp | Piezoelectric thin film device and manufacturing method thereof |
JP2020524453A (en) * | 2017-06-19 | 2020-08-13 | アールエフエイチアイシー コーポレイション | Volume acoustic wave filter |
JP2022003837A (en) * | 2017-06-19 | 2022-01-11 | アールエフエイチアイシー コーポレイション | Volume elastic wave filter |
CN109164846A (en) * | 2018-10-06 | 2019-01-08 | 烟台大学 | The temperature regulating device and temperature control method measured for SAW resonance, anti-resonance frequency |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7812692B2 (en) | Piezo-on-diamond resonators and resonator systems | |
EP2892153B1 (en) | Piezoelectric acoustic resonator with adjustable temperature compensation capability | |
US5446330A (en) | Surface acoustic wave device having a lamination structure | |
EP1557945B1 (en) | Piezoelectric vibrator, filter using same, and method for adjusting piezoelectric vibrator | |
EP1170862B1 (en) | Piezoelectric resonator and piezoelectric filter using the same | |
US9071226B2 (en) | Micromechanical resonator and method for manufacturing thereof | |
US10270420B2 (en) | Surface elastic wave device comprising a single-crystal piezoelectric film and a crystalline substrate with low visoelastic coefficients | |
US20020038989A1 (en) | Acoustic wave resonator and method of operating the same to maintain resonance when subjected to temperature variations | |
US6931701B2 (en) | Method for manufacturing a thin film | |
JP3514224B2 (en) | Piezoelectric resonator, filter and electronic device | |
AU2021407849B2 (en) | Frequency-tunable film bulk acoustic resonator and preparation method therefor | |
CN102057570A (en) | HBAR resonator stable at high temperatures | |
JP2001211053A (en) | Piezoelectric resonator, electronic component and electronic apparatus | |
JP2000278078A (en) | Piezoelectric resonator | |
JP2000165188A (en) | Piezoelectric resonator | |
US7320164B2 (en) | Method of manufacturing an electronic component | |
JP3493315B2 (en) | Piezoelectric resonator | |
JP2000332570A (en) | Piezoelectric resonator | |
CN214851161U (en) | A Frequency Tunable Thin Film Bulk Acoustic Resonator | |
JP4339604B2 (en) | Piezoelectric thin film element | |
JP3860698B2 (en) | Piezoelectric resonator | |
JPH0131728B2 (en) | ||
JP2000165187A (en) | Piezoelectric resonator | |
JP2000341077A (en) | Piezoelectric resonator | |
JP2002009579A (en) | Piezo electric resonator and piezoelectric filter using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050301 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050628 |