[go: up one dir, main page]

JP2000273447A - Method for producing heat storage material composition - Google Patents

Method for producing heat storage material composition

Info

Publication number
JP2000273447A
JP2000273447A JP11077358A JP7735899A JP2000273447A JP 2000273447 A JP2000273447 A JP 2000273447A JP 11077358 A JP11077358 A JP 11077358A JP 7735899 A JP7735899 A JP 7735899A JP 2000273447 A JP2000273447 A JP 2000273447A
Authority
JP
Japan
Prior art keywords
iodide
heat storage
aqueous solution
aqueous
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11077358A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kakiuchi
博行 垣内
Yukihiko Ichikawa
幸彦 市川
Seiichi Kubokawa
清一 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RHOMBIC CORP
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Original Assignee
RHOMBIC CORP
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RHOMBIC CORP, Mitsubishi Chemical Corp, Mitsubishi Chemical Engineering Corp filed Critical RHOMBIC CORP
Priority to JP11077358A priority Critical patent/JP2000273447A/en
Publication of JP2000273447A publication Critical patent/JP2000273447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately and efficiently charging a prescribed amount of silver iodide into a thermal energy storing vessel and obtain an aqueous latent heat thermal energy storing material composition by reacting an aqueous solution of silver nitrate with an aqueous solution of an iodide in the thermal energy storing vessel. SOLUTION: This thermal energy storing material composition is obtained by charging (A) an aqueous solution of silver nitrate at preferably <=1 N, more preferably <=0.1 N, far more preferably <=0.01 N concentration and (B) an aqueous solution of an iodide at preferably <=1 N, more preferably <=0.1 N, far more preferably <=0.01 N concentration into a thermal energy storing vessel, then reacting the components A with B and depositing silver iodide in the thermal energy storing vessel. The component A is prepared by dissolving the silver nitrate of the industrial specification or the reagent specification in, e.g. tap water or pure water treated with an ion exchange resin at about >=5 deg.C. The component B is prepared by dissolving, e.g. the iodide in pure water at about >=5 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水系潜熱蓄熱材組
成物の製造方法に関する。詳しくは、過冷却防止剤とし
て、ヨウ化銀を含む水系潜熱蓄熱材組成物の製造方法の
改良に関する。
[0001] The present invention relates to a method for producing an aqueous latent heat storage material composition. More specifically, the present invention relates to an improvement in a method for producing an aqueous latent heat storage material composition containing silver iodide as a supercooling inhibitor.

【0002】[0002]

【従来の技術】氷の潜熱量は80cal/gと大きく潜
熱蓄熱材として多く使用されてきたが、過冷却現象の問
題があり、ヨウ化銀や硫酸銅が過冷却防止剤として検討
されて来た。特開平6−80960号公報には、硝酸銀
溶液にヨウ化物溶液を加えて沈澱させて得られるヨウ化
銀を水の過冷却防止剤として用いることを特徴とする水
系潜熱蓄熱材組成物が提案されている。
2. Description of the Related Art Although the latent heat of ice is as large as 80 cal / g, it has been widely used as a latent heat storage material. However, there is a problem of supercooling, and silver iodide and copper sulfate have been studied as a supercooling inhibitor. Was. JP-A-6-80960 proposes a water-based latent heat storage material composition characterized by using silver iodide obtained by adding an iodide solution to a silver nitrate solution and precipitating the silver iodide solution as a supercooling inhibitor for water. ing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記公
報の蓄熱材組成物については、過冷却を効果的に防止す
ることができるが、反応によって析出したヨウ化銀が非
常に微細で且つ不溶性であるため、反応槽の内壁や充填
機迄の輸送ライン中にヨウ化銀が付着したり、蓄熱容器
にヨウ化銀を含む水溶液を充填するための充填ノズルが
詰まる等の問題が生じた。その上、ヨウ化銀の付着ロス
により、蓄熱容器内にヨウ化銀が所定量仕込まれなくな
るため、過冷却防止性能が低下し、また、充填ノズルの
詰まりのため、蓄熱材の製造効率が低下するという問題
もある。本発明の目的は、蓄熱容器内に所定量のヨウ化
銀を正確に且つ効率的に仕込むことを特徴とする水系潜
熱蓄熱材組成物の製造方法を提供することにある。
However, with the heat storage material composition disclosed in the above publication, although supercooling can be effectively prevented, silver iodide precipitated by the reaction is very fine and insoluble. As a result, problems such as silver iodide adhering to the inner wall of the reaction tank and the transport line to the filling machine, and a filling nozzle for filling the aqueous solution containing silver iodide into the heat storage container were caused. In addition, due to the adhesion loss of silver iodide, a predetermined amount of silver iodide is not charged in the heat storage container, so that the supercooling prevention performance is reduced. There is also the problem of doing. An object of the present invention is to provide a method for producing a water-based latent heat storage material composition, characterized in that a predetermined amount of silver iodide is charged accurately and efficiently into a heat storage container.

【0004】[0004]

【課題を解決するための手段】本発明者らは、かゝる事
情に鑑み鋭意検討した結果、硝酸銀水溶液及びヨウ化物
水溶液を蓄熱容器に別々に仕込み、反応させて、蓄熱容
器でヨウ化銀を析出させることにより、上記問題点を解
決し得ることを見出し、本発明を完成するに至った。即
ち、本発明の要旨は、硝酸銀水溶液及びヨウ化物水溶液
を蓄熱容器に仕込み、反応させて、蓄熱容器内にヨウ化
銀を析出させることを特徴とする水系潜熱蓄熱材組成物
の製造方法にある。
Means for Solving the Problems As a result of intensive studies in view of such circumstances, the present inventors separately charged an aqueous solution of silver nitrate and an aqueous solution of iodide into a heat storage container, reacted them, and then reacted the silver iodide with the heat storage container. It has been found that the above problem can be solved by precipitating, and the present invention has been completed. That is, the gist of the present invention resides in a method for producing an aqueous latent heat storage material composition, comprising charging an aqueous solution of silver nitrate and an aqueous solution of iodide into a heat storage container and causing them to react to deposit silver iodide in the heat storage container. .

【0005】[0005]

【発明の実施の形態】本発明においては、過冷却防止剤
であるヨウ化銀について、硝酸銀水溶液及びヨウ化物水
溶液を蓄熱容器に仕込み、反応させ、蓄熱容器内にヨウ
化銀を生成、析出させることを特徴とする。硝酸銀水溶
液は、例えば工業薬品規格又は試薬規格の硝酸銀を、例
えば上水(水道水)やイオン交換樹脂で処理したような
純水に、通常、5℃程度以上、好ましくは10〜50℃
で溶解させて調製される。この場合、粒径の微細なヨウ
化銀を生成させるために、硝酸銀水溶液の濃度は、通
常、1規定以下、好ましくは0.1規定以下、より好ま
しくは0.01規定以下とするのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a silver nitrate aqueous solution and an iodide aqueous solution are charged into a heat storage container and reacted with silver iodide as a supercooling inhibitor, and silver iodide is formed and precipitated in the heat storage container. It is characterized by the following. The aqueous silver nitrate solution is prepared by adding, for example, silver nitrate of industrial chemical standard or reagent standard to pure water such as treated with tap water (tap water) or an ion exchange resin, usually about 5 ° C. or more, preferably 10 to 50 ° C.
It is prepared by dissolving in In this case, in order to generate silver iodide having a fine particle size, the concentration of the silver nitrate aqueous solution is usually 1 N or less, preferably 0.1 N or less, more preferably 0.01 N or less. .

【0006】また、ヨウ化物水溶液は、ヨウ化物を純水
に、通常5℃程度以上、好ましくは10〜50℃で溶解
させて調製される。ヨウ化物としては、ヨウ化ナトリウ
ム、ヨウ化カリウム、ヨウ化アンモニウム、ヨウ化リチ
ウム、ヨウ化セシウム、ヨウ化鉛、ヨウ化錫、ヨウ化カ
ドミウム等が挙げられるが、これらの中、ヨウ化カリウ
ム、ヨウ化ナトリウムが好ましい。なお、ヨウ化カリウ
ムについては、試薬規格のものを用いるのが好ましい。
また、ヨウ化物水溶液の濃度については、前記理由によ
り、通常、1規定以下、好ましくは0.1規定以下、よ
り好ましくは0.01規定以下であるのが好ましい。
[0006] The aqueous solution of iodide is prepared by dissolving iodide in pure water at a temperature of usually about 5 ° C or higher, preferably 10 to 50 ° C. Examples of the iodide include sodium iodide, potassium iodide, ammonium iodide, lithium iodide, cesium iodide, lead iodide, tin iodide, cadmium iodide, and the like. Among these, potassium iodide, Sodium iodide is preferred. It is preferable to use potassium iodide having a reagent standard.
In addition, the concentration of the aqueous iodide solution is usually 1 N or lower, preferably 0.1 N or lower, more preferably 0.01 N or lower for the above-described reason.

【0007】硝酸銀水溶液とヨウ化物水溶液との反応に
ついては、蓄熱容器内にこれらの水溶液を仕込むことに
より直ちに起る。反応温度は、通常、5℃程度以上、好
ましくは10〜50℃である。なお、反応割合は通常は
等モルである。また、硝酸銀水溶液及びヨウ化物水溶液
の仕込み順序は、どちらが先でもよく、同時でもよい。
なお、これらの溶液を蓄熱容器に仕込む際、一本のノズ
ルを用いて順に充填してもよいが、ノズル内で生成した
ヨウ化銀が付着する惧れがあるので、各々専用のノズル
を用いることが好ましい。
[0007] The reaction between the aqueous silver nitrate solution and the aqueous iodide solution occurs immediately by charging these aqueous solutions into a heat storage vessel. The reaction temperature is usually about 5 ° C. or higher, preferably 10 to 50 ° C. The reaction ratio is usually equimolar. Either the silver nitrate aqueous solution or the iodide aqueous solution may be charged first or simultaneously.
When these solutions are charged into the heat storage container, they may be filled in order using a single nozzle, but silver iodide generated in the nozzle may adhere, so use a dedicated nozzle for each. Is preferred.

【0008】なお、得られたヨウ化銀含有水溶液中のヨ
ウ化銀濃度を調整するために、純水を原料投入前に又は
同時に、或いは原料投入後に蓄熱容器に添加してもよ
い。そして、その際、蓄熱材中に藻等の発生を防止する
目的で、安息香酸ナトリウム、ソルビン酸、ソルビン酸
カリウム、p−オキシ安息香酸イソブチル、p−オキシ
安息香酸イソプロピル、p−オキシ安息香酸エチル、p
−オキシ安息香酸ブチル、p−オキシ安息香酸プロピ
ル、デヒドロ酢酸、デヒドロ酢酸ナトリウム、プロピオ
ン酸カルシウム、プロピオン酸ナトリウム、ジフェニ
ル、硫酸、硫酸アンモニウム等を予め溶解してもよい。
かくして得られたヨウ化銀含有水溶液中のヨウ化銀の濃
度は、通常、1〜100ppm、好ましくは10〜50
ppmであり、また、その粒径は、通常、0.01〜1
00μm、好ましくは50μm以下である。
[0008] In order to adjust the concentration of silver iodide in the obtained aqueous solution containing silver iodide, pure water may be added to the heat storage container before, simultaneously with, or after charging the raw materials. Then, at that time, for the purpose of preventing the generation of algae and the like in the heat storage material, sodium benzoate, sorbic acid, potassium sorbate, isobutyl p-oxybenzoate, isopropyl p-oxybenzoate, ethyl p-oxybenzoate. , P
-Butyl oxybenzoate, propyl p-oxybenzoate, dehydroacetic acid, sodium dehydroacetate, calcium propionate, sodium propionate, diphenyl, sulfuric acid, ammonium sulfate and the like may be dissolved in advance.
The concentration of silver iodide in the silver iodide-containing aqueous solution thus obtained is usually 1 to 100 ppm, preferably 10 to 50 ppm.
ppm, and the particle size is usually 0.01 to 1
It is 00 μm, preferably 50 μm or less.

【0009】また、蓄熱容器については、特に限定され
ないが、その容積が、通常1〜2000ccの球状のも
のが使用され、これらが好ましい。
[0009] The heat storage container is not particularly limited, but a spherical container having a volume of usually 1 to 2000 cc is preferably used.

【0010】[0010]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明は、その要旨を越えない限り、これらの
実施例に限定されるものではない。なお、以下の実施例
においては、蓄熱材は、外径87mm、厚さ1.5m
m、内容積310ccのポリエチレン製球状蓄熱容器に
充填率90%として280g充填した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist thereof. In the following examples, the heat storage material had an outer diameter of 87 mm and a thickness of 1.5 m.
m, 280 g of a polyethylene spherical heat storage container having an inner volume of 310 cc was filled at a filling rate of 90%.

【0011】また、実施例1〜4においては、原料水溶
液として0.001N硝酸銀水溶液及び0.001Nヨ
ウ化カリウム水溶液を用い、これらの原料水溶液及び必
要に応じて純水を表1に示す割合で蓄熱容器に常温にて
注入し、蓄熱材とした。なお、0.001N硝酸銀水溶
液は、所定量の硝酸銀(キシダ化学株式会社製試薬特
級)を常温で純水に溶解して調製し、また、0.001
Nヨウ化カリウム水溶液は、所定量のヨウ化カリウム
(キシダ化学株式会社製試薬特級)を常温で純水に溶解
して調製した。
In Examples 1 to 4, a 0.001 N aqueous solution of silver nitrate and a 0.001 N aqueous solution of potassium iodide were used as a raw material aqueous solution. The material was injected into the heat storage container at room temperature to obtain a heat storage material. The 0.001N silver nitrate aqueous solution is prepared by dissolving a predetermined amount of silver nitrate (special grade reagent manufactured by Kishida Chemical Co., Ltd.) in pure water at room temperature.
The N potassium iodide aqueous solution was prepared by dissolving a predetermined amount of potassium iodide (reagent grade, manufactured by Kishida Chemical Co., Ltd.) in pure water at room temperature.

【0012】実施例1〜4 実施例1においては、0.001規定の硝酸銀水溶液を
先に蓄熱容器に注入し、続いて0.001規定のヨウ化
カリウム水溶液を注入した。実施例2〜4においては、
0.001規定の硝酸銀水溶液を先に注入した後、純水
を注入し稀釈した後、ヨウ化カリウム水溶液を注入し
た。硝酸銀水溶液とヨウ化カリウム水溶液はどちらが先
でも問題ないが、出来るだけ希薄な状態で混合すること
が微細なヨウ化銀を調製する上で望ましいので純水の注
入を二番目とした。調製後のヨウ化銀濃度を表1に示
す。この様に117ppmから25.2ppmまで任意
のヨウ化銀濃度に正確に調製することが可能である。温
度制御可能な水槽に蓄熱材を充填した球状蓄熱容器を沈
め、結晶化温度を測定した。水温は5℃と−5℃でそれ
ぞれ6時間保持し、昇降温速度は5℃/hrとした。結
晶化温度は蓄熱容器中心の温度変化とし、T型シース熱
電対を用いて測定した。結晶化温度は、水が0℃以下ま
で冷却されても凝固しない、いわゆる過冷却状態が破
れ、凝固し始めた温度と定義する。実施例1〜4は何れ
も−1.5℃〜−2.0℃で結晶化しており、過冷却が
効果的に防止されていることが分る。
Examples 1 to 4 In Example 1, a 0.001 N aqueous solution of silver nitrate was first charged into a heat storage vessel, followed by a 0.001 N aqueous solution of potassium iodide. In Examples 2 to 4,
After a 0.001 N aqueous silver nitrate solution was injected first, pure water was injected and diluted, and then a potassium iodide aqueous solution was injected. It does not matter which of the aqueous silver nitrate solution and the aqueous potassium iodide solution is used, but it is desirable to mix the aqueous solutions as dilute as possible in order to prepare fine silver iodide. Table 1 shows the silver iodide concentration after the preparation. As described above, it is possible to accurately adjust the silver iodide concentration to an arbitrary value from 117 ppm to 25.2 ppm. A spherical heat storage container filled with a heat storage material was immersed in a water tank capable of controlling the temperature, and the crystallization temperature was measured. The water temperature was maintained at 5 ° C. and −5 ° C. for 6 hours, respectively, and the rate of temperature rise and fall was 5 ° C./hr. The crystallization temperature was a temperature change at the center of the heat storage container, and was measured using a T-type sheath thermocouple. The crystallization temperature is defined as the temperature at which water does not solidify even when cooled to 0 ° C. or lower, that is, the temperature at which the so-called supercooled state is broken and solidification starts. Examples 1 to 4 all crystallized at -1.5 ° C to -2.0 ° C, indicating that supercooling was effectively prevented.

【0013】実施例5 実施例5においては、0.0005規定の硝酸銀水溶液
と0.0005規定のヨウ化カリウム水溶液を用いて、
実施例1と同様に調製し、結晶化温度を測定した。ヨウ
化銀濃度と結晶化温度を表2に示す。結晶化温度は−
2.0℃であり、過冷却が効果的に防止されていること
が分る。
Example 5 In Example 5, a 0.0005 N aqueous silver nitrate solution and a 0.0005 N aqueous potassium iodide solution were used.
It was prepared in the same manner as in Example 1, and the crystallization temperature was measured. Table 2 shows the silver iodide concentration and the crystallization temperature. The crystallization temperature is-
2.0 ° C., which indicates that supercooling was effectively prevented.

【0014】実施例6 実施例6においては、0.005規定の硝酸銀水溶液と
0.005規定のヨウ化カリウム水溶液と純水を用い
て、実施例2と同様に調製し、結晶化温度を測定した。
ヨウ化銀濃度と結晶化温度を表3に示す。結晶化温度は
−2.0℃であり、過冷却が効果的に防止されているこ
とが分る。
Example 6 In Example 6, an aqueous silver nitrate solution of 0.005 N, an aqueous solution of potassium iodide of 0.005 N and pure water were used, and the crystallization temperature was measured in the same manner as in Example 2. did.
Table 3 shows the silver iodide concentration and the crystallization temperature. The crystallization temperature was −2.0 ° C., indicating that supercooling was effectively prevented.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明によれば、蓄熱容器内に過冷却防
止剤であるヨウ化銀を正確に且つ効率的に仕込むことが
できる。
According to the present invention, silver iodide as a supercooling inhibitor can be accurately and efficiently charged into a heat storage container.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 垣内 博行 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 市川 幸彦 三重県四日市市塩浜町1番地の69 株式会 社ロンビック内 (72)発明者 窪川 清一 東京都港区芝5丁目34番6号 三菱化学エ ンジニアリング株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Kakiuchi 8-3-1, Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Inside of Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Inventor Yukihiko Ichikawa 1-shi, Shiohama-cho, Yokkaichi-shi, Mie 69 Inside Rombic Corporation (72) Inventor Seiichi Kubokawa 5-34-6 Shiba, Minato-ku, Tokyo Mitsubishi Chemical Engineering Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硝酸銀水溶液及びヨウ化物水溶液を蓄熱
容器に仕込み、反応させて、蓄熱容器内にヨウ化銀を析
出させることを特徴とする水系潜熱蓄熱材組成物の製造
方法。
1. A method for producing an aqueous latent heat storage material composition, comprising charging an aqueous solution of silver nitrate and an aqueous solution of iodide into a heat storage container and causing them to react to precipitate silver iodide in the heat storage container.
【請求項2】 硝酸銀水溶液及びヨウ化物水溶液の濃度
がいずれも1規定以下である請求項1に記載の水系潜熱
蓄熱材組成物の製造方法。
2. The method for producing a water-based latent heat storage material composition according to claim 1, wherein the concentrations of the aqueous silver nitrate solution and the aqueous iodide solution are both 1N or less.
JP11077358A 1999-03-23 1999-03-23 Method for producing heat storage material composition Pending JP2000273447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11077358A JP2000273447A (en) 1999-03-23 1999-03-23 Method for producing heat storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11077358A JP2000273447A (en) 1999-03-23 1999-03-23 Method for producing heat storage material composition

Publications (1)

Publication Number Publication Date
JP2000273447A true JP2000273447A (en) 2000-10-03

Family

ID=13631698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11077358A Pending JP2000273447A (en) 1999-03-23 1999-03-23 Method for producing heat storage material composition

Country Status (1)

Country Link
JP (1) JP2000273447A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140064169A (en) * 2012-11-19 2014-05-28 삼성디스플레이 주식회사 Power control device and display devince comprising the same
WO2019017241A1 (en) * 2017-07-20 2019-01-24 シャープ株式会社 Latent heat storage material, cold insulation tool, logistics packaging container, cold insulation unit, and latent heat storage material production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140064169A (en) * 2012-11-19 2014-05-28 삼성디스플레이 주식회사 Power control device and display devince comprising the same
KR101961116B1 (en) 2012-11-19 2019-03-25 삼성디스플레이 주식회사 Power control device and display devince comprising the same
US10310589B2 (en) 2012-11-19 2019-06-04 Samsung Display Co., Ltd. Display device including power control device
WO2019017241A1 (en) * 2017-07-20 2019-01-24 シャープ株式会社 Latent heat storage material, cold insulation tool, logistics packaging container, cold insulation unit, and latent heat storage material production method

Similar Documents

Publication Publication Date Title
Grágeda et al. Purification of brines by chemical precipitation and ion‐exchange processes for obtaining battery‐grade lithium compounds
WO2019002653A1 (en) Method for obtaining concentrated brine of minimum impurity content from brine found in natural salt flats and salt marshes, said method having minimum environmental impact and maximum lithium recovery
JPS6324555B2 (en)
ES2745085T3 (en) Manufacturing method of high purity ammonium paratungstate tetrahydrate and ammonium paratungstate tetrahydrate
JP2008156190A (en) Method for production of lithium fluoride
JPH01284496A (en) Flux for brazing of aluminum material having excellent suspension stability and its production
JP5724578B2 (en) Method for producing layered zirconium phosphate
JP2000273447A (en) Method for producing heat storage material composition
CN103172126A (en) Method for preparing spherical nickel cobalt aluminum solid solution ternary material by means of continues method
JP2023506752A (en) Process and method for purifying lithium carbonate starting from an impure lithium chloride solution
CN104755639B (en) Silver recovery method and the silver-colored product thus prepared
JP7057738B2 (en) Manufacturing method of copper sulfide powder and copper sulfide powder
KR20200133750A (en) Carbonate or (oxy)hydroxide precipitation method
JP2002282684A (en) Method for producing porous granular lithium adsorbent
CN107117642A (en) The preparation method of basic copper chloride
RU2674142C1 (en) Method of obtaining granulated trihydrate of sodium acetate
JP2000226214A (en) Production of high-purity alkali stannate compound
JPH1135933A (en) Cold storage material utilizing latent heat
JP2001335320A (en) Basic copper carbonate and its preparing method
WO2018185713A1 (en) Stable synthetic rhodochrosite and a method for the production thereof
JP2014065638A (en) Method of producing lithium iodide aqueous solution and use thereof
SE457721B (en) PROCEDURES FOR PREPARING URANE PEROXIDE WITH SPHERICAL FORM AND URANE PEROXIDE PREPARED ACCORDING TO THE PROCEDURE
WO2015132706A1 (en) Ionic fluid precursors
RU2193014C1 (en) Process of spherical nickel hydroxide production
Peacock 263. The quadrivalent fluororhenates

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822