JP2000268323A - Magnetoresistive magnetic head and magnetic recording / reproducing apparatus having the same - Google Patents
Magnetoresistive magnetic head and magnetic recording / reproducing apparatus having the sameInfo
- Publication number
- JP2000268323A JP2000268323A JP11070007A JP7000799A JP2000268323A JP 2000268323 A JP2000268323 A JP 2000268323A JP 11070007 A JP11070007 A JP 11070007A JP 7000799 A JP7000799 A JP 7000799A JP 2000268323 A JP2000268323 A JP 2000268323A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- layers
- head
- layer
- magnetoresistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 168
- 230000005641 tunneling Effects 0.000 claims abstract description 18
- 230000000694 effects Effects 0.000 claims abstract description 13
- 230000005381 magnetic domain Effects 0.000 claims description 8
- 230000001939 inductive effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims description 2
- 230000005415 magnetization Effects 0.000 abstract description 13
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 25
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000001747 exhibiting effect Effects 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910000599 Cr alloy Inorganic materials 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 229910020707 Co—Pt Inorganic materials 0.000 description 2
- 229910017061 Fe Co Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910003271 Ni-Fe Inorganic materials 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910001362 Ta alloys Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Abstract
(57)【要約】
【課題】三層の磁性層が二層の絶縁層で分離されている
多層膜を使用した場合のトンネリング型磁気抵抗効果素
子の感度向上を図る。
【解決手段】二層の絶縁層14、15の両側の磁性層1
1−12間および磁性層12−13間にそれぞれ電圧印
加部16、17を設けて定電圧を印加し、上記二層の絶
縁層14、15をトンネルする電流をそれぞれ電流検出
部18、19で独立に測定する構成とした。
【効果】両端の二層の磁性層の磁化の反転がそれぞれ独
立に行われた場合にも、その状況に対応した再生が可能
であり、このため、非常に高い記録密度を有する磁気記
録再生装置を得ることができる。
[PROBLEMS] To improve the sensitivity of a tunneling type magnetoresistive element when a multilayer film in which three magnetic layers are separated by two insulating layers is used. A magnetic layer (1) on both sides of two insulating layers (14, 15).
Voltage applying sections 16 and 17 are provided between the magnetic layers 1 and 12 and the magnetic layers 12 and 13, respectively, to apply a constant voltage, and the currents tunneling through the two insulating layers 14 and 15 are detected by the current detecting sections 18 and 19, respectively. The measurement was performed independently. [Effect] Even when the magnetizations of the two magnetic layers at both ends are reversed independently, reproduction corresponding to the situation is possible, and therefore, a magnetic recording / reproducing apparatus having a very high recording density. Can be obtained.
Description
【0001】[0001]
【発明の属する技術分野】本発明は磁気抵抗効果型磁気
ヘッド及びそれを備えた磁気記録再生装置に係り、特に
高い感度を有する再生用磁気ヘッドとそれを備えた磁気
記録再生装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head and a magnetic recording / reproducing apparatus having the same, and more particularly to a reproducing magnetic head having high sensitivity and a magnetic recording / reproducing apparatus having the same.
【0002】[0002]
【従来の技術】磁気記録の高密度化に伴い、将来の再生
用磁気ヘッドとして、ジュリア(Julliere)による雑誌
フィジックス・レターズ(Physics Letters), 54A巻
(1975年), 3号, 225ページの論文題目「強磁性フィルム
間のトンネリング(Tunneling between Ferromagnetic F
ilms)」に記載の磁気トンネリング現象を示す多層膜の磁
気抵抗効果型ヘッドへの応用が検討されつつある。2. Description of the Related Art With the increase in density of magnetic recording, as a future reproducing magnetic head, a magazine by Julliere, Physics Letters, Vol. 54A.
(1975), Issue 3, p. 225, `` Tunneling between Ferromagnetic F
The application of the multilayer film exhibiting the magnetic tunneling phenomenon described in “ilms)” to a magnetoresistive head is being studied.
【0003】この多層膜は、磁性層、絶縁層、磁性層の
順に積層されたもので、絶縁層を二層の磁性層で挟んだ
サンドイッチ構造の積層体からなり、一方の磁性層から
出て、絶縁層をトンネルした電子が他方の磁性層に入る
時、二層の磁性層の磁化の向きに依存したトンネル確率
の変化を示す。このトンネル確率の変化が磁気抵抗効果
として観測される。This multilayer film is formed by laminating a magnetic layer, an insulating layer, and a magnetic layer in this order. The multilayer film has a sandwich structure in which an insulating layer is sandwiched between two magnetic layers. When the electrons tunneling through the insulating layer enter the other magnetic layer, the tunnel probability changes depending on the direction of magnetization of the two magnetic layers. This change in tunnel probability is observed as a magnetoresistance effect.
【0004】磁気トンネリング現象を示す多層膜は、種
々の形式が研究されている。KubotaらによるAbstracts
of 3rd International Symposium on Metallic Multila
yers、432ページ(1998年)に記載の「Tunnel Magnetor
esistance in Junctions with Multilayered Barrier」
のように、三層の磁性層が二層の絶縁層で分離されてい
る多層膜は、その両端の二層の磁性層に電圧を印加した
時のトンネル抵抗が低くなるとの可能性が見い出されて
いる。Various types of multilayer films exhibiting the magnetic tunneling phenomenon have been studied. Abstracts by Kubota et al.
of 3rd International Symposium on Metallic Multila
yers, page 432 (1998), "Tunnel Magnetor
esistance in Junctions with Multilayered Barrier ''
It has been found that a multi-layer film in which three magnetic layers are separated by two insulating layers as shown in Fig. 3 may have a lower tunnel resistance when a voltage is applied to the two magnetic layers at both ends. ing.
【0005】また、OhnoらによるJapanese Journal of
Applied Physics、66巻、第5号、1261ページ(1997年)
に記載の「Enhanced Magnetic Valve Effect and Magne
to-Coulomb Oscillations in Ferromagnetic Single El
ectron Transistor」のように、二つの磁気トンネリン
グ現象を示す多層膜を直列に接続し、接続部分にある電
位を与えると、多層膜の磁気抵抗変化率が高くなるとの
報告がある。The Japanese Journal of Ohno et al.
Applied Physics, Vol. 66, No. 5, pp. 1261 (1997)
`` Enhanced Magnetic Valve Effect and Magne
to-Coulomb Oscillations in Ferromagnetic Single El
It has been reported that when two multilayer films exhibiting magnetic tunneling phenomena are connected in series like an "ectron Transistor" and a certain potential is applied to the connection portion, the magnetoresistance change rate of the multilayer film increases.
【0006】[0006]
【発明が解決しようとする課題】上述のKubotaらによる
報告の多層膜では、三層の磁性層のうち、両端の二層の
磁性層の間に電圧を印加しているために、両端の二層の
磁性層の磁化の反転がそれぞれ独立に行われても、その
検出が困難である。In the multilayer film reported by Kubota et al., A voltage is applied between the two magnetic layers at both ends of the three magnetic layers. Even if the reversal of the magnetization of the magnetic layers is performed independently, it is difficult to detect the reversal.
【0007】また、Ohnoらによる報告の多層膜のよう
に、二つの磁気トンネリング現象を示す多層膜を接続す
ると、その接続部分が長くなるため、磁気抵抗効果素子
のサイズが大きくなり、結果的に、非常に高密度に記録
された磁気記録媒体上の情報を再生することができない
という問題があった。Further, when a multilayer film exhibiting two magnetic tunneling phenomena is connected like a multilayer film reported by Ohno et al., The connection portion becomes longer, and the size of the magnetoresistive effect element becomes larger. However, there is a problem that information on a magnetic recording medium recorded at a very high density cannot be reproduced.
【0008】したがって、本発明の目的は、上記従来の
問題点を解消することにあり、磁気トンネリング現象を
利用した三層の磁性層を有する磁気抵抗効果素子の小型
化を図り、高密度に記録された磁気記録媒体上の情報を
再生するのに好適な高感度の磁気抵抗効果型磁気ヘッド
及びそれを備えた磁気記録再生装置を提供することにあ
る。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned conventional problems, and to reduce the size of a magnetoresistive element having three magnetic layers utilizing the magnetic tunneling phenomenon and to perform high-density recording. It is an object of the present invention to provide a high-sensitivity magnetoresistive magnetic head suitable for reproducing information on a magnetic recording medium, and a magnetic recording / reproducing apparatus including the same.
【0009】[0009]
【課題を解決するための手段】本発明者等は、磁性層と
絶縁層とを交互に積層することによって三層の磁性層が
二層の絶縁層で分離されている多層膜を用いた磁気抵抗
効果型磁気ヘッドについて鋭意研究を重ねた結果、上記
二層の絶縁層の両側の磁性層間にそれぞれ定電圧を印加
し、磁気記録媒体等の外部磁界によって上記二層の絶縁
層をトンネルする電流を出力信号としてそれぞれ独立に
測定することにより、高密度磁気記録に最適な再生用磁
気抵抗効果型磁気ヘッドを実現できると云う知見を得
た。Means for Solving the Problems The inventors of the present invention have developed a magnetic layer using a multilayer film in which three magnetic layers are separated by two insulating layers by alternately laminating magnetic layers and insulating layers. As a result of intensive studies on the resistance effect type magnetic head, a constant voltage is applied between the magnetic layers on both sides of the two insulating layers, and a current that tunnels through the two insulating layers by an external magnetic field such as a magnetic recording medium. , As independent output signals, it was found that a reproducing magnetoresistive head suitable for high-density magnetic recording could be realized.
【0010】三層の磁性層が二層の絶縁層で分離されて
いる多層膜を用いた磁気抵抗効果素子においては、両端
の二層の磁性層に異なる磁界が印加された場合、両端の
二層の磁性層の磁化の反転がそれぞれ独立に生じる。こ
の場合、従来の技術にしたがった両端の二層の磁性層の
間にのみ電圧を印加し、両端の二層の磁性層の間に流れ
る電流を測定する方式では、両端の二層の磁性層の磁化
の反転がそれぞれ独立に生じても、その状況を検出する
ことができないと云うことがわかった。これは、二層の
絶縁層をトンネルする電流の合成値が測定されるためで
ある。In a magnetoresistive effect element using a multilayer film in which three magnetic layers are separated by two insulating layers, when different magnetic fields are applied to the two magnetic layers at both ends, the two magnetic layers at both ends are removed. The magnetization reversals of the magnetic layers of the layers occur independently. In this case, according to the conventional technique, a voltage is applied only between the two magnetic layers at both ends, and a current flowing between the two magnetic layers at both ends is measured. It has been found that even if the magnetization reversals of each of the above occur independently, the situation cannot be detected. This is because the combined value of the current that tunnels through the two insulating layers is measured.
【0011】これに対し、本発明の磁気抵抗効果型磁気
ヘッドでは、二層の絶縁層をトンネルする電流をそれぞ
れ独立に測定するため、両端の二層の磁性層の磁化の反
転がそれぞれ独立に行われた場合にも、その状況に対応
した再生が可能となる。On the other hand, in the magnetoresistive head according to the present invention, since the currents tunneling through the two insulating layers are measured independently, the reversal of the magnetization of the two magnetic layers at both ends is independently performed. Even when the reproduction is performed, reproduction corresponding to the situation can be performed.
【0012】すなわち、本発明は、このような知見に基
づいてなされたもので、上記目的は、磁性層と絶縁層と
を交互に積層して、三層の磁性層が二層の絶縁層で分離
されている多層膜を用いた磁気抵抗効果型磁気ヘッドで
あって、前記二層の絶縁層の両側の磁性層間にそれぞれ
独立に定電圧を印加する手段と、外部磁界によって前記
二層の絶縁層をトンネルする電流を出力信号としてそれ
ぞれ独立に検出する電流検出手段とを備えたことを特徴
とする磁気抵抗効果型磁気ヘッドによって、達成され
る。That is, the present invention has been made on the basis of such findings, and the object is to form a magnetic layer and an insulating layer alternately so that three magnetic layers are two insulating layers. A magneto-resistance effect type magnetic head using a separated multilayer film, wherein a means for independently applying a constant voltage between magnetic layers on both sides of the two insulating layers; and This is attained by a magnetoresistive effect type magnetic head comprising: current detection means for independently detecting a current tunneling through a layer as an output signal.
【0013】そして、上記三層の磁性層を積層順にそれ
ぞれ第1磁性層、第2磁性層、第3磁性層としたとき、
両端の二層となる第1及び第3磁性層に、それぞれ上記
外部磁界となる磁気記録媒体の隣接する異なる磁区から
の磁界が印加される構造とすることであり、これによっ
て本発明の磁気抵抗効果型磁気ヘッドは、非常に高密度
に記録された磁気記録媒体上の情報を高感度に再生する
ことができる。When the three magnetic layers are formed into a first magnetic layer, a second magnetic layer, and a third magnetic layer in the order of lamination,
The first and third magnetic layers, which are two layers at both ends, are configured to be applied with magnetic fields from different magnetic domains adjacent to each other in the magnetic recording medium as the external magnetic field. The effect type magnetic head can reproduce information on a magnetic recording medium recorded at a very high density with high sensitivity.
【0014】さらに、本発明の磁気抵抗効果型磁気ヘッ
ドは、三層の磁性層が二層の絶縁層で分離されている多
層膜を用いているため、そのサイズは小さく、高密度に
記録された磁気記録媒体上の情報の再生に適合してい
る。Further, since the magnetoresistive head of the present invention uses a multilayer film in which three magnetic layers are separated by two insulating layers, the size thereof is small, and recording is performed at high density. It is suitable for reproducing information on a magnetic recording medium.
【0015】磁気抵抗効果型磁気ヘッドは再生専用であ
るが、これを周知の誘導型磁気ヘッドと組み合わせて構
成すれば、容易に記録再生磁気ヘッドとすることができ
る。したがって、この記録再生磁気ヘッドを磁気記録再
生装置に適用すれば、高性能の磁気記録再生装置を容易
に実現することができる。Although the magnetoresistive effect type magnetic head is exclusively for reproduction, if it is combined with a well-known inductive type magnetic head, it can be easily formed as a recording / reproducing magnetic head. Therefore, if this recording / reproducing magnetic head is applied to a magnetic recording / reproducing device, a high-performance magnetic recording / reproducing device can be easily realized.
【0016】[0016]
【発明の実施の形態】以下、本発明の磁気ヘッドを模式
的に示した図1の概略図にしたがって本発明の実施の形
態を具体的に説明する。多層膜を使用した磁気ヘッド1
0は、第1磁性層11/第1絶縁層14、第2磁性層1
2/第2絶縁層15/第3磁性層13の順に積層され、
三層の磁性層と二層の絶縁層との積層膜で構成されてい
る。そして、第1磁性層11と第2磁性層12との間に
は第1の電圧印加部16を設けて定電圧を印加する。ま
た、第2磁性層12と第3磁性層13との間にも第2の
電圧印加部17を設けて定電圧を印加する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to the schematic diagram of FIG. 1 schematically showing a magnetic head of the present invention. Magnetic head 1 using multilayer film
0 is the first magnetic layer 11 / the first insulating layer 14, the second magnetic layer 1
2 / second insulating layer 15 / third magnetic layer 13 in this order,
It is composed of a laminated film of three magnetic layers and two insulating layers. Then, a first voltage applying unit 16 is provided between the first magnetic layer 11 and the second magnetic layer 12 to apply a constant voltage. Further, a second voltage applying unit 17 is provided between the second magnetic layer 12 and the third magnetic layer 13 to apply a constant voltage.
【0017】さらに、第1磁性層11と第1の電圧印加
部16との間には、第1絶縁層14をトンネルする電流
を検出するための電流検出部18を設ける。また、第3
磁性層13と第2の電圧印加部17との間にも第2絶縁
層15をトンネルする電流を検出するための電流検出部
19を設ける。これら電流検出部18及び19によっ
て、絶縁層14、15をトンネルする電流をそれぞれ独
立に検出することができる構成となっている。Further, between the first magnetic layer 11 and the first voltage applying section 16, a current detecting section 18 for detecting a current tunneling through the first insulating layer 14 is provided. Also, the third
A current detector 19 for detecting a current tunneling through the second insulating layer 15 is also provided between the magnetic layer 13 and the second voltage applying unit 17. The current detectors 18 and 19 are configured to be able to independently detect currents tunneling through the insulating layers 14 and 15, respectively.
【0018】上記第1及び第2の電圧印加部16、17
としては、通常、直流定電圧電源で両者同一の電圧値と
するが、使用目的によってはそれぞれ異なる電圧値であ
ってもよい。好ましい直流電圧としては0.01〜0.1Vであ
る。また、必ずしも直流定電圧電源でなく、場合によっ
てはその他、例えば、交流、パルス電流など直流以外で
あってもよい。The first and second voltage applying units 16 and 17
Normally, both are set to the same voltage value in a DC constant voltage power supply, but may be different voltage values depending on the purpose of use. A preferable DC voltage is 0.01 to 0.1 V. Further, the power supply is not necessarily a DC constant voltage power supply, and may be other than DC, such as an AC or a pulse current, depending on circumstances.
【0019】上記第1磁性層11及び第3磁性層13と
しては、例えば、Ni−Fe系合金、Ni−Fe−Co系合金、Co
−Fe系合金等の良好な軟磁気特性を有する膜厚5〜30nm
の磁性膜が、また、第2磁性層12としては、例えば、
Co−Pt系合金、Co−Cr系合金、Co−Ta系合金等の高い保
磁力を有する膜厚8〜20nmの磁性膜が使用される。The first magnetic layer 11 and the third magnetic layer 13 are made of, for example, a Ni—Fe alloy, a Ni—Fe—Co alloy,
-Film thickness of 5 to 30 nm with good soft magnetic properties such as Fe-based alloys
And the second magnetic layer 12 is, for example,
A magnetic film having a high coercive force and a film thickness of 8 to 20 nm, such as a Co-Pt alloy, a Co-Cr alloy, or a Co-Ta alloy, is used.
【0020】また、絶縁層14、15としては、例えば
Alの酸化物(Al2O3)、その他MgO等の絶縁障壁高さが1.
5〜2.5電子ボルト程度の膜厚0.6〜2.5nm程度の絶縁薄膜
が使用できる。なお、Al2O3の絶縁障壁高さは2電子ボル
ト、MgOは1.5電子ボルトである。As the insulating layers 14 and 15, for example,
Insulation barrier height of Al oxide (Al 2 O 3 ), other MgO etc. is 1.
An insulating thin film with a thickness of about 5 to 2.5 eV and a thickness of about 0.6 to 2.5 nm can be used. The insulating barrier height of Al 2 O 3 is 2 eV, and MgO is 1.5 eV.
【0021】これら磁性層及び絶縁層の積層膜は、周知
の成膜技術、例えばスパッタ法により容易に形成するこ
とができる。The laminated film of the magnetic layer and the insulating layer can be easily formed by a known film forming technique, for example, a sputtering method.
【0022】[0022]
【実施例】以下、図面にしたがって本発明の実施例を具
体的に説明する。 〈実施例1〉磁気ヘッド10は、図1に示すように、第
1磁性層11、第1絶縁層14、第2磁性層12、第2
絶縁層15、第3磁性層13の順に多層膜を形成し、第
1の電圧印加部16により第1磁性層11と第2磁性層
12との間に定電圧を印加する。また、第2の電圧印加
部17により第2磁性層12と第3磁性層13との間に
も定電圧を印加する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. <Embodiment 1> As shown in FIG. 1, a magnetic head 10 has a first magnetic layer 11, a first insulating layer 14, a second magnetic layer 12,
A multilayer film is formed in the order of the insulating layer 15 and the third magnetic layer 13, and a constant voltage is applied between the first magnetic layer 11 and the second magnetic layer 12 by the first voltage applying unit 16. Further, a constant voltage is applied between the second magnetic layer 12 and the third magnetic layer 13 by the second voltage applying unit 17.
【0023】第1磁性層11と第1の電圧印加部16と
の間の電流検出部18および第3磁性層13と第2の電
圧印加部17との間の電流検出部19を設ける。これに
より、絶縁層14および15をトンネルする電流をそれ
ぞれ独立に検出することができる。A current detecting section 18 between the first magnetic layer 11 and the first voltage applying section 16 and a current detecting section 19 between the third magnetic layer 13 and the second voltage applying section 17 are provided. Thus, currents tunneling through the insulating layers 14 and 15 can be detected independently.
【0024】本実施例では、第1磁性層11および第3
磁性層13には厚さ15 nmのNi-20at%Fe合金を、第2磁
性層12には厚さ8 nmのCoー17at%Pt合金を用いた。ま
た、絶縁層14および15には、それぞれ厚さ1.3 nmの
Alの酸化物(Al2O3)を用いた。電圧印加部16、17の
印加電圧はそれぞれ0.05 Vである。なお、これら磁性層
および絶縁層は、いずれも周知のスパッタ法により成膜
した。In this embodiment, the first magnetic layer 11 and the third
For the magnetic layer 13, a Ni-20at% Fe alloy with a thickness of 15 nm was used, and for the second magnetic layer 12, a Co-17at% Pt alloy with a thickness of 8 nm was used. The insulating layers 14 and 15 each have a thickness of 1.3 nm.
Al oxide (Al 2 O 3 ) was used. The applied voltages of the voltage applying units 16 and 17 are each 0.05 V. Each of the magnetic layer and the insulating layer was formed by a well-known sputtering method.
【0025】図1のように、上記磁気抵効果型磁気ヘッ
ド10を磁気記録媒体21に接近させる。図のように、
磁気記録媒体21の磁区22により第1磁性層11の磁
化は上を向く。また、隣の磁区23により第3磁性層1
3の磁化は下を向く。第2磁性層12は保磁力が高いた
め、この磁性層12の磁化の向きは変化しない。この実
施例では、第2磁性層12の磁化は上向きである。As shown in FIG. 1, the magnetoresistive magnetic head 10 is moved closer to the magnetic recording medium 21. As shown
The magnetization of the first magnetic layer 11 is directed upward by the magnetic domains 22 of the magnetic recording medium 21. The third magnetic layer 1 is formed by the adjacent magnetic domains 23.
The magnetization of 3 points downward. Since the second magnetic layer 12 has a high coercive force, the direction of magnetization of the magnetic layer 12 does not change. In this embodiment, the magnetization of the second magnetic layer 12 is upward.
【0026】磁気トンネリングでは、絶縁層の両側の磁
性層の磁化の向きが平行の時、絶縁層をトンネルする電
流は多く、絶縁層の両側の磁性層の磁化の向きが反平行
の時、絶縁層をトンネルする電流は少ない。したがっ
て、図1の位置では、第1絶縁層14をトンネルする電
流が多く、第2絶縁層15をトンネルする電流は少な
い。In magnetic tunneling, when the magnetization directions of the magnetic layers on both sides of the insulating layer are parallel, a large amount of current tunnels through the insulating layer. The current that tunnels through the layers is small. Therefore, at the position of FIG. 1, the current that tunnels through the first insulating layer 14 is large, and the current that tunnels through the second insulating layer 15 is small.
【0027】このことから、電流検出部18および19
により、第1絶縁層14をトンネルする電流および第2
絶縁層15をトンネルする電流を検出することにより、
磁気記録媒体21に記録された情報を読み取ることがで
きることがわかる。From this, the current detectors 18 and 19
As a result, the current that tunnels through the first insulating layer 14 and the second
By detecting the current that tunnels through the insulating layer 15,
It can be seen that information recorded on the magnetic recording medium 21 can be read.
【0028】また、磁気抵抗効果型磁気ヘッド10と磁
気記録媒体21を十分に接近させた状態では、多層膜全
体の厚さと記録における2ビットがほぼ同じ長さになる
ため、非常に高密度に記録された情報を読み取ることが
可能になる。In a state where the magnetoresistive head 10 and the magnetic recording medium 21 are sufficiently close to each other, the total thickness of the multilayer film and the length of two bits in recording are almost the same, so that the density is extremely high. It becomes possible to read the recorded information.
【0029】本実施例の場合、多層膜全体の厚さは40.6
nmであるから、1ビットの長さは約20 nmとなる。これ
は線記録密度1.265 MBPIに相当する。本検討では、実際
には絶縁体中に約20 nmの直径を有する磁性クラスター
を分散させた磁気記録媒体の磁区状態を上記の磁気抵抗
効果型磁気ヘッドで読み取った。この原理実験の結果、
上記磁気抵抗効果型磁気ヘッドにより、磁気記録媒体の
磁区状態を読み取ることができ、高密度記録が可能な磁
気記録媒体が得られれば、1.265 MBPIの線記録密度の達
成が可能であることがわかった。In the case of this embodiment, the total thickness of the multilayer film is 40.6.
nm, the length of one bit is about 20 nm. This corresponds to a linear recording density of 1.265 MBPI. In this study, the magnetic domain state of a magnetic recording medium in which magnetic clusters having a diameter of about 20 nm were dispersed in an insulator was actually read by the above-described magnetoresistive head. As a result of this principle experiment,
With the above-mentioned magnetoresistive effect type magnetic head, it is possible to read the magnetic domain state of the magnetic recording medium, and if a magnetic recording medium capable of high-density recording is obtained, it is understood that a linear recording density of 1.265 MBPI can be achieved. Was.
【0030】また、図1のように、磁気抵抗効果型磁気
ヘッドが進行方向24の向きに移動する場合、磁区23
の情報を再び、第1磁性層11の磁化の向きで検出する
ことも可能である。この方法では、同じ情報を2度読む
ことができ、確実に情報を再生できることになる。As shown in FIG. 1, when the magnetoresistive head moves in the direction of travel 24, the magnetic domain 23
Can be detected again by the direction of magnetization of the first magnetic layer 11. In this method, the same information can be read twice, and the information can be reliably reproduced.
【0031】本実施例では、第1磁性層11および第3
磁性層13の材料として、それぞれNi-20at%Fe合金を用
いたが、これらの磁性層11および13の材料は良好な
軟磁気特性を示せば良く、他の材料を用いることも可能
である。他の材料としては、他の組成のNi-Fe系合金、N
i-Fe-Co系合金、Co-Fe系合金などがある。In this embodiment, the first magnetic layer 11 and the third
Although a Ni-20at% Fe alloy was used as the material for the magnetic layer 13, the materials for the magnetic layers 11 and 13 only need to exhibit good soft magnetic characteristics, and other materials can be used. Other materials include Ni-Fe alloys of other compositions, N
There are i-Fe-Co alloys, Co-Fe alloys and the like.
【0032】また、本実施例では、第2磁性層12の材
料としてCoー17at%Pt合金を用いたが、磁性層12の材料
は高い保磁力を示せば良く、他の材料を用いることも可
能である。他の材料としては、他の組成のCoーPt系合
金、CoーCr系合金、CoーTa系合金などがある。In the present embodiment, the Co-17 at% Pt alloy is used as the material of the second magnetic layer 12, but the material of the magnetic layer 12 only needs to show a high coercive force, and other materials may be used. It is possible. Other materials include Co-Pt alloys, Co-Cr alloys, and Co-Ta alloys having other compositions.
【0033】また、本実施例に示した磁気抵抗効果型ヘ
ッドは記録能力がない。従って、記録と再生を行うため
には、記録用の誘導型磁気ヘッドと組み合わせて使用す
る必要がある。Further, the magnetoresistive head shown in this embodiment has no recording capability. Therefore, in order to perform recording and reproduction, it is necessary to use it in combination with an inductive magnetic head for recording.
【0034】〈実施例2〉実施例1で述べた本発明の磁
気抵抗効果型磁気ヘッド10を用いて磁気ディスク装置
を作製した。装置の要部構造を図2に示す。図2(a)
は平面図、図2(b)は図2(a)のA−A´断面図で
ある。磁気記録媒体駆動部32により回転する磁気記録
媒体31には、Co−Cr系合金からなる磁性材料を用い
た。磁気ヘッド駆動部34により保持された磁気ヘッド
33のトラック幅は1 μmとした。Embodiment 2 A magnetic disk drive was manufactured using the magnetoresistive head 10 of the present invention described in Embodiment 1. FIG. 2 shows the main structure of the device. FIG. 2 (a)
2 is a plan view, and FIG. 2B is a cross-sectional view taken along line AA ′ of FIG. 2A. For the magnetic recording medium 31 rotated by the magnetic recording medium drive unit 32, a magnetic material made of a Co-Cr alloy was used. The track width of the magnetic head 33 held by the magnetic head drive unit 34 was 1 μm.
【0035】本発明の磁気抵抗効果型磁気ヘッドを用い
た磁気記録再生装置では、高い出力の再生信号が観測さ
れた。これは、本発明の磁気抵抗効果型磁気ヘッドが高
い磁気抵抗変化量を示すためである。In the magnetic recording / reproducing apparatus using the magnetoresistive head of the present invention, a high output reproduced signal was observed. This is because the magnetoresistive head of the present invention exhibits a high magnetoresistance change.
【0036】また、二酸化ケイ素からなる絶縁体中に平
均粒径が20 nmのCoを分散させた磁気記録媒体を用いて
再生原理実験を行ったところ、Co粒子の磁化を十分に検
出することができ、高密度記録が可能な磁気記録媒体が
得られれば、1.265 MBPIの線記録密度の達成が可能であ
ることがわかった。When a reproduction principle experiment was performed using a magnetic recording medium in which Co having an average particle diameter of 20 nm was dispersed in an insulator made of silicon dioxide, it was found that the magnetization of Co particles could be sufficiently detected. It was found that if a magnetic recording medium capable of high-density recording could be obtained, a linear recording density of 1.265 MBPI could be achieved.
【0037】[0037]
【発明の効果】以上詳述したように、本発明により所期
の目的を達成することができた。すなわち、三層の磁性
層が二層の絶縁層で分離されている多層膜を用いた磁気
抵抗効果型ヘッドにおいて、上記二層の絶縁層の両側の
磁性層間にそれぞれ定電圧を印加する手段と、上記二層
の絶縁層をトンネルする電流をそれぞれ独立に測定する
手段を備えることにより、高密度磁気記録に最適な再生
用磁気抵抗効果型磁気ヘッドを得ることができる。ま
た、本発明の磁気抵抗効果型磁気ヘッドを用いることに
より、非常に高い記録密度を有する磁気記録再生装置を
得ることができる。As described in detail above, the intended object has been achieved by the present invention. That is, in a magnetoresistive head using a multilayer film in which three magnetic layers are separated by two insulating layers, means for applying a constant voltage to the magnetic layers on both sides of the two insulating layers, By providing means for independently measuring currents tunneling through the two insulating layers, it is possible to obtain a reproducing magnetoresistive head suitable for high-density magnetic recording. Further, by using the magnetoresistive head of the present invention, a magnetic recording / reproducing apparatus having an extremely high recording density can be obtained.
【図1】本発明の磁気抵抗効果型磁気ヘッドの構成と再
生原理とを示す断面模式図。FIG. 1 is a schematic sectional view showing a configuration and a principle of reproduction of a magnetoresistive head according to the present invention.
【図2】本発明の磁気ディスク装置の要部構造を示した
説明図。FIG. 2 is an explanatory diagram showing a main part structure of the magnetic disk drive of the present invention.
10…磁気ヘッド、 11,12,13…磁性層、 14,15…絶縁層、 16,17…電圧印加部、 18,19…電流検出部、 21…磁気記録媒体、 22,23…磁区、 24…磁気抵抗効果型進行方向、 31…磁気記録媒体、 32…磁気記録媒体駆動部、 33…磁気ヘッド、 34…磁気ヘッド駆動部、 35…記録再生信号処理系。 10 ... magnetic head, 11,12,13 ... magnetic layer, 14,15 ... insulating layer, 16,17 ... voltage applying part, 18,19 ... current detecting part, 21 ... magnetic recording medium, 22,23 ... magnetic domain, 24 ... Magnetoresistance effect type traveling direction, 31 ... Magnetic recording medium, 32 ... Magnetic recording medium drive unit, 33 ... Magnetic head, 34 ... Magnetic head drive unit, 35 ... Recording / reproduction signal processing system.
Claims (4)
の磁性層が二層の絶縁層で分離されている多層膜を用い
た磁気抵抗効果型磁気ヘッドであって、前記二層の絶縁
層の両側の磁性層間にそれぞれ独立に定電圧を印加する
手段と、外部磁界によって前記二層の絶縁層をトンネル
する電流を出力信号としてそれぞれ独立に検出する電流
検出手段とを備えたことを特徴とする磁気抵抗効果型磁
気ヘッド。1. A magnetoresistive effect type magnetic head using a multilayer film in which magnetic layers and insulating layers are alternately stacked, and three magnetic layers are separated by two insulating layers. A means for independently applying a constant voltage between the magnetic layers on both sides of the two insulating layers; and a current detecting means for independently detecting a current tunneling through the two insulating layers by an external magnetic field as an output signal. A magnetoresistive head.
磁性層、第2磁性層、第3磁性層としたとき、両端の二
層となる第1及び第3磁性層に、それぞれ上記外部磁界
となる磁気記録媒体の隣接する異なる磁区からの磁界が
印加される構造としたことを特徴とする請求項1記載の
磁気抵抗効果型磁気ヘッド。2. The method according to claim 1, wherein the three magnetic layers are formed in the order of lamination.
When the magnetic layer, the second magnetic layer, and the third magnetic layer are used, a magnetic field from an adjacent different magnetic domain of the magnetic recording medium serving as the external magnetic field is applied to the first and third magnetic layers at the two ends, respectively. 2. The magnetoresistive head according to claim 1, wherein said magnetic head is of a structure to be formed.
磁気ヘッドと誘導型磁気ヘッドとを組み合わせて構成し
たことを特徴とする記録再生磁気ヘッド。3. A recording / reproducing magnetic head comprising a combination of the magnetoresistive head of claim 1 or 2 and an inductive magnetic head.
気ヘッドを備えたことを特徴とする磁気記録再生装置。4. A magnetic recording / reproducing apparatus comprising the magnetic head according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11070007A JP2000268323A (en) | 1999-03-16 | 1999-03-16 | Magnetoresistive magnetic head and magnetic recording / reproducing apparatus having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11070007A JP2000268323A (en) | 1999-03-16 | 1999-03-16 | Magnetoresistive magnetic head and magnetic recording / reproducing apparatus having the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000268323A true JP2000268323A (en) | 2000-09-29 |
Family
ID=13419128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11070007A Pending JP2000268323A (en) | 1999-03-16 | 1999-03-16 | Magnetoresistive magnetic head and magnetic recording / reproducing apparatus having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000268323A (en) |
-
1999
- 1999-03-16 JP JP11070007A patent/JP2000268323A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1139916C (en) | Magnetic tunnel junction magnetoresistive read head with sensing layer as rear flux guide | |
CN1167050C (en) | Magnetic tunnel junction magnetoresistive read head specifically as read layer for magnetic flux guidance | |
JP3679593B2 (en) | Magnetic thin film element, magnetic thin film memory element and recording / reproducing method thereof | |
JP3462832B2 (en) | Magnetic resistance sensor, magnetic head and magnetic recording / reproducing apparatus using the same | |
US6906898B2 (en) | Differential detection read sensor, thin film head for perpendicular magnetic recording and perpendicular magnetic recording apparatus | |
JP2001195878A (en) | Magnetic resistance effective memory, reproducing method for information stored in the memory, and its reproducing device | |
JP2003526913A (en) | Magnetic element having bias magnetic layer structure | |
JP2002359412A (en) | Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, magnetoresistive effect type magnetic head, and magnetic memory | |
JP2009026400A (en) | Differential magnetoresistive head | |
JP2001006127A (en) | Tunnel magnetic resistance effect type head | |
JP2003045011A (en) | Spin valve type magneto-resistance effect reproducing head and its manufacturing method | |
JP2003529199A (en) | Differential VGMR sensor | |
JP3050218B1 (en) | Magnetic head, magnetic recording / reproducing device and magnetic memory device using the same | |
JP3576145B2 (en) | Magnetic disk drive using a magnetic head having a magnetoresistive film | |
JPH11238924A (en) | Spin-dependent conductive element and electronic and magnetic components using the same | |
JP2004039869A (en) | Magnetic resistance sensor, magnetic head, and magnetic recording device | |
JP2009158789A (en) | Current magnetic effect element and magnetic sensor | |
TW200419171A (en) | A magnetic sensor | |
JPH07296340A (en) | Magnetoresistive effect element and thin-film magnetic head using the element | |
JPH11163436A (en) | Magnetoresistive element and magnetoresistive head | |
JP2001307308A (en) | Magnetoresistive head and information reproducing apparatus | |
JPH07176019A (en) | Flat magnetoresistance head | |
JP3261698B2 (en) | Magnetic head and magnetoresistive element | |
JP2000268323A (en) | Magnetoresistive magnetic head and magnetic recording / reproducing apparatus having the same | |
JP3048552B2 (en) | Magnetic recording / reproducing method and magnetic recording / reproducing apparatus |