[go: up one dir, main page]

JP2000265252A - High strength amorphous alloy and its production - Google Patents

High strength amorphous alloy and its production

Info

Publication number
JP2000265252A
JP2000265252A JP11069244A JP6924499A JP2000265252A JP 2000265252 A JP2000265252 A JP 2000265252A JP 11069244 A JP11069244 A JP 11069244A JP 6924499 A JP6924499 A JP 6924499A JP 2000265252 A JP2000265252 A JP 2000265252A
Authority
JP
Japan
Prior art keywords
elements
amorphous
strength
alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11069244A
Other languages
Japanese (ja)
Other versions
JP4332647B2 (en
Inventor
Akihisa Inoue
明久 井上
To Cho
涛 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Techno Arch Co Ltd
Original Assignee
Tohoku Techno Arch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co Ltd filed Critical Tohoku Techno Arch Co Ltd
Priority to JP06924499A priority Critical patent/JP4332647B2/en
Publication of JP2000265252A publication Critical patent/JP2000265252A/en
Application granted granted Critical
Publication of JP4332647B2 publication Critical patent/JP4332647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To impart remarkably high strength and toughness such as ductility by preparing an alloy consisting of specified ratios of Zr, Ni, Cu, Al, Au, Ag, or the like, and composed of a structure at least having an amorphous phase. SOLUTION: An alloy represented by the general formula of XaMbAlcTdPe (where X denotes one or two kinds of elements of Zr and Hf, M denotes one or more kinds of elements selected from Ni, Cu, Fe, Co and Mn, T denotes elements having negative mixing enthalpy to at least one or more kinds of elements among X, M and Al, P denotes elements having positive mixing enthalpy to at least one or more kinds of elements among X, M and Al, and as to (a), (b), (c), (d) and (e), by atomic%, 25<=a<=85, 5<=b<=70, 0<c<=30, 0<d<=10 and 0<e<=20 are satisfied) and composed of a structure at least having an amorphous phase is prepd. Moreover, the T elements denote one or more kinds of elements among Ru, Os, Rh, Ir, Pd, V, Cr, Mo, W, Au, or the like, and P elements denote one or more kinds of elements among Ag, Au, Nb and Ta.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術の分野】本発明は、硬度及び強度が
高く、延性に優れ、高耐食性を有し、かつ加工性に優
れ、組織中に非晶質を含む非晶質合金およびその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous alloy having high hardness and strength, excellent ductility, high corrosion resistance, excellent workability, and an amorphous structure, and a method for producing the same. It is about.

【従来の技術】[Prior art]

【0002】従来のZr基合金では、ある特定された合
金組成において結晶化の前でガラス遷移が見られ、広い
過冷却液体領域を有しており、大きいアモルファス形成
能を示すため、非晶質合金の基材金属として広く使用さ
れている。これらのZr基合金は、前述のように大きな
アモルファス形成能を有しているために、液体急冷法な
どのような大きな冷却速度が得られる特殊な形成方法の
みならず、Cu鋳型鋳造などのような比較的冷却遠度の
遅い一般的な鋳造法によってでもアモルファス(非晶
質)化し、ねぱい(高靱性)バルクアモルファスを比較
的容易に作製することができる。
In a conventional Zr-based alloy, a glass transition is observed before crystallization in a specified alloy composition, a wide supercooled liquid region is exhibited, and a large amorphous forming ability is exhibited. Widely used as a base metal for alloys. Since these Zr-based alloys have a large amorphous forming ability as described above, not only a special forming method capable of obtaining a large cooling rate such as a liquid quenching method, but also a Cu mold casting or the like. Even by a general casting method with a relatively slow cooling distance, it becomes amorphous (amorphous), and a tough (high toughness) bulk amorphous can be produced relatively easily.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、例えば
液体急冷法によって作製したねばい(高靱性)急冷薄帯
等を結晶化温度前後の温度に加熱した場合や、前記バル
クアモルファスを前記Cu鋳型鋳造法にて作製する際に
冷却速度が所定の冷却速度より遅くなった場合において
は、得られるバルクアモルファスの特性、特にねばさ
(靱性)が結晶が析出することにより劣化し、180°
密着曲げ等の加工がしずらくなってしまうとともに、そ
の曲げ強度も低下してしまうという問題があった。
However, when, for example, a quenched thin (high toughness) ribbon produced by a liquid quenching method is heated to a temperature around the crystallization temperature, or the bulk amorphous is formed by the Cu mold casting method. If the cooling rate becomes slower than a predetermined cooling rate during the production in the above, the characteristics of the obtained bulk amorphous phase, particularly the toughness (toughness), are deteriorated due to the precipitation of crystals, and 180 °
There has been a problem that processing such as close contact bending becomes difficult, and the bending strength also decreases.

【0004】よって、本発明は上記した問題点に着目し
てなされたもので、作製したねばい(高靱性)薄帯やバ
ルク材等を熱処理を施して結晶を析出させた場合や、作
業性や生産性等の向上のために金型鋳造法で冷却速度を
遅くして結晶を析出させた場合における、前記ねばさ
(靱性)や強度等の特性が劣化する問題点を解決可能な
組成を有する非晶質合金並びにその製造方法を提供する
ことを目的としている。
Accordingly, the present invention has been made in view of the above-mentioned problems, and has been made in a case where heat treatment is performed on a prepared long-strength (high toughness) ribbon or bulk material to precipitate crystals, A composition that can solve the problem of deterioration of properties such as the toughness (toughness) and strength when a crystal is precipitated at a low cooling rate by a mold casting method in order to improve productivity and productivity. An object of the present invention is to provide an amorphous alloy having the same and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】前記した問題を解決する
ために、本発明の高強度非晶質合金は、一般式;XaM
bAlcTdPe(ただし、X;ZrおよびHfから選
ばれる1種又ば2種の元素、M;Ni、Cu、Fe、C
oおよびMnから選ばれる少なくとも1種の元素、T;
前記X、M、Alの少なくともl種以上の元素に対して
負の混合工ンタルピーを有する元素、P;前記X、M、
Alの少なくともl種以上の元素に対して正の混合工ン
タルピーを有する元素、a、b、c、d、eは原子パー
セントで、25≦a≦85、5≦b≦70、0<c≦3
0、0<d≦10、0<e≦20)で示され、少なくと
も非晶質相を有する組織からなることを特徴としてい
る。この特徴によれば、前記のように負の混合工ンタル
ピーを有する元素と正の混合工ンタルピーを有する元素
とを組成中に含むことにより、前記熱処理や冷却速度を
遅くすることにより析出する結晶の大きさを微細化でき
るようになり、ねばさ(靱性)や強度等の特性が劣化す
ることがなく、著しく高い強度および延び等の靱性を有
する合金を得ることができる。
In order to solve the above-mentioned problems, a high-strength amorphous alloy of the present invention has a general formula: XaM
bAlcTdPe (where X is one or two elements selected from Zr and Hf, M; Ni, Cu, Fe, C
at least one element selected from o and Mn, T;
X, M, an element having a negative mixed enthalpy with respect to at least one or more elements of Al; P;
Elements having a positive mixed enthalpy with respect to at least one or more elements of Al, a, b, c, d, and e are atomic percentages, and 25 ≦ a ≦ 85, 5 ≦ b ≦ 70, and 0 <c ≦ 3
0, 0 <d ≦ 10, 0 <e ≦ 20), and is characterized by comprising a structure having at least an amorphous phase. According to this feature, by including the element having the negative mixed enthalpy and the element having the positive mixed enthalpy in the composition as described above, the crystal deposited by slowing the heat treatment and cooling rate. Since the size can be reduced, an alloy having extremely high strength and toughness such as elongation can be obtained without deterioration of properties such as toughness (toughness) and strength.

【0006】本発明の高強度非晶質合金は、前記T元素
がRu、Os、Rh、Ir、Pd、Pt、V、Cr、M
o、W、Au、Ga、Ge、Re、Si、Sn、Tiか
ら選ばれる少なくとも1種の元素であることが好まし
い。このようにすれば、前記特性劣化の防止および高強
度、高靱性等の特性向上において高い効果を得ることが
できる。
In the high-strength amorphous alloy according to the present invention, the T element is Ru, Os, Rh, Ir, Pd, Pt, V, Cr, M
It is preferably at least one element selected from o, W, Au, Ga, Ge, Re, Si, Sn, and Ti. In this way, a high effect can be obtained in preventing the above-mentioned property deterioration and improving the properties such as high strength and high toughness.

【0007】本発明の高強度非晶質合金は、前記P元素
がAg、Au、Nb、Taから選ばれる少なくとも1種
の元素であることが好ましい。このようにすれば、前記
特性劣化の防止および高強度、高靱性等の特性向上にお
いて高い効果を得ることができる。
In the high-strength amorphous alloy of the present invention, the P element is preferably at least one element selected from Ag, Au, Nb, and Ta. In this way, a high effect can be obtained in preventing the above-mentioned property deterioration and improving the properties such as high strength and high toughness.

【0008】本発明の高強度非晶質合金は、前記組織が
非晶質相と微細結晶質相との混相であることが好まし
い。このようにすれば、前記特性劣化の防止および高強
度、高靱性等の特性向上において高い効果を得ることが
できる。
[0008] In the high-strength amorphous alloy according to the present invention, the structure is preferably a mixed phase of an amorphous phase and a fine crystalline phase. In this way, a high effect can be obtained in preventing the above-mentioned property deterioration and improving the properties such as high strength and high toughness.

【0009】本発明の高強度非晶質合金は、前記非晶質
組織中に、少なくとも準結晶相を含むことが好ましい。
このようにすれば、前記特性劣化の防止および高強度、
高靱性等の特性向上、特に曲げ強度の点において高い効
果を得ることができる。
The high-strength amorphous alloy of the present invention preferably contains at least a quasicrystalline phase in the amorphous structure.
By doing so, prevention of the characteristic deterioration and high strength,
Improvement of properties such as high toughness, and particularly high effects can be obtained in terms of bending strength.

【0010】本発明の高強度非晶質合金の製造方法は、
一般式;XaMbAlcTdPe(ただし、X;Zrお
よびHfから選ばれる1種又ば2種の元素、M;Ni、
Cu、Fe、CoおよびMnから選ばれる少なくとも1
種の元素、T;前記X、M、Alの少なくともl種以上
の元素に対して負の混合工ンタルピーを有する元素、
P;前記X、M、Alの少なくともl種以上の元素に対
して正の混合工ンタルピーを有する元素、a、b、c、
d、eは原子パーセントで、25≦a≦85、5≦b≦
70、0<c≦30、0<d≦10、0<e≦20)で
示される組成を有し、少なくとも非晶質相を含む非晶質
合金を作製し、これを該合金のガラス遷移温度Tgと第
1発熱反応の開始温度(Tx1:緒晶化温度)までの温
度領域にて加熟処理することを特徴としている。この特
徴によれば、前記加熱処理温度が前記ガラス遷移温度T
g未満であると、微細な結晶質または準結晶質の移行が
良好になされず、又、該加熱処理温度が前記第1発熱反
応の開始温度Tx1を越えると、組織内に形成される前
記結晶または準結晶の大きさが粗大化して得られる合金
の特性が劣化してしまうことから、前記TgとTx1の
間の温度領域にて加熟処理することで、前記非晶質相中
に含まれる微細結晶または準結晶の量および大きさを適
宜なものとすることが可能となり、ねばさ(靱性)や強
度等の特性が劣化することがなく、著しく高い強度およ
び延び等の靱性を有する合金を得ることができる。
[0010] The method for producing a high-strength amorphous alloy of the present invention comprises:
XaMbAlcTdPe (where X is one or two elements selected from Zr and Hf, M; Ni,
At least one selected from Cu, Fe, Co and Mn
A kind of element, T; an element having a negative mixed enthalpy with respect to at least one or more of X, M, and Al;
P; elements having a positive mixing enthalpy with respect to at least one or more elements of X, M and Al, a, b, c,
d and e are atomic percent and 25 ≦ a ≦ 85, 5 ≦ b ≦
70, 0 <c ≦ 30, 0 <d ≦ 10, 0 <e ≦ 20) to prepare an amorphous alloy containing at least an amorphous phase, and to prepare a glass transition of the alloy. The ripening process is characterized in that the ripening treatment is performed in a temperature range from the temperature Tg to the first exothermic reaction start temperature (Tx1: crystallization temperature). According to this feature, the heat treatment temperature is equal to the glass transition temperature T.
If it is less than 0.1 g, fine crystalline or quasicrystalline transition is not satisfactorily performed, and if the heat treatment temperature exceeds the starting temperature Tx1 of the first exothermic reaction, the crystal formed in the structure Alternatively, since the properties of the alloy obtained by coarsening the size of the quasicrystal deteriorates, the alloy is contained in the amorphous phase by performing ripening treatment in the temperature range between Tg and Tx1. The amount and size of the fine crystals or quasicrystals can be made appropriate, so that alloys having extremely high strength and toughness such as elongation without deterioration of properties such as toughness (toughness) and strength can be obtained. Obtainable.

【0011】本発明の高強度非晶質合金の製造方法は、
前記温度領域における加熱処理時間を1〜120分とす
ることが好ましい。このようにすれば、形成される微細
結晶または準結晶の量およびその大きさを適宜なものと
することができる。
[0011] The method for producing a high-strength amorphous alloy of the present invention comprises:
The heat treatment time in the temperature range is preferably set to 1 to 120 minutes. By doing so, the amount and size of the formed fine crystals or quasicrystals can be made appropriate.

【0012】本発明の高強度非晶質合金の製造方法は、
前記加熟処理にて前記非晶質相を含む合金を準結晶単相
からなる合金とすることが好ましい。このようにすれ
ば、得られる合金のねばさ(靱性)や強度等の特性を著
しく向上できる。
[0012] The method for producing a high-strength amorphous alloy of the present invention comprises:
It is preferable that the alloy containing the amorphous phase be an alloy composed of a quasicrystalline single phase in the ripening treatment. In this way, properties such as the toughness (toughness) and strength of the obtained alloy can be significantly improved.

【0013】[0013]

【発明の実施の形態】以下、図面に基づいて本発明の実
施形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施例)前記請求項におけるX元素とし
てZr、M元素としてNiとCu、T元素としてAu、
P元素としてAgを用いてZr65Al7.5Cu7.5
Ni10AgAu(添字は原子%)の組成からなる
母合金をアーク溶解炉で溶製し、一般的に用いられる単
ロール式液体急冷装置(メルトスピニング装置)によっ
て簿帯(厚さ:20μm、幅l.5mm)を製造した、
その際のロールは直径200mmの銅製、回転数は40
00rpm、雰囲気は10−3Torr以下のArであ
る。
(Example) In the above claims, Zr is used as the X element, Ni and Cu as the M element, Au as the T element,
Using Ag as the P element, Zr 65 Al 7.5 Cu 7.5
A master alloy having a composition of Ni 10 Ag 5 Au 5 (subscript is atomic%) is melted in an arc melting furnace, and the strip is formed by a generally used single-roll liquid quenching device (melt spinning device). 20 μm, width 1.5 mm).
The roll at that time is made of copper with a diameter of 200 mm, and the rotation speed is 40.
At 00 rpm, the atmosphere is Ar at 10 −3 Torr or less.

【0015】また、本発明の比較として、前記正のエン
タルピーを有するP元素のみを含むものとして、該P元
素としてNbのみを用いたZr55Al10Cu29
Nbと、該P元素をも含まないZr55Al10
Cu30Ni(添字は原子%)の組成からなる母合金
を、前記と同様にして簿帯を作製した。
Further, as a comparison of the present invention, it is assumed that only the P element having the positive enthalpy is included, and Zr 55 Al 10 Cu 29 N using only Nb as the P element.
i 5 Nb 1 and Zr 55 Al 10 containing no P element
A master alloy having a composition of Cu 30 Ni 5 (subscript: atomic%) was prepared in the same manner as described above to produce a strip.

【0016】これら得られた各非晶質単相合金簿帯につ
いて示差走査熱分析装置(DSC)による測定を行っ
た。図1において、Zr55Al10Cu30Ni
熱的特性は(a)で示されるものであり、Zr55Al
10Cu29NiNbの熱的特性は(b)で示され
るものであり、Zr65Al7.5Cu7.5Ni10
Auの熱的特性は(c)で示されてる。
The obtained amorphous single-phase alloy strips were measured by a differential scanning calorimeter (DSC). In Figure 1, the thermal properties of Zr 55 Al 10 Cu 30 Ni 5 are those represented by (a), Zr 55 Al
The thermal properties of 10 Cu 29 Ni 5 Nb 1 are shown by (b) and Zr 65 Al 7.5 Cu 7.5 Ni 10 A
thermal properties of g 5 Au 5 is shown in (c).

【0017】これら各示差走査熱分析装置(DSC)に
よる測定に基づき、前記それぞれの合金について、ガラ
ス遷移温度(Tg)、結晶化温度(Tx;Tx1、Tx
2)を求めた。これらTgとTxとの取り方について説
明すると、示差走査熱量分析曲線上で吸熱反応が起こる
部分で、その曲線の立ち上がり部と基線の外挿が交わる
点での温度をTgとし、逆に発熱反応が起こる部分で、
上記と同様にして得られた温度をTxとして設定してい
る。なお、過冷却液体領域(△T)は、前記ガラス遷移
温度(Tg)と結晶化温度(Tx1)との間の領域であ
り、本発明では、前記にて作製された各非晶質単相合金
簿帯は、該過冷却液体領域内より選択された適宜な温度
にて所定時間加熱処理される。
Based on the measurement by each of the differential scanning calorimeters (DSC), the glass transition temperature (Tg), the crystallization temperature (Tx; Tx1, Tx1, Tx
2) was determined. Explaining how to take these Tg and Tx, the temperature at the point where the endothermic reaction occurs on the differential scanning calorimetric analysis curve and where the extrapolation of the base line intersects with the rising end of the curve is defined as Tg. Where
The temperature obtained in the same manner as above is set as Tx. The supercooled liquid region (ΔT) is a region between the glass transition temperature (Tg) and the crystallization temperature (Tx1). In the present invention, each of the amorphous single phase The alloy strip is heated for a predetermined time at an appropriate temperature selected from the supercooled liquid region.

【0018】これら加熱処理される時間としては、この
時間が短いと前記非晶質相の微細結晶または微細準結晶
への移行が十分になされず、またこの時間が長いと組織
中に形成される結晶または準結晶の大きさが粗大化して
しまうことから、1〜120分の範囲とすることが好ま
しく、本実施例では2分としている。
If the heating time is short, the amorphous phase is not sufficiently transferred to the fine crystals or fine quasicrystals, and if the time is long, the amorphous phase is formed in the structure. Since the size of the crystal or quasicrystal becomes coarse, it is preferable to set the range to 1 to 120 minutes, and in this embodiment, it is set to 2 minutes.

【0019】図2は、本実施例の合金について前記のよ
うに加熱処理を行ったときのX線回折によるデータであ
る。これら結果より、本実施例の合金は前記過冷却液体
領域である703Kと753Kでは、そのピーク強度に
大きな差がなく、この温度領域にて安定した結晶が形成
できることを示している。また、同時に非晶質相特有の
ブロードな回折パターンも確認することができ、得られ
る合金が非晶質相と結晶相の混合相であり、更に、前記
ピークの状況から、前記非晶質相中に形成される結晶が
図5に示す構造を有する準結晶であることも分かる。
FIG. 2 shows data by X-ray diffraction when the heat treatment is performed on the alloy of this embodiment as described above. From these results, it is shown that the alloy of the present example has no significant difference in peak intensity between the supercooled liquid regions 703K and 753K, and can form a stable crystal in this temperature region. At the same time, a broad diffraction pattern unique to the amorphous phase can also be confirmed, and the obtained alloy is a mixed phase of the amorphous phase and the crystalline phase. It can also be seen that the crystal formed therein is a quasicrystal having the structure shown in FIG.

【0020】前記のようにして加熱処理された各合金に
関して、3点曲げ強度を測定した結果を図3に示す。こ
の結果より、前記比較合金であるP元素をも含まないZ
Al10Cu30Niに対して、正のエンタル
ピーを有するP元素としてNbを微量混合することで、
該強度およびねばさ(靱性)の指標である延びが向上す
ることが分り、更に正および負のエンタルピーを有する
PおよびT元素としてAg、Auを共存させた本実施例
の合金であるZr65Al7.5Cu7.5Ni 10Ag
Auでは、前記のNbを混合したものよりも更に強
度が向上していることが分かるとともに、前記180°
密着曲げが可能であった。
Each of the alloys heat-treated as described above
FIG. 3 shows the results of measuring the three-point bending strength. This
From the results of the above, Z containing no P element, which is the comparative alloy,
r5 5Al10Cu30Ni5Positive enthal
By mixing a small amount of Nb as a P element having a peak,
Elongation which is an index of the strength and toughness (toughness) is improved.
And also has positive and negative enthalpies
Example 1 in which Ag and Au coexist as P and T elements
Zr is an alloy of65Al7.5Cu7.5Ni 10Ag
5Au5In this case, it is even stronger than the above-mentioned mixture of Nb.
It can be seen that the degree has improved,
Close bending was possible.

【0021】この本実施例の合金(Zr65Al7.5
Cu7.5Ni10AgAu)について前記におけ
る加熱処理時間を変化させ、マトリツクス中に存在する
結晶相の体積率に対する機械的特性を調べた結果を図4
に示す。この結果より非晶質相に分散する結晶質相の体
積が増加するにしたがい、引張強度、硬度、ヤング率の
機械的特性が向上していることが分かり、これら結晶質
相が100%近くになっても該機械的特性は低下しな
い。このことからも、マトリツクス中に形成される結晶
が、前記図 の(a)に示すような準結晶の構造を有す
るものと考えられ、該準結晶質相の体積が増加しても、
その機械的特性が劣化しないものと考えられる。
The alloy of this embodiment (Zr 65 Al 7.5
FIG. 4 shows the results of examining the mechanical properties of Cu 7.5 Ni 10 Ag 5 Au 5 ) with respect to the volume fraction of the crystal phase present in the matrix by changing the heat treatment time in the above.
Shown in From this result, it was found that as the volume of the crystalline phase dispersed in the amorphous phase increased, the mechanical properties such as tensile strength, hardness and Young's modulus were improved. The mechanical properties do not deteriorate. From this, it is considered that the crystals formed in the matrix have a quasicrystal structure as shown in FIG. 2A, and even if the volume of the quasicrystalline phase increases,
It is considered that the mechanical properties do not deteriorate.

【0022】以上、本発明を図面に基づいて説明してき
たが、本発明はこれら各実施例に限定されるものではな
く、本発明の主旨を逸脱しない範囲での変更や追加があ
っても、本発明に含まれることは言うまでもない。
Although the present invention has been described with reference to the drawings, the present invention is not limited to these embodiments, and changes and additions may be made without departing from the spirit of the present invention. Needless to say, this is included in the present invention.

【0023】また、前記実施例では、前記非晶質単相合
金簿帯を単ロール式液体急冷装置(メルトスピニング装
置)によって作製しているが、本発明はこれに限定され
るものではなく、これら非晶質単相合金を得る方法とし
てその他の方法、例えば双口一ル法、回転液中紡糸法、
高圧ガス噴霧法、スプレー法、又はスパッタリングによ
る急冷あるいは金型鋳造法を用いても良い。
In the above embodiment, the amorphous single-phase alloy strip is manufactured by a single-roll type liquid quenching apparatus (melt spinning apparatus). However, the present invention is not limited to this. Other methods for obtaining these amorphous single-phase alloys, for example, a twin-neck method, a spinning method in a rotating liquid,
High-pressure gas spraying, spraying, rapid cooling by sputtering or die casting may be used.

【0024】[0024]

【発明の効果】本発明は次の効果を奏する。The present invention has the following effects.

【0025】(a)請求項1の発明によれば、前記のよ
うに負の混合工ンタルピーを有する元素と正の混合工ン
タルピーを有する元素とを組成中に含むことにより、前
記熱処理や冷却速度を遅くすることにより析出する結晶
の大きさを微細化できるようになり、ねばさ(靱性)や
強度等の特性が劣化することがなく、著しく高い強度お
よび延び等の靱性を有する合金を得ることができる。
(A) According to the first aspect of the present invention, the heat treatment and the cooling rate are achieved by including the element having the negative mixed enthalpy and the element having the positive mixed enthalpy in the composition as described above. By slowing down, the size of the precipitated crystals can be made finer, and properties such as toughness (toughness) and strength are not deteriorated, and an alloy having extremely high strength and toughness such as elongation can be obtained. Can be.

【0026】(b)請求項2の発明によれば、前記特性
劣化の防止および高強度、高靱性等の特性向上において
高い効果を得ることができる。
(B) According to the second aspect of the present invention, a high effect can be obtained in preventing the deterioration of the characteristics and improving the characteristics such as high strength and high toughness.

【0027】(c)請求項3の発明によれば、前記特性
劣化の防止および高強度、高靱性等の特性向上において
高い効果を得ることができる。
(C) According to the third aspect of the invention, it is possible to obtain a high effect in preventing the characteristic deterioration and improving characteristics such as high strength and high toughness.

【0028】(d)請求項4の発明によれば、前記特性
劣化の防止および高強度、高靱性等の特性向上において
高い効果を得ることができる。
(D) According to the fourth aspect of the invention, a high effect can be obtained in preventing the characteristic deterioration and improving the characteristics such as high strength and high toughness.

【0029】(e)請求項5の発明によれば、前記特性
劣化の防止および高強度、高靱性等の特性向上、特に曲
げ強度の点において高い効果を得ることができる。
(E) According to the fifth aspect of the invention, it is possible to prevent deterioration of the characteristics and to improve characteristics such as high strength and high toughness, and particularly to obtain a high effect in terms of bending strength.

【0030】(f)請求項6の発明によれば、前記加熱
処理温度が前記ガラス遷移温度Tg未満であると、微細
な結晶質または準結晶質の移行が良好になされず、又、
該加熱処理温度が前記第1発熱反応の開始温度Tx1を
越えると、組織内に形成される前記結晶または準結晶の
大きさが粗大化して得られる合金の特性が劣化してしま
うことから、前記TgとTx1の間の温度領域にて加熟
処理することで、前記非晶質相中に含まれる微細結晶ま
たは準結晶の量および大きさを適宜なものとすることが
可能となり、ねばさ(靱性)や強度等の特性が劣化する
ことがなく、著しく高い強度および延び等の靱性を有す
る合金を得ることができる。
(F) According to the invention of claim 6, when the heat treatment temperature is lower than the glass transition temperature Tg, fine crystalline or quasicrystalline transition is not satisfactorily performed, and
If the heat treatment temperature exceeds the starting temperature Tx1 of the first exothermic reaction, the size of the crystal or quasicrystal formed in the structure becomes coarse, and the characteristics of the obtained alloy are deteriorated. By performing the ripening treatment in the temperature range between Tg and Tx1, it becomes possible to make the amount and size of the fine crystals or quasicrystals contained in the amorphous phase appropriate, and An alloy having remarkably high strength and toughness such as elongation can be obtained without deterioration in properties such as toughness and strength.

【0031】(g)請求項7の発明によれば、形成され
る微細結晶または準結晶の量およびその大きさを適宜な
ものとすることができる。
(G) According to the invention of claim 7, the amount and size of the fine crystal or quasicrystal to be formed can be made appropriate.

【0032】(h)請求項8の発明によれば、得られる
合金のねばさ(靱性)や強度等の特性を著しく向上でき
る。
(H) According to the invention of claim 8, characteristics such as toughness (toughness) and strength of the obtained alloy can be remarkably improved.

【0033】[0033]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例合金並びに比較例合金の示差走査熱分
析結果を示すグラフである。
FIG. 1 is a graph showing the results of differential scanning calorimetry of an alloy of this example and an alloy of a comparative example.

【図2】本実施例合金について所定の加熱処理を行った
ときのX線回折データを示すグラフである。
FIG. 2 is a graph showing X-ray diffraction data when a predetermined heat treatment is performed on the alloy of this example.

【図3】本実施例合金並びに比較例合金の3点曲げ強度
と延びとを示すグラフである。
FIG. 3 is a graph showing the three-point bending strength and elongation of the alloy of this example and the alloy of the comparative example.

【図4】本実施例合金の機械的特性を示すグラフであ
る。
FIG. 4 is a graph showing the mechanical properties of the alloy of this example.

【図5】準結晶の構造を示すモデル図である。FIG. 5 is a model diagram showing a structure of a quasicrystal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/16 C22F 1/16 Z // C22F 1/00 601 1/00 601 608 608 630 630B 682 682 691 691C 691B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/16 C22F 1 / 16Z // C22F 1/00 601 1/00 601 608 608 608 630 630B 682 682 691 691C 691B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一般式;XaMbAlcTdPe(ただ
し、X;ZrおよびHfから選ばれる1種又ば2種の元
素、M;Ni、Cu、Fe、CoおよびMnから選ばれ
る少なくとも1種の元素、T;前記X、M、Alの少な
くともl種以上の元素に対して負の混合工ンタルピーを
有する元素、P;前記X、M、Alの少なくともl種以
上の元素に対して正の混合工ンタルピーを有する元素、
a、b、c、d、eは原子パーセントで、25≦a≦8
5、5≦b≦70、0<c≦30、0<d≦10、0<
e≦20)で示され、少なくとも非晶質相を有する組織
からなることを特徴とする高強度非晶質合金。
1. A general formula: XaMbAlcTdPe (where X is one or two elements selected from Zr and Hf, M; at least one element selected from Ni, Cu, Fe, Co and Mn, T An element having a negative mixed enthalpy for at least one or more of the elements X, M, and Al; P; a positive mixed enthalpy for at least one or more of the elements X, M, and Al; Elements,
a, b, c, d, and e are atomic percent and 25 ≦ a ≦ 8
5, 5 ≦ b ≦ 70, 0 <c ≦ 30, 0 <d ≦ 10, 0 <
e ≦ 20), comprising a structure having at least an amorphous phase.
【請求項2】 前記T元素がRu、Os、Rh、Ir、
Pd、Pt、V、Cr、Mo、W、Au、Ga、Ge、
Re、Si、Sn、Tiから選ばれる少なくとも1種の
元素である請求項1に記載の高強度非晶質合金。
2. The method according to claim 1, wherein the T element is Ru, Os, Rh, Ir,
Pd, Pt, V, Cr, Mo, W, Au, Ga, Ge,
The high-strength amorphous alloy according to claim 1, which is at least one element selected from Re, Si, Sn, and Ti.
【請求項3】 前記P元素がAg、Nb、Taから選ば
れる少なくとも1種の元素である請求項1または2に記
載の高強度非晶質合金。
3. The high-strength amorphous alloy according to claim 1, wherein the P element is at least one element selected from Ag, Nb, and Ta.
【請求項4】 前記組織が非晶質相と微細結晶質相との
混相である請求項l〜3のいずれかに記載の高強度非晶
質合金。
4. The high-strength amorphous alloy according to claim 1, wherein said structure is a mixed phase of an amorphous phase and a fine crystalline phase.
【請求項5】 前記非晶質組織中に、少なくとも準結晶
相を含む請求項l〜4のいずれかに記載の高強度非晶質
合金。
5. The high-strength amorphous alloy according to claim 1, wherein the amorphous structure contains at least a quasicrystalline phase.
【請求項6】 一般式;XaMbAlcTdPe(ただ
し、X;ZrおよびHfから選ばれる1種又ば2種の元
素、M;Ni、Cu、Fe、CoおよびMnから選ばれ
る少なくとも1種の元素、T;前記X、M、Alの少な
くともl種以上の元素に対して負の混合工ンタルピーを
有する元素、P;前記X、M、Alの少なくともl種以
上の元素に対して正の混合工ンタルピーを有する元素、
a、b、c、d、eは原子パーセントで、25≦a≦8
5、5≦b≦70、0<c≦30、0<d≦10、0<
e≦20)で示される組成を有し、少なくとも非晶質相
を含む非晶質合金を作製し、これを該合金のガラス遷移
温度Tgと第1発熟反応の開始温度(Tx1:緒晶化温
度)までの温度領域にて加熟処理することを特徴とする
高強度非晶質合金の製造方法。
6. XaMbAlcTdPe (where X is one or two elements selected from Zr and Hf; M; at least one element selected from Ni, Cu, Fe, Co and Mn; T) An element having a negative mixed enthalpy for at least one or more of the elements X, M, and Al; P; a positive mixed enthalpy for at least one or more of the elements X, M, and Al; Elements,
a, b, c, d, and e are atomic percent and 25 ≦ a ≦ 8
5, 5 ≦ b ≦ 70, 0 <c ≦ 30, 0 <d ≦ 10, 0 <
e ≦ 20), and an amorphous alloy containing at least an amorphous phase is prepared, and the glass transition temperature Tg of the alloy and the start temperature of the first ripening reaction (Tx1: A high-strength amorphous alloy, which is subjected to ripening treatment in a temperature range up to a temperature up to a temperature equal to or higher than the temperature of the amorphous alloy.
【請求項7】 前記温度領域における加熱処理時間を1
〜120分とする請求項6記載の高強度非晶質合金の製
造方法。
7. The heat treatment time in the temperature range is set to 1
7. The method for producing a high-strength amorphous alloy according to claim 6, wherein the heating time is from 120 to 120 minutes.
【請求項8】 前記加熟処理にて前記非晶質相を含む合
金を準結晶単相からなる合金とする請求項6または7に
記載の高強度非晶質合金の製造方法。
8. The method for producing a high-strength amorphous alloy according to claim 6, wherein the alloy containing the amorphous phase in the ripening treatment is an alloy composed of a quasicrystalline single phase.
JP06924499A 1999-03-15 1999-03-15 High-strength amorphous alloy and method for producing the same Expired - Fee Related JP4332647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06924499A JP4332647B2 (en) 1999-03-15 1999-03-15 High-strength amorphous alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06924499A JP4332647B2 (en) 1999-03-15 1999-03-15 High-strength amorphous alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000265252A true JP2000265252A (en) 2000-09-26
JP4332647B2 JP4332647B2 (en) 2009-09-16

Family

ID=13397154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06924499A Expired - Fee Related JP4332647B2 (en) 1999-03-15 1999-03-15 High-strength amorphous alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4332647B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027050A1 (en) * 2000-09-25 2002-04-04 Johns Hopkins University Alloy with metallic glass and quasi-crystalline properties
US6918973B2 (en) 2001-11-05 2005-07-19 Johns Hopkins University Alloy and method of producing the same
WO2006051736A1 (en) * 2004-11-15 2006-05-18 Nippon Mining & Metals Co., Ltd. Hydrogen separation membrane, sputtering target for forming of hydrogen separation membrane, and process for producing the same
US20120247948A1 (en) * 2009-11-19 2012-10-04 Seung Yong Shin Sputtering target of multi-component single body and method for preparation thereof, and method for producing multi-component alloy-based nanostructured thin films using same
US8663439B2 (en) * 2004-11-15 2014-03-04 Jx Nippon Mining & Metals Corporation Sputtering target for producing metallic glass membrane and manufacturing method thereof
JP2014178255A (en) * 2013-03-15 2014-09-25 Toshiba Corp Reactor control rod using high strength anticorrosive hafnium alloy, and high strength anticorrosive hafnium alloy for reactor control rod
CN104726801A (en) * 2015-04-09 2015-06-24 中信戴卡股份有限公司 Aluminum alloy melting method and aluminum alloy manufacturing thereby
CN104762568A (en) * 2015-04-09 2015-07-08 中信戴卡股份有限公司 Aluminum alloy refiner material and preparation method thereof
KR101539647B1 (en) * 2013-06-05 2015-07-28 한국생산기술연구원 Polycrystalline alloy having glass forming ability, method of fabricating the same, alloy target for sputtering and method of fabricating the same
CN105239024A (en) * 2015-11-13 2016-01-13 东莞宜安科技股份有限公司 A kind of high hardness amorphous composite material and its preparation method and application
CN105886966A (en) * 2016-06-06 2016-08-24 天津大学 Zirconium-based multi-component amorphous alloy with high thermal stability and preparation method thereof
CN109280864A (en) * 2018-10-29 2019-01-29 湖南理工学院 Zr-Al-Ni-Cu bulk metallic glasses with different cluster contents and properties
CN109763079A (en) * 2019-01-08 2019-05-17 东莞辰越新材料科技有限公司 A kind of amorphous alloy material of seawater corrosion resistance and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038899A (en) * 2019-04-17 2019-07-23 常州大学 A method of amorphous/aluminium system laminar composite material is enhanced based on accumulation pack rolling preparation fcc-Al

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027050A1 (en) * 2000-09-25 2002-04-04 Johns Hopkins University Alloy with metallic glass and quasi-crystalline properties
US6692590B2 (en) 2000-09-25 2004-02-17 Johns Hopkins University Alloy with metallic glass and quasi-crystalline properties
US6918973B2 (en) 2001-11-05 2005-07-19 Johns Hopkins University Alloy and method of producing the same
US8663439B2 (en) * 2004-11-15 2014-03-04 Jx Nippon Mining & Metals Corporation Sputtering target for producing metallic glass membrane and manufacturing method thereof
KR100888911B1 (en) * 2004-11-15 2009-03-16 닛코 킨조쿠 가부시키가이샤 Hydrogen separation membrane, sputtering target for forming of hydrogen separation membrane, and process for producing the same
JP4673855B2 (en) * 2004-11-15 2011-04-20 Jx日鉱日石金属株式会社 Hydrogen separation membrane, sputtering target for forming hydrogen separation membrane, and method for producing the same
WO2006051736A1 (en) * 2004-11-15 2006-05-18 Nippon Mining & Metals Co., Ltd. Hydrogen separation membrane, sputtering target for forming of hydrogen separation membrane, and process for producing the same
JPWO2006051736A1 (en) * 2004-11-15 2008-05-29 日鉱金属株式会社 Hydrogen separation membrane, sputtering target for forming hydrogen separation membrane, and method for producing the same
US20120247948A1 (en) * 2009-11-19 2012-10-04 Seung Yong Shin Sputtering target of multi-component single body and method for preparation thereof, and method for producing multi-component alloy-based nanostructured thin films using same
JP2014178255A (en) * 2013-03-15 2014-09-25 Toshiba Corp Reactor control rod using high strength anticorrosive hafnium alloy, and high strength anticorrosive hafnium alloy for reactor control rod
KR101539647B1 (en) * 2013-06-05 2015-07-28 한국생산기술연구원 Polycrystalline alloy having glass forming ability, method of fabricating the same, alloy target for sputtering and method of fabricating the same
CN104726801A (en) * 2015-04-09 2015-06-24 中信戴卡股份有限公司 Aluminum alloy melting method and aluminum alloy manufacturing thereby
CN104762568A (en) * 2015-04-09 2015-07-08 中信戴卡股份有限公司 Aluminum alloy refiner material and preparation method thereof
CN105239024A (en) * 2015-11-13 2016-01-13 东莞宜安科技股份有限公司 A kind of high hardness amorphous composite material and its preparation method and application
WO2017080211A1 (en) * 2015-11-13 2017-05-18 东莞宜安科技股份有限公司 High hardness amorphous composite and preparation method and application thereof
CN105886966A (en) * 2016-06-06 2016-08-24 天津大学 Zirconium-based multi-component amorphous alloy with high thermal stability and preparation method thereof
CN109280864A (en) * 2018-10-29 2019-01-29 湖南理工学院 Zr-Al-Ni-Cu bulk metallic glasses with different cluster contents and properties
CN109763079A (en) * 2019-01-08 2019-05-17 东莞辰越新材料科技有限公司 A kind of amorphous alloy material of seawater corrosion resistance and preparation method thereof

Also Published As

Publication number Publication date
JP4332647B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
US6231697B1 (en) High-strength amorphous alloy and process for preparing the same
JP3805601B2 (en) High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy
KR920004680B1 (en) High strength heat-resistant alluminum-based alloy
JP2005504882A (en) Method for improving bulk solidified amorphous alloy composition and castings made therefrom
JPH07122120B2 (en) Amorphous alloy with excellent workability
JP2000265252A (en) High strength amorphous alloy and its production
JP2001303219A (en) Nickel-based amorphous alloy composition
JPH04218637A (en) Manufacture of high strength and high toughness aluminum alloy
EP0905268A1 (en) High-strength amorphous alloy and process for preparing the same
JPH0336243A (en) Amorphous alloy with excellent mechanical strength, corrosion resistance, and workability
JP2004091868A (en) Cu-based amorphous alloy
JP3891736B2 (en) High strength and high corrosion resistance Ni-based amorphous alloy
JPH0920968A (en) Cu-based non-magnetic metallic glass alloy, method for producing the same, and elastic actuator
JPS6237353A (en) Manufacture of shape memory alloy
CN110106454B (en) Boron-based amorphous alloy and preparation method thereof
JP4202002B2 (en) High yield stress Zr-based amorphous alloy
JP4515548B2 (en) Bulk amorphous alloy and high strength member using the same
US4405368A (en) Iron-aluminum alloys containing boron which have been processed by rapid solidification process and method
JP2000178700A (en) High corrosion resistance Zr-based amorphous alloy
JPS6411704B2 (en)
US4395464A (en) Copper base alloys made using rapidly solidified powders and method
JP4346192B2 (en) High corrosion-resistant bulk amorphous alloy and method for producing the same
JPS6152224B2 (en)
Shen et al. Glass transition behavior and mechanical properties of Ni-Si-B-based glassy alloys
JP4086195B2 (en) Ni-based metallic glass alloy with excellent mechanical properties and plastic workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees