[go: up one dir, main page]

JP2000261012A - Solar battery - Google Patents

Solar battery

Info

Publication number
JP2000261012A
JP2000261012A JP11061344A JP6134499A JP2000261012A JP 2000261012 A JP2000261012 A JP 2000261012A JP 11061344 A JP11061344 A JP 11061344A JP 6134499 A JP6134499 A JP 6134499A JP 2000261012 A JP2000261012 A JP 2000261012A
Authority
JP
Japan
Prior art keywords
electrode
current collecting
external electrode
unit current
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11061344A
Other languages
Japanese (ja)
Other versions
JP3743743B2 (en
Inventor
Yoshitatsu Kawama
吉竜 川間
Hiroaki Morikawa
浩昭 森川
Takashi Ishihara
隆 石原
Akihiro Kuroda
章裕 黒田
Shinji Nakamoto
眞司 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06134499A priority Critical patent/JP3743743B2/en
Publication of JP2000261012A publication Critical patent/JP2000261012A/en
Application granted granted Critical
Publication of JP3743743B2 publication Critical patent/JP3743743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase adherence strength between an external electrode and a current collecting electrode so as to prevent the exfoliation of the external electrode, by increasing the area on which a fillet of a soldering layer is formed. SOLUTION: A current collecting electrode 5 is divided into four unit current collecting electrodes 5', and all of the unit current collecting electrodes 5' are electrically connected to an external electrode 7. The bottoms of thin wires 4 are electrically connected to an impurity diffused layer 2. Furthermore, a fillet 9 on solder 8 is formed, so as to cover the upper surface of a current collecting electrode 5 and the side of the external electrode 7. The larger the fillet 9 is, the larger the adherence strength between the external electrode 7 and the current collecting electrode 5 becomes. Since the current collecting electrode 5 is divided into four, a soldering layer 8 covers the bottom surface of the external electrode 7 at the ends of the unit current collecting electrodes 5'. The soldering layer 8 further covers the side walls of the unit current collecting electrodes 5' and the back of the external electrode 7 to form the fillet 9. Therefore, it is possible to increase the connecting strength between the external electrode and the current collecting electrode to prevent exfoliation of the external electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池の構造に
関し、特に、受光表面に形成された電極構造に関する。
The present invention relates to a solar cell structure, and more particularly, to an electrode structure formed on a light receiving surface.

【0002】[0002]

【従来の技術】図11は、例えば、シャープ株式会社製
の住宅用太陽光発電システム等に広く用いられている一
般的な太陽電池の構造を示す斜視図であり、図12は、
その上面図、図13は、XII−XIIにおける断面図であ
る。図中、1はp型シリコンからなる半導体基板、2は
POCl3を用いたリン拡散により形成したn型の不純
物拡散層、3はシリコン窒化膜よりなる反射防止膜、4
は印刷により形成した銀ペーストからなる細線電極、5
は細線電極4と同じく印刷により形成した銀ペーストか
らなる集電電極、6は印刷により形成したアルミペース
トからなる裏面電極、7は銅からなる外部電極、8は外
部電極7を集電電極5上に固定する錫からなる半田層、
9は集電電極5の上面と外部電極7の側壁との間に半田
層8が渡って形成されたのフィレット部である。外部電
極7は、仮想線で示す。
2. Description of the Related Art FIG. 11 is a perspective view showing a structure of a general solar cell widely used in, for example, a residential photovoltaic power system manufactured by Sharp Corporation, and FIG.
FIG. 13 is a cross-sectional view taken along the line XII-XII. In the drawing, 1 is a semiconductor substrate made of p-type silicon, 2 is an n-type impurity diffusion layer formed by phosphorus diffusion using POCl 3 , 3 is an antireflection film made of a silicon nitride film, 4
Are thin wire electrodes made of silver paste formed by printing, 5
Is a current collecting electrode made of silver paste formed by printing in the same manner as the thin wire electrode 4, 6 is a back electrode made of aluminum paste formed by printing, 7 is an external electrode made of copper, and 8 is an external electrode 7 on the current collecting electrode 5. A solder layer made of tin to be fixed to the
Reference numeral 9 denotes a fillet portion in which the solder layer 8 is formed between the upper surface of the current collecting electrode 5 and the side wall of the external electrode 7. The external electrode 7 is shown by a virtual line.

【0003】[0003]

【発明が解決しようとする課題】従来構造の太陽電池で
は、製造工程中や使用中において、集電電極5上の外部
電極7が剥離し、断線等の故障原因となっていた。これ
に対して、集電電極5と外部電極7との固定強度につい
て解析した結果、従来構造の太陽電池では、外部電極7
は、半田層8によって集電電極5の上に固定されている
が、詳細には、集電電極5と外部電極7との間に挿入さ
れた薄膜の半田層8による固定強度は小さく、集電電極
4の上面と外部電極7の側面との間に半田層8が渡って
形成されたのフィレット部9により、全体の固定強度が
ほぼ決定されている。従って、かかるフィレット部9の
強度を増すことにより、集電電極5と外部電極7との剥
離を防止できることを見出した。即ち、本発明はかかる
解析結果に基づいてなされたものであり、外部電極7と
集電電極5との間の接着強度を高くし、外部電極7の剥
離を防止した信頼性の高い太陽電池を提供することを目
的とする。
In the conventional solar cell, the external electrode 7 on the current collecting electrode 5 peels off during the manufacturing process or during use, causing a failure such as disconnection. On the other hand, as a result of analyzing the fixing strength between the current collecting electrode 5 and the external electrode 7, the solar cell having the conventional structure has the external electrode 7.
Is fixed on the current collecting electrode 5 by the solder layer 8. More specifically, the fixing strength of the thin solder layer 8 inserted between the current collecting electrode 5 and the external electrode 7 is small, The overall fixing strength is substantially determined by the fillet 9 formed by the solder layer 8 formed between the upper surface of the electrode 4 and the side surface of the external electrode 7. Therefore, it has been found that by increasing the strength of the fillet portion 9, separation between the current collecting electrode 5 and the external electrode 7 can be prevented. That is, the present invention has been made based on such analysis results. A highly reliable solar cell in which the adhesive strength between the external electrode 7 and the current collecting electrode 5 is increased to prevent the external electrode 7 from peeling off. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】そこで、発明者らは鋭意
研究の結果、集電電極5を、複数の単位集電電極5’に
分割して形成し、半田層のフィレット部9が形成される
領域の面積を増やすことにより、外部電極7と集電電極
5との間の付着強度を高くして、外部電極7の剥離を防
止できることを見出し、本発明を完成した。
Accordingly, the present inventors have made intensive studies and as a result, formed the current collecting electrode 5 into a plurality of unit current collecting electrodes 5 'to form the fillet portion 9 of the solder layer. The present inventors have found that by increasing the area of the region, the adhesion strength between the external electrode 7 and the current collecting electrode 5 can be increased and the peeling of the external electrode 7 can be prevented, and the present invention has been completed.

【0005】即ち、本発明は、異なる導電型の半導体層
を積層し、該半導体層の一表面を受光面とする太陽電池
であって、該受光面上に、略平行に設けられた複数の細
線電極と該細線電極と接続された集電電極とからなる櫛
型電極と、該集電電極に重なるように導電性接着剤で固
定された外部電極とを備え、該集電電極が、該外部電極
の長手方向に、その電極端部間が所定の間隔をおいて設
けられた複数の単位集電電極からなり、該導電性接着剤
が、該電極端部において該外部電極の下部にも回り込
み、該電極端部の側壁部と該外部電極裏面との間を渡っ
て接続するフィレット部を形成してなることを特徴とす
る太陽電池である。このように、集電電極を分割して、
複数の単位集電電極とすることにより、単位集電電極の
側面と外部電極の裏面との間にもフィレット部を形成す
ることができ、集電電極と外部電極との接着強度を向上
させることができる。即ち、かかる構造を用いることに
より、フィレット部の形成領域を大きくできるととも
に、側面と裏面といった異なった方向から外部電極を固
定することができ、外部電極の固定強度を大きくするこ
とができる。これにより、製造工程中、又は使用中にお
ける外部電極の剥離を防止し、信頼性の高い太陽電池を
提供することが可能となる。
That is, the present invention relates to a solar cell in which semiconductor layers of different conductivity types are stacked and one surface of the semiconductor layer is used as a light-receiving surface. A comb-shaped electrode composed of a fine wire electrode and a current collecting electrode connected to the fine wire electrode, and an external electrode fixed with a conductive adhesive so as to overlap the current collecting electrode, wherein the current collecting electrode is In the longitudinal direction of the external electrode, a plurality of unit current collecting electrodes are provided at predetermined intervals between the electrode ends, and the conductive adhesive is also provided below the external electrode at the electrode end. A solar cell, wherein a fillet portion is formed so as to wrap around and connect between a side wall portion of the electrode end and a back surface of the external electrode. In this way, the collecting electrode is divided
By using a plurality of unit current collecting electrodes, a fillet portion can be formed between the side surface of the unit current collecting electrode and the back surface of the external electrode, thereby improving the adhesive strength between the current collecting electrode and the external electrode. Can be. That is, by using such a structure, the area where the fillet portion is formed can be enlarged, and the external electrode can be fixed from different directions such as the side surface and the back surface, so that the fixing strength of the external electrode can be increased. Thereby, peeling of the external electrode during the manufacturing process or during use can be prevented, and a highly reliable solar cell can be provided.

【0006】上記長手方向と垂直な方向の電極幅は、該
外部電極より該単位集電電極の方が広くなり、該外部電
極の側面と、該単位集電電極の上面との間を渡って接続
するフィレット部を形成してなることが好ましい。かか
る構造を用いることにより、特に、太陽電池の発電効率
を多少犠牲にしても外部電極の接続強度を大きくしたい
場合には、単位集電電極の電極幅を広くして、フィレッ
ト部の形成面積を大きくすることにより、更に、外部電
極の接続強度を大きくすることができるからである。
[0006] The electrode width in the direction perpendicular to the longitudinal direction is larger in the unit current collecting electrode than in the external electrode, and extends between the side surface of the external electrode and the upper surface of the unit current collecting electrode. Preferably, a fillet portion to be connected is formed. By using such a structure, in particular, when it is desired to increase the connection strength of the external electrode even if the power generation efficiency of the solar cell is somewhat sacrificed, the electrode width of the unit current collecting electrode is increased, and the area for forming the fillet portion is reduced. This is because the connection strength of the external electrode can be further increased by increasing the size.

【0007】上記単位集電電極は、電極幅を部分的に広
くしたものであっても良い。かかる構造を用いることに
より、太陽電池の発電効率の低下を極力抑えながら、外
部電極の接続強度を向上させることができるからであ
る。
[0007] The unit current collecting electrode may have a partially increased electrode width. By using such a structure, it is possible to improve the connection strength of the external electrodes while minimizing a decrease in the power generation efficiency of the solar cell.

【0008】上記電極幅は、該外部電極より該単位集電
電極の方が狭くなり、該外部電極裏面と、該単位集電電
極の側面との間を渡って接続するフィレット部を形成し
てなるものであっても良い。かかる構造を用いることに
より、太陽電池の発電効率を低下させないで、外部電極
の接着強度を向上させることが可能だからである。
The width of the electrode is smaller in the unit current collecting electrode than in the external electrode, and a fillet portion is formed to connect between the back surface of the external electrode and a side surface of the unit current collecting electrode. It may be. By using such a structure, the adhesive strength of the external electrode can be improved without lowering the power generation efficiency of the solar cell.

【0009】上記電極幅は、該外部電極と、該単位集電
電極とで略等しくなり、該外部電極の側面と、該単位集
電電極の側面との間を渡って接続するフィレット部を形
成してなるものであっても良い。かかる構造を用いるこ
とによっても、太陽電池の発電効率を低下させないで、
外部電極の接着強度を向上させることが可能だからであ
る。
The electrode width is substantially equal between the external electrode and the unit current collecting electrode, and forms a fillet portion that connects between the side surface of the external electrode and the side surface of the unit current collecting electrode. It may be made. Even by using such a structure, without lowering the power generation efficiency of the solar cell,
This is because the adhesive strength of the external electrode can be improved.

【0010】上記単位集積電極の電極端部間の距離は、
上記細線電極間の距離より広いことが好ましい。例え
ば、電極端部間の距離を、細線電極の1ピッチ分とする
より、3ピッチ分とするほうが、外部電極の接続強度が
向上するからである。
The distance between the electrode ends of the unit integrated electrode is
It is preferable that the distance is larger than the distance between the fine wire electrodes. For example, when the distance between the electrode ends is three pitches rather than one pitch of the fine wire electrode, the connection strength of the external electrodes is improved.

【0011】上記単位集電電極の電極端部は、該単位集
電電極の電極幅より電極幅の狭い接続電極で接続された
ものであっても構わない。このように、単位集電電極よ
り電極幅の狭い接続電極で接続することにより、外部電
極の接続強度を増しつつ、電極部の抵抗値の増加を抑
え、集電ロスを低減することができるからである。
The electrode end of the unit current collecting electrode may be connected by a connecting electrode having a smaller electrode width than the electrode width of the unit current collecting electrode. In this way, by connecting the connection electrodes having a narrower electrode width than the unit current collection electrodes, it is possible to increase the connection strength of the external electrodes, suppress an increase in the resistance value of the electrode portion, and reduce the current collection loss. It is.

【0012】[0012]

【発明の実施の形態】実施の形態1.本発明の第1の実
施の形態について、図1〜3を参照して説明する。図1
は、本実施の形態にかかる太陽電池の上面図、図2は、
I−Iにおける断面図であり、図中、図11と同一符号
は、同一又は相当箇所を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A first embodiment of the present invention will be described with reference to FIGS. FIG.
Is a top view of the solar cell according to the present embodiment, FIG.
It is sectional drawing in II, and the same code | symbol as FIG. 11 shows the same or equivalent part in a figure.

【0013】本実施の形態にかかる太陽電池では、受光
面上に、略平行に設けられた複数の細線電極4と該細線
電極4と接続された集電電極5とからなる櫛型電極と、
該集電電極5に重なるように半田層8で固定された外部
電極7とを備え、該集電電極5が、該外部電極7の長手
方向に、その電極端部間が所定の間隔をおいて設けられ
た複数の単位集電電極5’からなり、半田層8が、該電
極端部において該外部電極7の下部にも回り込み、該電
極端部の側壁部と該外部電極7裏面との間を渡って接続
するフィレット部9を形成している。具体的には、集電
電極5は、同一直線上に並んだ4つの単位集電電極5’
に分割されており、単位集電電極5’間の距離は、図1
の上方に示した電極では細線電極4の間隔と同じあり、
一方、図1の下方に示した電極では細線電極4の間隔の
3倍となっている。全ての単位集電電極5’は、その上
に形成された外部電極7に電気的に接続されている。ま
た、細線電極4は、その底面で、不純物拡散層2と電気
的に接続されている。
In the solar cell according to the present embodiment, a comb-shaped electrode comprising a plurality of fine wire electrodes 4 provided substantially in parallel on a light receiving surface and a current collecting electrode 5 connected to the fine wire electrodes 4;
An external electrode 7 fixed by a solder layer 8 so as to overlap the current collecting electrode 5, and the current collecting electrode 5 has a predetermined interval between the electrode ends in the longitudinal direction of the external electrode 7. And a plurality of unit current collecting electrodes 5 ′ are provided, and the solder layer 8 wraps around the lower end of the external electrode 7 at the end of the electrode, so that the side wall of the end of the electrode and the back surface of the external electrode 7 are separated from each other. A fillet portion 9 is formed so as to connect between them. Specifically, the current collecting electrode 5 is composed of four unit current collecting electrodes 5 ′ arranged on the same straight line.
The distance between the unit current collecting electrodes 5 'is shown in FIG.
In the electrode shown above, the distance is the same as the distance between the fine wire electrodes 4,
On the other hand, in the electrode shown in the lower part of FIG. All the unit current collecting electrodes 5 'are electrically connected to the external electrodes 7 formed thereon. The thin wire electrode 4 is electrically connected to the impurity diffusion layer 2 at the bottom surface.

【0014】ここで、半田8のフィレット部9は、図2
に示したように、集電電極5の上面と外部電極7の側面
との間を渡るように形成され、かかるフィレット部9が
多いほど、外部電極7の集電電極5に対する接着強度が
増加する。従って、本実施の形態では、集電電極5を4
つに分割して単位集電電極5’とすることにより、図2
に示すように、単位集電電極5’の電極端部において、
半田層8が外部電極7の下部にも回り込み、単位集電電
極5’の電極端部の側壁部と外部電極7裏面との間を渡
ってフィレット部9を形成するようにしている。
Here, the fillet portion 9 of the solder 8 is shown in FIG.
As shown in (2), it is formed so as to extend between the upper surface of the current collecting electrode 5 and the side surface of the external electrode 7, and as the number of such fillet portions 9 increases, the adhesive strength of the external electrode 7 to the current collecting electrode 5 increases. . Therefore, in the present embodiment, the current collecting electrode 5 is
FIG. 2 shows the structure of the unit current collecting electrode 5 '
As shown in the figure, at the electrode end of the unit current collecting electrode 5 ',
The solder layer 8 also goes under the external electrode 7 to form a fillet portion 9 between the side wall of the electrode end of the unit current collecting electrode 5 ′ and the back surface of the external electrode 7.

【0015】図3は、図1の構造において、集電電極5
から外部電極板7を剥がすのに必要となるひっぱり強度
をピール試験により測定した結果である。横軸に、集電
電極間の分断の無い場合(従来構造)、集電電極間の分
断距離が、細線電極4の間隔の1ピッチに相当する場合
(図1の上方に示した電極構造)、集電電極間の分断距
離が、細線電極4の間隔の3ピッチに相当する場合(図
1の下方に示した電極構造)を示し、縦軸に、ピール試
験で測定した外部電極付着強度(kg/cm2)を示す。図3
から明らかなように、集電電極5に分断部分を持たせ
て、単位集電電極5’としたものは、分断しない従来構
造のものより、付着強度(接着強度)が増加している。
また、分断部分の距離を、1ピッチから3ピッチに広げ
ることにより、更に付着強度が増加していることが分
る。以上のように、集電電極5を分割して、複数の単位
集電電極5’とすることにより、従来構造よりフィレッ
ト部9の形成される面積が大きくなり、外部電極7と集
電電極5との接着強度を大きくすることができる。これ
により、製造工程中、使用中における外部電極7の剥離
を防止することができ、信頼性の高い太陽電池を提供す
ることが可能となる。なお、本実施の形態にかかる太陽
電池では、単位集電電極5’に対して、外部電極7が表
面全体で電気的に接続されているため、集電電極5が分
割されることにより集電ロスが問題となるほど増加する
ことはない。
FIG. 3 shows the structure of FIG.
This is the result of measuring the pulling strength required for peeling the external electrode plate 7 from the test piece by a peel test. In the case where there is no division between the collecting electrodes on the horizontal axis (conventional structure), when the division distance between the collecting electrodes corresponds to one pitch of the interval between the fine wire electrodes 4 (the electrode structure shown in the upper part of FIG. 1). 1 shows a case where the separation distance between the collecting electrodes is equivalent to three pitches of the interval of the fine wire electrodes 4 (the electrode structure shown in the lower part of FIG. 1), and the vertical axis shows the external electrode adhesion strength (measured by the peel test). kg / cm 2 ). FIG.
As is clear from the above, the unitary current collecting electrode 5 ′ having the current collecting electrode 5 with a divided portion has an increased adhesion strength (adhesive strength) as compared with the conventional structure without division.
Also, it can be seen that the adhesion strength is further increased by increasing the distance of the divided portion from one pitch to three pitches. As described above, by dividing the current collecting electrode 5 into a plurality of unit current collecting electrodes 5 ′, the area where the fillet portion 9 is formed becomes larger than in the conventional structure, and the external electrode 7 and the current collecting electrode 5 are formed. And the adhesive strength with the adhesive can be increased. Thereby, the peeling of the external electrode 7 during the manufacturing process and during use can be prevented, and a highly reliable solar cell can be provided. In addition, in the solar cell according to the present embodiment, since the external electrode 7 is electrically connected to the unit current collecting electrode 5 ′ over the entire surface, the current collecting electrode 5 is divided to collect the current. Losses do not increase so much as to be a problem.

【0016】実施の形態2.本発明の第2の実施の形態
について、図4を参照して説明する。図4は、本実施の
形態にかかる太陽電池の上面図であり、図中、図1と同
一符号は、同一又は相当箇所を示す。また、上方に示し
た電極では、単位集電電極5’の間隔が細線電極4の1
ピッチ分の間隔であり、下方に示した電極では、細線電
極4の3ピッチ分の間隔となっている。本実施の形態で
は、上記実施の形態1の単位集電電極5’の間を、集電
電極5の長手方向と垂直な幅方向の電極幅が、単位集電
電極5’の電極幅より狭い接続電極10により電気的に
接続されている。かかる接続電極10は、単位集電電極
5’の形成工程で同時に形成することができ、材料も単
位集電電極5’と同じ銀ペーストから形成される。
Embodiment 2 A second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a top view of the solar cell according to the present embodiment, in which the same reference numerals as in FIG. 1 indicate the same or corresponding parts. In the electrodes shown above, the interval between the unit current collecting electrodes 5 ′ is one of the fine wire electrodes 4.
In the electrode shown below, the pitch is three pitches of the fine wire electrode 4. In the present embodiment, the electrode width in the width direction perpendicular to the longitudinal direction of the current collecting electrode 5 between the unit current collecting electrodes 5 ′ of the first embodiment is smaller than the electrode width of the unit current collecting electrode 5 ′. They are electrically connected by connection electrodes 10. Such connection electrodes 10 can be formed simultaneously in the step of forming the unit current collecting electrode 5 ', and the material is also formed from the same silver paste as the unit current collecting electrode 5'.

【0017】このように、単位集電電極5’をそれより
電極幅の狭い接続電極10で接続した構造とすることに
より、単位集電電極5’の電極端部であって接続電極1
0と接続されていない部分と、外部電極7の裏面との間
にフィレット部9を形成することができる。これによ
り、単位集電電極5’と外部電極7との接続強度を大き
くし、外部電極7の剥離を防止することができる。更に
は、各単位集電電極5’の間が接続電極10により電気
的に接続されているため、各単位集電電極5’が外部電
極7のみで電気的に接続されている場合に比較して、電
極部(単位集電電極5’と外部電極7)の抵抗値を小さ
くして、集電ロスを少なくすることができる。本実施の
形態では、接続電極10を、実施の形態1の構造に適用
した場合について述べたが、以下に説明する実施の形態
3〜5に適用することも可能である。
As described above, the unit current collecting electrode 5 'is connected by the connecting electrode 10 having a narrower electrode width.
The fillet portion 9 can be formed between the portion not connected to 0 and the back surface of the external electrode 7. Thereby, the connection strength between the unit current collecting electrode 5 'and the external electrode 7 can be increased, and the separation of the external electrode 7 can be prevented. Furthermore, since each unit current collecting electrode 5 'is electrically connected by the connection electrode 10, the unit current collecting electrode 5' is electrically connected only by the external electrode 7 as compared with the case where each unit current collecting electrode 5 'is electrically connected only by the external electrode 7. Thus, the resistance value of the electrode portion (the unit current collecting electrode 5 ′ and the external electrode 7) can be reduced, and the current collecting loss can be reduced. In the present embodiment, the case where the connection electrode 10 is applied to the structure of the first embodiment has been described. However, the connection electrode 10 can be applied to the following third to fifth embodiments.

【0018】実施の形態3.本発明の第3の実施の形態
について、図5、6を参照して説明する。図5は、本実
施の形態にかかる太陽電池の上面図であり、図6は、V
−Vにおける断面図である。図中、図1と同一符号は、
同一又は相当箇所を示す。また、上方に示した電極で
は、単位集電電極5’の間隔が細線電極4の1ピッチ分
の間隔であり、下方に示した電極では、細線電極4の3
ピッチ分の間隔となっている。本実施の形態にかかる太
陽電池では、図5に示すように、単位集電電極5’が、
電極端部において、電極幅を部分的に広くしたこと構造
となっている。かかる構造を採用することにより、図6
に示すように、電極幅が部分的に広くなった領域におい
て、単位集電電極5’の上面と外部電極7の側面との間
に半田層8が渡って形成されたフィレット部9の断面
を、例えば、図2に示す構造に比較して大きくすること
ができ、単位集電電極5’と外部電極7との接続強度を
大きくすることが可能となる。即ち、単位集電電極5’
の面積を大きくすることは、その上面に形成されるフィ
レット部9の断面積を大きくし、単位集電電極5’と外
部電極7との接続強度を大きくすることにつながるが、
一方で、太陽電池の受光表面の面積を小さくして、発電
効率を低下させることになる。そこで、本実施の形態で
は、部分的に単位集電電極5’の電極幅を広くした領域
を形成することにより、受光表面の面積低下を抑えなが
ら、実施の形態1の場合より、単位集電電極5’と外部
電極7との接続強度を大きくすることが可能となる。な
お、本実施の形態では、単位集電電極5’の両端の電極
端部において、面積の広い領域を設けたが、端部以外の
領域に設けることも可能である。
Embodiment 3 A third embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a top view of the solar cell according to the present embodiment, and FIG.
It is sectional drawing in -V. In the figure, the same reference numerals as those in FIG.
Indicates the same or equivalent parts. In the upper electrode, the interval between the unit current collecting electrodes 5 ′ is the interval of one pitch of the fine wire electrode 4, and in the lower electrode, the distance between the unit current collecting electrodes 5 ′ is 3
The interval is equal to the pitch. In the solar cell according to the present embodiment, as shown in FIG.
At the end of the electrode, the electrode width is partially increased. By adopting such a structure, FIG.
As shown in FIG. 5, in a region where the electrode width is partially widened, a cross section of a fillet portion 9 in which the solder layer 8 is formed between the upper surface of the unit current collecting electrode 5 ′ and the side surface of the external electrode 7 is shown. For example, as compared with the structure shown in FIG. 2, the connection strength between the unit current collecting electrode 5 ′ and the external electrode 7 can be increased. That is, the unit current collecting electrode 5 '
Increasing the area of the electrode leads to an increase in the cross-sectional area of the fillet portion 9 formed on the upper surface thereof and an increase in the connection strength between the unit current collecting electrode 5 'and the external electrode 7.
On the other hand, the area of the light receiving surface of the solar cell is reduced, and the power generation efficiency is reduced. Therefore, in the present embodiment, by forming a region in which the electrode width of the unit current collecting electrode 5 ′ is partially widened, the unit current collecting electrode 5 ′ is prevented from being reduced in area, and the unit current collecting electrode 5 ′ is more unitary than in the first embodiment. The connection strength between the electrode 5 'and the external electrode 7 can be increased. In the present embodiment, a large area is provided at the electrode ends at both ends of the unit current collecting electrode 5 ', but it may be provided in a region other than the end.

【0019】実施の形態4.本発明の第4の実施の形態
について、図7を参照して説明する。図7は、本実施の
形態にかかる太陽電池の上面図であり、図中、図1と同
一符号は、同一又は相当箇所を示す。また、上方に示し
た電極では、単位集電電極5’の間隔が細線電極4の1
ピッチ分の間隔であり、下方に示した電極では、細線電
極4の3ピッチ分の間隔となっている。
Embodiment 4 A fourth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a top view of the solar cell according to the present embodiment. In the figure, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts. In the electrodes shown above, the interval between the unit current collecting electrodes 5 ′ is one of the fine wire electrodes 4.
In the electrode shown below, the pitch is three pitches of the fine wire electrode 4.

【0020】上記実施の形態3にかかる太陽電池では、
単位集電電極5’を部分的に広く形成したのに対して、
本実施の形態にかかる太陽電池では、単位集電電極5’
全領域について、単位集電電極5’の面積を広くしてい
る。即ち、単位集電電極5’のいずれの箇所で、電極幅
方向の断面を取ってみても、図6のような断面構造とな
る。従って、太陽電池の受光表面の面積が多少小さくな
っても、単位集電電極5’と外部電極7との接続強度を
大きくしたいといった要求のある場合には、図7に示す
ような構造を用いることにより、実施の形態1の場合よ
り、更に、単位集電電極5’と外部電極7との接続強度
を大きくして、外部電極7の剥離を防止することが可能
となる。
In the solar cell according to the third embodiment,
While the unit collecting electrode 5 'is partially widened,
In the solar cell according to the present embodiment, the unit current collecting electrode 5 ′
In all regions, the area of the unit current collecting electrode 5 'is increased. That is, even if a section in the electrode width direction is taken at any part of the unit current collecting electrode 5 ', a sectional structure as shown in FIG. 6 is obtained. Therefore, even if the area of the light receiving surface of the solar cell is slightly reduced, a structure as shown in FIG. 7 is used when there is a demand to increase the connection strength between the unit current collecting electrode 5 ′ and the external electrode 7. This makes it possible to further increase the connection strength between the unit current collecting electrode 5 'and the external electrode 7 and prevent the external electrode 7 from peeling off as compared with the case of the first embodiment.

【0021】実施の形態5.本発明の第5の実施の形態
について、図8〜10を参照して説明する。図8は、本
実施の形態にかかる太陽電池の上面図であり、図9、1
0は、VIII−VIIIにおける断面図である。図中、図1
と同一符号は、同一又は相当箇所を示す。また、上方に
示した電極では、単位集電電極5’の間隔が細線電極4
の1ピッチ分の間隔であり、下方に示した電極では、細
線電極4の3ピッチ分の間隔となっている。
Embodiment 5 A fifth embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a top view of the solar cell according to the present embodiment, and FIGS.
0 is a sectional view taken along line VIII-VIII. In the figure, FIG.
The same reference numerals indicate the same or corresponding parts. In the electrodes shown above, the interval between the unit current collecting electrodes 5 ′ is
In the electrode shown below, the pitch is three pitches of the fine wire electrode 4.

【0022】本実施の形態では、単位集電電極5’の電
極幅を、外部電極7の電極幅と同じか、又はより狭くし
たものである。図9は、単位集電電極5’の電極幅を、
外部電極7の電極幅より狭くした場合のVIII−VIIIに
おける断面図である。図から明らかなように、実施の形
態1では、単位集電電極5’の上面と、外部電極7の側
壁との間に形成されていたフィレット部9が、単位集電
電極5’の側面と、外部電極7の裏面との間に形成され
ることとなる。かかる構造を用いることにより、単位集
電電極5’と外部電極7との間に形成されるフィレット
部9の断面積を同等に維持して、実施の形態1の場合と
同程度の接続強度を維持しながら、単位集電電極5’の
電極幅を、外部電極7の電極幅より狭くすることによ
り、太陽電池表面の受光表面の面積を増やすことがで
き、太陽電池の発電効率を向上させることが可能とな
る。
In this embodiment, the width of the unit current collecting electrode 5 ′ is equal to or smaller than the width of the external electrode 7. FIG. 9 shows the electrode width of the unit current collecting electrode 5 ′.
FIG. 8 is a cross-sectional view taken along the line VIII-VIII when the width is smaller than the electrode width of the external electrode 7. As is clear from the figure, in the first embodiment, the fillet portion 9 formed between the upper surface of the unit current collecting electrode 5 ′ and the side wall of the external electrode 7 is replaced with the side surface of the unit current collecting electrode 5 ′. , And the back surface of the external electrode 7. By using such a structure, the cross-sectional area of the fillet portion 9 formed between the unit current collecting electrode 5 ′ and the external electrode 7 is maintained to be equal, and the same connection strength as in the first embodiment is obtained. By making the electrode width of the unit current collecting electrode 5 ′ smaller than the electrode width of the external electrode 7 while maintaining, the area of the light receiving surface of the solar cell surface can be increased, and the power generation efficiency of the solar cell can be improved. Becomes possible.

【0023】一方、図10は、単位集電電極5’の電極
幅と、外部電極7の電極幅とを同じとするとともに、フ
ィレット部9が、単位集電電極5’の側面と、外部電極
7の側面とを渡るように形成したものである。このよう
にフィレット部9を形成することにより、実施の形態1
のように、単位集電電極5’の上面と、外部電極7の側
面との間にフィレット部9を形成した場合と同程度の接
続強度を得ることが可能となる。また、単位集電電極
5’の電極幅が、外部電極7の電極幅と、同程度まで狭
くすることにより、太陽電池の受光表面の面積を増やす
ことができ、太陽電池の発電効率を向上させることが可
能となる。
On the other hand, FIG. 10 shows that the electrode width of the unit current collecting electrode 5 ′ and the electrode width of the external electrode 7 are the same, and the fillet 9 is formed by the side surface of the unit current collecting electrode 5 ′ and the external electrode 7. 7 is formed so as to cross over the side surface of the first embodiment. By forming the fillet portion 9 in this way, the first embodiment
As described above, it is possible to obtain the same connection strength as when the fillet portion 9 is formed between the upper surface of the unit current collecting electrode 5 ′ and the side surface of the external electrode 7. Further, by making the electrode width of the unit current collecting electrode 5 'as narrow as the electrode width of the external electrode 7, the area of the light receiving surface of the solar cell can be increased, and the power generation efficiency of the solar cell is improved. It becomes possible.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
によれば、集電電極を分割して、複数の単位集電電極と
することにより、フィレット部が形成される面積が大き
くなり、外部電極と集電電極との接続強度を大きくする
ことができ、外部電極の剥離を防止した、信頼性の高い
太陽電池を提供することが可能となる。
As is apparent from the above description, according to the present invention, the area in which the fillet portion is formed is increased by dividing the current collecting electrode into a plurality of unit current collecting electrodes. The connection strength between the external electrode and the current collecting electrode can be increased, and a highly reliable solar cell in which peeling of the external electrode is prevented can be provided.

【0025】また、単位集電電極の面積を一部、又は全
部において広くすることにより、フィレット部の接続強
度を大きくし、更に、信頼性の高い太陽電池を提供する
ことが可能となる。
Further, by increasing the area of the unit current collecting electrode in part or all, the connection strength of the fillet portion can be increased, and a highly reliable solar cell can be provided.

【0026】また、単位集電電極の電極幅を、外部電極
と同等又はそれより小さくすることにより、外部電極の
剥離を防止しながら、太陽電池の受光表面の面積を広く
して、太陽電池の発電効率を向上させることが可能とな
る。
Also, by making the electrode width of the unit current collecting electrode equal to or smaller than that of the external electrode, the area of the light receiving surface of the solar cell can be increased while preventing the external electrode from peeling off. Power generation efficiency can be improved.

【0027】更には、単位集電電極間を、それより電極
幅の狭い接続電極で接続した構造とすることにより、電
極部の抵抗値を小さくして、集電ロスを少なくすること
が可能となる。
Further, by forming a structure in which the unit current collecting electrodes are connected by connecting electrodes having a narrower electrode width, it is possible to reduce the resistance value of the electrode portion and reduce the current collecting loss. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1にかかる太陽電池の上
面図である。
FIG. 1 is a top view of a solar cell according to a first embodiment of the present invention.

【図2】 I−Iにおける断面図である。FIG. 2 is a cross-sectional view taken along a line II.

【図3】 外部電極付着強度の測定結果である。FIG. 3 is a measurement result of external electrode adhesion strength.

【図4】 本発明の実施の形態2にかかる太陽電池の上
面図である。
FIG. 4 is a top view of the solar cell according to the second embodiment of the present invention.

【図5】 本発明の実施の形態3にかかる太陽電池の上
面図である。
FIG. 5 is a top view of the solar cell according to Embodiment 3 of the present invention.

【図6】 V−Vにおける断面図である。FIG. 6 is a sectional view taken along line VV.

【図7】 本発明の実施の形態4にかかる太陽電池の上
面図である。
FIG. 7 is a top view of a solar cell according to Embodiment 4 of the present invention.

【図8】 本発明の実施の形態5にかかる太陽電池の上
面図である。
FIG. 8 is a top view of a solar cell according to a fifth embodiment of the present invention.

【図9】 VIII−VIIIにおける断面図である。FIG. 9 is a sectional view taken along line VIII-VIII.

【図10】 VIII−VIIIにおける断面図である。FIG. 10 is a sectional view taken along line VIII-VIII.

【図11】 従来構造にかかる太陽電池の斜視図であ
る。
FIG. 11 is a perspective view of a solar cell according to a conventional structure.

【図12】 従来構造にかかる太陽電池の上面図であ
る。
FIG. 12 is a top view of a solar cell according to a conventional structure.

【図13】 XII−XIIにおける断面図である。FIG. 13 is a sectional view taken along XII-XII.

【符号の説明】[Explanation of symbols]

1 半導体基板、2 不純物拡散層、3 反射防止膜、
4 細線電極、5 集電電極、5’ 単位集電電極、6
裏面電極、7 外部電極、8 半田層、9 フィレッ
ト部、10 接続電極。
1 semiconductor substrate, 2 impurity diffusion layer, 3 anti-reflection film,
4 fine wire electrode, 5 current collecting electrode, 5 'unit current collecting electrode, 6
Back electrode, 7 external electrode, 8 solder layer, 9 fillet, 10 connection electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 隆 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 黒田 章裕 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 中本 眞司 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5F051 BA03 FA06 FA13 FA14 FA16 FA30  ──────────────────────────────────────────────────続 き Continued on the front page (72) Takashi Ishihara, 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Akihiro Kuroda 2-3-2, Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Shinji Nakamoto 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 5F051 BA03 FA06 FA13 FA14 FA16 FA30

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 異なる導電型の半導体層を積層し、該半
導体層の一表面を受光面とする太陽電池であって、 該受光面上に、略平行に設けられた複数の細線電極と該
細線電極と接続された集電電極とからなる櫛型電極と、 該集電電極に重なるように導電性接着剤で固定された外
部電極とを備え、 該集電電極が、該外部電極の長手方向に、その電極端部
間が所定の間隔をおいて設けられた複数の単位集電電極
からなり、該導電性接着剤が、該電極端部において該外
部電極の下部にも回り込み、該電極端部の側壁部と該外
部電極裏面との間を渡って接続するフィレット部を形成
してなることを特徴とする太陽電池。
1. A solar cell in which semiconductor layers of different conductivity types are stacked and one surface of the semiconductor layer is used as a light receiving surface, and a plurality of thin wire electrodes provided substantially in parallel on the light receiving surface. A comb-shaped electrode composed of a current collecting electrode connected to the thin wire electrode, and an external electrode fixed with a conductive adhesive so as to overlap the current collecting electrode; In the direction, a plurality of unit current collecting electrodes are provided at predetermined intervals between the electrode ends, and the conductive adhesive wraps around the lower part of the external electrode at the electrode ends, and A solar cell comprising a fillet portion that connects between a side wall portion of an extreme portion and a back surface of the external electrode.
【請求項2】 上記長手方向と垂直な方向の電極幅が、
該外部電極より該単位集電電極の方が広くなり、該外部
電極の側面と、該単位集電電極の上面との間を渡って接
続するフィレット部を形成してなることを特徴とする請
求項1に記載の太陽電池。
2. The electrode width in a direction perpendicular to the longitudinal direction is:
The unit current collecting electrode is wider than the external electrode, and a fillet portion is formed to connect between a side surface of the external electrode and an upper surface of the unit current collecting electrode. Item 2. The solar cell according to item 1.
【請求項3】 上記単位集電電極が、電極幅を部分的に
広くしたことを特徴とする請求項2に記載の太陽電池。
3. The solar cell according to claim 2, wherein the unit current collecting electrode has a partially increased electrode width.
【請求項4】 上記電極幅が、該外部電極より該単位集
電電極の方が狭くなり、該外部電極裏面と、該単位集電
電極の側面との間を渡って接続するフィレット部を形成
してなることを特徴とする請求項1に記載の太陽電池。
4. The unit electrode according to claim 1, wherein the width of the unit collector electrode is smaller than that of the external electrode, and a fillet portion is formed to connect between the back surface of the external electrode and a side surface of the unit collector electrode. The solar cell according to claim 1, wherein:
【請求項5】 上記電極幅が、該外部電極と、該単位集
電電極とで略等しくなり、該外部電極の側面と、該単位
集電電極の側面との間を渡って接続するフィレット部を
形成してなることを特徴とする請求項1に記載の太陽電
池。
5. A fillet portion in which the electrode width is substantially equal between the external electrode and the unit current collecting electrode, and is connected between a side surface of the external electrode and a side surface of the unit current collecting electrode. The solar cell according to claim 1, wherein:
【請求項6】 上記単位集積電極の電極端部間の距離
が、上記細線電極間の距離より広いことを特徴とする請
求項1に記載の太陽電池。
6. The solar cell according to claim 1, wherein a distance between electrode ends of the unit integrated electrode is wider than a distance between the fine wire electrodes.
【請求項7】 上記単位集電電極の電極端部が、該単位
集電電極の電極幅より電極幅の狭い接続電極で接続され
たことを特徴とする請求項1〜6のいずれかに記載の太
陽電池。
7. The unit current collecting electrode according to claim 1, wherein an electrode end of the unit current collecting electrode is connected to a connection electrode having a smaller electrode width than an electrode width of the unit current collecting electrode. Solar cell.
JP06134499A 1999-03-09 1999-03-09 Solar cell Expired - Fee Related JP3743743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06134499A JP3743743B2 (en) 1999-03-09 1999-03-09 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06134499A JP3743743B2 (en) 1999-03-09 1999-03-09 Solar cell

Publications (2)

Publication Number Publication Date
JP2000261012A true JP2000261012A (en) 2000-09-22
JP3743743B2 JP3743743B2 (en) 2006-02-08

Family

ID=13168434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06134499A Expired - Fee Related JP3743743B2 (en) 1999-03-09 1999-03-09 Solar cell

Country Status (1)

Country Link
JP (1) JP3743743B2 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317904A (en) * 2003-11-27 2005-11-10 Kyocera Corp Solar cell module
JP2007266262A (en) * 2006-03-28 2007-10-11 Sharp Corp Solar cell with interconnector, solar cell module, and method for manufacturing solar cell module
JP2008053681A (en) * 2006-03-27 2008-03-06 Kyocera Corp Solar cell module and manufacturing method thereof
JP2008085225A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Solar cell module
JP2008135652A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar cell module
JP2008227262A (en) * 2007-03-14 2008-09-25 Sanyo Electric Co Ltd Solar battery module
WO2008139787A1 (en) * 2007-05-10 2008-11-20 Sharp Kabushiki Kaisha Solar cell, its manufacturing method, solar cell string and solar cell module
JP2009141381A (en) * 2003-11-27 2009-06-25 Kyocera Corp Solar cell module and solar cell element structure
US20100126551A1 (en) * 2006-08-25 2010-05-27 Sanyo Electric Co., Ltd. Solar cell module and solar cell module manufacturing method
JP2011003936A (en) * 2010-09-30 2011-01-06 Sanyo Electric Co Ltd Photovoltaic module and photovolatic element
EP2020688A3 (en) * 2007-08-02 2011-10-26 Sanyo Electric Co., Ltd. Solar cell interconnection using thermo-compression bonding and correspondingly fabricated module
JP2012023408A (en) * 2006-03-27 2012-02-02 Kyocera Corp Solar cell module and manufacturing method thereof
US8153884B2 (en) 2007-08-07 2012-04-10 Sanyo Electric Co., Ltd. Solar cell module
JP2012109623A (en) * 2012-03-06 2012-06-07 Sanyo Electric Co Ltd Manufacturing method of solar cell module
JP2012129359A (en) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp Solar cell module and solar cell
US20120227785A1 (en) * 2011-03-08 2012-09-13 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module, method of making solar battery cell and method of making solar battery module
WO2012121349A1 (en) * 2011-03-08 2012-09-13 日立化成工業株式会社 Solar cell, solar cell module, method for producing solar cell, and method for producing solar cell module
JP2012231166A (en) * 2006-12-26 2012-11-22 Kyocera Corp Solar cell module
JP2013051452A (en) * 2012-12-12 2013-03-14 Mitsubishi Electric Corp Solar battery cell
WO2013039158A1 (en) * 2011-09-13 2013-03-21 京セラ株式会社 Solar cell module
WO2013046389A1 (en) * 2011-09-29 2013-04-04 三洋電機株式会社 Solar cell, solar cell module, and method for manufacturing solar cell module
WO2013069425A1 (en) * 2011-11-09 2013-05-16 三菱電機株式会社 Solar cell module and manufacturing method therefor
WO2013140623A1 (en) * 2012-03-23 2013-09-26 三洋電機株式会社 Solar cell module and method for manufacturing same
WO2013150976A1 (en) * 2012-04-06 2013-10-10 デクセリアルズ株式会社 Crystal system solar battery module and method for manufacturing same
WO2013162720A1 (en) * 2012-04-26 2013-10-31 Applied Materials, Inc. Contact and interconnect metallization for solar cells
WO2013100856A3 (en) * 2011-12-30 2013-12-05 Memc Singapore Pte, Ltd. Bus bars for solar modules
CN104282787A (en) * 2013-07-02 2015-01-14 太阳世界工业萨克森有限公司 Photovoltaic module
JP2015039005A (en) * 2014-09-30 2015-02-26 三洋電機株式会社 Solar battery and solar battery module
US20150068596A1 (en) * 2012-06-29 2015-03-12 Sanyo Electric Co., Ltd. Solar cell module and method for manufacturing solar cell module
JP2015070260A (en) * 2013-09-27 2015-04-13 エルジー エレクトロニクス インコーポレイティド Solar cell
US9136415B2 (en) 2009-04-30 2015-09-15 Mitsubishi Electric Corporation Solar battery cell
TWI509818B (en) * 2013-03-20 2015-11-21 Motech Ind Inc Solar cell, method of manufacturing the same and module comprising the same
CN105261663A (en) * 2014-07-07 2016-01-20 Lg电子株式会社 Solar cell module
US9324895B2 (en) 2010-12-21 2016-04-26 Mitsubishi Electric Corporation Solar cell module and manufacturing method thereof
JP2016072637A (en) * 2014-09-30 2016-05-09 エルジー エレクトロニクス インコーポレイティド Solar cell and solar cell panel including the same
JP5944081B1 (en) * 2015-01-21 2016-07-05 三菱電機株式会社 Solar cell, solar cell module, method for manufacturing solar cell, method for manufacturing solar cell module
WO2016117180A1 (en) * 2015-01-21 2016-07-28 三菱電機株式会社 Solar battery cell, solar battery module, method for manufacturing solar battery cell, and method for manufacturing solar battery module
US9455359B2 (en) 2011-05-31 2016-09-27 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module and method of making solar battery module
US9515200B2 (en) 2006-01-24 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic module
JP2016213460A (en) * 2015-04-30 2016-12-15 エルジー エレクトロニクス インコーポレイティド Solar cell and solar cell panel including the same
JP2017050540A (en) * 2015-09-04 2017-03-09 エルジー エレクトロニクス インコーポレイティド Solar cell module
EP2469604A4 (en) * 2009-08-19 2017-11-22 Panasonic Intellectual Property Management Co., Ltd. Solar battery, solar battery module and solar battery system
US9837560B2 (en) 2011-03-08 2017-12-05 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module, method of making solar battery cell and method of making solar battery module
US9960290B2 (en) 2014-09-30 2018-05-01 Lg Electronics Inc. Solar cell and solar cell panel including the same
US20180138343A1 (en) * 2016-11-17 2018-05-17 Lg Electronics Inc. Solar cell panel
KR101915506B1 (en) 2018-02-27 2018-11-08 주성엔지니어링(주) A solar cell and a manufacturing method thereof
US11532765B2 (en) 2015-04-30 2022-12-20 Shangrao Jinko Solar Technology Development Co., Ltd Solar cell and solar cell panel including the same

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317904A (en) * 2003-11-27 2005-11-10 Kyocera Corp Solar cell module
JP2009141381A (en) * 2003-11-27 2009-06-25 Kyocera Corp Solar cell module and solar cell element structure
JP2009141380A (en) * 2003-11-27 2009-06-25 Kyocera Corp Solar cell module and solar cell element structure
US10056504B2 (en) 2006-01-24 2018-08-21 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic module
US9515200B2 (en) 2006-01-24 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic module
JP2008053681A (en) * 2006-03-27 2008-03-06 Kyocera Corp Solar cell module and manufacturing method thereof
JP2012023408A (en) * 2006-03-27 2012-02-02 Kyocera Corp Solar cell module and manufacturing method thereof
JP2007266262A (en) * 2006-03-28 2007-10-11 Sharp Corp Solar cell with interconnector, solar cell module, and method for manufacturing solar cell module
WO2007122897A1 (en) * 2006-03-28 2007-11-01 Sharp Kabushiki Kaisha Solar cell with interconnector, solar cell module and method for manufacturing solar cell module
US10043931B2 (en) 2006-08-25 2018-08-07 Panasonic Itellectual Property Management Co., Ltd. Solar cell module and solar cell module manufacturing method
US9660120B2 (en) * 2006-08-25 2017-05-23 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and solar cell module manufacturing method
US20100126551A1 (en) * 2006-08-25 2010-05-27 Sanyo Electric Co., Ltd. Solar cell module and solar cell module manufacturing method
JP2008085225A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Solar cell module
US9748413B2 (en) 2006-09-28 2017-08-29 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
CN101937942A (en) * 2006-09-28 2011-01-05 三洋电机株式会社 solar cell module
EP2068372A4 (en) * 2006-09-28 2012-12-19 Sanyo Electric Co SOLAR BATTERY MODULE
US9825188B2 (en) 2006-11-29 2017-11-21 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
JP2008135652A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar cell module
US9627554B2 (en) * 2006-11-29 2017-04-18 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
US20130037079A1 (en) * 2006-11-29 2013-02-14 Sanyo Electric Co., Ltd. Solar cell module
JP2012231166A (en) * 2006-12-26 2012-11-22 Kyocera Corp Solar cell module
JP2008227262A (en) * 2007-03-14 2008-09-25 Sanyo Electric Co Ltd Solar battery module
WO2008139787A1 (en) * 2007-05-10 2008-11-20 Sharp Kabushiki Kaisha Solar cell, its manufacturing method, solar cell string and solar cell module
US8299350B2 (en) 2007-08-02 2012-10-30 Sanyo Electric Co., Ltd. Solar cell module and method for manufacturing the same
EP2020688A3 (en) * 2007-08-02 2011-10-26 Sanyo Electric Co., Ltd. Solar cell interconnection using thermo-compression bonding and correspondingly fabricated module
US8153884B2 (en) 2007-08-07 2012-04-10 Sanyo Electric Co., Ltd. Solar cell module
US9136415B2 (en) 2009-04-30 2015-09-15 Mitsubishi Electric Corporation Solar battery cell
EP2469604A4 (en) * 2009-08-19 2017-11-22 Panasonic Intellectual Property Management Co., Ltd. Solar battery, solar battery module and solar battery system
JP2011003936A (en) * 2010-09-30 2011-01-06 Sanyo Electric Co Ltd Photovoltaic module and photovolatic element
JP2012129359A (en) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp Solar cell module and solar cell
US9324895B2 (en) 2010-12-21 2016-04-26 Mitsubishi Electric Corporation Solar cell module and manufacturing method thereof
WO2012121349A1 (en) * 2011-03-08 2012-09-13 日立化成工業株式会社 Solar cell, solar cell module, method for producing solar cell, and method for producing solar cell module
US9837560B2 (en) 2011-03-08 2017-12-05 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module, method of making solar battery cell and method of making solar battery module
US20120227785A1 (en) * 2011-03-08 2012-09-13 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module, method of making solar battery cell and method of making solar battery module
US9455359B2 (en) 2011-05-31 2016-09-27 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module and method of making solar battery module
WO2013039158A1 (en) * 2011-09-13 2013-03-21 京セラ株式会社 Solar cell module
US9006559B2 (en) 2011-09-13 2015-04-14 Kyocera Corporation Solar cell module
JP5289625B1 (en) * 2011-09-13 2013-09-11 京セラ株式会社 Solar cell module
WO2013046389A1 (en) * 2011-09-29 2013-04-04 三洋電機株式会社 Solar cell, solar cell module, and method for manufacturing solar cell module
JPWO2013046389A1 (en) * 2011-09-29 2015-03-26 三洋電機株式会社 Solar cell, solar cell module and manufacturing method thereof
JPWO2013069425A1 (en) * 2011-11-09 2015-04-02 三菱電機株式会社 Solar cell module and manufacturing method thereof
WO2013069425A1 (en) * 2011-11-09 2013-05-16 三菱電機株式会社 Solar cell module and manufacturing method therefor
DE112012004671B4 (en) 2011-11-09 2022-07-21 Mitsubishi Electric Corp. Solar cell module and manufacturing method thereof
US9484479B2 (en) 2011-11-09 2016-11-01 Mitsubishi Electric Corporation Solar cell module and manufacturing method thereof
WO2013100856A3 (en) * 2011-12-30 2013-12-05 Memc Singapore Pte, Ltd. Bus bars for solar modules
JP2012109623A (en) * 2012-03-06 2012-06-07 Sanyo Electric Co Ltd Manufacturing method of solar cell module
JPWO2013140623A1 (en) * 2012-03-23 2015-08-03 パナソニックIpマネジメント株式会社 Solar cell module and manufacturing method thereof
WO2013140623A1 (en) * 2012-03-23 2013-09-26 三洋電機株式会社 Solar cell module and method for manufacturing same
US9691913B2 (en) 2012-03-23 2017-06-27 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and method for manufacturing same
JP2013219155A (en) * 2012-04-06 2013-10-24 Dexerials Corp Crystalline solar cell module and method of manufacturing the same
WO2013150976A1 (en) * 2012-04-06 2013-10-10 デクセリアルズ株式会社 Crystal system solar battery module and method for manufacturing same
US9184333B2 (en) 2012-04-26 2015-11-10 Applied Materials, Inc. Contact and interconnect metallization for solar cells
WO2013162720A1 (en) * 2012-04-26 2013-10-31 Applied Materials, Inc. Contact and interconnect metallization for solar cells
US20150068596A1 (en) * 2012-06-29 2015-03-12 Sanyo Electric Co., Ltd. Solar cell module and method for manufacturing solar cell module
JP2013051452A (en) * 2012-12-12 2013-03-14 Mitsubishi Electric Corp Solar battery cell
TWI509818B (en) * 2013-03-20 2015-11-21 Motech Ind Inc Solar cell, method of manufacturing the same and module comprising the same
CN104282787A (en) * 2013-07-02 2015-01-14 太阳世界工业萨克森有限公司 Photovoltaic module
JP2015070260A (en) * 2013-09-27 2015-04-13 エルジー エレクトロニクス インコーポレイティド Solar cell
US11139406B2 (en) 2013-09-27 2021-10-05 Lg Electronics Inc. Solar cell
CN105261663A (en) * 2014-07-07 2016-01-20 Lg电子株式会社 Solar cell module
JP2019083346A (en) * 2014-07-07 2019-05-30 エルジー エレクトロニクス インコーポレイティド Solar cell module and method of manufacturing the same
KR101918231B1 (en) 2014-09-30 2018-11-14 엘지전자 주식회사 Solar cell and solar cell panel including the same
JP2015039005A (en) * 2014-09-30 2015-02-26 三洋電機株式会社 Solar battery and solar battery module
JP2021168405A (en) * 2014-09-30 2021-10-21 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. Solar cells and solar cell panels containing them
US9960290B2 (en) 2014-09-30 2018-05-01 Lg Electronics Inc. Solar cell and solar cell panel including the same
JP2016072637A (en) * 2014-09-30 2016-05-09 エルジー エレクトロニクス インコーポレイティド Solar cell and solar cell panel including the same
US11769842B2 (en) 2014-09-30 2023-09-26 Shangrao Jinko Solar Technology Development Co., Ltd Solar cell and solar cell panel including the same
WO2016117180A1 (en) * 2015-01-21 2016-07-28 三菱電機株式会社 Solar battery cell, solar battery module, method for manufacturing solar battery cell, and method for manufacturing solar battery module
TWI585989B (en) * 2015-01-21 2017-06-01 三菱電機股份有限公司 Solar battery unit, solar battery module, manufacturing method of solar battery unit, and manufacturing method of solar battery module
JP5944081B1 (en) * 2015-01-21 2016-07-05 三菱電機株式会社 Solar cell, solar cell module, method for manufacturing solar cell, method for manufacturing solar cell module
JP2016213460A (en) * 2015-04-30 2016-12-15 エルジー エレクトロニクス インコーポレイティド Solar cell and solar cell panel including the same
US11532765B2 (en) 2015-04-30 2022-12-20 Shangrao Jinko Solar Technology Development Co., Ltd Solar cell and solar cell panel including the same
JP2017050540A (en) * 2015-09-04 2017-03-09 エルジー エレクトロニクス インコーポレイティド Solar cell module
US20180138343A1 (en) * 2016-11-17 2018-05-17 Lg Electronics Inc. Solar cell panel
US11757058B2 (en) * 2016-11-17 2023-09-12 Shangrao Jinko Solar Technology Development Co Ltd Solar cell panel
KR101915506B1 (en) 2018-02-27 2018-11-08 주성엔지니어링(주) A solar cell and a manufacturing method thereof

Also Published As

Publication number Publication date
JP3743743B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
JP2000261012A (en) Solar battery
JP4738149B2 (en) Solar cell module
EP3300124A1 (en) Solar cell module
US9419153B2 (en) Process for manufacturing a solar cell and solar cell
JP5819862B2 (en) SOLAR CELL HAVING SPECIAL BUSLINE SHAPE, SOLAR CELL ARRAY INCLUDING THE SOLAR CELL, AND METHOD FOR PRODUCING A SOLAR CELL
US8796534B2 (en) Solar cell and assembly of a plurality of solar cells
JP2000164902A (en) Solar cell
CN103329285B (en) The lead connecting method of solar battery cell, solar module and solar battery cell
US9153713B2 (en) Solar cell modules and methods of manufacturing the same
US20180219109A1 (en) Solar module and method for manufacturing the solar module
JP4299772B2 (en) Solar cell module
JP4953562B2 (en) Solar cell module
JP2013125963A (en) Photovoltaic element
CN119584655A (en) Back contact photovoltaic modules
JP2000340812A (en) Solar cell
JP2567294Y2 (en) Solar cell module
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
CN104241404B (en) Solar cell and module thereof
JP2009141380A (en) Solar cell module and solar cell element structure
JP6785964B2 (en) Solar cells and solar modules
TWI670862B (en) Solar cell module
JP4565976B2 (en) Solar cell module
WO2018207312A1 (en) Solar cell and method for manufacturing solar cell
CN222814780U (en) Solar cells, solar strings, photovoltaic modules and photovoltaic power generation systems
TW201431096A (en) Solar battery, module thereof and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees